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Zusammenfassung

Kupfer kann ein effizienter CO-Oxidationskatalysator sein. Zuvor muss die Kupferober-

fläche jedoch aktiviert werden, was durch morphologische Veränderungen geschieht.1 Die

detaillierte Struktur und Zusammensetzung der veränderten Oberflächenoxidschicht ist

bisher unbekannt, was mechanistische Analysen erschwert. Um die Oberflächenstruktur

von Cu (111) mit unterschiedlichen Konzentrationen von adsorbiertem Sauerstoff system-

atisch zu untersuchen, verwenden wir ein durch machine learning trainiertes "Gaussian

Approximation Potential" (GAP).2 In dieser Arbeit diskutieren wir, wie das Cu – O GAP

iterativ trainiert wurde, wie sich die verschiedenen Hyperparameter auf die Leistung

des GAP auswirken und wie der Trainingsprozess verbessert werden kann. Das GAP

basiert auf Daten verschiedener Kupferoxide, errechnet durch Dichtefunktionaltheorie.

Des Weiteren verwenden wir Oberflächenstrukturen, die wir durch Molekulardynamik

erzeugt haben.

In einer ersten Anwendung des Cu – O GAP benutzen wir Molekulardynamik-Berechnungen

bei 300 K, um Cu (111) Oberflächen mit unterschiedlichen Sauerstoffbedeckungen zu

analysieren. Wir beobachten, dass auf Cu (111) Oberflächen eine Sauerstoffbedeckung

von über 0.25 Monolagen zur Inselbildung und zur Sauerstoffdiffusion unter die Ober-

fläche führt. Zusätzlich führen wir dieselben Berechnungen auf Oberflächen mit einer

niedrigeren Cu-Dichte durch. In diesen Oberflächen fehlen 25 % der Cu-Atome in der

obersten Schicht. Ähnliche Dichten wurden in Experimenten bei Anlegen von Oxida-

tionspotenzialen beobachtet, wobei diese niedrigere Cu-Dichte höchstwahrscheinlich mit

dem Einbau von Sauerstoff in das Gitter zusammenhängt.1

Um die lokalen Oberflächenmotive zu analysieren, klassifizieren wir lokale atomare

Umgebungen mithilfe des Deskriptors "Smooth Overlap of Atomic Positions" (SOAP).3

Wir vergleichen die oxidierten Cu (111) Oberflächen mit einer Auswahl an Kupferoxid-

oberflächen mit niedrigen Millerschen Indizes. Bei hohen Sauerstoffbedeckungen finden

wir eine erhöhte Ähnlichkeit mit Cu2O (111), unabhängig davon, ob es sich um eine Cu

(111) Oberfläche mit hoher oder niedriger Cu-Dichte handelt.





Abstract

Copper was recently shown to exhibit promising capabilities toward electrochemical CO

oxidation, yet only after undergoing activating surface morphological changes.1 The de-

tailed structure and composition of the formed surface oxidic layer is hitherto unknown,

preventing further mechanistic analyses. We use a machine-learned Gaussian Approxi-

mation Potential (GAP)2 to systematically investigate the Cu(111) surface structure with

varying concentrations of adsorbed oxygen. In this thesis we discuss the iterative method of

training the Cu – O GAP, how the different hyperparameters impact the GAP’s performance,

and how this process can be improved. The GAP is trained on density-functional-theory

data of different bulk copper oxides and molecular-dynamics-generated slab structures.

In a first application of the Cu – O GAP we use molecular dynamics calculations at 300 K

on Cu(111) slabs with different oxygen coverages. We find that on Cu (111) surfaces an

oxygen coverage above 0.25 monolayers (ML) leads to island formation and subsurface

oxygen. Additionally we run the same calculations on low-density Cu (111) surfaces,

where 25 % of the Cu atoms are missing in the top layer. Similar Cu densities were

observed in experiments upon application of oxidizing potentials, where this lower density

is most likely related to the incorporation of O in the lattice rather than surface charging.1

To further analyze local surface motifs we create a classifier using the "Smooth Overlap

of Atomic Positions" (SOAP) local atomic environment descriptor.3 We compare the

oxidized Cu (111) surfaces to low-index surfaces of common-bulk copper oxides. As

oxygen coverage increases, we find a high similarity to Cu2O (111), regardless of high- or

low-density Cu (111) surface.
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1 Introduction

Copper is a promising electrocatalyst for a variety of carbon-oxygen reactions.4 Among

these reactions is the carbon dioxide reduction reaction (CO2RR) and the electro-oxidation

of CO, both critical reactions to the climate crisis, as CO2 is an infamous greenhouse

gas and CO is the primary poison to Pt electrodes in fuel cell reactions.5,6 A common

observation is that changing the Cu surface morphology increases the catalytic abilities,

common approaches being alloying Cu with other metals or metal-derivatives such as

ZnO, or introducing nanostructures on the Cu surface.7,8 A classic example of the latter

is "oxide-derived copper" (OD-Cu), a nanocrystalline Cu surface created by reduction of

Cu2O-derivatives.9,10

The exact reason behind this increased activity is not yet fully understood. One belief

expressed by Eilert et al. in 2017 is that during oxidation of a clean Cu surface, some O

atoms are pushed into subsurface layers, remaining there even after reduction of the copper

oxide.10 The authors propose that this causes changes to the electronic structure of the

catalyst, resulting in higher activity and selectivity, a proposal refuted the following year

by Garza et al..11

Another explanation was proposed by Auer et al. in 2020.1 In their paper, they argued

that a Cu (111) surface electrooxidizes CO more efficiently after undergoing an oxidation-

reduction cycle due to expulsion of Cu atoms out of the surface during oxidation. These

low-coordinated Cu adatoms at the surface favor CO adsorption, increasing the activity

in an electrochemical environment. The restructuring pathway of clean copper surfaces

to this low-density structure is not known, and although density-functional theory (DFT)

calculations on model "restructured" surfaces support the energetic observations made

by Auer et al., the larger structure of the oxidation-induced restructuring is not yet resolved.

Solving these unknowns could be aided by molecular simulation techniques. However

the high computational cost of "first principle" (ab initio) methods such as DFT prevent

analysis of large-scale copper structures, while the accuracy of classical force fields is

not sufficient.12 In this thesis we make use of Gaussian approximation potentials (GAPs),

a machine-learned force field trained on ab initio calculated data.13 Introduced in 2010

by Bartók et al., GAPs approximate the potential energy surface (PES) of a system by

comparing local atomic environments of unknown structures to structures in the training

set using Gaussian process regression.2 To do this GAPs use local descriptors such as the
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"Smooth overlap of atomic positions" (SOAP) descriptor.14 The result is a force field with

near DFT-accuracy at a fraction of the computational cost.

The thesis is structured as follows: First, we discuss the pros and cons of PES modeling

methods, including DFT, classical and machine-learned force fields. Next, we describe

how we trained and tested the performance of a GAP for copper oxide structures. Finally,

we present a first application of the CuO GAP on different terminations of oxidized Cu

(111) surfaces, using SOAP descriptors to resolve local structural motives.



2 Theoretical Background

Molecular simulation techniques are limited by the computational cost of the calcula-

tions, prohibiting the accurate modeling of complex molecular problems. Currently, the

workhorse for “first principles” (ab initio) methods in materials simulation is density-

functional theory (DFT). However, if we want to look at complex systems and their time

evolution, the high computational cost becomes an unsurmountable problem. Typically,

there are two methods of dealing with this issue, both at the cost of accuracy. Either we

coarse grain our system (e.g. instead of including an entire surface in our model, we

only model trial surface terminations in small cells), or we use computationally cheaper

methods, e.g. force fields (FF). In the past years, Machine learning (ML) has emerged as

a promising candidate to obtain interaction potentials orders of magnitude faster than ab

initio methods, while still maintaining their level of accuracy. The main reason for this is

that the ML-FF is fitted to a database typically generated at DFT level. In this chapter, we

will discuss the differences between FFs and DFT, before explaining the approach of the

ML-FF used in this thesis: the so-called Gaussian Approximation Potential (GAP).

2.1 Density Functional Theory

Fundamentally, the total energy of any system can be computed from the Schrödinger

equation, via

ĤΨ = EΨ (2.1)

If the Born-Oppenheimer approximation is valid, then the ground state energy of the

entire system is only dependent on the geometry of the atoms R. The potential energy

E(R) is often called the potential energy surface (PES).15 The electronic wave function

ψe(r), with r denoting the position variables of the electrons, solves the corresponding

stationary Schrödinger equation:16

Ĥ(r,R)ψe (r) = E(R)ψe (r) . (2.2)

The complexity in (2.2) arises from solving the eigenvalue problem for the electronic wave

function ψe(r). Typical eigenvalue solving algorithms, such as those in the ELPA library,

scale as O(N3
elec.).

17 This is one reason why the Hartree-Fock method, the computationally

cheapest technique which treats electrons explicitly, scales to O(N4
elec.).

18
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In a system with n electrons, the dimension of the wave function would be 3n (4n if we

additionally consider the spin of the electrons). A system with 22 electrons, such as the

CO2 molecule, hypothetically would thus have a computational cost of O
(
105). In this

work, we typically deal with systems on the scale of 1800 electrons, the computational

cost would be a factor of ≈ (100)4 = 108 higher, and thus practically not solvable.

DFT addresses the dimensionality problem by describing the PES as a functional of the

electron density ρ(r), a three dimensional observable.19

ρ(r) = N
∫

d1d2 . . .dN |Ψ(1,2 . . .N)|2 (2.3)

In 1964, Hohenberg and Kohn stated that all properties of the system (such as the

Hamiltonian Ĥ, wave function Ψ0 and the ground state energy E0) are uniquely determined

by the ground state electron density ρ0(r).20 This is known as the Hohenberg-Kohn

existence theorem. As it includes the wave function Ψ0, we are permitted to write the

expectation values of observables as functionals of the ground state electron density.20 The

Hohenberg-Kohn variational theorem states that the energy functional of any trial electron

density E0 [ρtrial(r)] will be greater or equal than the energy at ground state density.19

E0 [ρtrial(r)]≥ E0[ρ0(r)] (2.4)

Through (2.4) our goal becomes clear: We need to find the ground state electron density

ρ0(r). The most common method of doing so is Kohn-Sham DFT.21 Presented in 1965,

the idea is based on writing the electron density ρ as from a Slater determinant of non-

interacting electrons (in this case we neglect the spin) in an external potential vext:

ρ (r) = ∑
i

∣∣φKS,i (r)
∣∣2 (2.5)

In (2.5) we sum over all occupied Kohn-Sham orbitals φKS,i. The resulting integral over

the entire space r equals N, the total number of electrons in our system. The total energy

of our system E[ρ] can be separated into the following terms:22

E[ρ] = Tni[ρ]+Vne[ρ]+Vee[ρ]︸ ︷︷ ︸
non-interacting system

+ ∆T [ρ]+∆Vee[ρ]︸ ︷︷ ︸
"correction terms"=Exc[ρ]

(2.6)

The kinetic energy of the non-interacting electrons Tni, the nuclei-electron Coulomb

interaction Vne, and the electron-electron Coulomb interaction Vee are all easy to determine

analytically.22 However as our model neglects interacting electrons, we need to include

the correcting terms ∆T and ∆Vee. Basically what we have done in (2.6) is shift all the

unknown components of the energy into two functionals. The sum of these is called the

exchange-correlation energy functional Exc[ρ].15

(2.6) is an exact expression of the total energy, allowing us to calculate φKS (and thus

ρ0(r)) via variational minimization of the Kohn-Sham orbital equation.21,23

HKS [ρ]φKS,i =−
1
2

∇
2
φKS,i + vKS [ρ]φKS,i = εiφKS,i (2.7)
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Where vKS is the sum of the external potential vext, the classical electron-electron

Coulomb potential vel and the functional derivative of the exchange-correlation energy to

the electron density.23

vKS [ρ] = vext + vel [ρ]+
δExc [ρ]

δρ
(2.8)

In theory all calculations until now have been exact. However, there is no known exact

expression for Exc, here we need to work with approximations. In this study, we used

the exchange-correlation functional described by Perdew, Burke and Ernzerhof.24 This

functional uses the Generalized Gradient Approximation (GGA) with a constraint-driven

approach.15 This means that in addition to the local value of ρ(r), GGA also takes the

inhomogeneity of ρ(r) into account by evaluating its gradient. These exchange correlation

functionals are considered as a standard for solids.25

Note that the Kohn-Sham Hamiltonian is dependent on an input density ρin, which is why

(2.7) has to be solved iteratively by a self-consistent field approach.26 More details can be

found in [15, 19].

