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Abstract. We consider the hydrostatic Boussinesq equations of global ocean dynamics, also known as the “primitive equa-
tions”, coupled to advection–diffusion equations for temperature and salt. The system of equations is closed by an equation
of state that expresses density as a function of temperature, salinity and pressure. The equation of state TEOS-10, the
official description of seawater and ice properties in marine science of the Intergovernmental Oceanographic Commission, is
the most accurate equations of state with respect to ocean observation and rests on the firm theoretical foundation of the
Gibbs formalism of thermodynamics. We study several specifications of the TEOS-10 equation of state that comply with
the assumption underlying the primitive equations. These equations of state take the form of high-order polynomials or
rational functions of temperature, salinity and pressure. The ocean primitive equations with a nonlinear equation of state
describe richer dynamical phenomena than the system with a linear equation of state. We prove well-posedness for the ocean
primitive equations with nonlinear thermodynamics in the Sobolev space H1. The proof rests upon the fundamental work
of Cao and Titi (Ann. Math. 166:245–267, 2007) and also on the results of Kukavica and Ziane (Nonlinearity 20:2739–2753,
2007). Alternative and older nonlinear equations of state are also considered. Our results narrow the gap between the
mathematical analysis of the ocean primitive equations and the equations underlying numerical ocean models used in ocean
and climate science.
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1. Introduction

During the last two decades important progress has been made in the field of mathematical analysis of
the primitive equations of large-scale atmosphere and ocean dynamics and in the field of ocean thermo-
dynamics. These two areas appear so remote to each other that any exchange between them is minimal if
even existing. The purpose of this work is to remedy this situation and to combine the accomplishments
of both areas. This allows us to prove a result that is relevant for ocean modelling, because it formulates
a fundamental well-posedness result for the ocean primitive equations now with realistic oceanic thermo-
dynamics and brings thereby the analysis of the ocean primitive equations closer to actual codes that are
used in ocean and climate science.

We consider the primitive equations in an ocean specific setting, i.e. together with advection–diffusion
equations for temperature and salinity. These equations are closed by an equation-of-state that expresses
density as a function of temperature, salinity and pressure. It is this equation-of-state that we are con-
cerned with. The thermodynamic behaviour of seawater shows a complex interplay between salinity,
temperature and pressure that determines the density. For the oceanic equation of state no analytical
expression is available such as the ideal gas law for atmospheric thermodynamics. As a substitute one
uses a linear equation of state in which the density is a linear combination of temperature and salinity.

So far the mathematical analysis of the primitive equations has been restricted exclusively to a
linear equation of state. The analysis of the primitive equations dates back to the work of Lions-
Temam-Wang [25], using a linear equations of state they have proven the existence of weak solutions
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in L∞([0, T ],L2(Ω)) ∩ L2([0, T ],H1(Ω)) for square integrable initial conditions. In their paper Lions–
Temam–Wang remark that a more general polynomial equations of state “lead to further mathematical
difficulties” (p. 1013 in [25]). In a seminal paper Cao and Titi [2] were the first to prove global existence
and uniqueness of strong solutions in L∞([0, T ],H1(Ω)) ∩ L2([0, T ],H2(Ω)) for initial data in H1. They
used an equation set consisting of velocity and temperature but the extension to a linear equation of state
including salinity is straightforward. A different proof was given by Kobelkov [21]. For a different set of
boundary conditions well-posedness in H1 was established in Kukavica-Ziane [22]. The authors solved
first the mathematical challenging problems of the velocity equation without any thermodynamics before
they indicated how to include a linear equation of state.

Modifications of the primitive equations that use only partial viscosity or diffusivity in several combi-
nations were studied by Cao–Li–Titi in a series of papers [3–7]. A Lp-approach for the primitive equation
was developed in Hieber and Kashiwabara [17], following the Fujita–Kato approach for the Navier–Stokes
equations and without considering thermodynamics. This methodology allows to weaken the differentia-
bility assumption on the initial conditions. This was extended in Hieber et al. [18] to the primitive equation
with temperature and salinity using a linear equation of state. By using techniques from the theory of
maximal Lp-regularity it was shown in Giga and Hieber [11] that the solution to the primitive equations
becomes analytic for positive time for initial data in a Besov space. The existence of an attractor of the
primitive equations was shown by Chuesov [8] and Ju [20]. For reviews on mathematical results of the
primitive equations we refer to [16,24,29].

A linear equation of state is insufficient to represent the density dynamics in the world ocean. Density
changes in the ocean are small but they have significant dynamical consequences, and although density
changes act on small scales they shape the large scale circulation on long time scales. The density becomes
dynamically active via the pressure gradient as vertical integral of density. It plays a central role in
fundamental relations of geophysical fluid dynamics such as the geostrophic balance or the hydrostatic
relation. The global circulation of the ocean is not only wind-driven but also density-driven. At high
latitudes, for example, the cooling by the atmosphere increases the density of surface waters and this leads
to sinking of water masses and convective overturning. These water masses flow in great depths southwards
and get on their way slowly mixed. Important mixing processes such as cabbeling and thermobaricity
are not captured by a linear equation of state. The downwelling of water must be compensated by an
upwelling elsewhere. This resulting thermohaline circulation that forms the backbone of the global ocean
circulation requires an adequate description of the oceanic density dynamics.

An oceanic equation of state has to include ocean phenomenology and to represent actual measure-
ments of temperature, salinity, pressure and density to the highest possible degree and at the same time
it has to strive for thermodynamic consistency. Thus, on one hand ocean thermodynamics has to consider
observable quantities of real-world phenomena, on the other hand it has to reproduce fundamental and
theoretical relations between abstract concepts such as entropy and enthalpy that are hardly measurable.

In the formulation of the ocean thermodynamics, as documented in the international standard TEOS-
10 [19] (see e.g. [27] for a brief description), the internal consistency of the thermodynamic description
is implemented by deriving all thermodynamic quantities from a general Gibbs potential function G (see
[10] or [32] and references therein). From the Gibbs function all thermodynamics quantities are derived
as mixed partial Frechet derivatives. Density, for example, is defined as partial derivative of the Gibbs
function with respect to pressure. For the Gibbs function G = G(T, S, p) an Ansatz is made as high-
order rational function of its dependent variables temperature, salinity and pressure. The phenomenology
of the ocean is incorporated by taking a combination of partial derivatives of the Gibbs function that
correspond to an observable quantity and determine the coefficients of the Gibbs function through a fit
to the observational data of this quantity. We emphasize that this equation of state is not a general one,
but one that was constructed for a very specific fluid, namely seawater. The procedure behind TEOS-10
that is sketched above leads to a formulation of ocean thermodynamics that is consistent and at the same
time represents accurately real-world ocean observations.

The TEOS-10 thermodynamics is for several reasons not immediately applicable in numerical ocean
models. First, the TEOS-10 equations of state is computationally quite expensive to calculate. The



JMFM Global Well-Posedness of the Ocean Primitive Equations Page 3 of 21    71 

computation of density involves the calculation of a high-order polynomial at each grid cell, and also
related quantities such as the thermal expansion and the saline contraction functions that are derivatives
of the density with respect to temperature and salinity have the same computational cost. Second, the
thermodynamic state variables in TEOS-10 are in-situ temperature and practical salinity, but in-situ
temperature is not a useful variable in ocean circulation models. The third reason is that the primitive
equations apply simplifications such as the Boussinesq approximation that are not made in TEOS-10.
An approximation to the TEOS-10 equations of state that is suitable for the use in ocean models was
developed in [30] and became part of the TEOS-10 standard.

Since the description of important oceanic phenomena necessitate an accurate—and that means a
nonlinear—equation of state, it is important to include such an equation of state into the mathematical
analysis of the primitive equations. This is the purpose of this paper. A nonlinear equation of state renders
the pressure gradient in the velocity equations nonlinear with respect to temperature and salinity. As
a result the velocity equation comprises now two nonlinearities, the velocity advection and the pressure
gradient, where the latter one depends through the vertical integral of the density in a nonlinear fashion
on temperature and salinity. In our formulation of the ocean primitive equations three types of pressure
variables occur: the surface pressure ps that is depth independent, the hydrostatic pressure phyd that
is determined via the vertical integral of the density, and the static pressure pstat that is used in the
equation of state to determine the density and that is a function of depth. The thermodynamic pressure
is determined by energetic consistency considerations of the Boussinesq approximation.

