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Rafael González-Hernández,1, 2, ∗ Erick Tuiran,1, † and Bernardo Uribe3, 4, ‡

1Departamento de F́ısica y Geociencias, Universidad del Norte,
Km. 5 Vı́a Antigua Puerto Colombia, Barranquilla 080020, Colombia

2Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany
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Screw rotations in nonsymmorphic space group symmetries induce the presence of hourglass and
accordion shape band structures along screw invariant lines whenever spin-orbit coupling is non-
negligible. These structures induce topological enforced Weyl points on the band intersections. In
this work we show that the chirality of each Weyl point is related to the representations of the cyclic
group on the bands that form the intersection. To achieve this, we calculate the Picard group of
isomorphism classes of complex line bundles over the 2-dimensional sphere with cyclic group action,
and we show how the chirality (Chern number) relates to the eigenvalues of the rotation action on
the rotation invariant points. Then we write an explicit Hamiltonian endowed with a cyclic action
whose eigenfunctions restricted to a sphere realize the equivariant line bundles described before. As
a consequence of this relation, we determine the chiralities of the nodal points appearing on the
hourglass and accordion shape structures on screw invariant lines of the nonsymmorphic materials
PI3 (SG: P63), Pd3N (SG: P6322), AgF3 (SG: P6122) and AuF3 (SG: P6122), and we corroborate
these results with the Berry curvature and symmetry eigenvalues calculations for the electronic
wavefunction.

INTRODUCTION

An interesting research topic in topological condensed
matter is the study of energy band crossings, particu-
larly those protected by crystal symmetries [1, 2]. The
presence of energy degeneracies near the Fermi level can
lead to particular topological phases known as Dirac and
Weyl semimetals [3]. In Dirac semimetals the energy
band crossings are four-fold degenerate at high symme-
try points and they are protected by certain symme-
tries. These materials can be viewed as 3D analogues
of graphene, with Dirac cones in the Brillouin zone as it
has been confirmed experimentally [4–6]. However, if in-
version symmetry or time-reversal symmetry (or possible
both) is broken, the Dirac point splits to form a pair of
two-fold band degeneracies, which can be located at the
Fermi level [7, 8]. These kinds of materials are known
as Weyl semimetals and magnetic Weyl semimetals, de-
pending of the specific broken symmetry [9–12]. Inde-
pendent of the system, an important property of these
band degeneracies (or Weyl points) is that they have a
quantized monopole charge or chiral charge living in the
reciprocal space. The topological charge (chirality) usu-
ally is found to be ±1 due to the linearity of the Hamil-
tonian in each direction of the three-dimensional recipro-
cal space [13]. These Weyl points may induce an exotic
family of phenomena such as Fermi arcs surface states
[10, 14], giant anomalous and spin hall effects [15–18],
chiral anomalies [19–21], and giant responses to external
stimulus [22, 23].

In the case of non-magnetic Weyl semimetals, the pres-
ence of nonsymmorphic symmetries, such as screw rota-

tions or glide reflections, can generate band crossings in
high-symmetry lines or planes of the Brillouin zone [24–
26]. In particular, Weyl points in hourglass and accor-
dion shape energy dispersions along invariant lines of the
Brillouin zone are protected by the combination of screw
rotation symmetry and time-reversal symmetry, and fur-
thermore they are topologically stable [27–30]. Recently,
it has been observed that these kinds of symmetries can
also produce exotic fermions with 3-fold, 4-fold and 6-
fold degeneracies at the time reversal invariant points
of the Brillouin zone [31]. The energy bands of these
multifold fermions have higher topological charge χ=±2,
±4, ±6 with more Fermi arcs and hence enhance many
of the phenomena associated with χ=±1 Weyl fermions
[31–36]. In addition, double and triple composite Weyl
points have been also predicted in the invariant lines of
the Brillouin zone for nonsymmorphic materials [37, 38].

On the other hand, the calculation of Weyl point chi-
rality is involved and requires the computation of the
Berry curvature flux over a sphere in reciprocal space,
with a dense k-mesh integration [39]. This integration is
usually carried out in the Wannier representation, which
can unintentionally break off wavefunction symmetries,
as it has been noted in [40, 41]. Therefore, motivated by
these facts, we have demonstrated that it is possible to
use directly the eigenvalues of the symmetry operators to
find the chirality of the Weyl points in nonsymmorphic
materials. We propose a Hamiltonian model which pro-
duces higher Weyl chirality in agreement with the eigen-
values of symmetry operators and Berry curvature flux
calculations. We also provide mathematical proof that
shows that this Hamiltonian exhausts all the possibilities
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for the topological structures that may appear at a Weyl
point endowed with rotational symmetry. Finally, we cor-
roborate the formation of triple/double Weyl points with
cubic/quadratic dispersion and higher chiralities ±3/±2
in hexagonal nonsymmorphic materials such as PI3 (SG:
P63), Pd3N (SG: P6322), AgF3 (SG: P6122), AuF3 (SG:
P6122).