In this work we are mainly concerned with periodic systems. Based on Bloch’s theorem,

periodic Kohn-Sham orbitals are created by expanding the orbitals to a finite number of

plane waves with wave vectors G.27 This approach is called plane-wave DFT.28 Plane

wave basis sets are characterized by a kinetic energy cutoff Ecut:

Ecut =
h̄2G2

2m
. (2.9)

Larger cutoffs lead to a bigger basis and thus a more detailed representation. To limit

computational cost, the core electrons and their effects on valence eletrons are replaced by

pseudopotentials.29 The pseudopotentials used in this thesis are the ultrasoft pseudopoten-

tials from the GBRV database.30

DFT is computationally much faster than explicit wave function methods, however it

is still prohibitingly expensive to perform verly long molecular dynamics calculations, or

calculate the energy of large systems (e.g. > 1000 atoms).

2.2 Force Fields

As stated in section 2.1, the potential energy surface (PES) of a given system is dependent

on the molecular geometry. Force fields (FF) use the positions and species of the atoms as

inputs and use simple mathematical expressions to map the structure to the PES. This is

computationally orders of magnitudes quicker than ab initio calculations, which require

calculating the electronic structure. For instance, there are reports from 1997 on force

fields which scale with O(Natoms).31

There are multiple classes of such a mapping, classical non-reactive potentials use classical
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atomic interactions, such as the Lennard-Jones potential, while newer reactive potentials

such as the ReaxFF force field rely on more complex interaction models. The following

section briefly introduces typical approaches and assumptions made by force fields.

2.2.1 Non-Reactive Potentials

Typically, non-reactive force fields express the total energy as the sum of different energy

contributions. Neglecting cross terms, the dependencies of these singular contributions to

one another, the expression for the total energy is32

Etotal = Ebond +Eangles +Etorsion︸ ︷︷ ︸
Attractive Interactions

+Eelectrostatic +ELJ︸ ︷︷ ︸
Repulsive Interactions

. (2.10)

The terms in (2.10) represent the bond stretching, angle bending, dihedral torsion,

electrostatic, and Lennard-Jones energetic contributions, respectively. These can all be

computed individually.

For instance, if we wish to calculate Ebond, we will need to define all individual bonds b

that contribute to the systems energy. The computationally simplest way to simulate the

energetic difference to the system’s ground state is by using the harmonic approximation.

In this case, the two parameters required per bond type is the bond length at the ground

state d0(b) and the force constant of the bond Kb.32

Ebond = ∑
b

Kb(d(b)−d0(b))2 (2.11)

We proceed in a similar fashion for the other contributions to the total energy. What

becomes clear is that a high number of parameters are required to gain an accurate PES.

Even though there are strategies in order to reduce this process, parametrization remains a

delicate task.33

A further problem of classical force fields is that the equations describing the system are

typically only valid in areas close to the energetic minimum of the system. Staying with

the example of the bond stretching energy: If the bond distance d(b) is nowhere near the

ground state bond distance d0(b), the harmonic approximation is invalid.34 This results in

a PES with limited applicability.

Typical applications of these types of force fields are biomolecular simulations, as they

are ideal in simulating the bending and rotation of subgroups in lipids, proteins, and

polymers.35

2.2.2 Reactive Potentials

One shortcoming of non-reactive force fields is that they are unable to model reactions, i.e.

bond-breaking events. The user is able to define a set of bonded atoms, from which the
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force field will calculate bond stretching energies, bond bending energies, etc.. This set of

bonds will remain as the basis on which all other properties will be derived.

Reactive force fields have different methods as to how to define bonded and non-bonded

interactions. The embedded-atom method (EAM) addresses this problem by defining the

energetic contributions of atoms depending on their local environments.36 In EAM, the

potential for a system with Natoms is defined as:36

Etot =
Natoms

∑
i

[
Fi(ρh,i)+

1
2 ∑

j, j 6=i
φi j(ri j)

]
(2.12)

Here, Fi is the energetic cost of embedding the atom i at its location, ρh,i is the local

electron density from all atoms (except i) within in a cutoff radius, and φi, j is a repulsion

term between the atoms i and j.32

This serves an example as to how reactive force fields principally function: The force field

determines which atoms are bonded and treats local interactions and long-distance inter-

actions separately. Reactive force fields such as such as Bond-Order Potentials (BOP)37,

REBO38, and ReaxFF39 use similar methods.

Figure 2.1 Schematic workflow of the ReaxFF Force Field. Figure adapted from Senftle et al..39
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2.3 Machine Learned Force Fields

Machine learned Force Fields (ML-FF) are currently in the focus of research.32 Machine

Learning is based on algorithms that use data to learn behaviors. After a learning/training

phase the respective algorithms are applied to an unknown problem which ultimately

allows validation.40 In ML-FFs, the data are ab initio calculations and the task is predicting

the PES for structural configurations not in the training set. The success metric is usually

the root mean square error (RMSE) of the total energy, or of the individual forces on the

atoms.41

There are two sets of ML problems: classification and regression. As we are interested in

predicting the continuous values of the PES, the problem at hand is a regression problem.

The main difference between different ML-FFs is how they solve this regression problem,

e.g. first approaches used neural networks (NN) as regressors.42 The FF used in this thesis

uses Gaussian process regression (GPR).

2.3.1 Neural Network Potentials

This section serves as a quick introduction of neural network potentials (NNPs). For a

more detailed view on the subject we refer to the appendix and [41]. The first class of FFs

to implement elements of machine learning were feed-forward neural network potentials

(FFNNPs).43 In principle, these consist of neural networks with three different types of

layers. The input layer G contains the geometric information of the input structure. G is

then processed by the hidden layer y, or more commonly by multiple hidden layers yi. The

hidden layer then maps the physical information in G to the output layer E (see Figure

2.2).41

Figure 2.2 Theoretical structure of a FFNNP with two hidden layers. The figure is a simplified

version from [41].

During training, the weighting of the connections between nodes is optimized with the

help of algorithms such as back propagation, or the Kalman Filter.44
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FFNNPs are limited by the rigidity of the input vector. For all applications, the input vectors

must have the same dimension as during training. High Dimensional NNPs (HDNNPs),

first presented by Behler and Parrinello in 200742, solve this by treating the total energy

of a system as the sum of many local energetic contributions. The first step of such an

approach is translating the atomic information around a central atom to a cutoff radius

Rc into a vector with a pre-defined number of dimensions. This translation introduces

the concept of a local atomic environment "descriptor" functions, which we discuss in

section 2.3.2. Popular descriptor functions for NNP applications are the Behler-Parrinello

symmetry functions45 and the "Smooth Overlap of Atomic Positions" (SOAP) descriptor

(see section 2.3.2). These local contributions are then predicted using "atomic" NNs, which

are structured identically to FFNNPs.41

2.3.2 Descriptors

Before we discuss Gaussian Approximation Potentials (GAPs), we will introduce the

concept of a local atomic environment descriptor. Potentials such as the HDNNPs and

GAPs predict the PES by summing over local energies. This requires a definition of local

atomic environments, as the potentials must be able to accurately differentiate between

structures.14,41

Properties of a Descriptor

The most classical way to represent the coordinates of atoms is by using Cartesian coordi-

nates. While this representation uniquely describes the location of these atoms, comparing

two structures using this method is not suitable. There are multiple cases where Structure

A is identical to Structure B, however their Cartesian coordinates differ e.g. rotating A or

B. To solve this problem, a suitable descriptor is "invariant with respect to permutational,

rotational, reflectional and translational symmetries".14 Additionally, the descriptor should

be able to compare two environments with different numbers of atoms.41 The first example

of descriptors that fulfill these conditions was introduced by Behler and Parrinello in

2007.42

Smooth Overlap of Atomic Positions (SOAP)

The smooth overlap of atomic positions (SOAP) descriptor is constructed by considering

the local atomic density ρ(r) within a cutoff Rc around the central atom.14

ρ(r) =
neighbors

∑
i

wZiδ (r− ri)≈
neighbors

∑
i

exp

(
−|r− ri|2

2σ2
Zi

)
(2.13)

To ensure that similar local environments return similar ρ(r), each "neighbor" atom i is

represented by a Gaussian with its maximum at ri. The variance of the Gaussian σ2
Zi

is



10 2 Theoretical Background

specific to the atomic species Zi.14

A vector-like representation of this descriptor can be readily obtained when (2.13) is

expanded in spherical harmonics as3

ρ(r) =
nmax

∑
n=1

lmax

∑
l=0

l

∑
m=−l

cnlmgn(r)Ylm (r̂) . (2.14)

In (2.14), cnlm are the spherical harmonic expansion coefficients,2 gn(r) are orthonormal

radial basis functions with which we incorporate the distance between the central atom

to its neighbors,14 and Ylm (r̂) are the spherical harmonic functions.14 This representation

of the local atomic density is the SOAP descriptor, sometimes called the SOAP fingerprint.3

The benefit of the SOAP approach is best explained by comparing two atomic densi-

ties ρ and ρ ′. The similarity is defined as S (ρ,ρ ′):14

S
(
ρ,ρ ′

)
=
∫

ρ(r)ρ ′(r)dr (2.15)

Although (2.15) fulfills the permutational invariance and the translational criterion, the

value of S changes when either ρ or ρ ′ is rotated by R̂. The rotational invariance criterion

is satisfied by integration of (2.15) over all possible rotations.3,14 Therefore Bartók et al.

introduce the following similarity measure, with the exponent n > 1.3,14

k
(
ρ,ρ ′

)
=
∫

dR̂
∣∣∣∣∫ ρ(r)ρ ′(R̂r)dr

∣∣∣∣n (2.16)

This similarity kernel k (ρ,ρ ′) can be computed analytically using the spherical harmonics

expansion (2.14). Additionally, if the set of radial basis functions is orthonormal and n = 2,

then (2.16) corresponds to the inner product of the power spectra vectors d of the local

densities .14

k
(
ρ,ρ ′

)
= ∑

n,m
∑

n′,m′
∑

l
cnlm

(
c′nlm′

)∗ (c′nlm
)∗ cn′lm′ = ∑

n,n′,l
dnn′ld

′
nn′l (2.17)

This means that the only data that we require in order to measure similarities is the power

spectrum vector d of each local environment. The elements of this vector are computed

by:3

d(r)Z1Z2
nn′,l = π

√
8

2l +1 ∑
m

(
cZ1

nlm

)†
cZ2

n′lm (2.18)

In summary, the SOAP descriptor vector d is the power spectrum vector of the local

atomic density ρ46 and the regular dot product between two descriptor vectors (2.17)

corresponds to the rotationally invariant similarity kernel (2.16).14
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2.4 Gaussian Approximation Potentials

The Gaussian Approximation Potential (GAP) method was introduced by Bartók et al.

in 2010.13 As with HDNNPs, the total energy of the system is calculated as the sum of

the local energies of each atom, the local environment of which is also described via

atom-centered descriptors. However, instead of using neural networks for predictions,

GAPs use Gaussian process regression (GPR).2,47 The following paragraphs only touch on

the basic procedure of GAPs. For more in depth analysis and description, we refer to the

available literature [2, 13, 47].

2.4.1 Gaussian Process Regression

In GAPS we deal with two vectors: The atomic configuration vectors t and the vector of

physical observables ε . In t the element i corresponds to the descriptor vector di of the

local environment around the atom i. In ε the i-element is the atomic energy εi.

Additionally, the data is split into training data and unknown data, which we will connote

by the subscript ∗. The goal of the GAP is to predict an unknown energy vector ε∗.

Considering the atom i in the training data, there exists a mapping of the local atomic

environment ti to the local atomic energy εi that we write as:46

εi = ε (ti,w) = ∑
h

whφh (di) . (2.19)

In (2.19) εi is defined by the inner product of the descriptor vectors projected into the

feature space by a set of basis functions φ and a weight vector w.2 The choice of basis

functions is dependent on the chosen covariance function.47

As we have no prior information on w, we assume that the prior probability distribu-

tion of w to be a multivariate normal Gaussian distribution.47

p(w) = N (0,σwI) ∝ exp
(
−1

2
wT

σwIw
)
, (2.20)

This allows us to simplify the covariance of two different local energies

〈
εiε j
〉
= ∑

hh′
〈whwh′〉φh (di)φh′

(
dj
)
= ∑

hh′
σ

2
wδhh′φh (di)φh′

(
dj
)
= σ

2
w ∑

h
φh (di)φh

(
dj
)
,

(2.21)

since the covariance of a vector with itself is its variance.

〈w,w〉= σ
2
w (2.22)
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In their 2015 paper, Bartók and Csyányi introduce the kernel function:2

c(di,dj) = ∑
h

φh (di)φh
(
dj
)
. (2.23)

This similarity measure between two local atomic environments allows us to apply the

"kernel trick".47 As (2.21) "is defined solely in terms of inner products in input space"47,

we can proceed considering only the kernels.2,47 This substantially reduces the required

computational memory.

If we calculate the covariance of each element in ε , this leads to the covariance matrix C:

〈
εε

T〉= σ
2
w


c(di,di) c(di,di+1) . . . c(di,dmax)

c(di+1,di) c(di+1,di+1) . . . c(di+1,dmax)
...