In this paper we prove a well-posedness result for the ocean primitive equations with nonlinear ther-
modynamics given by the equation of state TEOS-10. As a corollary we obtain also well-posed for the
predecessor of TEOS-10, the equation of state UNESCO-80. We consider the velocity boundary condi-
tions that were used in the work of Cao and Titi [2] as well as the boundary conditions of Kukavica and
Ziane [22]. Their a priori estimates provide the basis of our proof. We emphasize that the mathematically
challenging part of the well-posedness proofs are the a priori estimates for the velocity advection (and
surface pressure in case of mixed boundary conditions), while the estimates of the hydrostatic pressure
gradient for a nonlinear equation of state are established straightforwardly. Although we follow here the
energy-based approaches of [2,22] we believe that the Lp- and the maximal regularity of approach of
[11,18] can without problems be generalized to include a nonlinear equation of state. This is not pursued
here.

The paper is organized as follows: In Sect. 2 we describe the ocean primitive equations and specify
the functional analytic setup. Section 3 introduces the basic notions of ocean thermodynamics and in the
final Sect. 4 we state and prove the well-posedness theorem of the primitive equations with the nonlinear
equation of state.

2. The Primitive Equations

The primitive equations are a central set of model equations for atmosphere and ocean dynamics. These
equations approximate the large-scale dynamics of ocean and atmosphere and describe ocean or atmo-
sphere as thin layer of a rotating and stratified fluid, together with the Boussinesq approximation and
the hydrostatic approximation. The primitive equations are derived as an approximation of the rotating
Navier–Stokes equations [23]. The state vector of the primitive equations consists of a horizontal velocity
field u = (u, v) and temperature T and salinity S. We will say more about the temperature and salinity
notions used in oceanography in Sect. 3.1.

Denote by Ω := M × (−h, 0) a cylindrical domain with a flat bottom, where h > 0 denotes the depth
of the ocean and M ⊆ R

2 is bounded, with a smooth boundary ∂M . The primitive equations are given
by

∂tu + (u · ∇)u + w∂zu + ∇p + f�k × u − 1
Re1

�u − 1
Re2

∂2
zzu = 0, (1a)

∂zp + gρ = 0, (1b)
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∇ · u + ∂zw = 0, (1c)

∂tT + (u · ∇)T + w∂zT − 1
Rt1

�T − 1
Rt2

∂2
zzT = 0, (1d)

∂tS + (v · ∇)S + w∂zS − 1
Rs1

�S − 1
Rs2

∂2
zzS = 0, , (1e)

ρ = ρ(T, S, p), (1f)

where w denotes the vertical velocity, f the Coriolis parameter, and ρ denotes an equation of state with
pressure p. The numbers Re1, Re2 > 0 denote the horizontal and vertical Reynolds number that represent
the viscosity coefficients. The numbers Rt1, Rt2 > 0 and Rs1, Rs2 > 0 are the horizontal and vertical
mixing coefficients for temperature and salinity.

The operators ∇,∇· and � denote the horizontal gradient, divergence and Laplacian, respectively.
The partial derivative with respect to the vertical direction is denoted by ∂z.

The vertical velocity w in (1) is determined by the constraint (1c) and can by virtue of the boundary
conditions be expressed as

w(x, y, z, t) = −
∫ 0

−z

∇ · u(x, y, ξ, t) dξ = −∇ ·
∫ 0

−z

u(x, y, ξ, t) dξ. (2)

The theme of this paper is the pressure decomposition. The pressure term can with the hydrostatic
balance be reformulated as

∇p(x, y, z, t) = ∇ps(x, y, t) + ∇phyd(x, y, z, t),

with phyd :=
∫ z

−h

ρ[T, S, p](x, y, ξ, t) dξ
(3)

where ps denotes the surface pressure that acts as a Lagrange multiplier and has to be determined. The
hydrostatic pressure phyd is calculated from density ρ via an evaluation of the equation of state. Through
this equation of state are temperature and salinity equations coupled to the velocity equation. The nature
of this coupling changes when one progresses from a linear to a nonlinear equation of state.
Boundary Conditions The statement of the primitive equations is completed by the description of the
imposed boundary conditions. In this work here the external forcing is applied via the boundary conditions
and not via the right hand side of the respective equation. We use one set of boundary conditions for
temperature and salinity and consider two sets of boundary conditions for the velocity. Including a
nonlinear equation of state has no consequences on the boundary conditions. We consider both types of
velocity boundary conditions to demonstrate that the two corresponding well-posedness theorems and
their different proofs remain valid for nonlinear ocean thermodynamics.

The boundary ∂Ω consists of

a surface Γu := {(x, y, z) ∈ Ω̄ : z = 0}
a lateral boundary Γs := {(x, y, z) ∈ Ω̄ : (x, y) ∈ ∂M}
a bottom boundary Γb := {(x, y, z) ∈ Ω̄ : z = −h}

such that ∂Ω = Γu ∪ Γs ∪ Γb.
For temperature and salinity we impose the following boundary conditions

T-S bound. cond.

⎧⎨
⎩

on Γu : ∇3T · n3 = −kθ(T − T ∗),∇3S · n3 = 0,
on Γs : ∇3T · n = ∇3S · n = 0,
on Γb : ∇3T · n3 = ∇3S · n3 = 0,

(4)

where �n is the normal vector at Γs, n3 the vertical Cartesian unit vector, and T ∗ is a given temperature
field at the sea surface.

For velocity we consider two types of boundary conditions.
At the top we impose the boundary condition that the ocean is driven by wind stresses, for the vertical

velocity we impose a rigid lid, on the sides we impose for horizontal velocity a no penetration boundary
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condition and a stress-free boundary condition (i.e. the tangent component of the stress vanishes at the
boundary), at the bottom we also have the stress-free boundary condition for the horizontal velocity and
for the vertical velocity a no penetration boundary condition:⎧⎪⎪⎨

⎪⎪⎩

on Γu : ∂zu = hτ,w = 0,
on Γs : (x, y) ∈ ∂M} : u · n = 0,

∂nu × n = 0, w = 0,
on Γb : ∂zu = 0, w = 0,

(5)

where τ is a given 2D wind stress field. The second set of boundary conditions imposes also a rigid lid,
but on the lateral sides a homogeneous Dirirchlet boundary condition, on the top the same wind-driven
boundary condition as in (5) but on the bottom a homogeneous Dirichlet boundary condition:⎧⎨

⎩
on Γu : ∂zu = hτ,w = 0,
on Γs : (x, y) ∈ ∂M} : u = 0, w = 0,
on Γb : u = 0, w = 0,

(6)

The first set of velocity boundary conditions was considered in [2], the second one in [22].
At the ocean surface Γu the boundary condition for velocity u and temperature T can be modi-

fied by adding a τ - and T ∗-dependent contribution such that we can assume without loss of generality
homogeneous boundary conditions at the ocean surface (see [25], Section 2.4., [2] p. 248, [1], p. 202)

∂zu = 0 and ∂zT = 0, on Γu. (7)

We define in the following the fundamental function spaces for velocity, temperature and salinity

Ṽv : =
{
u ∈ (C∞(Ω̄))2 : u satisfies either boundary condition (5) or (6),

and ∇ · u + ∂zw = 0
}

,

Ṽθ : =
{

T ∈ C∞(Ω̄) : T satisfies boundary condition(4) for temperature
}

,

ṼS : =
{

S ∈ C∞(Ω̄) : θ satisfies boundary condition (4) for salinity,

and
∫

Ω

S dxdydz = 0
}

.

(8)

Denote by Vv, Vθ, VS the closure of Ṽv in the Sobolev space H1(Ω) and of Ṽθ in H1(Ω). The norms are
for u ∈ Vv, T ∈ Vθ and S ∈ VS defined as

||u||2H1 :=
∫

Ω

|u(x, y, z)|2dxdydz +
∫

Ω

|∇3u(x, y, z)|2dxdydz,

||T ||2H1 :=
∫

Ω

|T (x, y, z)|2dxdydz +
∫

Ω

|∇3T (x, y, z)|2dxdydz

+ kT

∫
Γu

|θ(x, y, 0)|2dxdy,

and ||S||2H1 :=
∫

Ω

|S(x, y, z)|2dxdydz +
∫

Ω

|∇3S(x, y, z)|2dxdydz.