We finish this introduction by noting that the idea of
using the eigenvalues of the rotation operator on the en-
ergy bands to detect the chiralities of the nodal points
have been explored before. In particular, in [42] a table
with compatibility conditions for the chiralities is pre-
sented after studying the behaviour of the first terms of
the Hamiltonian with respect to representations of the
bands. Our approach instead uses equivariant K-theory
to determine all equivariant Hamiltonians up to adia-
batic deformation, which in turn allows us the determine
an explicit formula relating the congruence class (modulo
the degree of the rotation) of the chirality of the nodal
point with the eigenvalues of the rotation operator. This
result enhances and generalizes the description presented
in reference [42].

CHIRALITIES OF BAND CROSSINGS DUE TO
SCREW ROTATION SYMMETRIES

Screw rotation symmetries

We will be interested in screw rotation symmetries in
nonsymmorphic materials; these symmetries are the com-
position of a rotation around an axis and a translation
along the axis of rotation. Denote by Q the geometrical
operator acting on the space coordinates, n the degree
of the rotation and a the Bravais vector around which Q
rotates. The screw rotation equation is thus Qn = pa im-
plying that Qn translates p-times the vector a. The oper-
ator Q acting on momentum coordinates rotates around
the reciprocal vector b of a and Qn(k) = k.

Denote by Q̂ the operator acting on the quantum states
that lifts Q. By Bloch’s theorem we have

Q̂n = −e−ipk·a (1)

where the negative sign is due to the spin-orbit coupling
and e−ipa·k is the operator in reciprocal coordinates as-
sociated to the translation by pa.

Consider a high symmetry line in reciprocal space
starting in k0 and ending in k1 which is fixed by Q, i.e.
Q (k) = k for all k on the line defined by k0 and k1 .
Assume furthermore that the end points k0 and k1 are
high symmetry points of the material such that there are
no other high symmetry points in between and

e−ipk
0·a = ±1, e−ipk

1·a = ±1. (2)

FIG. 1. a) Schematic illustration of the physical effect of a)

the screw rotation operator Q̂ and b) the hamiltonian op-

erator Ĥ on the wavefunctions. On a) the colors denote
the two different eigenvalues of the screw rotation operator

Q̂ parametrized by u and l once the phase e−i p
n
k·a is re-

moved. On b) the colors denote the different energy bands

parametrized by + and −. Note that the eigenvalues of Q̂
change on the bands once they cross the critical value. Here
k is the coordinate where the bands intersect.

Since Q̂ commutes with the Hamiltonian, we may write
the eigenfunction equation

Q̂|ψl(k)〉 = ei
π
n le−i

p
nk·a|ψl(k)〉 (3)

for |ψl(k)〉 a Bloch state for the Hamiltonian and l =

0, 1, ..., 2n − 1. Depending on whether e−ipk
0·a is 1 or

−1, the number l is odd or even respectively.
Screw rotations induce topologically protected band

crossings along the high symmetry lines of the Brillouin
zone fixed by the screw rotation [27–30]. The nodal
points that appear at the intersection of the band cross-
ings may have different chiralities. In what follows we
will study these chiralities.

Topologically enforced energy crossings

We are interested in topologically enforced crossings
along the path defined by k0 and k1 which have the form
presented in Fig. 1. Here ψl and ψu are simultaneous
eigenfunctions of the Hamiltonian and Q̂ satisfying equa-
tion (3).

The Hamiltonian permits us to enumerate the eigen-
functions starting with the one of less energy. In the
energy crossing presented in Fig. 1 the Hamiltonian sep-
arates the lower energy eigenfunction ψ− from the upper
energy eigenfunction ψ+, except at the energy crossing
k where the Hamiltonian is degenerate. Whenever the
eigenvalues of Q̂ at k agree, i.e. when u = l, Von Neu-
mann and Wigner’s non-crossing rule [43] tells us that the
energy bands will separate avoiding the crossing. When-
ever the eigenvalues of Q̂ at k differ, we thus have an
enforced topological nodal point. The chirality of such
nodal point is intimately related to the eigenvalues of ψl
and ψu along the path. We claim the following result.

The chirality of the nodal point at k is congruent with
l−u
2 modulo n
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Recall that the chirality of the nodal point localized in
k is calculated as the integral

chirality at k =
1

2π

∫
S2
k

dS · Ω (4)

where Ω = ∇×A is the curvature of the Berry connection
A = i〈ψ+|∇k|ψ+〉 with ψ+ representing the eigenfunc-
tion of the Hamiltonian with upper energy eigenvalue,
and S2

k
is a small 2-dimensional sphere centered at k

which does not include any other nodal point.
The sphere S2

k
is naturally endowed with an action of

the cyclic group generated by Q. This action is simply
a rotation around the axis defined by the points k0 and
k1 and therefore there are only two fixed points of this

action on the sphere S2
k

which we will denote k
0

and k
1

respectively. For simplicity the reader may imagine that
the two points are the south and north pole respectively
of a sphere and the action is rotation around the z-axis.
For the topological analysis both approaches are equiva-
lent.