... . . . ...

c(dmax,di) c(dmax,di+1) . . . c(dmax,dmax)

= C(t, t) (2.24)

Again, with no prior knowledge we define the prior probability of observing ε as a

multivariate Gaussian function with mean zero and a variance of the covariance matrix C.

This is a common assumption of GPR.47

p(ε) = N (0,C(t, t)) ∝ exp
(
−1

2
tT C(t, t)−1t

)
. (2.25)

How does this help to predict the unknown values of ε∗? If we add these to the vector of

known values ε , the prior probability of this vector is:47

p(ε ∩ ε∗) =

(
ε

ε∗

)
= N

(
0,

(
C(t, t) C(t, t∗)
C(t∗, t) C(t∗, t∗)

))
= N

(
0,

(
C F
FT D

))
(2.26)

We are interested in the posterior probability of ε∗ under the condition that ε is known.

According to Bayes’ theorem, the conditional probability is defined as:

p(ε∗|ε) =
p(ε ∩ ε∗)

p(ε)
= N

(
FT C−1t, D−FT C−1F

)
(2.27)

This is a Gaussian distribution with mean FT C−1t, and a covariance D−FT C−1F.47 The

derivation of the right side of (2.27) is given in the cited literature.47,48

The prediction ε̄∗ is the mean of the probability distribution p(ε∗|ε), a common approach

in GPR, and thus47

ε̄∗ = C(t∗, t)C(t, t)−1
ε. (2.28)

This means the required information to make a prediction is the covariance matrix C(t, t)
and vectorized inputs t of the training set. Additionally, we must calculate the covariance

matrices C(t∗, t) of the new test set t∗ and old training sets t.2,47
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In comparison to regression via neural networks, GPR’s definition is more precise mathe-

matically. This allows the user to calculate confidence intervals of the regression process,

which can speed up hyperparameter optimization. Additionally, multiple different ker-

nel functions can be used, provided they fulfill the mathematical requirements (see [47],

chapter 4).

2.4.2 Sparsification

GPR uses the entire training set to accurately create the covariance matrix. This is an

advantage as we include all available information in our fitting process, however this can

lead to large matrices that slow down computation. For instance, a training set of 300

Structures with 80 atoms per structure, would have to store a matrix of 240002 elements.

To counteract this, an approximation is introduced via sparsifying the training set.13

The assumption Bartók et al. make is that there are redundancies in the input local chem-

ical environments.13 If one environment is slightly perturbed, the resulting energy will

also be similar. By introducing this approximation we change the mathematically exact

GPR-regressed potential to a Gaussian approximation potential (GAP).

The sparsification is introduced by taking "all observations in the dataset" under account

and finding "representative atomic neighborhood environments".2 The number of these

representative neighborhoods depends on the number of sparse points, a hyperparameter

that can be set by the user.
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3.1 Density Functional Theory Calculations

All electronic structure calculations were set up using the AIIDA-Quantum Espresso

package and were run using a plane wave basis set.28,49 The exchange correlation functional

used was PBE,50 and ultrasoft pseudopotentials from the GBRV database (GBRV 1.5).30

Single Point Calculations

To evaluate the atomic forces and the total energy of a specific geometry (e.g. a snapshot

within a molecular dynamics trajectory), we performed self-consistent field calculations,

also referred to as "single point calculations". We set the electron convergence threshold for

self-consistency to 10−8 Ry and used local-density-dependent Thomas-Fermi screening as

the electronic mixing mode, recommended for highly inhomogeneous systems. The mixing

factor was set to 0.3. As we use a plane wave basis set, kinetic energy cutoffs of wave

functions and charge density have to be set. These were respectively: 45 Ry and 360 Ry.

This proportion is recommended for ultra-soft pseudo potentials. For metals, we included a

smearing with a value of 2.0×10−2 Ry, based on Marzari-Vanderbilt-DeVita-Payne cold

smearing.51

Evaluating periodic systems requires k-point sampling of the Brillouin zone.52 To ensure

similar accuracy between structures, we used an approximately constant k-point density

in the reciprocal space. This means that if the size of the cell increases, the number of

k-points decreases. We determine the number of k-points for a cell vector a according to:

ka =
3.62Å ·10
lengtha[Å]

(3.1)

With (3.1), the resulting k-point sampling is equivalent to a 10×10×10 k-point grid for

bulk cubic copper in the conventional unit-cell with cell length 3.62 Å.53

Geometric Relaxation Calculations

Throughout our study, we performed geometric relaxations. For instance, this was the

case for the bulk copper oxides that were used for the first training data generation.

The electronic convergence parameters were kept identical to that of the single point
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calculations. Additionally, the convergence thresholds for total energy and forces were set

to 10−4 Ry and 10−4 Ry/bohr, respectively for structural relaxations.

Slab Calculations

The input geometries were derived from previously optimized slabs provided by Nicolas

Hörmann. Originally, the structures were four layers of a Cu (111) surface, in a 4x4 cell in

xy plane. The lattice M (3.2) ensures a vacuum layer of ∼16 Å. The slabs are placed in

the center of the cell in z direction.

M =

10.248 0.000 0.000

−5.124 8.875 0.000

0.000 0.000 26.414

 (3.2)

For slab calculations, the k-point density parallel to the surface is determined with (3.1),

whilst the number of k-points in the direction perpendicular to the surface can be kept low

due to the loss of periodicity in that direction. Applied to (3.1), M results in a k-grid of

4×4×1.

For geometric relaxation calculations on slabs, we first relaxed the structure with a k-grid

of 1×1×1, before moving on to the higher density k-grid. During these calculations the

unit cell vectors and positions of the bottom two Cu layers were fixed, only permitting the

top atoms in the slab to move.

Bulk Calculations

In order to gain reference information on Cu and copper oxides, we performed calculations

on the respective bulk structures. These structures were obtained from Materialsproject54

and from Nicolas Hörmann. The calculation parameters are mostly identical to the slab

calculations, with following exceptions: Instead of fixing the unit cell vectors the cell itself

is relaxed along with the atomic positions of all atoms.

3.2 Molecular Dynamics Calculations

We performed molecular dynamics (MD) calculations with the LAMMPS package.55 Un-

less stated otherwise, the calculation parameters for all MD calculations are the following:

We used the "full" atom style implemented by the MOLECULE LAMMPS plugin, and de-

fined neighbors up to 2.0 Å above the force cutoff radius, the default setting for LAMMPS.

The time step was set to 1 fs. Velocities are sampled via the canonical ensemble using the

Nosé-Hoover thermostat. The Tdamp parameter, which determines in what time frame the

temperature is relaxed, is set to 0.1 ps. To prevent the "flying ice cube effect"56, the total

momentum of the atoms in the cell was set to 0 every 2000 time steps.
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Additionally for slab calculations atoms attempting to move through the cell boundaries in

z directions are reflected back to the cell. Also atoms in the bottom atomic layer are fixed

and excluded from temperature calculations.

3.3 Training of Copper Oxide GAP

We created Gaussian approximation potentials (GAPs) with the QUIP Code by Bartók et

al. and its GAP plugin.2,13

The QUIP Code permits training the GAP on up to four physical observables: the to-

tal energy, atomic forces, virial stress, and hessians. We chose to train our potential on total

energy and atomic forces. This requires setting the default_sigma hyperparameter of the

QUIP Code, representing the relative weight of each physical observable in the fit, and with

which accuracy the data is treated. For instance a value of default_sigma = 0.001eV

means that the standard deviation of the training error on the observable energy is 0.001 eV.

It follows that smaller values offer a more precise treatment of the respective observable,

however this simultaneously increases the risk of overfitting. Following an evaluation of

Cu data, we set default_sigma = {0.001 eV 0.001 eVÅ
−1
}.

Table 3.1 Table describing default_sigma hyperparameter. "default value" refers to the values

we use at the beginning of our training. They do not necessarily need to refer to default values of

the QUIP package.

Hyperparameter Description "default value"

default_sigma Accuracy of energy, forces(, stress, {0.001eV 0.001eV/Å}

and hessians). Smaller values

correspond to more importance

in the fitting process

As explained in section 2.3.2, GAPs require local atomic descriptors. For our GAP

we use the two-body pairwise distance descriptor and the "Smooth Overlap of Atomic

Positions" (SOAP) descriptor.14
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Two-Body Pairwise Distance Descriptor

Table 3.2 Table describing the hyperparameters of the Two-Body Distance Descriptor.

Hyperparameter Description "default value"

cutoff Maximum distance of local interactions rcut 8.0 Å

add_species GAP considers different atomic species true

covariance_type Kernel function to determine ard_se

covariance matrix

theta_uniform Gaussian width of kernel function 1.

n_sparse Number of sparse points 20

sparse_method Method to determine sparse points uniform

delta Relative weight of the descriptor 0.1

The two-body pairwise distance descriptor maps the local energy and the atomic forces to

the bond distance between two atoms within a cutoff distance rcut.

By setting add_species = true, the descriptor takes the atomic species into account

that are participating in the bonding. In our case this means that separate descriptors are

created for Cu – Cu, Cu – O, and O – O bonds. To calculate the covariance matrix for each

descriptor, we set covariance_type = ard_se. This means that the kernel function is

the squared exponential kernel, the Gaussian width of which we set to: theta_uniform=1.

To create GAPs from this descriptor, the information must be sparsified, which requires two

inputs: the number of sparse points, and the sparsification method. In this case we use the

uniform sparsification method. This creates equally large "bins" between bond distance 0

and rcut in which the data is sorted. The number of sparse points varied throughout the

training process. We started with 20 sparse points and a cutoff of rcut = 8.0Å.
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Smooth Overlap of Atomic Positions Descriptor

Table 3.3 Table describing the hyperparameters of the SOAP Descriptor.

Hyperparameter Description "default value"

cutoff Maximum distance of local interactions rcut 8.0 Å

add_species GAP considers different atomic species true

covariance_type Kernel function to determine linear

covariance matrix

n_sparse Number of sparse points 1000

sparse_method Method to determine sparse points cur_points

n_max Maximum number of radial basis functions 10

l_max Maximum number of angular basis functions 3

zeta Kernel enhancement power factor 2

atom_sigma Width of the atomic Gaussians 0.5

delta Relative weight of the descriptor 0.1

As explained more precisely in section 2.3.2, the soap vector maps a local atomic density

around the center atom, with each atom in the vicinity of the central atom being represented

by a Gaussian.14

For our original generation, the cutoff radius was set to 8 Å, identical to the two-body

pairwise distance descriptor. We also distinguish between different atomic species by

setting add_species=True. The width of the atomic gaussians was set to atom_sigma

= 0.5. To translate the Gaussians into spherical harmonics, the number of radial basis

functions was set to n_max = 10 and the angular indices to l_max = 3.

For our covariance function we chose the dot product kernel, as is suggested for the SOAP

descriptor in the literature (see section 2.3.2).2,14 The kernel returns a value between 0 (no

similarity) and 1 (identical environment). To improve the sensitivity the kernel is squared

(zeta hyperparameter), thus increasing the difference between similar environments.14,46

The sparsification process is more complex than for the two-body descriptor. Ideally, we

want the sparse points to contain every unique local atomic environment, while disregarding

redundancies in the training set. In our case, we used sparse_method = CUR_points,

which applies the leverage-score CUR algorithm to the training set of SOAP descriptors to

get the most diverse set of sparse points possible.57 We set n_sparse = 1000.

As we use two types of descriptors to describe our GAP, we must attribute the weight of

each descriptor to the GAP. This can be understood as determining to what extent two-

body interactions and local many-body interactions contribute to the PES. Mathematically,

these relative weights are dictated by the standard deviations of the probabilistic Gaussian
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process.2 In the QUIP code, this is the delta parameter, which has to be set for each

descriptor. Our first generations were created using delta=0.1 for the two-body distance

descriptor and delta=1.0 for the SOAP descriptor.



4 Optimizing the Cu – O GAP

Our construction scheme of a copper oxide GAP can be split into two parts: First we built

a structural dataset and trained the GAP with the default hyperparameters described in

3.3, iteratively adding structural data. After accumulating enough data, we optimized a

selection of hyperparameters which lead to significant performance improvements.

The following sections are structured as follows: First, we explain our method of ac-

cumulating structure data, making sure that we sample as much as possible of the known

CuO structural space. Then we present the results of our hyperparameter optimizations.

We hope that this analysis will help accelerate future GAP creations, as we found multiple

pathways to lighten the computational load, without compromising the GAP accuracy.

4.1 Generating the Structure Dataset

The data with which we trained the first iteration, or generation 0, of the Cu – O-GAP,

consisted of DFT SCF calculations on eight bulk Copper Oxide structures from Materi-

als Project.58 To increase the number of local environments for generation 0, we used

supercells of 60 to 80 atoms for each polymorph. For each structure, we applied lattice

expansions and compressions by 10 %, as well as random atomic displacements with a

standard deviation of 0.01 Å.1 Additionally, SCF calculations were performed on single

O and Cu atoms in 10Å×10Å×10Å cells to give the GAP a reference energy for the

isolated atom.