(9)

The product space denoted by

V := Vv × Vθ × VS . (10)

We denote the L2-norm and the H2-norm in the velocity and temperature, salinity spaces by || · ||L2 ,
|| · ||L2 and by || · ||H2 , || · ||H2 , respectively.
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Definition 1 (Strong Solution). i) Let initial conditions (u0, T0, S0) ∈ V be given, and let [0, T ], T > 0, be
a time interval. Let the temperature and salinity boundary conditions be given by (4), and the velocity
boundary condition either given by (5) or by (6). The state vector (u, T, S) is called a strong solution of
(1) on [0, T ] if

u ∈ C([0, T ], Vv) ∩ L2([0, T ],H2(Ω)),

T, S ∈ C([0, T ], Vθ) ∩ L2([0, T ],H2(Ω)),

∂tu ∈ L2([0, T ],L2(Ω)),

∂t(T, S) ∈ L2([0, T ], L2(Ω)),

and if it satisfies in the sense of distributions for all Φ ∈ (C∞(Ω̄))2 and φ ∈ C∞(Ω̄)∫
Ω

∂tu · Φdx +
∫

Ω

[(u · ∇)u] · Φdx +
∫

Ω

f�k × uΦdxdydz +
∫

Γu

(∇ps) · Φdxdydz

−
∫

Ω

[(
∇ ·

∫ z

−h

u(x, y, ξ, t) dξ
)
∂zu

]
· Φdxdydz

−
∫

Ω

[
∇

∫ z

−h

gρ(x, y, ξ, t) dξ
]
· Φdxdydz +

∫
Ω

1
Re1

∇u · ∇Φ +
1

Re2
∂zu · ∂zΦdxdydz = 0, (11a)

∫
Ω

∂tTφ dxdydz +
∫

Ω

(u · ∇)Tφ dxdydz −
∫

Ω

[
∇ ·

∫ 0

−h

u(x, y, ξ, t) dξ
]
∂zT φ dxdydz

+
1

Rt1

∫
Ω

∇3T · ∇3φ dxdydz +
1

Rt2

∫
Ω

∂zT∂zφ dxdydz

+ kT

∫
Γu

Tφ dxdy = 0, (11b)

∫
Ω

∂tSφ dxdydz +
∫

Ω

(u · ∇)Sφ dxdydz −
∫

Ω

[
∇ ·

∫ 0

−h

u(x, y, ξ, t) dξ
]
∂zS φ dxdydz

+
1

Rs1

∫
Ω

∇3S · ∇3φ dxdydz +
1

Rs2

∫
Ω

∂zS∂zφ dxdydz = 0, (11c)

with ρ := ρ(T, S, p), (11d)

where w denotes the vertical velocity, f the Coriolis parameter. The numbers Re1, Re2 > 0 denote the
horizontal and vertical Reynolds number that represent the viscosity coefficients. The numbers Rt1, Rt2 >
0 and Rs1, Rs2 > 0 are the horizontal and vertical mixing coefficients for temperature and salinity.

Theorem 1 (Global Well-Posedness [2,22]). Let a time interval [0, T ], with T > 0, be given. The boundary
conditions for temperature and salinity are given by (4) and the boundary conditions for velocity are given
either by (5) or by (6). Let the equation of state in (1f) given by

ρ := ρ0 − α(T − T̄ ) + β(S − S̄),

where ρ0, T̄ , S̄ > 0 are a mean density, a mean temperature and a mean salinity, respectively. The numbers
α, β > 0 denote the thermal expansion and saline contraction coefficient. If the initial conditions for
velocity, temperature and salinity satisfy (u0, T0, S0) ∈ V, then there exists on the interval [0, T ] a unique
strong solution (u, T, S) of the system (1) in the sense of Definition 1. This solution depends continuously
on the initial data with respect to the C([0, T ], L2(Ω))-topology.

The regularity of solutions of the primitive equations, described in Theorem 1, still leaves room for a
broad spectrum of spatio-temporal scales that comprises local and sudden events with large gradients
such as fronts. For an analysis of the admissible scales in terms of Nusselt, Raleigh and Reynolds numbers
we refer to [13,14].
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3. Ocean Thermodynamics

In what follows we need different notions of temperature and salinity. We collect our notation here. The
different concepts are introduced below. For details and extensive description we refer to [10,19].

Notation

• In-situ temperature: Tis

• Potential temperature: θpot

• Conservative temperature: Θ
• Generic temperature variable (one of the three above): T
• Practical salinity: Sprac

• Absolute salinity: S
• Generic salinity variable (one of the two above): S

3.1. Thermodynamic State Variables

Temperature: Oceanography uses several concepts of temperature such as in-situ temperature “Tis”, po-
tential temperature “θpot” or conservative temperature “Θ”. In-situ temperature is the temperature that
is actually measured at a certain position. It has, by definition, the advantage of being directly measurable
but the disadvantage that is changes with pressure and does therefore not give an adequate picture of
the heat content. The concept of potential temperature with respect to a reference pressure, resolves this
problem. It is defined as the temperature a fluid parcel would have if it is transported without entropy
change from its in-situ pressure to a reference pressure (typically the pressure at the ocean surface).
If η denotes the entropy, and Tis, p, S the in-situ temperature, salinity and pressure, respectively, then
the potential temperature θpot is defined by the equation η(θpot, S, pr) = η(Tis, S, p), where pr denotes
the reference pressure. An even more accurate image of the heat content is given by the conservative
temperature Θ, which is defined in terms of potential enthalpy H. Potential enthalpy is the heat content
a fluid parcel would have if it is brought from its actual pressure to a reference pressure pr without
energy exchange. The conservative temperature Θ is now defined via the enthalpy as Θ := H(θ∗,S,pr)

cp
,

with the heat capacity cp := H(θ∗ = 25◦C, 35psu, pr)/25 ◦C. Conservative temperature is more accurate
than potential temperature but the differences are in general relatively small. For ocean general circu-
lation models the notion of potential temperature as well as of conservative temperature is appropriate.
Potential temperature is the traditional notion used in ocean models, while conservative temperature is
a more recent concept. To which extend the change from potential to conservative temperature improves
ocean models in the sense that it reduces biases and decrease the difference to observations is subject of
ongoing research

The evolution equation for potential temperature or conservative temperature have the same math-
ematical structure of an advection diffusion equation as in (1d). The equation for in-situ temperature
is different (see (2.101) in [28]). This simplifies the analysis, but it is important to distinguish which
temperature variable is used in TEOS-10.

Salinity: TEOS-10 use the concept of absolute salinity S. Absolute Salinity is defined as the mass fraction
of dissolved material in seawater. It has the advantage over other notions such as practical salinity
“Sprac” that it is influenced by the mass of dissolved constituents, whereas Practical Salinity depends
on the conductivity of seawater. For a comprehensive discussion of salinity notions we refer to TEOS-10
[19].

The advection–diffusion equation for the different concepts of temperature and salinity outlined above
all have the familiar structure shown in (1d) and (1e). The different definitions show up in different units
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and in different mixing coefficients. In this work we use nondimensional quantities Rt1, Rt2 and Rs1, Rs2
as mixing coefficients, such that there is no difference in the equations noticeable.

Pressure: Sea pressure p is defined to be the absolute pressure P , i.e. pressure relative to a vacuum,
minus the absolute pressure of one standard atmosphere, P0 = 101325 Pa, that is p := P − P0. The
thermodynamic representation of a system can in principle alternatively formulated in terms of different
variable such as specific volume, entropy and salinity. Here we follow the TEOS-10 convention and use
temperature, salinity and pressure.