Since over the sphere S2
k

the upper and lower eigen-
values of the Hamiltonian are gapped, we will restrict
attention to the upper eigenfunction ψ+ of the Hamilto-
nian constrained to the sphere.

Now, restricted to the sphere we may carry out a
change of phase for the operator Q̂. Let’s define the
operator

Q̃ = ei
p
nk·aQ̂ (5)

and notice that with this change of phase we obtain

Q̃|ψs(k)〉 = ei
π
n s|ψs(k)〉 (6)

for k either k
0

or k
1

and s = 0, 1, ..., 2n− 1; therefore we
obtain Q̃n = eiπl = ±1. With this change of phase, the

operator Q̃ acts on ψ±(k
0
) and ψ±(k

1
) as follows:

Q̃|ψ+(k
0
)〉 = ei

π
n l|ψ+(k

0
)〉, (7)

Q̃|ψ+(k
1
)〉 = ei

π
nu|ψ+(k

1
)〉, (8)

Q̃|ψ−(k
0
)〉 = ei

π
nu|ψ−(k

0
)〉, (9)

Q̃|ψ−(k
1
)〉 = ei

π
n l|ψ−(k

1
)〉. (10)

The eigenfunction ψ+ restricted to the sphere S2
k

de-
fines a section of a complex line bundle where Q acts
on the underlying sphere and Q̃ acts on the section. A
line bundle of this kind, with the action of Q̃ described in
equations (7) and (8), must have a Chern number (which
is the same as the chirality) which is congruent to l−u

2
modulo n.

To prove these results, we need to recall a result on
the classification of equivariant line bundles and we need
to construct the explicit Hamiltonian that locally models
the behavior described above.

Classification of equivariant line bundles

The isomorphism classes of complex line bundles over
a compact and oriented manifold M form a group. Line
bundles may be tensored thus producing another line
bundle, and line bundles have a dual line bundle which
up to isomorphism is its inverse with respect to the ten-
sor product. The group of isomorphism classes of line
bundle is called the Picard group of M and it is denoted
by Pic(M). A line bundle L over M has a character-
istic class c1(L) ∈ H2(M,Z), called the Chern class of
the line bundle, thus defining a second cohomology class.
The map that assigns a line bundle L its Chern class
c1(L) is an isomorphism of groups:

Pic(M)
∼=→ H2(M,Z), [L] 7→ c1(L). (11)

In the case of M = S2 we have that Pic(S2) ∼= Z since
H2(S2,Z) = Z and the Chern number of the canonical
line bundle γ over CP 1 ∼= S2 is 1.

Whenever M is endowed with an action of a com-
pact Lie group G one can consider G-equivariant com-
plex line bundles over M . That is a complex line bun-
dle L over M with an action of G such that the action
of G is complex linear on the fibers of L. The isomor-
phism classes of G-equivariant complex line bundles over
M becomes a group, the tensor product and the dual
line bundle define the product and the inverse respec-
tively, and this group is denoted PicG(M), the Picard
group of G-equivariant complex lines bundles over M . It
is known [44, Prop. 6.3] that this group is isomorphic to
H2(MG,Z), the second cohomology group of the homo-
topy quotient MG := M ×G EG:

PicG(M)
∼=→ H2(MG,Z), L 7→ c1(LG). (12)

The case of interest is M = S2 and G the group gen-
erated by Q̃, i.e = Z/n whenever Q̃n = 1 and G = Z/2n
whenever Q̃n = −1. In both cases the action of Q̃ on
S2 is given by the rotation action defined by Q. Let us
assume that Q̃n = 1 since the other case is equivalent.

Applying the Serre spectral sequence [45] to the fiber
bundle S2 → S2 ×G EG → BG, we obtain the short
exact sequence

0→ H2(BG,Z)→ H2(S2
G,Z)→ H2(S2,Z)G → 0 (13)

where H2(BG,Z) ∼= Hom(G,U(1)) ∼= Z/n is the group
of 1-dimensional complex representations of G, and
H2(S2,Z)G = H2(S2,Z) ∼= Z since the rotation action
is trivial in cohomology. The short exact sequence in
equation (13) splits, and therefore we have that

PicG(S2) ∼= Z/n⊕ Z. (14)

An explicit choice of generators is defined as follows.
Denote by C : G → U(1) the 1-dimensional complex
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representation defined by C(Qs) = ei
2πs
n . Its powers

Cj define the representations Cj(Qs) = ei
2πsj
n with Cn

the trivial representation. Hence C generates the group
Hom(G,U(1)).