We created the next 15 generations by adding new structures to the training data, without

changing the hyperparameters. To test the accuracy of generation n, we run MD calcu-

lations on a CuO structure, this structure does not have to be included in the training set

of generation n. The general logic of this iterative GAP training process is illustrated in

Figure 4.1.

1All the alterations to atomic structures were made using the Atomic Simulation Environment.59
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bulk CuOx

Training Datan

GAPn

Validation Datan

Validation Datan

Validation Error

generation: n = 0

Fit with QUIP

MD with LAMMPSDFT

Update Training Data
n = n + 1

Test Structure
slab CuOx, slab Cu w. adsorbed O,...

RMSE

Figure 4.1 Overview of the iterative GAP generating process. Starting with distorted bulk Copper

Oxides, we train the 0th GAP generation. By generating structures unknown to the GAP via MD,

we gain an accuracy measure by comparing the predicted energy and forces to the DFT-calculated

values. We then include these values into the next generation.

The validation data of generation n consists of 10-20 sample structures from the resulting

MD trajectory. Comparing the results of ab initio single point calculations on the validation

data with the results by generation n GAP gives us the validation error generation n. GAP

generation n+1 is then trained on the training and validation data of generation n. Training

and validation errors for generations 0 to 15 are shown in Figure 4.2.
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Figure 4.2 Root mean square error (RMSE) of the atomic energy for structures in the training and

validation data for each generation up to Gen. 15. The shading background illustrates the structure

type used to create the validation set of generation n.

The shading of Figure 4.2 refers to the structure type used for the MD calculation. As

soon as the validation error converges to the training error, we change the structure type

for the next generation’s validation data. For generations 0 to 4 the MD was performed

on bulk structures included in the training data. For the first structure type we used, three

GAP generations were required until the validation errors matched the training error.

From generation 5 onward the MD was generated with slab structures, in order to slowly

introduce surface effects to the GAP. This was done step wise, starting with the (111)

surface of 4 layers cubic Cu2O. Once the MD calculations converged and returned

reasonable energies and forces, we moved on to (100) and (110) surfaces. To speed up

the learning process we also added single-point calculated distorted slab structures to the

training data in generation 9. This led to generations 9 and 10 converging immediately.

From generation 11 onwards the GAP was trained with oxidized copper surfaces (labeled

"CuO/Cu Hybrids" in the legend of figure 4.2). We begin introducing bulk copper structures

in generation 11 by running the MD on a slab of two layers Cu2O atop a layer of bulk

Cu. The atomic positions of the Cu layer were fixed throughout the MD calculation.

In subsequent generations we increase the number of Cu layers, while simultaneously

decreasing the number of fixed Cu layers. This concludes in generation 15 where the MDs

are run on structures with three Cu layers, only the lowest of which was fixed.
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Cu – Cu interactions

Another method of visualizing the impact of adding training data to the GAP is by inves-

tigating the Lennard-Jones plots of the different bond types in the GAP: Cu – Cu, O – O,

Cu – O.

To generate the Lennard-Jones potential of the Cu – Cu bond, we expand a cubic fcc

copper cell. This energy vs bond distance is closely related to a Birch-Murnaghan type

equation of state,60 which we use to test the the quality of the GAP potential in regions far

outside of what can be achieved with typical MD runs. The energy shown in in Figure 4.3

is normed to the isolated atoms, the bond distance refers to the minimum bond distance

between two atoms in the periodic cell.
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Figure 4.3 Top panel: Histogram of the training data at that specific bond length. Bottom panel:

The Cu – Cu bonding energy predicted by different generations of the Cu – O-GAP. (Obtained by

isotropic rescaling of the conventional fcc bulk Cu cell.)

The top panel of Figure 4.3 shows that our method of adding new data elements is

successful in increasing the sampling in regions not previously covered, specifically in

regions below 2.4 Å. Although the maxima and minima in the training data histogram are

at the same bond distances for generation 10 as for generation 15, the differences between

minima and maxima are less extreme. This increased sampling leads to the GAP-predicted

energy being progressively in agreement with the DFT data. For generation 15, we achieve

an energy minimum at a Cu – Cu bond distance of 2.62 Å, roughly equaling the DFT bond
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minima of 2.55 Å.

However, Figure 4.3 also indicates a problem with our chosen parameters. In early

generations we observe sizeable fluctuations at large bond distances, although physical

knowledge, as well as DFT data suggests that there are virtually no interactions at bond

distances above 4 Å. Even in late generations the GAP predicts repulsive interactions at

bond distances between 7 and 8 Å. In fact, generation 15 proves to be more of an outlier,

as can be seen in Figure 4.4. For the 16th generation mentioned in Figure 4.4, we added

pure copper slabs, as well as copper slabs with adsorbed oxygen atoms on the surface. We

observe that both generations are in agreement with DFT data for bond distances up to 3 Å.
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Figure 4.4 Comparison of GAP generation 15 and 16. Generation 16 has additional copper slabs

in the training data. A similar plot with the final GAP can be found in Figure 4.10.

As we will show below, decreasing the descriptor cutoff radius during training leads to a

reduction of the predictive error. We believe this is due to the omission of such erroneous

long-distance effects.

O – O interactions

To improve the O – O bond modeling we added O2 dimers to the training data in generation

14. As shown in Figure 4.5, generations 13 and lower all were unable to recreate the

attractive interaction at oxygen’s gaseous bond distance of 1.1 Å. This is mainly attributed

to insufficient sampling at these regions, as is exhibited by the training data histogram

of Figure 4.5. The few structures in the region below 2.0 Å are typically structures were
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the closeness of two Oxygen atoms causes enormous forces in the structure, causing the

structure’s total energy to be very large, which in turn leads to the energetic prediction at

these bond distances to be very unfavorable. By adding only three dimer structures (be-

low/at/slightly over the "ideal" bond distance of gaseous O2), we were able to significantly

improve the energetic structure.
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Figure 4.5 Comparison of gas dimer O-O Lennard Jones plot after adding gas dimers to the

training data.

4.1.1 GAP Hyperparameter Optimization

Figure 4.2 shows that with the given parameters we are able to model oxidized copper

surfaces with an error of approximately 30 meV per atom. In literature, the error is often

on the scale of 3-5 meV per atom.61 To improve the capabilities of the GAP we turn our

attention to the hyperparameters.

To optimize the hyperparameters we perform cross-validations on the training data of

generation 0, as this is the smallest dataset and therefore is the cheapest to calculate. This

is illustrated in Figure 4.6.
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Figure 4.6 Illustration of our cross-validation process. We divided the training set of generation 0

into four folds. For each hyperparameter setup we train a GAP with a training set of three of the

four folds (orange). Our primary success metrics are the root-mean-square error (RMSE) of total

energy and atomic forces, which we calculate for the remaining fold (blue). This limits the risk of

overfitting. Finally we average the four RMSEs for a given set of hyperparameters to obtain the

cross-validation RMSE (CV-RMSE). Depending on the hyperparameters we choose either a

random variable search, or a grid search to find the optimal hyperparameters.

Hyperparameter: default_sigma

Figure 4.7 Cross-validation results for the default_sigma parameter. The squares represent the

CV-RMSE of the atomic energy (bottom triangle), and the CV-RMSE of the atomic forces (upper

triangle).
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Figure 4.7 shows the results of the grid varied default_sigma parameter. We observe that

root mean square energy of the energy and atomic forces correlates directly to the respective

sigma value. This is expected, as the sigma value can be viewed as a metric quantifying how

accurately the GAP tries to match the physical observable in the training data. In the case

of default_sigmaenergy = 0.001eV and default_sigmaforces = 1.0eVÅ
−1

the energy

error will therefore be small, whereas the forces error will be large. As we are interested

in minimizing both, we find an optimal setup at default_sigmaenergy = 0.001eV and

default_sigmaforces = 0.01eVÅ
−1

. By introducing this change we improve our energetic

error by 8 meV per atom while keeping the force error constant.

Hyperparameter: delta

The next hyperparameter we consider is the relative weighting of the descriptors delta.

The results of the cross-validation, shown in table 4.1, indicate that setting delta to 1.0

for both the two-body pairwise distance descriptor and the SOAP descriptor yields the best

results. The improvement is on the scale of 9 meV per atom.

Table 4.1 Results of the cross-validation on the optimal delta parameters for each GAP.

deltaTwo-body deltaSOAP CV-RMSE Etotal[meV per atom] CV-RMSE fatomic[meVÅ
−1
]

0.1 0.1 34 188

1.0 26 183

1.0 0.1 30 181

1.0 17 168

Hyperparameter: r_cut (Cutoff radius)

As discussed in section 4.1, we assume that the GAP overestimates long range interactions.

We therefore perform a cross-validation on the descriptor cutoff radii. In a range of 3.5 to

6.5 Å we randomly assign cutoff radii for each descriptor. We choose a random search on

this hyperparameter, believing that the two-body pairwise distance descriptor is potentially

less important to the success of the GAP, thus allowing us to sample more values of the

SOAP cutoff radius. In total we evaluated 500 different configurations, resulting in Figure

4.8, which shows the energy error as a function of SOAP rcut and Two-body rcut.
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Figure 4.8 Cross-validation RMSE for the atomic energy as a function of cutoff radii. The markers

represent the values of the random parameter search. Note, we use equivalent cutoffs for all atom

types.

Evidently, the energy error strongly correlates with the cutoff radius of the SOAP

descriptor, while the two-body distance descriptor has little impact. We observe that

increasing the cutoff above 5 Å causes the CV-RMSE to increase by over 20 meV, possibly

due to the SOAP descriptor including atoms in the second shell of the central atom, and

the algorithm not being able to natively lead to an appropriate separation into short and

long range interactions.

Figure 4.9 CV-RMSE for the atomic energy (left y-axis) and forces (right y-axis) as a function of

rcut.
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As a result the in principle more general cutoffs of ≈6 Å seem to lead to worse cross-

validation errors than the less flexible setups with similar cutoffs. The reduction of rcut

from 6 Å to a cutoff of 4.2 Å leads to an error reduction by 80 %. If we wish to keep the

cutoff radii consistent for each descriptor, we observe the ideal cutoff at 4.2 Å (Figure 4.9).
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Figure 4.10 Atomic energy as a function of Cu – Cu bond distance for two GAPS with identical

training data and hyperparameter setups save for the descriptor cutoff radii.

As shown in Figure 4.10, reducing the cutoffs to 4.2 Å resolves the unphysical energy

oscillations at higher bond distances previously observed in Figure 4.4. However, as a

result of the smaller cutoff, the energy variations for bond distances between 4.2 and 6 Å

that are still significant in the DFT calculations can not be described with respective model.

The GAP energy immediately goes to 0 eV above its cutoff.

Figure 4.11 compares the performance of different GAPs on a MD trajectory of a Cu (111)

slab with a surface termination of Cu16O10. The GAPs were all trained on the training data

of generation 16.
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Figure 4.11 Comparison of different GAPs to a MD trajectory of a 4×4 slab of Cu with 10

adsorbed O. (note: This system consists of 64 Cu and 10 O atoms.)

Evidently our observation from the cross-validation on the 0th generation structural

dataset prevails: While all models in Figure 4.11 seem to qualitaviley recover the PES,

only the small cutoff of 4.2 Å can lead to a highly accurate quantitative description.

Hyperparameter: n_sparse

During the GAP fitting process the covariance matrix is sparsified to reduce computational

costs. A sparse point can be understood as the replacement of n structures in a single

average.2 For instance, if the training set consisted of 10 diatomic molecules with bond

distances of 1.1, 1.2 ... 2.0 and the n_sparse parameter of the two-body descriptor is set

to 1. The energetic values of all the structures would be averaged into this one point. We

therefore assume that an increase of n_sparse increases the nuances of the covariance

matrix, reducing the validation error, however at additional computational cost during the

fitting process.

Varying the sparse points for the training data in generation 0 did not result in any substan-

tial changes in GAP accuracy. Figure 4.12 shows the results of a grid search crossvalidation

on the data of generation 16.
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Figure 4.12 Atomic Energy (lower left triangles) CV-RMSE and average GAP fitting runtime

(upper right triangles) depending on the n_sparse for each descriptor. The CV-RMSE of atomic

forces shows almost identical behaviour to the atomic energy.

At the beginning of the GAP fitting process we chose default values of n_sparse(Two-

Body) = 20 and n_sparse(SOAP) = 1000. This hyperparameter setup applied to the

structural dataset in Figure 4.12 in an atomic energy CV-RMSE of 35.8 meV per atom.

On average the GAP fitting process took five hours. Similar to the variation of the r_cut

hyperparameter, we observe that altering the hyperparameter for the SOAP contribution has

a larger impact than for the two-body contribution, with the CV-RMSE mainly unaffected

by increasing the number of two-body sparse points. At variance, doubling the number

of SOAP sparse points can lead to an error reduction by approximately 12 meV per atom.