3.2. The TEOS-10 Thermodynamics

The Gibbs potential function G in TEOS-10 is defined in terms of in-situ temperature, absolute salinity
and pressure by

G : (Tis,S, p) �→ G(Tis,S, p), (12)

where the Gibbs function G consists of two terms, one that describes the liquid pure water GW and a
second one GS that takes into account salinity

G(Tis,S, p) = GW (Tis, p) + GS(Tis,S, p), (13)

with Gs(Tis, 0, p) = 0. TEOS-10 provides also a Gibbs potential function for ice but this is not pursued
here. The two Gibbs functions GW ,GS are polynomials in the respective variables

GW (Tis, p) =
7∑

j=0

6∑
k=0

gj,kTis
jpk,

GS(Tis,S, p), =
7∑

i=0

6∑
j=0

5∑
k=0

{
g1jkS2 lnS +

∑
i>1

gi,j,kSi

}
Tis

jpk

(14)

From the Gibbs function fundamental thermodynamic quantities are derived in a thermodynamic consis-
tent way as partial Frechet-derivatives. The density ρ is defined via the specific volume υ and the specific
volume is the partial Frechet-derivative of G with respect to the pressure variable

ρ(Tis,S, p) :=
1

υ(Tis,S, p)
with υ(Tis,S, p) :=

∂G
∂p

(Tis,S, p). (15)

The ocean phenomenology enters the picture through the determinations of the coefficients gijk of the
Gibbs function (13). These are are determined by a least-square fit of partial derivatives of the Gibbs
function to observations or laboratory measurements (for details we refer to [19]). This is the achievement
of the thermodynamic formalism used in TEOS-10, it keeps the internal consistency of thermodynamics
using a generic form of rational functions for the Gibbs potential and at at the same time integrates oceanic
phenomenology by specifying the coefficients of the rational functions as an optimal fit to observations.
The TEOS-10 standard provides a description of the thermodynamics of seawater that is suitable for the
whole spectrum of marine science. Numerical modelling of the large scale ocean dynamics, based on the
primitive equations, comes with some simplifications such as the hydrostatic and the Boussinesq approx-
imation. The Boussinesq approximation is thermodynamically relevant and will be discussed in Sect. 3.4.
For actual ocean codes computational efficiency is of crucial importance and this places limitations on
the computational resources spend for the evaluation of an equation of state. The computation of the
density itself is costly as it involves the calculation of a high-order polynomial at each grid cell. Finally the
Gibbs formalism of TEOS-10 is based on in-situ temperature and this requires a conversion in potential
or conservative temperature.

Therefore TEOS-10 contains a formulation of the equation of state that is more suitable for ocean
models, because it is formulated in terms of conservative temperature Θ instead of the in-situ temperature
Tis and that is also more efficiently to compute than G in (13). Following TEOS-10 (see Appendix K in
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[19]) the specific volume υ is modelled in this case with a 75-term polynomial and the equation of state
as rational function of the form

ρrat(Θ,S, p) :=
1

υrat(Θ,S, p)
and υrat(Θ,S, p) :=

Ni,Nj ,Nk∑
i,j,k=0

ci,j,kSiΘjpk, (16)

where ci,j,k ∈ R are given coefficients (see table K1 in [19]) and Ni = 6, Nj = 6, Nk = 6. The formulation
of the equations of state (16) is based on [30]. In this work an additional performance gain was obtained
by a modelling the equation of state directly with a 52-term polynomial

ρpol(Θ,S, p) :=
Mi,Mj ,Mk∑

i,j,k=0

di,j,kSiΘjpk, (17)

di,j,k ∈ R are given coefficients (see Appendix A in [30]) and Mi = 6,Mj = 6,Mk = 3.
It is worth emphasizing that the oceanic equation of state does not describe a general fluid but a

very special one, namely seawater. The equation of state in TEOS-10 are defined exclusively and only
for seawater, aiming at capturing the unique relation between temperature,salinity, pressure and density
that is measured in the world ocean. The thermodynamic formalism outlined above is designed for
temperature, salinity and pressure values in a range that is observed in the real ocean. In the ocean the
temperature varies between ∼ −2◦ and 40◦, salinity between 1 and 45 psu, the pressure up to 100 Mdba,
the resulting density varies little around 1000 kg/m3. The physically sensible range for temperature,
salinity and pressure are approximately Iθ = [−2◦, 40◦] and IS = [1 psu, 45 psu] and Ip = [1, 100Mdb].
Relevant for us are not the particular numbers but that such a bounded interval for these fields exists and
that the equation-of-state is constructed such that it provides corresponding density values that cover
the range determined by ocean observations.

The ocean equation of state implicitly assumes that temperature, salinity and pressure values are
within the observed range of the ocean. Outside this range the ocean density as well as the Gibbs function
are not defined, because there are no observation available to close the defination of the Gibbs function.
This motivates the following natural hypothesis on ocean thermodynamics:

Hypothesis on Ocean Thermodynamics:
1. There exist bounded intervals for temperature in the ocean IT := [−K1,K2], for salinity IS :=

[L1, L2], and for pressure Ip := [M1,M2] with K1,K2, L1, L2,M1,M2 > 0, such that for almost
every (x, y, z, t) ∈ Ω × [0, T ] it holds

T (x, y, z, t) ∈ IT , S(x, y, z, t) ∈ IS , p(x, y, z, t) ∈ Ip. (18)

We refer to the intervals IT , IS , Ip as physically admissible ranges for the respective variable.
2. If T ∈ IT , S ∈ IS , p ∈ Ip, then the coefficients ci,j,k in (16) and di,j,k in (17) are determined such

that ρrat, ρpol defined in (16), (17) satisfy

ρrat, ρpol ∈ Iρ := [N1, N2], N1, N2 > 0, (19)

where Iρ is the physically admissible range for density.
The hypothesis above are valid for the different temperature and salinity variables defined in Sect. 3.1.

In this work we focus on potential and conservative temperature, and practical and absolute salinity,
because they are the most relevant variables for ocean general circulation models.

3.3. Different Nonlinear Equations of State

The focus of this work is the equation of state documented in the international standard TEOS-10. Since
this standard is currently not fully implemented by all ocean general circulation models, we describe in
this section also the UNESCO-80 equation of state [31], the predecessor of TEOS-10, and an intermediate
equation of state due to McDougall et al. [26].
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3.3.1. The UNESCO-80 Equation of State. The UNESCO-80 equations of state [31] is the oldest equa-
tions of state and the former international standard that is succeeded now by TEOS-10 (see [19] for
shortcomings of the UNESCO-80 equation of state). The density is defined by

ρUNO(θpot, Sprac, p) :=
ρ̃(Tis, Sprac)

1 − p
K(Tis,Sprac,p)

, (20)

where ρ̃ and K are polynomials in their respective variables. For details we refer to [31] or Appendix 3
in [12]. For a description of the deficiencies of the UNESCO-80 equations of state we refer to [19].

3.3.2. The Equation of State of McDougall–Jackett–Wright–Feistel. in the literature one finds several
suggestions to improve the accuracy of the UNESCO-80 equation of state that are used by codes of ocean
general circulation models. One of these examples is due to McDougall et al. [26]. This equation of state
is of the form

ρMJW F (θpot, Sprac, p) :=
P1(θpot, Sprac, p)
P2(θpot, Sprac, p)

, (21)

where P1, P2 are two polynomials with 12 and 13 terms respectively (see Appendix B in [26] for the actual
coefficients). The equations of state (21) is formulated in terms of potential temperature rather in-situ
temperature, a choice that facilitates its use in ocean models, where potential temperature is the most
common temperature variable.

3.4. Thermodynamics for the Primitive Equations

The TEOS-10 equation of state describes the thermodynamics of seawater without any approximation
while the ocean primitive equations rest on several fundamental simplifications. For thermodynamics
the Boussinesq approximation is relevant. The Boussinesq approximation replaces the density in the
dynamical equations in all terms except in the buoyancy term of the velocity equation and in the equation
of state (see e.g. Section 2.4. in [32]). It is the second aspect that we are concerned with. The general
equation of state (15) that is valid for non-Boussinesq oceanic models, depends on in-situ temperature,
salinity and pressure. In the case of the primitive equations, i.e. of a hydrostatic Boussinesq fluid, there
arises a subtlety which pressure p to be used in the equation-of state ρ(Θ,S, p). Using the hydrostatic
pressure p = ph, with ph from (3), then density would depend on hydrostatic pressure ρ = ρ(Θ,S, ph)
and the hydrostatic pressure ph = ph(ρ) would depend on the density ρ, as a result we would have an
implicit definition of the density through an nonlinear function of the form ρ = ρ(Θ,S, ρ). The solution
of this dilemma comes from the Boussinesq approximation.

For the Boussinesq approximation the pressure in the equation of state has to be a function of the
static pressure gρ0z with respect to a constant reference density ρ0 > 0. As a consequence the pressure
in the equation of state is a function of depth only. We refer to it as the static pressure and define

pstat(z) := −gρ0z, for z ≤ 0. (22)

The reason for this choice is that for a general pressure, i.e. a pressure not only dependent on depth, no
energy conservation law exists that takes into account that for Boussinesq fluids the concept of internal
energy does not exist and that energy exchange is only possible between kinetic and potential energy.
A different choice of the pressure in the equation of state would result in creating an internal energy
reservoir. For more details we refer to Section 2.4.3. in [32], and to [33].