The 2-dimensional sphere is diffeomorphic to the com-
plex projective space CP 1. The complex manifold CP 1

may be covered with two open spaces U0 and U1 with
U0
∼= C×{0} and U1

∼= C×{1} such that their intersec-
tion U0∩U1 induce the gluing conditions (z, 0) ∼ (z−1, 1).
The action of G on CP 1 is given by the equation

Q(z, 0) = (ei
2π
n z, 0) ∼ (e−i

2π
n z−1, 1) = Q(z−1, 1). (15)

The m-th power γ⊗m of the canonical line bundle γ triv-
ializes locally γ⊗m|Us ∼= C × C × {s}, s = 0, 1 and the
gluing functions become:

(λ, z, 0) ∼ (λzm, z−1, 1). (16)

The Chern number of γ⊗m is the winding number of the
clutching function z 7→ zm which is m.

In principle one can take any action of G on γ⊗m|U0
,

but this action determines the G action on γ⊗m|U1
and

therefore in all γ⊗m. Therefore we may define the G
action on γ⊗m by the equations:

Q(λ, z, 0) = (λ, ei
2π
n z, 0) ∼ (17)

((ei
2πm
n λzm, e−i

2π
n z−1, 1) = Q(λzm, z−1, 1) (18)

and note that any other action of G on γ⊗m is simply
obtained by the tensor product Cj ⊗ γ⊗m. The explicit
choice of generators of PicG(S2) are then C and γ and
any element is of the form Cj⊗γ⊗m with (j,m) ∈ Z/n×
Z.

Let (0, 1) and (0, 0) be the fixed points of the G action
on CP 1 (the south and the north pole respectively) and
restrict the action on the elements of PicG(S2) to these
two points. In both points we obtain representations of
G. The restriction map becomes

PicG(S2)→ Z/n× Z/n, Cj ⊗ γ⊗m 7→ (Cj+m, Cj).
(19)

Since j+m and j are to be considered as integers modulo
n, we see that the Chern number of Cj ⊗ γ⊗m, which is
m, is congruent with (j + m) − j modulo n. Hence we
have shown the following result:
Theorem. Let L be a G-equivariant complex line bundle

over S2 and let ei
2πν
2n and ei

2πµ
2n be the eigenvalues of Q

on the south and north pole respectively. Then the Chern
number of L is congruent with ν−µ

2 modulo n.
We have therefore settled that the congruence class

of the chirality of the nodal point k presented above is
congruent to l−u

2 modulo n.

G-equivariant Hamiltonian

Let us suppose that k is centered at the origin and Q
is a rotation of 2π

n radians around the kz-axis. Consider

the Hamiltonian

H(kx, ky, kz) =

(
kz (kx − iky)m

(kx + iky)m −kz

)
(20)

and write it in cylindrical coordinates reiφ = kx + iky.
Define the change of variables r = rm and take ρ2 =
z2 + r2 together with ρ cos(θ) = z and ρ sin(θ) = r. The
Hamiltonian in the coordinates (ρ, θ, φ) becomes

H(ρ, θ, φ) = ρ

(
cos(θ) sin(θ)e−imφ

sin(θ)eimφ − cos(θ)

)
. (21)

The eigenfunctions of the transformed Hamiltonian are

ψ+ =

(
cos(θ/2)e−imφ

sin(θ/2)

)
ψ− =

(
sin(θ/2)e−imφ

− cos(θ/2)

)
(22)

whose eigenvalue equations are

H|ψ±〉 = ±ρ|ψ±〉 = ±
√
k2z + (k2x + k2y)m|ψ±〉. (23)

The action of the rotation group on the Hamiltonian
must satisfy the equation:

H(k) = Q̂−1H(Q(k))Q̂, (24)

which in the coordinates (ρ, θ, φ) becomes the equation:

H(ρ, θ, φ) =

(
ei

2π
n m 0
0 1

)
H

(
ρ, θ, φ+

2π

n

)(
e−i

2π
n m 0

0 1

)
,

(25)

thus implying:

Q̂|ψ±(ρ, θ, φ)〉 = |ψ±(Q(ρ, θ, φ))〉, (26)

which at the level of the eigenfunction ψ+ becomes:

Q̂

(
cos(θ/2)e−imφ

sin(θ/2)

)
=

(
cos(θ/2)e−imφe−i

2π
n m

sin(θ/2)

)
. (27)

Focusing our attention to the upper band ψ+, we see that

on the north pole, i.e. θ = 0, the action of Q̂ is given by
multiplication of e−i

2π
n m, while at the south pole, i.e.