However, an approximate doubling of the runtime is observed.

Hyperparameter: n_max, l_max (SOAP Dimensionality)

We performed a grid search on the maximum number of radial n_max and angular l_max

basis functions of the SOAP vectors. During the fitting process, SOAP vectors are calcu-

lated for each atom. For the 0th generation our chosen hyperparameters were n_max = 10

and l_max = 3. For systems with two atomic species, this results in SOAP vectors of 840

dimensions. The goal of this cross-validation was to see if there is a benefit to reducing the

dimensionality of these vectors.



4.1 Generating the Structure Dataset 33

To analyze the energetic performance of lower dimensional SOAP vectors, we iterated

the GAP fitting process through each possible combination of parameters up to n_max=10.

The errors of the training data are shown in Figure 4.13.

(a) Average atomic energy training RMSE. (b) Average GAP fitting runtime.

Figure 4.13 Partial results of the cross-validation on n_max and l_max.

Unsurprisingly, the average training error gets smaller with increasing SOAP dimension-

ality. The minimum being 0.39 meV per atom at the (10, 10) SOAP vector, vectors with

2300 dimensions. These also have the largest computational cost, with a GAP-fit taking

on average 1237 seconds. We see similar results for SOAP vectors above (3,2), at greatly

reduced computational cost (average GAP fitting runtime: 88 seconds). This is potentially

very valuable information, as a reduced GAP fitting runtime removes a major bottleneck in

a thorough cross-validation of other hyperparameters.
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Figure 4.14 CV-RMSE of atomic energy with varying number of radial basis functions n and

angular basis functions l. The data is acquired using the training data of generation 0.

If we look at the atomic energy CV-RMSE in Figure 4.14, we find no clear correlation

between n_max, and l_max and the CV-RMSE. The minimum is at lower dimensional

SOAP vectors, particularly the values at n_max=5 stand out for routinely returning good

results. For example, the GAP fit on a (5, 3) SOAP vector has a CV-RMSE of 4 meV per

atom, while the (10, 10) SOAP vector has a CV-RMSE above 12 meV.

Apart from overfitting, one reason why we observe better energetic results for less precise

vectors could be that the training data in the 0th generation is too homogeneous. The

training set consists of different bulk copper oxide structures and does not include copper

structures, or surface/vacuum interfaces.

Table 4.2 Different SOAP vector setups for GAPs trained on the structure dataset of generation 16.

The RMSE not in parentheses is the validation RMSE of different surfaces, the value in

parentheses is the RMSE of the training data.

GAP Parameters RMSE Etotal[meVper atom] RMSE fatomic[meVÅ
−1
]

rcut = 4.2Å, nmax = 10, lmax = 3 3.4 (2.7) 75.5 (88.7)

rcut = 4.2Å, nmax = 5, lmax = 3 5.0 (3.3) 88.7 (111.4)

rcut = 8.0Å, nmax = 10, lmax = 3a) 15.8 (4.1) 124.3 (133.9)

rcut = 8.0Å, nmax = 5, lmax = 3 27.0 (23.5) 217.8 (210.2)
a) Original set of parameters



4.1 Generating the Structure Dataset 35

Comparing GAPs trained on the data of generation 16, one with the previous (10, 3)

SOAP vectors and one with (5, 3) SOAP vectors, we find that, judging by the RMSE

values, the (10, 3) GAP outperforms the (5, 3) GAP by 1.6 meV per atom.

However, a more significant difference for the two hyperparameter sets is observed for

the prediction of the O2 bonding curve. As shown in Figure 4.15, while the (10, 3) vector

stays close to the DFT values, the (5, 3) vectors completely change the shape of the curve

and introduce a minimum at 1.75 Å.
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Figure 4.15 Impact of different SOAP dimensionality on the prediction of O2-dimers for

generation 16.
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Final hyperparameter choice

Our choice for the optimal GAP hyperparameters are listed in table 4.3.

Table 4.3 Final GAP Hyperparameter choice.

Hyperparameter Input

default_sigma {0.001 eV 0.01 eVÅ
−1

}

Descriptor Hyperparameter Input

distance_2b cutoff 4.2 Å

add_species True

n_sparse 200

sparse_method uniform

covariance_type ard_se

theta_uniform 1.0

delta 1.0

soap cutoff 4.2 Å

add_species True

n_sparse 2000

sparse_method cur_points

covariance_type dot_product

zeta 2.0

n_max 10

l_max 3

atom_sigma 0.5

delta 1.0



5 Analysis of Cu (111) Surface
Morphologies

In the following chapter we will use the finalized Cu – O GAP from chapter 4 to study

partially oxidized Cu (111) surfaces. More specifically we investigate the surface structure

of Cu (111) at different stages of oxidation. Typically the correct representation of such an

oxidation process requires grand-canonical sampling. This means investigating slabs with

varying amounts of Cu and O with sophisticated sampling methods such as Monte-Carlo

simulations. Such an investigation would be beyond the scope of this Master’s Thesis,

which is why we present this simplified analysis for a rough understanding of the processes

at the oxidized Cu (111) surface. Instead of sampling the Cu and O degrees of freedom, we

run canonical molecular dynamics (MD) calculations with varying O content, representing

different stages of the oxidation of the first layer. Varying Cu densities that have been

observed in experiments are tested by introducing a custom-made "low-density" Cu (LD-

Cu) (111) surface. A natural consequence of the extrusion of Cu by O incorporation in

the surface and subsurface layers is a reduced Cu density in the surface region. Several

experiments indicate that the Cu density of the oxidized surface corresponds approximately

to the density of Cu2O.1 Therefore we reverse-engineered the oxidation, namely starting

with a low density Cu2Ox-like surface termination, where the Cu density is 3/4 the normal

density.

We observe that already a very limited amount of oxygen adsorbed at the surface can lead

to complex morphological changes e.g. the partial embedding of oxygen and extrusion of

copper from the topmost layer. This added level of complexity renders concepts such as

surface coverage ambiguous and requires a more exact definition of surface atoms, and

the surface itself, which we discuss in section 5.1. We subsequently use this definition to

analyze surface corrugation as a function of O content.

Also we present methods of utilizing the "Smooth Overlap of Atomic Positions" (SOAP)

descriptor to distinguish local surface atomic environments. This entails an approach

with kernel principal component analysis (kernel-PCA, section 5.3) method, where we

look at the differences between surfaces at different stages of oxidation. In addition, we

compare the similarity of MD-generated oxidized Cu (111) surface structures with those

of low-index terminations of simple copper oxides.
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5.1 Surface and Surface Coverage

Classically, the surface coverage is defined by the number of adsorbates normed either by

surface area, or by the number of surface atoms.62 For instance, a 4×4 cell with 4 adsorbed

oxygen atoms is considered to have an oxygen coverage of ΘO = 25% monolayer (ML).

On surfaces with virtually no reconstruction this definition makes sense, as the adsorbate

sites are well defined and each oxygen atom is easily and equally accessible, sitting more

or less above the substrate.

However, in the case that the surface undergoes structural changes severe enough that the

periodicity of the metal at the surface becomes unrecognizable, this definition is no longer

accurate. In Figure 5.1 we see a Cu (111) slab with oxygen atoms sitting on the threefold

hollow adsorption sites (ΘO = 50%), which are favored for low oxygen coverages. Starting

an MD run from such a high-symmetry oxygen configuration leads quickly to a destruction

of the planar Cu (111) surface (cf. the structure reported in Figure 5.1b is obtained after

t = 100ps at 300 K).1 While a certain number of Cu atoms are pushed out of the surface,

several oxygen atoms move to subsurface sites.

Clearly our initial definition of oxygen coverage of 50 % becomes problematic, as not all

oxygen atoms sit on the surface and are thus not accessible e.g. for surface reactions.

(a) Cu16O8 at t = 0ps. (b) Cu16O8 at t = 100ps

Figure 5.1 Cu16O8 surface at the beginning (a) and end (b) of MD run at 300 K. In (b) we observe

that a few oxygen atoms (blue) have moved subsurface and that some copper atoms (red) have

formed adlayers on top of the surface.

As a result, we resort to a structure-specific definition of the surface and thus define the
1The nomenclature of all partially oxidized slab structures is as follows: CuxOy, where x refers to the

number of Cu atoms in the top layer at the begin of the MD run, and y refers to the number of O atoms in
the structure.
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"surface accessible coverage" θi of an atomic species i. The general ideas are borrowed

from the definition of interfaces in implicit solvent models and most of the framework

python routines were provided by Nicolas Hörmann.63

5.1.1 Definition of surface, surface atoms and
surface accessible coverage

(a) (b) (c) (d)

Figure 5.2 Schematic overview of the method behind our surface coverage definition. (a) shows

the top half of a typical Cu (111) slab. In (b), the smaller gray semitransparent spheres represent

the grid on which we evaluate the surface. The volume of occupied space is created by summing

3D Gaussian error functions that are positioned at the atomic sites (c). Finally, the magnitude of the

gradient of the occupied space is taken in (d) to obtain the surface.

In order to quantify the morphology changes of the oxidized copper surfaces we define

surface areas occupied by specific atom types.

For this we accumulate three dimensional Gaussian error functions that are centered on

the atomic positions in the periodic cell. Via normalization and numerical evaluation of

the gradient on a grid, it is possible to define a surface on the 3D grid which is essentially

equivalent to the interface definition in implicit solvent models coupled to DFT codes (see

Figure 5.2).63 Having defined this surface on a grid, we can then search for the closest

atom and thus relate every numerical surface point with an atom in the computational

cell. Knowledge of the atom types thus allows us to unambiguously define the surface

accessible coverage θi as the number of surface grid points closest to atom type i divided

by total number of surface grid points. We chose a uniform radius of 2.0 Å for the size

of the error function (approx. size of an atom) and a real space grid with a resolution of

0.1 Å (possible inaccuracy of 5 % w.r.t. to higher grid densities) that allows for an efficient

numerical evaluation of the respective quantities. In addition, we removed atoms that

are definitely not part of the surface (sorting the atoms in the lattice by z-coordinate and

removing the bottom half) prior to the detailed analysis to lower the computational cost.

We acknowledge that the detailed results of this analysis depend on the chosen radius,

and the grid density. However, the qualitative trends remain unaffected by our choice of

parameters, as do the determined surface atoms.
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Surface, real space gid, accumulated (normalized) error functions, and finally the normal-

ized gradient representing the numerical surface are plotted in Figure 5.2a, 5.2b, 5.2c, and

5.2d, respectively.

Note that this procedure allows us to determine the relative exposure of each surface atom

individually, which is e.g. rather high for atoms that stick out of the surface, rather low

for atoms that are embedded in the surface, and vanishing if atoms become subsurface.

As a side remark, similar to the coverage and surface definitions, the question whether an

atom is subsurface is a question of perspective. However, the present algorithm allows an

unambiguous decision (at least for given error function sizes).

(a) Cu16O8 at t = 0ps. (b) Cu16O8 at t = 100ps

Figure 5.3 Example of our surface definition in action. At t = 0ps (a) we see 8 distinct isosurface

domes attributed to the 8 surface oxygen atoms of Cu16O8 adsorbed on the fcc and hcp sites. At

t = 100ps (b) the copper adatoms (red) dominate the surface structure, while the oxygen atoms

(blue) forced subsurface do not contribute to the isosurface anymore.

In the next sections we will denote the typically used surface coverage definition with a

capital Θ, and the surface accessible coverage with θ .

"Classical" Surface Coverage: Θi =
Number of adsorbate atoms
Number of surface atoms

Surface Accessible Coverage: θi =
Surface grid points attributed to atom type i

Number of surface grid points
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5.2 Surface Corrugation

To investigate the behavior of Cu surfaces with different oxygen coverages, we conduct

MD calculations. These run for 100 ps at 300 K with time steps of 1 fs, we store every 50th

structure.

We investigate two classes of (111) surfaces: the normal unreconstructed Cu (111) surface

with 16 top layer copper atoms in a 4×4 cell, and a low-density Cu (LD-Cu) (111) surface

with 12 top layer copper atoms in a 4×4 cell.

As explained before, the lower Cu density (12 instead of 16 Cu surface atoms) corresponds

nearly identically to the Cu density in bulk Cu oxide. While ideally this "reconstruction"

should arise naturally in our simulations it was unclear if its formation might be kinetically

limited, which is why we included these structures as well.

Cu(111) Surfaces

The MD runs of Cu16O4 show that this composition does not undergo any sort of recon-

struction. Even during an MD run at 600 K, the only movement apart from atoms rattling

is the occasional shift of an adsorbate from the fcc to the hcp site.

(a) Cu16O4 at t = 0ps. (b) Cu16O4 at t = 100ps

Figure 5.4 Cu16O4 surface at the beginning (a) and end (b) of MD run at 300 K. We observe little

change throughout the MD run.