With the static pressure (22) the two equation of state ρrat, ρpol in (16), (17) become now

ρrat(Θ,S, p) → ρrat(Θ,S, pstat),

ρpol(Θ,S, p) → ρpol(Θ,S, pstat),
(23)

We summarize this in the following definition.

Definition 2. Let the hypothesis on ocean thermodynamics (18) and (19) be satisfied.
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(i) Define L∞
Iθ

(Ω) := {θ ∈ L∞(Ω) : θ ∈ Iθ} and L∞
IS

(Ω) := {S ∈ L∞(Ω) : S ∈ IS}, where Iθ, IS

denote the physically admissible range for potential temperature and salinity, introduced in (18).
For C ∈ {θ, S} then L∞

IC
(Ω) denotes either L∞

Iθ
(Ω) or L∞

IS
(Ω). The product space is defined by

L∞
Iθ×IS

(Ω) := L∞
Iθ

(Ω) × L∞
IS

(Ω).
(ii) Let θ ∈ L∞

Iθ
(Ω), S ∈ L∞

IS
(Ω). The density ρrat is given by

ρrat(Θ,S, ph) = υrat(Θ,S, pstat)−1,

with υrat(Θ,S, pstat) =
Ni,Nj ,Nk∑

i,j,k=0

ci,j,kSiΘjpk
stat,

(24)

where the static pressure pstat is given by (22).
(iii) Let θ ∈ L∞

Iθ
(Ω), S ∈ L∞

IS
(Ω). The density ρpol is given by

ρpol(Θ,S, ph) =
Mi,Mj ,Mk∑

i,j,k=0

di,j,kSiΘjpk
stat, (25)

where the thermodynamic pressure pstat is given by (22).

4. Well-Posedness of Primitive Equations with TEOS-10

Before we state the well-posedness theorem we provide two Lemma. The first lemma shows the fundamen-
tal property of temperature and salinity equations, namely that both quantities remain bounded within
the range of there (bounded) initial values. This shows that if temperature and salinity values are initially
within the physically sensible range, then the remain there at later times. This results implies the same
property for density. Therefore it is sufficient to impose boundedness within a physically reasonable range
to the initial temperature and salinity fields. This leads then to a density that is also in the physically
admitted range, and is in particular bounded above and below and therefore integrable.

Lemma 1 (Boundedness of Temperature, Salinity and Density).
(i) Denote by C ∈ {Θ,S} the solution of the tracer equation for temperature (1d) or for salinity (1e).

Suppose the initial conditions for temperature or salinity satisfy C0 ∈ VC ∩L∞
IC

(Ω). Then for almost
every (x, y, z, t) ∈ Ω × [0, T ]

C(x, y, z, t) ∈ IC , (26)

where IC denotes the physically admissible range of values for temperature or salinity, i.e. IC = Iθ

if C = θ or IC = IS if C = S, where Iθ, IS were introduced in the fundamental assumptions on
thermodynamics (see (18)).

(ii) Let Θ0 ∈ Vθ ∩ L∞
Iθ

(Ω), S0 ∈ VS ∩ L∞
IS

(Ω) be initial conditions for the equations for temperature (1d)
and for salinity (1e). Then the densities ρrat, ρpol are in the physically admissible range ρrat, ρpol ∈ Iρ

for almost every (x, y, z, t) ∈ Ω × [0, T ].

Proof. Ad i) Define Ĉ(t) := C(t) − C0 and Ĉ+ := max{0, Ĉ}, then Ĉ satisfies

∂tĈ + (v · ∇)Ĉ+ w∂zĈ =
1

Rc1
�Ĉ +

1
Rc2

∂2
zzĈ, (27)

where Rc1 ∈ {Rt1, Rs1}, Rc2 ∈ {Rt2, Rs2}. Taking the scalar product in L2 with Ĉ+ yields after integra-
tion by parts

dt||Ĉ+||L2 +
1

Rc1

∫
Ω

|∇Ĉ+|2, dxdydz +
1

Rc2

∫
Ω

|∂zĈ+|2, dxdydz

+ kC ||Ĉ+(z = 0)||L2 = 0,

(28)
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where kC = kθ in the case C = θ and where kC = 0 if C = S (cf. boundary conditions (4). Neglecting
the positive diffusion terms on left-hand side yields

dt||Ĉ+||L2 + kC ||Ĉ+(z = 0)||L2 ≤ 0. (29)

This implies Ĉ+(t) ≡ 0 for all t and the asserted upper bound in (26) follows. By replacing Ĉ+ by
Ĉ− := min{0, Ĉ} one shows analogously the lower bound. Ad (ii) We derive from part (i) that Θ ∈ Iθ,S ∈
IS almost everywhere on Ω × [0, T ]. The assertion follows then with the fundamental assumption (19) on
thermodynamics. �

The next Lemma will be used in the proof of local existence and in the uniqueness part of Theorem 2.

Lemma 2. Let (Θ1,S1) ∈ L∞
Iθ×IS

(Ω) and (Θ2,S2) ∈ L∞
Iθ×IS

(Ω) be two pairs of admissible temperature
and salinity fields.

(i) Denote by ρ
(1)
rat(Θ1,S1), ρ

(2)
rat(Θ2,S2) the two associated densities with respect to the equation of state

(24). Then it holds almost everywhere in Ω

|ρ(1)rat − ρ
(2)
rat| ≤ K(|Θ1 − Θ2| + |S1 − S2|), (30)

where K = K(θ1, θ2, S1, S2, ci,j,k) is defined in (34).
(ii) Denote by ρ

(1)
pol(Θ1,S1), ρ

(2)
pol(Θ2,S2) the two associated densities with respect to the equation of state

(25). Then it holds almost everywhere in Ω

|ρ(1)pol − ρ
(2)
pol| ≤ K(|Θ1 − Θ2| + |S1 − S2|), (31)

where K = K(θ1, θ2, S1, S2, di,j,k) is defined in (34).

Proof. Adi) The difference of the two specific volumes υ1 − υ2 reads as follows

υ1 − υ2 =
Ni,Nj∑
i,j=0

ci,jp
k
stat(S

i
1Θ

j
1 − Si

2Θ
j
2)

=
Ni,Nj∑
i,j=0

ci,j(pk
stat

(
Si
1(Θ

j
1 − Θj

2) + Θj
2(S

i
1 − Si

2)
)
.

(32)

We write Θj
1 − Θj

2 = Θ1(Θ
j−1
1 − Θj−1

2 ) + Θj−1
2 (Θ1 − Θ2). Applying the same reformulation repeatedly to

the first bracket with the j − 1 terms creates a polynomial P(j−1)
1 (Θ1, Θ2) in Θ1, Θ2 that factors out the

difference (Θ1 − Θ2) and that is of the form P(j−1)
1 (Θ1, Θ2) =

∑j
l=1 Θl−1

1 Θ2j−l
2 . Finally we get

Θj
1 − Θj

2 = P(j−1)
1 (Θ1, Θ2)(Θ1 − Θ2). (33)

After applying the same procedure to the salinity part in (32) and denoting by P(i−1)
2 (S1,S2) a polynomial

of degree i − 1 we obtain

|υ1 − υ2| = |
Ni,Nj∑
i,j=0

ci,jp
k
stat

(
Si
1P

(j−1)
1 (Θ1, Θ2)(Θ1 − Θ2) + Θj

2P
(i−1)
2 (S1,S2)(S1 − S2)

)
|

≤ K(|Θ1 − Θ2| + |S1 − S2|),

with K :=
Ni,Nj∑
i,j=0

{
|ci,j | |pk

stat|
(
|Si

1| |P
(j−1)
1 [Θ1, Θ2]| + |Θj

2| |P
(i−1)
2 [S1,S2]|

)}
,

(34)

where Θ1, Θ2 and S1,S2 and the polynomials P(j−1)
1 (Θ1, Θ2),P(i−1)

2 (S1,S2) are bounded. From (34)
follows the assertion of for density by using that the specific volumes are bounded below, according to
the assumption (18). The assertion ii) follows analogously. �
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The next theorem gives the main result of this paper. In the case of a linear equation of state the original
work is due to Cao and Titi [2] for the boundary conditions (5) and Kukavicas and Ziane [22] for the
boundary conditions (6). The two theorems require different proofs but both rely on energy methods. It
is reasonable to conjecture that the proof strategy via evolution equations methods as in [17] can also be
extended to deal with a nonlinear equation of state.