θ = π, the action is trivial.
Let us now calculate the chirality associated to the

eigenfunction ψ+ of (22) in spherical coordinates. The
Berry connection is defined as A = i〈ψ+|∇|ψ+〉 with
∇ = (∂ρ, (1/ρ)∂θ, 1/(ρ sin θ)∂φ) and therefore the three
components of the connection become

(Aρ, Aθ, Aφ) =

(
0, 0,−m cos2(θ/2)

ρ sin(θ)

)
. (28)

The Berry curvature on the spherical coordinates (ρ, θ, φ)
becomes:

Ω = ∇×A =
m

2ρ2
ρ̂, (29)
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and therefore the chirality of ψ+ is:

m =
1

2π

∫
S2

dS · Ω. (30)

We have then that the chirality of ψ+ on the cylindrical
coordinates (z, r, φ) is m. Now, since the degree of the
map (z, r, φ) → (z, r, φ) which sends rm → r is 1, we
can conclude that the chirality of ψ+ on the Hamiltonian
defined in (20) is also m.

It is worth pointing out that the Hamiltonian of (20)
appears also in equation (43) of [46] where the chirali-
ties for m = 1, 2, 3 have been calculated by measuring
the evolution of the polarization thus agreeing with the
theoretical prediction.

We see also here that on the band defined by ψ+, whose

chirality is m, the action of Q̂ on ψ+ whenever θ = 0 is
given by multiplication of e−i

2π
n m, and whenever θ = π

the action is trivial. Note moreover that the action of
Q̂ on ψ+ could be tensored with any representation Cj ,
thus making the action

Q̂ =

(
e−i

2π
n (m−j) 0

0 ei
2π
n j

)
. (31)

The eigenvalues of Q̂ on ψ+ and ψ− become

〈ψ+|Q̂|ψ+〉 = cos2(θ/2)e−i
2π
n (m−j) + sin2(θ/2)ei

2π
n j

(32)

〈ψ−|Q̂|ψ−〉 = cos2(θ/2)ei
2π
n j + sin2(θ/2)e−i

2π
n (m−j)

(33)

and therefore the eigenvalue of Q̂ on ψ+ whenever θ = 0
is ei

2π
n (−m+j) and whenever θ = π is ei

2π
n j . We evidence

again that m is congruent to j − (−m+ j) modulo n.
In order to obtain the chirality modulo n from equa-

tions (32) and (33) we see that

n

2π
arg

(
〈ψ−|Q̂|ψ−〉
〈ψ+|Q̂|ψ+〉

)
≡n

{
m whenever θ = 0

−m whenever θ = π.

(34)

Using the notation of equation (6), which refers to Fig.
1a), we see that l

2 = j and u
2 = −m + j. Moreover we

have that

n

2π
arg

(
〈ψ−(k)|Q̂|ψ−(k)〉
〈ψ+(k)|Q̂|ψ+(k〉

)
(35)

=

{
l−u
2 ≡n m for k between k and k1,

− l−u2 ≡n −m for k between k0 and k.

Therefore, if equation (35) is plotted as a function of
the k coordinate, a step-function type with the chirality
m of the nodal point should be expected. This behavior
can be observed in Fig. 2 where equation (35) is plotted
as a function of kz for two successive bands of a P6122

material (n=6). In this case, a chirality of −2 is obtained
at the right of the nodal point located at k.

It is important to emphasize that the expression (35)
can be used to determine the chiralities of band crossings
in screw symmetric materials by using only the eigenval-
ues of the screw operator Q̂ along the high symmetry
lines that the operator leaves invariant.

CHIRALITIES ALONG HOURGLASS AND
ACCORDION LIKE BAND DIAGRAMS

In the presence of screw rotation symmetries of the
type P21, P3p, P4p and P6p, the formation of hourglass
and accordion like shapes on the energy bands along the
screw-invariant lines has been described in [27–29]. These
combinatorial formations predict topological energy band
crossings whose chirality can be calculated with the de-
scription defined previously.

For simplicity let us assume that our geometrical oper-
ator Q does a screw rotation along the z-axis. Therefore
we will take k0 = Γ and k1 = A with the eigenfunction
equation (3) thus becoming

Q̂|ψl(k)〉 = ei
π
n le−ikz

p
n |ψl(k)〉 (36)

with Q̂n = −e−ikzp for n = 2, 3, 4, 6. Kramer’s degener-
acy rule on Γ and A forces the eigenvalues of Q̂ to appear
in conjugate pairs, and the nonsymmorphicity of Q̂ is the
key ingredient for the formation of hourglass and accor-
dion shape energy band diagrams.