Increasing O coverage above 25 % ML immediately leads to surface restructuring. In

all MD runs from Cu16O5 to Cu16O11 an increasing number of Cu atoms are pushed out

of the surface and create islands atop of it. Simultaneously O atoms go subsurface.
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(a) Cu16O8 (b) Cu16O9 (c) Cu16O10 (d) Cu16O11

Figure 5.5 Comparison of different unreconstructed surfaces with high oxygen content at the end

of their MD runs. As shown in Figure 5.7, increasing the oxygen content does not correspond to

more oxygen atoms at the surface, instead these atoms are found subsurface.

This also implies that the DFT optimized, well-defined fcc and hcp Cu16O8 hexagonal

superstructure is not likely to occur, instead transforming to a lower energy structure, as

shown in Figure 5.6 (cf. also Figure 5.1).2 This transformation reduces the O surface

accessible coverage θO from close to 100% to only ≈ 55%.

Figure 5.6 Cu16O8’s excess surface free energy gexc and surface accessible oxygen coverage θO

during the course of an MD run at 300 K. We observe an immediate drop of both properties after

beginning the MD, consistent with the dramatic surface restructuring as visualized in Figure 5.1.

The observed reconstruction is also reflected in the average O surface accessible coverage

θ O (Figure 5.7 which is consistently between 45 and 65 % for high amounts of oxygen.

2The derivation of the excess surface energy gexc is given in the appendix.
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Figure 5.7 The surface accessible oxygen coverage θO for both Cu (111) and LD-Cu (111)

surfaces. We compare the coverage at the beginning of the MD run (t = 0ps) and the average θO

after 5 ps. We observe that θO(t = 0ps) decreases until NO = 6. For LD-Cu (111) this is due to a

switch in O adsorption site from the three-fold hollow site in the top atomic layer (see Figure 5.9a),

to sites embedded in the top Cu layer (see Figure 5.9b).

Next, we chose to investigate the movement of surface accessible Cu atoms perpendicular

to the surface, leading to a metric of surface Cu deformation ∆z.

For each frame in a MD trajectory, we collect the surface accessible Cu atoms. Only taking

these into account, we calculate the difference between the "lowest" (with the smallest

z-coordinate) and the "highest" (with the largest z-coordinate) Cu atom to create ∆z. A

small ∆z value would mean that the surface is virtually uncorrugated, while a large value

suggests island formation, vacancy formation, or both. In Figure 5.8 we plot the relative

distribution of ∆z for MD runs of the Cu (111) surfaces.
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Figure 5.8 Relative distribution of surface corrugation ∆z in surface accessible Cu atoms. The data

is accumulated from the MD runs of Cu (111) surfaces.

In the cases where we do not observe any major restructuring (Cu16 and Cu16O4) Figure

5.8 shows one peak centered around 0.5 Å. This indicates that mostly the atoms vibrate,

but that there is no surface corrugation.

Increasing the O coverage up to six oxygen atoms causes the peak in Figure 5.8 to shift to

∆z = 1.8Å values, indicating first Cu adatoms forming.

Further increases in O coverages lead to double peaks in Figure 5.8. For the respective

surface terminations the peak with a smaller ∆z value is located between 2.0 and 3.0 Å.

We interpret this group as structures with one or several adatoms on the original structure’s

top layer.

The second peak grouping is in the range: 4.0Å ≤ ∆z ≥ 5.3Å. Occuring sporadically

throughout the Cu16O8 MD, a majority of Cu16O11 frames belong to this grouping. We

interpret this peak as stuctures with either more than one adlayer, or structures where

surface reconstruction exposes subsurface Cu.
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Low-Density Cu (111) surfaces

All starting configurations of the LD-Cu (111) were derived from Cu12O4 and Cu12O8,

two structures that we had previously investigated using DFT.

(a) Cu12O4 (b) Cu12O8

Figure 5.9 Cu12O4 and Cu12O8 DFT optimized surfaces. We note the different absorption sites.

Whilst in Cu12O4 the oxygen atoms adsorb in the threefold hollow site above the top layer (similar

to the oxygen adsorption in Cu (111)), in Cu12O8 O adsorbs between the gaps of the top Cu layer.

(a) Cu12O8 (b) Cu12O9

Figure 5.10 Cu12O8 and Cu12O9 structures at the end of their respective MD runs. In Cu12O8 we

observe buckling, as well as reorientation of the surface oxygen atoms. In Cu12O9 we see oxygen

atoms going completely subsurface, pushing copper atoms above the surface. This is a similar

observation as in Figure 5.1b.
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We find that the LD-Cu (111) surfaces with coverages between 4 and 8 oxygen atoms

behave similarly during their respective MD runs, not undergoing any remarkable structural

changes. With Cu12O9 we observe adlayer formation.

The experimentally indicated Cu2O-like termination with a reduced Cu density of 75 %

can incorporate up to 8 oxygen in the 4×4 cell without substantial structural distortions.

Figure 5.11 Histogram of the z-coordinate difference in surface atoms throughout the MD runs.

In contrast to Figure 5.8, the pristine LD-Cu (Cu12) surfaces shown in Figure 5.11 show

peaks at 2.1 Å. This is caused by our surface definition, which identifies several Cu atoms

from the lower copper layers as surface atoms. It is noteworthy that the as-constructed

pristince LD-Cu surfaces undergo a direct reconstruction to form an island with normal

Cu – Cu distances as on the (111) Cu surface, and a cluster of vacancies, which exposes

the subsurface atoms.

With increasing oxygen coverage, we observe a growing peak around 1.0 Å, which we

attribute to oxygen atoms covering the aforementioned subsurface copper atoms.

Finally, Cu12O9 shows a substantial peak at 4.0 Å, indicating adlayer formation in this

structure.
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5.3 Local Surface Environment Analysis with

Principal Component Analysis

Our observations in section 5.2 are somewhat vague and not quantitative. In the following

two sections we make use of our surface accessible coverage definition and "smooth

overlap of atomic positions" (SOAP) local atomic environment descriptors in an attempt to

mathematically analyze the morphology changes that the surfaces undergo with varying

oxygen content.

5.3.1 Kernel Principal Component Analysis (PCA)

We begin with an overview of "Kernel Principal Component Analysis" (PCA).64 In short,

this tool breaks down a set of multidimensional vectors into a set of n-dimensional vectors

that include the properties which distinguish the vectors as much as possible. Ideally, no

information gets lost during this process, e.g. in the case of a set S of vectors that differ

in dimension m but are identical for all others, a PCA to one dimension would retain all

unique information of S. The values would represent the entire variance of dimension m.

However, in typical applications the dimensionality reduction via PCA results in some

information loss.

In our case, we use the sklearn PCA implementation with a linear kernel to reduce the

840-dimensional SOAP descriptors of surface atoms into plottable 2-dimensional PCA

vectors, thus simplifying analysis considerably. The first two principle components (PC)

retain over 95 % of the variance of the entire data sets. We use these two PCs to investigate

how SOAP vectors describe changing chemical environments on Cu surfaces, as well as to

better understand the influence of different parameters such as MD temperature and cutoff

radius.

One additional note: In the following sections all PCA plots will have an x-axis la-

belled "PC 1" and a y-axis labelled "PC 2". These labels refer to the first 2 PC of the PCA

conducted on the data for that respective plot and are typically not transferable to other

plots.
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5.3.2 PCA results

We use the surface accessible coverage θi defined in section 5.1.1 to determine the surface

Cu atoms for frames of the MD runs mentioned in 5.2. Due to computational limitations

we limit the following analysis to the final 100 frames of each MD run. For each identified

surface atoms we compute the SOAP vector using the package Dscribe.65 The parameters

of the SOAP vectors are: rcut = 4.2Å, nmax = 10, and lmax = 3 (for more information see

section 3.3).

In total, we collect a dataset of more than 10000 local surface atomic environments, the

PCA of which is shown in Figure 5.12.

Figure 5.12 PCA of the last 100 frames of all MD runs. Each data point represents one local Cu

surface environment. The plots are color coded by the following parameters: Top left - type of

surface, bottom left - the z coordinate of the surface Cu atom, top right - the number of nearest

neighbor Cu atoms (NNCu), and bottom right - the number of nearest neighbor O atoms (NNO).
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The number of nearest neighbors are determined using a Voronoi algorithm implemented

in the VoronoiNN class of pymatgen.66,67 The required tolerance parameter was set so that

neighbor polyhedras with areas above 40% of the largest polyhedra are included in the

Voronoi grid.

Evidently, the rightmost clusters for large PC 1 values are related to subsurface Cu atoms

that are exposed to the surface via vacancies in the surface. We also observe that the

number of nearest neighbor oxygen NNO decreases and the number of nearest neighbor

copper NNCu increases with increasing values of PC 1, indicating some correlation. Other

than the chemical composition of the entire structure (see Figure 5.13 and Figure 5.14), we

were unable to find a "basic" local observable with a correlation in the second PC.

Cu (111) surfaces

Figure 5.13 PCA of Cu (111) slabs, color coded by surface composition. Images of representative

local Cu surface environments (the center atom marked grey) are also pictured. We observe that

Cu16 and Cu16O4 have only one cluster, while compositions with higher O content separate into

several groups.

Figure 5.13 reports the PCA results for only the Cu (111) surface atoms in Figure 5.12,

color coded by the surface termination. Although not apparent from the NNO (Figure 5.12),
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Figure 5.13 implies that the second PC correlates with the O content of the entire surface.

We see that Cu16, and Cu16O4 are grouped to one cluster each, meaning that all sur-

face local atomic environments are virtually identical (A and B). The separation between

A and B can be attributed to the inclusion of oxygen atoms into the SOAP vectors. For

surfaces with higher oxygen content than Cu16O4, the data points for each chemical com-

position of the topmost layer become progressively more scattered and separate clusters

form at low values of PC 1 (C, E). These are the Cu adatoms that are pushed out of the

top layer due to O moving subsurface. The number of data points falling within these

clusters grows with increasing oxygen content, whilst clusters belonging to surface Cu in

the original topmost layer (B, D) decreases. This supports the observation that a higher

oxygen content results in more Cu adatoms.

Low-Density Cu (111) surfaces

Figure 5.14 PCA of LD-Cu (111) slabs, color coded by the surface termination. Images of

representative local Cu surface environments (the center atom marked grey) are also pictured.

Compared to Figure 5.13, we note that the data points for each chemical composition are mostly

divided into two main groups: sub- and top-layer Cu.
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For the LD-Cu (111) data points in Figure 5.12 we observe that the data set is split into

two major clusters, including the oxygen-free surface Cu12. Note that the LD-Cu (111)

surface typically relaxes into regions with Cu – Cu environments as on Cu (111) surface,

and regions with vacancies. The two clusters in Figure 5.14 are attributed to the atoms

that are in the top layer (A), and the atoms in the sublayers that are exposed to the surface

due to vacancies in the top layer (B). When looking at the subsurface clusters, we notice

that with increasing oxygen content the number of atoms forming these clusters decreases,

consistent with the idea of a stable lower-density Cu – O surface phase at higher oxygen

coverages.

Another separation of the dataset occurs in the second dimension of the PCA, splitting the

data points between Cu12 from all oxygen covered surfaces.

Finally we mention the small cluster of Cu12O9 atoms on the left side of Figure 5.14.

As shown in Figure 5.14 (E), these data points belong to the Cu atoms that are pushed out

of the top layer during the MD runs.

5.4 Similarity to Low-Index Surfaces of

Copper Oxides

In 2016 De et al. introduced a distance metric d for normed SOAP vectors p(χ ′) and

p(χ ′′) of two local chemical environments χ ′ and χ ′′, with3

d =
√

2−2(p(χ ′) ·p(χ ′′)). (5.1)

Smaller values for d indicate more similar local environments. Note that this metric sets a

"maximum" dissimilarity of two environments of 2 =
√

2−2 · (−1), limiting our ability

to discern dissimilar local atomic environments from one another.

However, with the distance metric at hand, it is possible to compare local surface en-

vironments in our MD runs with environments at low-index surfaces of various Cu oxides.

The approach is as follows: Using the SlabGenerator class from pymatgen, we create (100),

(110), and (111) surfaces from various bulk Cu oxides.3 Next, we randomly displace the

atoms around a mean of 0.05 Å. Repeating this process 35 times, we generate approxi-

mately 500 local surface Cu environments for each surface.

As both the Cu (111) and LD-Cu (111) structures from our MD runs have sublayers of pure

Cu, comparisons to those acquired from low-index bulk oxide surfaces, whose sublayers
3The systems taken into account are different polymorphs of Cu2O3, Cu3O4, CuO, Cu4O3, Cu2O, and Cu.
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consist of Cu – O bonds, becomes difficult. Therefore, for all structures, we remove all

atoms with surface contributions below 1 % (aka subsurface atoms). An example of the

resulting structures is shown in Figure 5.15. This step limits the scope of our investigation,

however it allows the analysis of local motives in the surface region.