Theorem 2 (Global Well-Posedness for Ocean Primitive Equations with Nonlinear Equation of State).
Let a time interval [0, T ], with T > 0, be given. The boundary conditions for temperature and salinity
are given by (4) and the boundary conditions for velocity are given either by (5) or by (6). Suppose
the density ρ is given either by the equation of state (24) such that ρ = ρrat or by the equations of
state (25) such that ρ = ρpol. The coefficients of the equation of state are determined such that (19)
is satisfied. If the initial conditions for velocity, conservative temperature and absolute salinity satisfy
u0 ∈ Vv, Θ0 ∈ Vθ ∩L∞

Iθ
(Ω),S0 ∈ VS ∩L∞

IS
(Ω), then there exists on the time interval [0, T ] a unique strong

solution (u, Θ,S) of the system (1) in the sense of Definition 1. This solution depends continuously on
the initial data with respect to the C([0, T ], L2(Ω))-topology.

Proof. We prove first the assertion for the equation of state given by the rational function (24) for both
types of boundary conditions (5) and (6).

We observe that the first hypothesis on thermodynamics (18) is satisfied, because the initial conditions
for temperature and salinity satisfy Θ0 ∈ L∞

Iθ
(Ω),S0 ∈ L∞

IS
(Ω), and Lemma 1 guarantees that Θ(·, t) ∈

L∞
Iθ

(Ω),S(·, t) ∈ L∞
IS

(Ω) for t ∈ [0, T ]. Since the second hypothesis on thermodynamics (19) is satisfied by
assumption, it follows that the density remains in it physically admissible range, ρ(·, t) ∈ Iρ for t ∈ [0, T ].

We start with the velocity boundary conditions (5) considered by Cao and Titi [2]. Their proof contains
an equation of state of the form ρ = αT , with α = 1, where T denotes temperature. In this case we focus
on the changes in the proof due to the nonlinear equation of state and stay otherwise close to the original
proofs. Key estimates for velocity are recalled, for their derivation we refer to the original work [2].

Velocity boundary conditions (5): We use a Galerkin approximation of the system (1). For the velocity
space Vv we denote by (ψm)m the eigenfunctions of the Stokes operator, they constitute an orthonormal
basis of of L2(Ω). Define Vv

m := span{ψk : k = 1 . . . m}. The projection on Vv
m is denoted by Pm. The

nature of the Stokes operator depends on the velocity boundary conditions. For boundary conditions (5)
the Stokes operator is of Laplacian type.

Denote by LΘ := 1
Rt1

� − 1
Rt2

∂2
zz and LS := − 1

Rs1
� − 1

Rs2
∂2

zz the anisotropic Laplacian operators
with domains D(LΘ),D(LS), defined as the closure in H1 of Vθ and VS , respectively. The eigenfunctions
of LΘ and LS form orthonormal bases (φΘ

k )k and (φS
k )k of L2(Ω) (cf. [1,29]). Denote Vθ

m := span{φΘ
k :

k = 1 . . . m} and VS
m := span{φS

k : k = 1 . . . m}. The projection on Vθ
m, VS

m is denoted by PVθ
m , PVS

m ,
respectively. We approximate velocity v, temperature and salinity Θ,S in terms of projection on the span
of the respective basis functions

um(x, y, z, t) := Pmu(x, y, z, t) :=
m∑

k=1

ak(t)ψk(x, y, z),

Θm(x, y, z, t) := PmΘ(x, y, z, t) :=
m∑

k=1

dk(t)φΘ
k (x, y, z),

Sm(x, y, z, t) := PmS(x, y, z, t) :=
m∑

k=1

bk(t)φS
k (x, y, z).

(35)
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Step 1: Formulation of Approximative System. The Galerkin approximation for (1) reads as follows

∂tum + Pm[(um · ∇)um] − Pm

[( ∫ z

−h

∇ · um(ξ) dξ
)
∂zum

]
+ f�k × um

+ ∇
∫ z

−h

gρm(x, y, z′, t) dz′ + ∇(ps)m − 1
Re1

Pm�um − 1
Re2

Pm∂2
zzum = 0, (36a)

∂tΘm + (um · ∇)Θm + Pm

[( ∫ z

−h

∇ · um(ξ) dξ
)
∂zΘm

]
+ Pm

1
Rt1

�Θm

+ Pm
1

Rt2
∂2

zzΘm = 0, (36b)

∂tSm + (um · ∇)Sm + Pm

[( ∫ z

−h

∇ · um(ξ) dξ
)
∂zSm

]
+ Pm

1
Rs1

�Sm

+ Pm
1

Rs2
∂2

zz Sm = 0, (36c)

here ρm is defined in terms of the Galerkin approximation for Θm,Sm

ρm := ρ(Θm,Sm, pstat), (36d)

where the static pressure pstat is given by (22).

Step 2: Local existence. The Eq. (36) is an ordinary differential equation on the Hilbert space Vm :=
Vv

m ×Vθ
m ×VS

m. Lipschitz continuity for the pressure gradient with density from the nonlinear equation
of state follows from Lemma 2. For all other terms Lipschitz continuity is classical. Applying the Picard
Theorem on Hilbert spaces it follows that for all m ∈ N the system (36) has a solution on a time interval
[0, Tm] whose length depends on m.

We continue with a priori estimates to establish global existence in time for the approximate system
and then in the limit m → ∞.

Step 3: L∞([0, T ],L2(Ω))- and L2([0, T ],H1(Ω))-Estimate for velocity and tracers. Let Cm ∈ {Θm,Sm}.
Taking the L2 scalar product of the tracer equation (1d) or (1e) with Cm yields after integration-by-parts
and with the tracer boundary condition (4)

1
2
dt||Cm||2L2 +

1
Rc

∫
Ω

|∇3Cm|2 dxdydz + kC ||Cm(z = 0)||2L2 = 0, (37)

where Rc = Rt if C = θ and Rc = Rs if C = S. In (37) the integral with the tracer advection vanishes
due to the incompressibility of v. The boundary term vanishes in the case of salinity. From (37) follows

dt||Cm||L2 ≤ 0. (38)

With the Gronwall inequality and with ||Cm(t = 0)||2 ≤ ||C(t = 0)||2 for m ∈ N, we conclude that

||Cm(t)||L2 ≤ ||C(t = 0)||L2 =: K1 (39)

where K1 > 0 is independent of m. From (37) follows after integration with respect to time, with Lemma 1
and with ||Cm(t = 0)||∞ ≤ ||C(t = 0)||∞ that∫ t

0

[ ∫
Ω

|∇3Cm|2 dxdydz + kC ||Cm(z = 0)||2L2

]
ds ≤ |Ω|||C(t = 0)||∞t =: K2(t), (40)

with K2(t) bounded on [0, T ] and independent on m. The estimate for velocity can be identically derived
as in [2] (see pp 253-254). By taking the L2-scalar product of (36) with um we obtain after integration
by parts and by the fact that the Coriolis force acts perpendicular to the velocity

1
2

d||um||2L2

dt
+

∫
Ω

um ·
(

∇
∫ z

−h

gρm(x, y, ξ, t) dξ

)
dxdydz

+
1

Re1
||∇um||2L2 +

1
Re2

||∂zum||2L2 = 0.

(41)
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The boundary term involving the surface pressure vanishes∫
Ω

∇ps,m · um dxdydz =
∫

∂Ω

ps,mn · um ds −
∫

Ω

ps,m∇ · um dxdydz

=
∫

M

ps,m(
∫ 0

−h

∇ · um dz)dxdy =
∫

M

ps,m(w(0) − w(−h)) dxdy = 0.