In the following combinatorial band diagrams we have
written the eigenvalues of the operator Q̂ on Γ and A and
the chiralities of the energy crossings have to be chosen
so that their absolute value is minimum. The chirali-
ties will be printed in red above the intersection of the
bands. The numbers n = 2, 3, 4, 6 and 1 ≤ p < n en-
code the information of the screw rotation. We remark
here that the band diagrams for the symmetry groups
P6p are equivalent to the ones of P6p22 (see Appendix in
[29]) and the same argument implies that the diagrams
for P4p are equivalent to the ones of P4p22. For n = 2
the chirality is ±1:

Γ p = 1 A

eiπ1/2

eiπ3/2 • ±1 • e
0

e0

eiπ1/2

eiπ3/2 • • e
iπ2/2

eiπ2/2

(37)

For n = 3 the band diagrams for p = 1 and p = 2 are
similar. The chiralities modulo 3 are:

Γ p = 1 A

eiπ1/3

eiπ5/3 • −1 • e
0

e0

eiπ1/3

eiπ5/3 • +1
• e

iπ4/3

eiπ2/3

eiπ3/3

eiπ3/3 • • e
iπ4/3

eiπ2/3

(38)
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For n = 4 the band diagrams for p = 1 and p = 3 are
similar. The chiralities modulo 4 are:

Γ p = 1 A Γ p = 2 A
eiπ/4

eiπ7/4 • −1 • e
0

e0
eiπ/4

eiπ7/4 • ±2 • e
iπ7/4

eiπ1/4

eiπ/4

eiπ7/4 • ±2 • e
iπ6/4

eiπ2/4
eiπ3/4

eiπ5/4 • • e
iπ5/4

eiπ3/4

eiπ3/4

eiπ5/4 • +1 • e
iπ6/4

eiπ2/4

eiπ3/4

eiπ5/4 • • e
iπ4/4

eiπ4/4

(39)

For n = 6 the band diagrams for p = 1 and p = 5 and
for p = 2 and p = 4 are similar. The chiralities modulo
6 are:

Γ p = 1 A Γ p = 2 A
eiπ/6

eiπ11/6 • −1 • e
0

e0
eiπ/6

eiπ11/6 • −2 • e
iπ11/6

eiπ1/6

eiπ/6

eiπ11/6 • −2 • e
iπ10/6

eiπ2/6
eiπ3/6

eiπ9/6 • +2 • e
iπ9/6

eiπ3/6

eiπ3/6

eiπ9/6 • ±3 • e
iπ10/6

eiπ2/6
eiπ5/6

eiπ7/6 • • e
iπ7/6

eiπ5/6

eiπ3/6

eiπ9/6 • +2 • e
iπ8/6

eiπ4/6 Γ p = 3 A

eiπ5/6

eiπ7/6 • +1 • e
iπ8/6

eiπ4/6
eiπ/6

eiπ11/6 • ±3 • e
iπ10/6

eiπ2/6

eiπ5/6

eiπ7/6 • • e
iπ6/6

eiπ6/6
eiπ5/6

eiπ7/6 • • e
iπ8/6

eiπ4/6

eiπ3/6

eiπ9/6 • ±3 • e
0

e0

eiπ3/6

eiπ9/6 • • e
iπ6/6

eiπ6/6

(40)

The band diagrams for n = 6 and p = 3 might ap-
pear superposed. In that case the chiralities of all the
intersections can also be calculated. One possible way
on which the band diagrams superpose is the following.
The chiralities are modulo 6.

Γ n = 6, p = 3 A

eiπ7/6

eiπ5/6 •
−1

±3

• e
iπ6/6

eiπ6/6

+1

eiπ9/6

eiπ3/6 •
−2

+1
• e

iπ4/6

eiπ8/6

−2

−1

• e
iπ0/6

eiπ0/6

eiπ11/6

eiπ1/6 •

+2

−1 • e
iπ2/6

eiπ10/6

+2

eiπ9/6

eiπ3/6 •

±3

+1

(41)

Whenever n = 6 and p = 1 and we consider the group
P61, we can also consider the band diagram along K-
H. Here the operator that fixes the line is Q̂2 and the
combinatorial band diagram has been calculated in [29].
The chiralities are in red and are modulo 3 since the order

FIG. 2. (Left) Electronic band structure for the fourth (ψ−)
and fifth (ψ+) conduction bands of AuF3 (P6122) restricted to
Γ-A. (Right) Graph of expression (43) for the succesive bands

ψ− and ψ+ with Q̂ the skew symmetry operator restricted
to Γ-A. The topological Weyl chirality of the nodal point k
corresponds to the value of (43) at the right of k. In this case
the chirality is −2.

of the rotation operator Q2 is 3.

K P H

eiπ5/3

eiπ1/3 •
−1

• e
iπ4/3

eiπ2/3

eiπ3/3

• • e
0

e0

eiπ3/3 •
+1 • e

iπ2/3

eiπ4/3

eiπ1/3

eiπ5/3 •

(42)

The chiralities presented in red in the previous dia-
grams are all modulo n. A fair guess would be that the
absolute value of the chiralities take always the mini-
mum possible value, and therefore, and in the appropri-
ate cases, the congruence class determines the chirality.
Unfortunately, this is not the case. In Figure 4 we show
that the congruence class of the upper nodal point is +1
according to the eigenvalues of the representations, but
the chirality calculated with the Wilson loop method is
−2. This means that the explicit chirality cannot be de-
duced only from the eigenvalues of the representations.
Nevertheless, the congruence class of the chirality ob-
tained through the eigenvalues of the rotation operator
puts a strong restriction on the possible values that the
chirality might have, and since this calculation could be
done directly from the DFT. This method provides a
very simple procedure to determine the type of the nodal
points along the rotation invariant lines.