(a) Complete Cu16O4 structure (b) Cu16O4 structure with non-surface

accessible atoms removed.

Figure 5.15 Example of a typical Cu (111) structure a. As the system is only partially oxidized, we

remove the Cu sublayers to increase the similarity to bulk oxides b.

We evaluate the last 50 ps of MD runs at 300 K, per MD leaving us with approximately

13000 surface atoms to evaluate. We calculate min(d) between each of these local surface

environments and those of the low-index bulk surfaces. If min(d)< 0.1, we classify the

MD surface atom as belonging to the respective low-index bulk oxide surface. If the

minimum distance is above 0.1, we judge that the dissimilarity is too large and do not

classify it as having a low-index bulk oxide counterpart.

The SOAP vectors of surface accessible Cu atoms for all structures were computed with

identical parameters as in section 5.3.



5.4 Similarity to Low-Index Surfaces of Copper Oxides 53

Cu (111) Surfaces

The results of our classification approach are shown in Figure 5.16.

Figure 5.16 Results of the similarity classification analysis between SOAP vectors of Cu (111) and

low-index CuxOy (111) surface accessible Cu atoms. We observe that increasing the O content

above ΘO = 50% leads to a reduction in Cu2O (111) local environments, whilst simultaneously

increasing the number of Cu2O (100) environments.

Figure 5.16 begins at Cu16O8 because min(d) is above our chosen threshold at lower

oxygen coverages. Where surface Cu atoms exhibit only environments that are very

different from those at Cu oxide surfaces. As explained previously, for O coverages

ΘO > 25% an increasing number of O is incorporated as subsurface oxygen and apparently

already at ΘO = 50% local Cu environments are extremely similar to those of an oxide

surface.

We observe that with increasing oxygen content in the surface, the Cu2O (111) character

of the surface disappears and is replaced by an ever increasing amount of Cu2O (100)

content.

For Cu16O8, we find that the majority of surface Cu are coordinated to five in-plane Cu

atoms, as shown in Figure 5.17.



54 5 Analysis of Cu (111) Surface Morphologies

(a) Cu2Ocubic (111) (b) Cu16O8

Figure 5.17 Two local environments centered around a Cu atom marked grey which the SOAP

classifier deems "most similar".

The distances between the center and in-plane Cu atoms vary between 2.76 Å and

3.60 Å. Occasionally, a further Cu atom slightly out of the plane at a distance of 4 Å is

included in the local environment. Presumably since the cutoff was set to 4.2 Å this atom

does not always appear. Our classifier connects these local environments to the Cu atoms

in the (111) surface of cubic Cu2O. These are coordinated to six neighboring Cu atoms at

distances of 3.0 Å, arranged in a hexagonal pattern around the central atom.

Both the Cu2O (111) and Cu16O8 atoms are bonded to two oxygen atoms at distances

between 1.78 and 1.88 Å, with one O on the surface above the central atom, and one

coordinated subsurface at 180° to the other O atom. In the Cu16O8 surface, typically a

third oxygen atom is located at bond distances of approximately 3.5 Å, where we we would

expect the sixth in-plane Cu atom to be in the Cu2O (111) surface.

Additionally, we observe that the atoms corresponding to the Cu2O (111) surface are not

those that form islands above the original surface layer. Only in 26 of 2700 environments

of Cu16O8 attributed to Cu2O (111), did the central atom possess the largest z-coordinate

in its local environment. These "island atoms" are also not the main contribution to the

sizeable bar of Cu2O (110) atoms in Figure 5.16. Only 18 % of these atoms possess

the largest z-coordinate in their local environment. Mainly, these island atoms are not

connected to any of the studied Cu oxide terminations.

If we increase the oxygen content to Cu16O9, the classifier greatly reduces the percentage

of Cu2O (111) surface atoms, instead the relative percentage of Cu2O (110) doubles to

33 %, and we see a sudden appearance of Cu2O (100) atoms, roughly 25 %.
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(a) Cu2Ocubic (110) (b) Cu16O9

Figure 5.18 Comparison of local surface environments of Cu2O (110) and Cu16O9. Similarities

include the "oxygen cross" and the three in-plane copper neighbors. Typically we see an additional

out of plane copper and oxygen atom, as visible in (b).

We tentatively explain the reduction of the Cu2O (111) contribution with the observation

that the additional oxygen on average displaces one of the neighboring Cu atoms. As

shown in table 5.1, the number of surface atoms with 3 or 4 neighboring Copper atoms

is much higher for Cu16O9 than for the other compositions. 94 % of these structures are

classified as Cu2O (110).

Table 5.1 Percentages of neighboring copper atoms in the local environments for all

unreconstructed MD runs. NNCu denotes the number of nearest neighbors Cu neighbors, calculated

with the same method as in section 5.3.2.

NNCu Cu16O8 [%] Cu16O9 [%] Cu16O10 [%] Cu16O11 [%]

3 4 10 0 0

4 9 21 3 0

5 17 16 21 8

6 41 25 36 31

7 26 20 25 42

8 3 6 13 15

Table 5.1 also shows that adding another oxygen atom immediately leads to the almost

complete disappearance of local environments containing fewer than 5 neighboring Copper

atoms, coinciding with the elimination of the Cu2O (110) bar in Figure 5.16. Replacing

Cu2O (110), Cu2O (100) becomes the major class of surface atoms. This shift is not linked

to the number of nearest neighbor Copper or oxygen atoms, shown in tables 5.1 and 5.2

respectively, which are similar for Cu16O9 and Cu16O10.
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Table 5.2 Percentages of neighboring oxygen atoms in the local environments for all

unreconstructed MD runs.

NNO Cu16O8 [%] Cu16O9 [%] Cu16O10 [%] Cu16O11 [%]

3 16 0 2 0

4 30 6 20 4

5 35 53 46 25

6 19 34 26 38

7 0 6 6 27

8 0 0 1 5

What then is the cause of this massive shift? Breaking down the observed data of

Cu16O9 and Cu16O10, we find that the biggest swing occurs in environments with 6 NNCu

and 5 NNO (cf. tables 5.1, 5.2). A comparison of these structures is shown in Figure 5.19.

(a) Cu2Ocubic (100) (b) Cu16O9 (c) Cu16O10

Figure 5.19 Comparison of a typical Cu2O (100) surface local environment with 6 NNCu and 5

NNO local environments for Cu16O9 and Cu16O10.

The main difference between Cu16O9 and Cu16O10 is the increased number of Copper

adatoms in Cu16O10. While in Figure 5.19 (b) only one atom is out-of plane, half the

Copper atoms in (c) are distinctively above the central atom. This increased 3D nature of

the local structure is most likely the cause of the increased agreement with the Cu2O (100)

substructures, which are more open than Cu2O (111) terminations. Additionally, we also

note the different oxygen coordinations in Figure 5.19 (b) and (c). Cu16O10 indicates the

development of clear rows of CuO2 units moving along the surface as shown in Figure

5.19 (a).
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Low-Density Cu (111) Surfaces

The results of our classification approach on the reconstructed monolayers are shown in

Figure 5.20. Although we also investigated structures with lower oxygen coverages, none

of the atoms in these structures returned d values below our classification threshold.

0 20 40 60 80 100
Relative Number of Surface Atoms [%]

Cu12O9

Cu12O8

Cu12O7

Cu4O3tetragonal (111)
Cu2Ocubic (100)

Cu2Ocubic (110)
Cu2Ocubic (111)

Figure 5.20 Results of the similarity classification analysis between SOAP vectors of LD-Cu (111)

and low-index CuxOy (111) surface accessible Cu atoms. As in Figure 5.16, we observe that for

lower coverages the majority of surface environments are classified as Cu2O (111). At Cu12O9 the

Cu2O (111) content is reduced, replaced by Cu2O (100) environments.

Our observations are similar to the Cu (111) structures. Again, at low oxygen coverages

the surface is almost exclusively classified as Cu2O (111). This is expected, as our original

LD-Cu (111) surface structure does indeed correspond to a Cu2O (111) termination and

the results in Figure 5.20 thus validate our classification algorithm. Increasing the oxygen

content leads the classifier to identify Cu2O (100) substructures. The key difference is that

the shift to (100) surfaces starts at much higher oxygen coverages than in the case of Cu

(111) surfaces. This is consistent with the observation that Cu is pushed out of the surface

at Cu12O9 (section 5.2).
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(a) Cu12O7 (b) Cu12O8 (c) Cu12O9

Figure 5.21 LD-Cu structures with high oxzgen content.
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We utilize machine learned Gaussian approximation potentials (GAPs), to better under-

stand the morphology of Cu (111) surfaces undergoing oxidation.

GAPs are trained on ab initio data, in our case DFT, and fit to physical observables

for a set of training structures via Gaussian process regression. Built around local atomic

environment descriptors, GAPS map the atomic species and positions within a cutoff rcut to

the total energy and atomic forces of the structures. The descriptors used in this thesis are

the two-body pairwise distance descriptor and the "Smooth Overlap of Atomic Positions"

(SOAP) descriptor.

The Cu – O GAP was created via an iterative process. Starting with a small dataset of

different bulk copper oxide polymorphs, we created a first GAP. Subsequently, we ran

molecular dynamics calculations on new structures, and validated the performance of

the GAP on these unknown structures. Structures were added to the GAP’s training set

until the validation error converged to the training error, after which we moved onto new

structural classes. This allowed us to track the progress of the GAP for different structure

types.

Once the training set was sufficiently large and diverse, we optimized the GAP hyperpa-

rameters via cross-validation, finding multiple paths to improve training efficiency, as well

as GAP performance. Among these findings is that the computational time can be reduced

by selecting small SOAP basis sets at little accuracy cost, and that the choice of cutoff

radius is vital to GAP accuracy.

Using the Cu – O GAP, we ran MD calculations at 300 K on Cu (111) surfaces with

different oxygen coverages. We observe that oxygen coverages above 0.25 monolayers

lead to surface Cu atoms being pushed out of the surface, forming islands. At the same

time, some oxygen atoms go subsurface.

Various experiments suggest that Cu (111) surfaces that have undergone oxidation-reduction

cycles have surface Cu densities similar to Cu2O.1 Therefore, we create low-density (LD)

Cu (111) surfaces, with 25 % less top layer Cu than Cu (111) surfaces. The MD runs on

these surfaces suggest possible oxygen coverages of 75 % without the creation of adatoms.

To analyze morphology changes during the calculations, we introduce surface acces-
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sible coverages θi. Instead of calculating the coverage by getting the fraction of adsorbates

vs the surface atoms, we calculate a 3-d isosurface and attribute the surface area to the

individual atom types.

We find that both Cu and LD-Cu (111) restructure in such a way that the surface accessible

oxygen coverage θO is between 50 and 60 %. Furthermore, using the SOAP descriptor,

we find that at low surface coverages the local structures at Cu and LD-Cu are similar

to those found at Cu2O (111) surfaces. Increasing oxygen content leads to these local

motifs disappearing and being replaced with those in Cu2O (100). Also, LD-Cu without

adsorbates separates into islands with normal (111) surface termination and vacancies.

Taking these considerations into account, we observe no considerable behavioral difference

of the LD-Cu and Cu (111) surfaces. This suggests that no significant kinetic barriers exist

which makes the study of Cu (111) oxidation straightforward in the future, without the

need to introduce "artificial" LD-Cu (111) surfaces.

Using the Cu – O GAP, we can perform MD calculations at a fraction of the compu-

tational cost of ab initio methods. In the case of oxidized copper surfaces this can be used

to investigate a larger surface area of copper, making it possible to examine adsorption gra-

dient effects. Another possibility is the analysis of subsurface oxygen, as some researchers

believe the electronic structure and the mobility of these atoms greatly affects the catalytic

properties of copper surfaces.10 Further applications are advanced sampling methods to

uncover the reconstruction pathways of Cu (111) to low-density Cu2O derivatives that

have been observed in literature.1,9

By adding species such as hydrogen or carbon to the training set, the GAP can be a valuable

tool to clarify reaction pathways for relevant catalysis reactions such as the carbon dioxide

reduction reaction or the electrochemical carbon monoxide oxidation reaction.
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Appendix

Feed-Forward Neural Network Potentials (FFNNPs)

FFNNPs have three types of layers. The input layer G contains the geometric information

of the input structure. G is then processed by the hidden layer y, or more commonly by

multiple hidden layers yi. The hidden layer then maps the physical information in G to the

output layer E.41

Figure 6.1 Theoretical structure of FFNNP with two hidden layers. The figure is a simplified

version from [41].

The regression of the physical information occurs in the hidden layers. These have no

real physical meaning and are often referred to as a "black box".43 Each hidden layer j

consists of nodes; the number of nodes per layer N j does not have to be the same for each

layer.