(42)

With the inequality of Cauchy-Schwarz follows after integration by parts

1
2

d||um||2L2

dt
+

1
Re1

||∇um||2L2 +
1

Re2
||∂zum||2L2

= −
∫

Ω

∇ · um

(∫ z

−h

gρm(x, y, ξ, t) dξ

)
dxdydz ≤ gh||ρm||L2 ||∇um||L2 ,

(43)

and by the inequalities of Young and Poincaré

d||um||2L2

dt
+

1
Re1CM

||um||2L2 ≤ (gh)2Re1||ρm||2L2 . (44)

With Gronwall’s inequality we obtain

||um(t)||2L2 ≤ ||um(t = 0)||2L2e
− 1

CM Re1
t + (gh)2CMRe1

∫ t

0

||ρm(s)||2L2ds

≤ ||um(t = 0)||2L2 + (gh)2CMRe1Kt,

(45)

where we have used that, due to the boundedness of density (cf. Lemma 1 (ii)), a constant K¿0 exists
such that ||ρm||2L∞ ≤ K. Integrating (45) with respect to time over [0,t] yields∫ t

0

1
Re1

||∇um(s)||2L2 +
1

Re2
||∂zum||2L2ds ≤ ||um(t = 0)||2L2 + (gh)2CMRe1Kt. (46)

In summary we obtain from (39), (40) and from (45), (46)

||um(t)||2L2 +
∫ t

0

1
Re1

||∇um(s)||2L2 +
1

Re2
||∂zum(s)||2L2ds

+ ||Θm(t)||2L2 + μ

∫ t

0

[
||∇3Θm||2L2 + kθ||Θm(z = 0)||22

]
ds

+ ||Sm(t)||2L2 +
∫ t

0

[
||∇3Sm||2L2

]
ds

≤ ||v(t = 0)||2L2e
− 1

CM Re1
t + (gh)2CMRe1Kt + h||v0||2L2 =: K3(t),

(47)

where K3(t) is bounded uniformly in m on [0, T ]. This shows that for all m the approximate solutions
(um, Θm,Sm) exist on the time interval [0, T ].

Step 4: L∞([0, T ],H1(Ω))-Estimate for velocity and tracers. The proof of the L∞((0, T ),H1(Ω))-estimates
for velocity follows [2] (cf. Sect. 3.3.1–3.3.3). This is the crucial part of the proof. It requires little changes
due to the nonlinear equation of state. We sketch the steps only and refer the reader for more details to
the original paper [2].

To derive the H1-estimate for velocity, the velocity equation is vertically averaged, the vertical average
is referred to as “barotropic” part and it is subtracted from the original velocity equation to obtain the
“baroclinic” part. Both systems of equations contain as coupling terms the respective other velocity field
(see Eqs. (36)–(37) and (38)–(39) in [2]). A major advantage of this decomposition is that the three
dimensional baroclinic equations do not contain the surface pressure any more, the surface pressure is
part of the barotropic equations, but these are two-dimensional. The barotropic system can be handled
similarly as the 2D Navier–Stokes equations. The hydrostatic pressure that is related to the nonlinear
equation of state is part of the barotropic as well as of the baroclinic equations.
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One derives first a L∞([0, T ], L6(Ω))-bound for the baroclinic velocity field ũ (see sect. 3.2. in [2]).
Here the nonlinear equation of state within the hydrostatic pressure does not pose difficulties. The upper
bound depends on the vertically averaged density ρ̄ and its norms ||ρ̄||L2 , ||∇ρ̄||L2 . The density itself is
bounded. The estimation of the density gradient in terms of temperature and salinity gradients is shown
below in (49). Then the L2-scalar product of the barotropic equation with Δū is taken. As a consequence
of the boundary conditions the integral with surface pressure vanishes. Due to the incompressibility of
the barotropic velocity the term with the hydrostatic pressure gradient vanishes also and the presence of
nonlinear thermodynamics has no consequences for this estimate (see sect. 3.3.1 in [2]). The upper bound
depends on the previous estimate of the L6-norm. The next step in Sect. 3.3.2 of in [2] is an a priori
estimate on the vertical derivative ∂zu in the L∞([0, T ], L2(Ω)) norm. Here the hydrostatic pressure can
be treated as in the case of a linear equation of state.

In the final step (sect. 3.3.3. of in [2]) the L2-scalar product of the original velocity equation with the
horizontal Laplace operator �v is taken. By using the important Proposition 2.2 in [1] one arrives at the
estimate below (see p. 261 in [2])

dt||∇um||2L2 +
1

Re1
||�um||2L2 +

1
Re2

||∇∂zum||2L2

≤ C
(
K6(t) + Kz(t)||∇um||2L2

)
||∇um||2L2 + C||∇ρm||2L2 ,

(48)

where K6(t),Kz(t) are bounded functions on [0, T ] (see Eqs. (67) and (76) in [2]).
As a consequence of the nonlinear equation of state the pressure gradient on the right-hand side has

to be estimated. This is done with (24) as follows

||∇ρm||2L2 =
∫

Ω

| ∇υm

|υm|2 |2dxdydz ≤ c

∫
Ω

|∇υm|2dxdydz

= c

Ni,Nj ,Nk∑
i,j,k=0

ci,j,k

∫
Ω

|∇
(
Si

mΘj
mpk

stat

)
|2dxdydz

≤ C

Ni,Nj∑
i,j=0

∫
Ω

|Si
m∇Θj

m|2dxdydz + C

Ni,Nj∑
i,j=0

∫
Ω

|Θj
m∇Si

m|2dxdydz

≤ C

Ni,Nj∑
i,j=0

∫
Ω

|Si
mΘj−1

m |2 |∇Θm|2dxdydz + C

Ni,Nj∑
i,j=0

∫
Ω

|Θj
mSi−1

m |2 |∇Sm|2dxdydz

≤ K(||∇Θm||2L2 + ||∇Sm||2L2).

(49)

The K > 0 on the right-hand side of (49) depends on the coefficients ci,j,k of the equation of state and
the powers of Θm,Sm. Using the estimate |Θj

mSi
M | ≤ ||Θ||jL∞ ||S||iL∞ ≤ |IΘ|j |IS|i, where |IΘ|, |IS| denote

the size of the physically admissible range of Θ and S, introduced in Definition 2, it follows that K
is not only finite but also independent of m. Since Θm,Sm ∈ L2([0, T ],H1(Ω)) we conclude from (49)
that ρm ∈ L2([0, T ],H1(Ω))). Using this estimate we can complete the L∞([0, T ],H1(Ω))-estimate for
velocity as in sect. 3.3.3 of [2] and obtain with the Gronwall inequality

||∇um(t)||2L2 + ||∂zum(t)||2L2 +
∫ t

0

1
Re1

||�um(s)||2L2 +
1

Re2
||∂2

zzum(s)||2L2

+
1

Re2
||∇∂zum(s)||2L2 ds ≤ K4(t),

(50)

where K4(t) is bounded on [0, T ], uniform in m. The upper bound K4(t) contains the L2([0, T ],H1(Ω)-
norms of um, Θm,Sm but these are, according to (47), uniformly bounded with respect to m.
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The L∞([0, T ],H1(Ω)-bound for temperature and salinity that is proven in [2] does not change, with
Cm ∈ {Θm,Sm} it reads as follows (see (79) in [2])

||∇Cm(t)||2L2 + ||∂zCm(t)||2L2 + kC ||∇Cm(z = 0)||2L2 +
∫ t

0

[
1

Rc1
||�Cm(s)||2L2

+
( 1
Rc1

+
1

Rc2
)||∇∂zCm(s)||2L2 + kC ||∇Cm(z = 0)||2L2

) 1
Rc2

||∂2
zzCm(s)||2L2

]
ds

≤ KC(t),

(51)

where the boundary term on the left-hand side is absent in case Cm = Sm and where KC on the right-hand
side is bounded on [0, T ].
Step 5: Estimate on the time derivative. We have to show that ∂tum is bounded uniformly in the
L2([0, T ],L2(Ω))-norm. For this purpose one takes the L2.scalar product of the velocity equation with
∂tum. For the pressure gradient follows with (49)∫

Ω

∂tum∇
∫ 0

z

ρm(x, y, z′)dz′ dxdydz ≤ c||∂tum||L2 ||∇ρm||L2

≤ c||∂tum||L2(||∇Θm||L2 + ||∇Sm||L2)

≤ ||∂tum||L2(KΘ(t) + KS(t)),

(52)

where KΘ,KS are the bounded functions from (51) for temperature and salinity respectively. With the
Young inequality the time derivative on the right-hand side of (52) can be compensated with the left hand
side. Together with the corresponding bounds of the scalar products between ∂tum and the remaining
terms in the velocity equation it follows that (∂tum)m is uniformly bounded in L2([0, T ],L2(Ω)). The same
results applies to (∂tΘm)m, (∂tSm)m. Since (um)m, (Θm)m, (Sm)m are bounded in L2([0, T ],L2(Ω)) and
L2([0, T ], L2(Ω)) respectively, it follows from the Lions–Aubin compactness lemma [9] that a subsequence
converges in L2([0, T ],H1(Ω)) to a limit (u, Θ,S).

Step 6: Global Existence. This is proven by contradiction. Assuming that there exists a maximal time
interval of existence that is finite, T ∗ < ∞. This implies for the H1-norms lim supt→T ∗

−
||u(t)||H1 +

||Θ(t)||H1 + ||S(t)||H1 = +∞. But this contradicts the a priori estimate above. Therefore T ∗ = ∞ and
the strong solution exists globally in time.