MATERIALS REALIZATION

The chiralities previously described are compatible
with the ones presented in Fig. 3 for the symmetry space
groups P6122, P63 and P6322 of materials AgF3, AuF3,
PI3 and Pd3N along the high symmetry line Γ-A. For the
former two materials we have n = 6 and p = 1 and for
the latter two n = 6 and p = 3. Let us elaborate.
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In order to determine the chirality of the Weyl points
along Γ-A we have carried out two different procedures.
On the one hand we have taken small spheres around
the nodal points and we have calculated the Berry cur-
vature flux through the spheres [39]. This was possible
by the Wannier interpolation technique ([47]) allowing
one to determine the Berry curvature with an efficient
k-mesh sampling [48]. The values of these chiralities are
shown on the electronic band structure for the a) AuF3,
b) AgF3, c) PI3 and d) Pd3N materials in the left panel of
Fig. 3. These results are in complete agreement with the
chiralities predicted in diagrams (40) from the chirality
nodal point theorem.

On the other hand, we have calculated the symmetry
eigenvalues of the wavefunctions at high symmetry lines
in the Brillouin zone (irrep code [49]). This step only
requires the information of the electronic wavefunction in
the crystal system which can be obtained directly from
density functional theory (DFT) calculations. Then, we

use the eigenvalues of the screw symmetry operator Q̂ in
order to calculate the chirality of the Weyl points using
the chirality nodal point theorem through the formula
(35). For each pair of consecutive bands ψ− and ψ+,
we have restricted to the line kx = ky = 0 and we have
plotted the expression

6

2π
arg

(
〈ψ−(kz)|Q̂|ψ−(kz)〉
〈ψ+(kz)|Q̂|ψ+(kz)〉

)
(43)

for 0 ≤ kz ≤ 0.5. Whenever there is an energy crossing
between the bands, say at kz = k, equations (34) and
(35) tell us that the chirality of the Weyl point is given
by the value of the expression in (43) at the right of k.

Fig. 2 shows the graph of expression (43) applied to
the fourth and fifth conduction bands of AuF3. The chi-
rality of the nodal point corresponds to the value of the
expression (43) on the right of k; in this case the chirality
of the nodal point is −2.

The results of the chirality calculations with this pro-
cedure are presented in the right panels of Fig. 3. It is
important then to notice that both procedures to calcu-
late the chiralities agree on all the nodal points we have
presented. This evidences the pertinence of the theoret-
ical description presented above and its precise applica-
bility. Moreover, this method permits to calculate the
Weyl chirality directly from DFT wavefunctions without
change of basis set representation (for example, wannier
representation [40]). In terms of computational complex-
ity, the calculation of the chirality of nodal points using
representation theory [49] is far simpler than the calcu-
lation of the chirality through the holonomy of the Berry
connection.

From the right panels of Fig. 3 we have evidenced the
existence of high order chiralities in the P6p22 symmetry
groups along the Γ-A high symmetry line. A particular
ordered chirality sequence of +1,+2,±3,−2,−1 was ob-

tained for the accordion band structure of the AgF3 and
AuF3 (P6122 space group). These results are consistent
with the ones presented in diagram (40) and the Weyl
chiralities calculated from Berry curvature (left panels in
Fig. 3 a) and b)). In addition, different P61 materials
or special doping in AgF3 or AuF3 compounds, could lo-
calize the Fermi level at one specific energy position and
have access to each of these particular chiralities.

In addition, triple Weyl points of ±3 chirality in the
Γ-A path were obtained for P63 and P6322 space groups,
as it is shown in Figure 3 c) and d) respectively. For the
Pd3N case, close to the Fermi energy we found two Weyl
points with +3 chirality, which could generate an exotic
spin transport response as large spin Hall conductivity
in this material. For the PI3 case, the configuration of
Weyl points in the superposed hourglass configuration
is similar to the one presented in diagram (41) and the
value of the chiralities agree. The nodal points with ±3
chirality in both cases lie at the center of the hourglass
configurations.

In order to study another kz high-symmetry line on
the Brillouin zone, we show the results of the electronic
band structure for the K-H path of the AgF3 material
in Fig. 4. Here we have n = 3 and p = 1. We present
the last twelve conduction bands together with the first
twelve valence bands and we calculate the congruence
class modulo 3 of the chiralities of the nodal points with
the procedure outlined above. We moreover determine
the explicit value of the chiralities using the Berry cur-
vature flux integration method [48] and we show their
residue modulo 3 agrees with the one calculated using
the eigenvalues of the rotation operator. It is important
to emphasize that the congruence class of the chirality
does not determine the explicit value of the chirality. We
can see in Fig. 4 that among the eight nodal points pre-
sented, six have ±1 chirality, while two have −2 chirality.
The congruence class modulo 3 of diagram (42) is the cor-
rect one, but the chirality may take values different than
±1.