The FFNNP assigns a value between 0 and 1 for each node in every layer. For the node

i in layer j, these values are determined by adding the weighted sum of all nodes in the

layer j−1 to a bias weight b j
i . The weighting occurs with the help of a weight parameter

a j−1, j which is determined during the training of the neural network. In order to ensure

that the outputs of each node are continuous values, an activation function f j
i is applied to
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the entire sum.41

y j
i = f j

i

(
b j

i +
N j−1

∑
k=1

a j−1, j
k · y j−1

k

)
(6.1)

In the case of multiple hidden layers, the same process occurs for each hidden layer. G

serves as the input layer for the first hidden layer.

The setup of the hidden layers is crucial to the success of the FFNNP. The most obvious

adjustment the user can make is changing the number of hidden layers, or the number of

neurons within the hidden layers. An increase of these numbers leads to more complex

hidden layers, which results in a more flexible FFNNP. This allows the NNP to detect more

subtleties within the Potential Energy Surface of the phase.

However, if the number of hidden layers or nodes is too high, the force field will overfit the

PES.41 A method to avoid overfitting is schematically shown in Figure 6.2. By splitting

the dataset into a validation and training set, and only fitting the potential on the training

data, we are able to observe artificial features in the potential by comparing the RMSE of

the validation data to the RMSE of the training data.

Set of Structures
+ab initio E & F

≥ 75% of dataset

≤25% of dataset

Split Data

Training Data
(TD)

Fit a & b to
minimize RMSETD

Validation Data
(VD)

Get RMSEVD

RMSEVD ≈ RMSETD

Fit complete

RMSEVD >> RMSETD

Reduce
number of layers
number of nodes

Figure 6.2 Overview of the neural network potential fitting workflow.

Thus, we have an algorithm capable of determining the PES, the inputs being the set

of atomic positions {Gi}, the set of weight parameters {ai}, and the set of bias weights

{bi}. The weight parameters and bias weights are determined in the training phase. Using

optimization algorithms such as the "back propagation" algorithm, or the Kalman Filter,

{a} and {b} are changed in such a way that the RMSE of the output layer is minimized.

As training can take a long time, there is currently a strong research focus on optimizing

the involved processes.44

High Dimensional NNPs (HDNNPS)

High Dimensional NNPs (HDNNPs), first presented by Behler and Parrinello in 200742,

address a major issue of FFNNPs: The FFNNP can only be fit for input vectors with the
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exact same number of nodes, meaning that the system size is prohibited from changing.

This limits the applicability of FFNNP to low dimensional problems.

HDNNPs acquire the total energy of the system by taking the sum of the local, short-

range energy of every atom in the system. This local energy is calculated by creating a

feed-forward neural network around the central atom. The local environment is cutoff at a

certain radius rc. As this approach needs an exact prediction of the energies of each atom,

the fitting process of the HDNNP focuses on interpreting the local environments of each

atom.

The total energy of any system is unaffected by rotation, translation, or permutation of the

atom ordering. The descriptor of the atomic coordinates must then be invariant to these

changes as well. It can be achieved by mapping the Cartesian coordinates onto a vector

consisting of atom-centered symmetry functions. By using these functions as descriptors

we are able to make sure that the NNP maps equivalent geometries to identical energies.

The Behler-Parrinello symmetry functions45 and the ’Smooth Overlap of Atomic Positions’

(SOAP) descriptor serves as examples of such functions (see section 2.3.2).

Once the atom has been transformed into a vector of symmetry functions, these are

used as input for the atomic NN. A nice feature of the symmetry functions is that they can

be constructed in such a way that their number remains constant despite changes in the

number of atoms in the environment.41 This means that the fixed nature of the input vector

in FFNNP is unproblematic in this case.

Excess surface free energy gexc

Ab-initio thermodynamics for bulk materials

A bulk system’s Gibbs formation energy Gα
form is defined as the cost of moving the elements

i out of their respective reference state and into their configuration, assuming that the system

α consists of a set of atoms {Nα
i }.68

Gα
form ({Nα

i }) = Gα
bulk ({Nα

i })−∑
i

Nα
i µi (6.2)

The reference state chemical potential of the element i is µi. Choosing a reference state

for an element i is arbitrary, however for solid elements it is typical to select the most

stable configuration at standard conditions (RT ) (T = 298K, p = 1bar).68

For solid bulk materials, the Gibbs free energy splits up into following energetic contribu-

tions:69

G = E total +Fvib +Fconf + pV (6.3)
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With E total being the total internal energy, Fvib the vibrational free energy, and Fconf the

configurational free energy.

The pV term can typically be ignored, as even at high pressures the energetic values in

a bulk are negligible.70 The vibrational and configurational contributions can usually be

neglected as well, as their magnitude is usually very small and the computational cost can

be high.69

This leaves the total internal energy, which for metals can be approximated very well by

Density Functional Theory (DFT) calculations, which we assume is close to our machine

learned Gaussian Approximation Potential (see chapter 4).71

Gα
bulk ≈ Eα , DFT

bulk ≈ Eα , GAP
bulk (6.4)

To better compare the stability of systems among one another, we normalize the energies

of bulk systems by the total number of atoms in the system Nα
tot.

69 We denote these

normalized energies by lower case letters.

gα
form = Gα

form/Nα
tot (6.5)

This allows us to approximate the chemical potential of a solid element as:

µ
(RT )
i = g(RT )

i ≈ eGAP
i . (6.6)

This means that the formation energy of the reference state (where α = ref) is: GRef.
form = 0.

For materials where the set of constituent atoms contains more than one type of atom,

formation energies are typically normed per formula unit gα , f.u.
form .69

Ab-initio thermodynamics of interfaces

Similarly as above, we view the formation energy of a surface as an energy cost. Thus,

we can define the formation energy of a surface (or interface) as the formation energy of

a system α with said surface and the composition ({Nα
i }), subtracted by the chemical

potentials from its respective constituents µi.72

In this context, the formation energy is frequently referred to as surface excess energy

Gα
exc.73

Gα
exc({Nα

i }) = Gα
surf({Nα

i })−∑
i

Nα
i µi (6.7)

The relevant normalization of the energetics is the surface area A:

gα
exc = Gα

exc/A (6.8)
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Symmetric Slab Setup

In pratice, we calculate the interfacial system using calculations of slabs, periodic in the

x,y-vectors of the unit cell. In the z-vector we add a vacuum layer of at least 5 atomic

layers. From this it follows that we are actually calculating two surfaces, a top layer and a

bottom layer of the slab.

Should that setup exhibit an identical top layer T and bottom layer B, the appropriate

normalization in (6.8) is 2A. We call such structures symmetric, we also sometimes refer

to this as a "clean" slab.

In the case of a monoatomic metal, we proceed as follows. First, we obtain the GAP

energy of our slab calculation Eclean, GAP
slab . Next, we calculate the bulk energy Eclean, GAP

bulk .

We define the chemical potential per atom of this system as:

µi =
Eclean, GAP

bulk
Nclean (6.9)

The sum in (6.9) vanishes due to there only being one atom type. We now invoke (6.7).

The normed surface excess energy is simply Gclean
exc divided by twice the surface area, as

the slab contains two surfaces.

gclean
exc =

Gclean
exc

2 ·A =
Eclean, GAP

slab −∑i Nclean
i µi

2 ·A (6.10)

Asymmetric slab setup

In case the top layer T differs in geometry and/or composition to our bottom layer B,

calculating gT
exc is less straightforward.

In surface simulations the atomic positions of B will be fixed, usually also some layers

above as well. This makes it simpler to recreate the surface energy of B. In order to do

this, we calculate the symmetric case, with both surfaces of the slab being of configuration

B. Thus, we can obtain both slab and bulk energies of clean= B.

gT
exc =

GT
exc−gclean

exc ·A
A

=
ET , GAP

slab −∑i NT
i µi

A
−gclean

exc (6.11)

Obtaining chemical potentials

As our study deals with exclusively with copper and oxygen, we will now derive the

reference chemical potentials for these species.

Copper µCu

We define the copper chemical potential µCu, as the energy of one copper atom in the

bulk, a common reference state for bulk solid materials.68 Table 6.1 shows the reference
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structure parameters as well as the total energy results of structure relaxations with the

Cu – O GAP and with DFT.

The calculation parameters for the DFT relaxations are the same as mentioned in section 3.1.

For GAP relaxations we used the BFGS algorithm implemented in the Atomic Simulation

Environment.59 The convergence criterion was set to 0.01 eVÅ
−1

.

Table 6.1 Inputs and energetic outputs of bulk and symmetric slab calculations for copper.

a [Å] b [Å] c [Å] α β γ EGAP[eV] EDFT [eV]

Cu16(bulk) 5.12 5.12 8.88 90.0 73.2 60.0 −87899.710 −87899.894
Cu16(sym. slab) 5.12 5.12 26.41 90.0 90.0 120.0 −87896.114 −87896.128
Cu16(clean) 5.12 5.12 26.41 90.0 90.0 120.0 −87896.115 −87896.130

EDFT
bulk

NCu
=
−87899.894eV

16
=−5493.743eV = µ

DFT
Cu

EGAP
bulk

NCu
=
−87899.710eV

16
=−5493.732eV = µ

GAP
Cu

(6.12)

Next, we calculate the area-normed surface excess energy of the unrelaxed Cu16-slab.

For this we use (6.10) and the chemical potential for copper obtained in (6.12):

gbottom, DFT
exc =

EDFT
slab −NCuµCu

2 ·A =
3.76eV

2 ·22.740Å
2 = 82.8meVÅ

−2

gbottom, GAP
exc =

EGAP
slab −NCuµCu

2 ·A =
3.60eV

2 ·22.740Å
2 = 79.1meVÅ

−2
(6.13)

Finally, the excess surface energy of the relaxed "clean" Cu(111) surface is obtained by

using the asymmetric formula (6.11).

gclean, DFT
exc =

EDFT
clean−NCuµCu

A
−gbottom, DFT

exc = 82.7meVÅ
−2

gclean, GAP
exc =

EGAP
clean−NCuµCu

A
−gbottom, GAP

exc = 79.0meVÅ
−2

(6.14)

Oxygen µO

We derive µO from the formation energy of bulk copper oxides:

µO =
EGAP

opt CuO−nCu ·µCu

nO
(6.15)

Therefore we relax the bulk oxides shown in table 6.2 with our Cu – O GAP and calculate

µO.
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Table 6.2 Evaluation of µO for bulk copper oxides included in the Cu – O GAP.

Bulk CuxOy polymorph EGAP
opt [eV ] nCu nO µGAP

O [eV]

Cu2O3cubic −98414.975 16 24 −438.136

Cu2O3monoclinic −98411.350 16 24 −437.985

Cu2O3orthorhombic −98409.150 16 24 −437.893

Cu3O4 −72935.991 12 16 −438.201

CuOtetragonal −94917.731 16 16 −438.626

CuOmonoclinic −94917.572 16 16 −438.616

CuOorthorhombic −94917.525 16 16 −438.613

Cu4O3 −93162.940 16 12 −438.602

Cu2O −182817.521 32 16 −438.631

From these µO we select the value of Cu2O. For comparison, from a previous study we

computed µO using DFT and a Cu2O reference, resulting in µDFT
O =−438.628eV.





Acknowledgments

There are many people whom I want to thank for supporting me throughout my Master

Thesis.

First of all I would like to thank my supervisors Dr. Nicolas Hörmann and Prof. Karsten

Reuter for welcoming me into the Theory Department and allowing me the freedom to

figure things out by myself and being patient with me throughout the entire thesis.

I am especially grateful to Simeon Beinlich, M.Sc. for always taking the time to help me

with any ssh or AiiDA trouble. Without his constant guidance this thesis would not have

been possible.

I also thank all members of the FHI’s Theory Department for the warm welcome in

Berlin, and for the companionship in these last couple of months.





Eigenständigkeitserklärung

Hiermit erkläre ich, die von mir eingereichte Arbeit selbständig erstellt und keine anderen

als die von mir angegeben Quellen und Hilfsmittel benutzt zu haben.

Berlin, der

Nicolas Bergmann

Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann


Nicolas Bergmann



	Introduction
	Theoretical Background
	Density Functional Theory
	Force Fields
	Non-Reactive Potentials
	Reactive Potentials

	Machine Learned Force Fields
	Neural Network Potentials
	Descriptors

	Gaussian Approximation Potentials
	Gaussian Process Regression
	Sparsification


	Computational Methods
	Density Functional Theory Calculations
	Molecular Dynamics Calculations
	Training of Copper Oxide GAP

	Optimizing the Cu-O GAP
	Generating the Structure Dataset
	GAP Hyperparameter Optimization


	Analysis of Cu (111) Surface Morphologies
	Surface and Surface Coverage
	Definition of surface, surface atoms and surface accessible coverage

	Surface Corrugation
	Local Surface Environment Analysis with Principal Component Analysis
	Kernel Principal Component Analysis (PCA)
	PCA results

	Similarity to Low-Index Surfaces of Copper Oxides

	Conclusion and Outlook
	Bibliography
	Appendix
	Acknowledgments