Step 7: Uniqueness For the uniqueness consider two strong solutions (u1, Θ1,S1) and (u2, Θ2,S2), and
define the differences

v̂ := u1 − u2, Θ̂ := Θ1 − Θ2, Ŝ := S1 − S2,

and ρ̂ := ρ(Θ1,S1, pstat) − ρ(Θ2,S2, pstat).
(53)

Now we take the L2 scalar product of (v̂, Θ̂, Ŝ) with the equations that govern the evolution of this
differences (see (81), 82) in [2]). For the velocity difference equation we have

1
2

d

dt
||v̂||2L2 +

1
Re1

||∇v̂||2L2 +
1

Re2
||∂zv̂||2L2

= −
∫

Ω

[
(u1 · ∇)v̂ + (v̂ · ∇)u2 −

( ∫ z

−h

∇ · u1(x, y, ξ, t) dξ
)
∂zv̂

]
· v̂ dxdydz

−
[ ∫ z

−h

∇ · v̂(x, y, ξ, t) dξ
)
∂zu2 · v̂ dxdydz −

∫
Ω

∇
( ∫ z

−h

ρ̂(x, y, ξ, t)dξ

]
· v̂ dxdydz = 0.

The only term that is different from the uniqueness proof of [2] is the term involving the difference of the
pressure gradients. Using the boundedness of density and Lemma 2 it can be estimated as follows

|
∫

Ω

(
∇

∫ z

−h

ρ̂(x, y, ξ) dξ
)
v̂ dxdydz| = |

∫
Ω

( ∫ z

−h

ρ̂(x, y, ξ) dξ
)
∇ · v̂ dxdydz|

≤ c||ρ̂||L2 ||∇v̂||L2 ≤ c||υ1 − υ2||L2 ||∇v̂||L2 ≤ c(||θ̂||L2 + ||Ŝ||L2)||∇v̂||L2 ,
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where υ1 − υ2 denotes the difference of the specific volumes. By carrying out the other estimates in the
velocity difference equation exactly as in Sect. 4 of [2] and by applying the estimates for the temperature
difference equation in [2] to temperature and salinity the we arrive at the following inequality

1
2

d

dt

(
||v̂||2L2 + ||Θ̂||2L2 + ||Ŝ||2L2

)
≤ C

(
||∇u2||4L2 + ||∇Θ2||2L2 + ||∇S2||2L2 + ||∂zu2||2L2 ||∇∂zu2||2L2

+ ||∂zΘ2||2L2 ||∇∂zΘ2||2L2 + ||∂zS2||2L2 ||∇∂zS2||2L2

)(
||v̂||2L2 + ||Θ̂||2L2 + ||Ŝ||2L2

)
.

(54)

From the Gronwall inequality follows

||v̂(t)||2L2 + ||Θ̂(t)||2L2 + ||Ŝ(t)||2L2

≤ (||v̂(t = 0)||2L2 + ||Θ̂(t = 0)||2L2 + ||Ŝ(t = 0)||2L2

)
expK(t),

(55)

where K(t) is given by the integral with respect to time over the interval from initial time t = 0 to time
t of the first bracket on the right-hand side of (54). Since (u2, Θ2,S2) is by assumption a strong solution,
the function K(t) is bounded. This proves the continuous dependency of the strong solution on the initial
condition. It follows also from (55) that if the two strong solutions (u1, Θ1,S1), (u2, Θ2,S2) have the same
initial conditions then they coincide for all times, i.e. strong solutions are unique.

Velocity boundary conditions (6): This case that was investigated by Kukavica and Ziane [22] and we
follow their proof idea. The original proof in [22] proceeds in two steps. First, the primitive equations are
considered in the following form

∂tu + (u · ∇)u + w∂zu + ∇ps − 1
Re1

�u − 1
Re2

∂2
zzu = F, (56)

∇ · u + ∂zw = 0, (57)

The hydrostatic pressure ph and consequentially the whole thermodynamics are absent in this equation
(cf. (3)) and only the surface pressure is present. In other words, the authors assume ρ ≡ 0. Also the
Coriolis force is not considered in (56). For the boundary conditions (6) the Stokes operator is related
to a Stokes problem. This requires a special treatment of the surface pressure by using results from the
regularity theory of the Stokes problem. For details we refer to [22]. For a square-integrable right-hand
side F ∈ L2([0, T ], L2(Ω)) the authors show the existence and uniqueness of solution to (56), (57) for
initial conditions u0 ∈ H1.

The second step of the proof includes linear thermodynamics by specifying the right-hand side F to
include the hydrostatic pressure and the Coriolis force

F (x, y, z, t) : = g

∫ 0

z

∇ρ(x, y, ξ, t) dξ − f�k × u

with ∇ρ := α∇Θ − β∇S.

(58)

The assertion in [22] follows now by showing that F in (58) satisfies F ∈ L2([0, T ], L2(Ω). This follows
from (Θ,S) ∈ L2([0, T ],H1(Ω) for solutions of (1d), (1e) with initial conditions Θ0,S0 ∈ H1 (see above,
(40)).

For the case of a nonlinear equation of state considered here we adopt this strategy. We have to show
that F ∈ L2([0, T ], L2(Ω) with F as in (58) but now with density given by (24) in Definition 2. From
(49) follows that ∇ρ ∈ L2([0, T ], L2(Ω)), because Θ,S ∈ L2([0, T ],H1(Ω)). This concludes the proof for
the case ρ = ρrat.
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Let the equation of state be given by the polynomial (25) such that ρ = ρpol. The proof is analogous to
the case ρ = ρrat, the only difference is the estimation of the density gradient (49), for which holds

||∇ρm||2L2 =
∫

Ω

|∇
( Mi,Mj ,Mk∑

i,j,k=0

di,j,kSi
mΘj

mpk
stat

)
|2dxdydz

≤ K

Mi,Mj∑
i,=0

∫
Ω

|∇
(
Si

mΘj
m

)
|2dxdydz ≤ K(||∇Θm||2L2 + ||∇Sm||2L2).

The intermediate steps of this estimate are the same as in (49). The proof can now be concluded for both
types of velocity boundary conditions in the same way as for the equation of state given by the rational
function ρ = ρrat. �

We state a generalization of Theorem 2 in which we use equations of state that are rational functions
and where we replace the hypothesis on thermodynamics (19) by a condition on the denominator of the
rational function, while hypothesis (18) remains valid. More specifically, for T ∈ L∞

Iθ
(Ω), S ∈ L∞

IS
(Ω) and

static pressure pstat given by (22), let ρ = ρ(T, S, pstat) be an equation of state that is of the form

ρ(T, S, pstat) =
Q1(T, S, pstat)
Q2(T, S, pstat)

, (59)

where Q1, Q2 are polynomials in (T, S, pstat) of arbitrary order. Assume that for T ∈ L∞
Iθ

(Ω), S ∈ L∞
IS

(Ω)
the function Q2(x, y, z, t) := Q2(T (x, y, z, t), S(x, y, z, t), pstat) is bounded below, i.e. |Q2(x, y, z, t)| ≥ c >
0 on Ω × [0, T ]. Note that under these conditions the density ρ is bounded, but not necessarily within
the physically admissible range. This would require an additional assumption on ρ or Q1 but for the
well-posedness theorem the boundedness of density is sufficient.

Corollary 1. (Well-Posedness for Alternative Equations of State) Let T, S be generic temperature and
salinity variable that satisfy advection–diffusion equations (1d), (1e) with boundary conditions (4). Let
the equation of state given by (59). If the initial conditions for velocity, temperature and salinity satisfy
u0 ∈ Vv, T0 ∈ Vθ ∩ L∞

Iθ
(Ω), S0 ∈ VS ∩ L∞

IS
(Ω), then the statement of Theorem 2 remains valid.

Proof. The assumptions of the advection–diffusion equations for the temperature and salinity variables T
and S imply with Lemma 1 that T (t) ∈ L∞

Iθ
(Ω), S(t) ∈ L∞

IS
(Ω) for t ∈ [0, T ]. The assumed properties of

the equation of state (59) guarantees that the density satisfies ρ ∈ L∞(Ω). The estimation of the density
gradient (cf. (49) follows analogously by using the lower bound on Q2. The proof can be carried out along
the lines of the proof of Theorem 2. �
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