Computational methods

Density functional calculations (DFT) based in the Vi-
enna ab initio package (VASP) code [50] were performed
to examine the electronic band structure and the eigen-
values of the symmetry operator [49]. The projector aug-
mented wave (PAW) [51] method was adopted to treat
the core-valence electron interactions. The exchange-
correlation interactions were chosen within the Perdew-
Berke-Ernzerhof (PBE) [52] schemes with a cutoff energy
520 eV. The crystal structures were obtained from a re-
laxed system by Materials project [53]. In all the cal-
culations, spin-orbit coupling (SOC) was included self-
consistently at the DFT level.

In order to evaluate the Weyl point chirality, we
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FIG. 3. (Left) Electronic band structure for a) AuF3 (P6122), b) AgF3 (P6122), c) PI3 (P63) and d) Pd3N (P6322) with
the topological chiralities calculated by the integration of the Berry curvature at the surface of a k-sphere around the Weyl
point [48]. The chiralities along Γ-A are compatible with the ones described in diagrams (40) and (37) respectively. (Right)
Topological Weyl chirality calculated from the eigenvalues of the screw symmetry operator [49] along the Γ-A path using the
formula of expression (43). The color of the chirality plot matches the energy band calculated.

have used an effective tight-binding Hamiltonian con-
structed in the maximally localized Wannier basis [47]
as a post-processing step of the DFT calculations. We
have employed the Wanniertools package [48] with a k-
resolved 2403 k-mesh to obtain the Berry flux through
the spheres (centered in k̄) and calculate the chirality of
Weyl points obtained in the nonsymmorphic materials
PI3 (SG: P63), Pd3N (SG: P6322), AgF3 (SG: P6122),
AuF3 (SG: P6122)..

CONCLUSION

Two interesting features appear in the presence of
screw rotation symmetries and spin-orbit coupling when-
ever we look at the energy bands on screw invariant lines.
First, the distribution of the energy bands follows hour-
glass and accordion shape configuration schemes, thus
enforcing nodal points at the band intersections; these

are the topological enforced Weyl points. On the other
hand, the eigenfunctions of the Hamiltonian are simul-
taneous eigenfunctions of the screw rotation operator,
which in turn permits to extract local information of the
Hamiltonian at the band intersections. The combination
of these two features permits not only determine the chi-
rality of the topological enforced Weyl points but also
determine the chirality of any energy band intersection.

The precise form under which the screw rotation oper-
ator acts on the wavefunctions on band intersections puts
strong restrictions on the local structure of the Hamilto-
nian. In particular, if the eigenvalues of the screw rota-
tion operator on the two bands are different, the bands
cannot be locally gaped, and the congruence class of the
chirality is determined explicitly from the difference of
the arguments of the eigenvalues.

The theoretical and computational procedure pre-
sented in this work permits to determine the congruence
class of the chiralities of nodal points on screw invari-



9

FIG. 4. a) Electronic band structure for AgF3 restricted to
the path K-H. Topological chiralities have been calculated
with the Berry curvature flux integration [48]. b) Topological
Weyl chirality modulo 3 calculated from the eigenvalues of
screw symmetry operator [49] along the K-H path. The color
of the chirality plot represents the energy band calculated.
The patterns of the chiralities are compatible with the ones
presented in diagram (42). c) Energy dispersion along the
ky axis for the selected four nodal points. It is important
to notice that among the eight nodal points, six have ±1
chiralities but two have −2 chirality. This shows that the
chirality cannot be deduced explicitly from the congruence
class alone; nevertheless the congruence class puts a strong
restriction on the possible values the chirality might have.

ant lines through the information provided by DFT cal-
culations. High-order band crossings (chiralities of ±2
and ±3) are obtained for P6p and P6p22 nonsymmorphic
space groups. Of particular importance is the fact that
energy crossings that are not topologically protected (as
it is the case in the intersections in the hourglass and ac-
cordion shape diagrams) may be nevertheless protected
by the representation theory of the screw rotation oper-
ator.

The argument presented in this work permits to evalu-
ate the congruence class of the chiralities of Weyl points
that lie on rotation and screw rotation invariant lines.
The information required are the eigenvalues of the rota-
tion or screw rotation operator on the wavefunctions.

We believe that this procedure could be computation-
ally implemented so that the band crossings calculated
through DFT would appear labeled with the correspond-
ing chirality. We have shown in this work how this la-
beling would be performed. The generic implementation
would be welcomed.
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