
Dynamic Strength of Adhesion Surfaces

Fang Li1 and Deborah Leckband2

1 Department of Theoretical and Applied Mechanics,
2 Department of Chemical and Biomolecular Engineering,

University of Illinois at Urbana-Champaign

March 2, 2006

Abstract
We study theoretically the forced separation of two adhesive surfaces linked via a

large number of parallel non-convalent bonds. We use a Brownian Dynamic simula-
tion to compute the force-distance curve and the rupture force for separating adhesive
surfaces with a constant rate. We also implement a statistical mechanics framework
to describe the separating process, using a two-step reaction model with reaction rates
obtained from the first passage time description for diffusive barrier crossing in a pulled-
distance-dependent potential. A single integral mean first passage time (IMFPT) ex-
pression and the Kramers time are used to calculate the rate coefficients. The de-
pendence of the rupture force on the separating rate exhibits three regimes. In the
near-equilibrium regime, the rupture force asymptotically approaches the equilibrium
rupture force, which is determined by the intrinsic free energy difference between two
states. In the non-equilibrium regime, the rupture force increases with the separating
rate and correlates with the bond rupture energy and the intrinsic off-rate. In the
far from the equilibrium regime, the rupture force is determined by the bond rupture
energy.

1 Introduction

Adhesive interactions between cells in multicellular organisms depend on specialized ad-
hesion proteins found on cell surfaces. The molecular adhesion is based on short ranged
nonconvalent specific interactions that are much stronger in comparsion with nonspecific
forces [1]. Most adhesion molecules couple to the cytoskeleton and function under dynamic
mechanical force in such essential processes as neuronal pathfinding, embryonic genesis, and
white blood cell attachment to the wall of blood vessels. An understanding of molecular in-
teractions under force is therefore important for models of signal transduction, cell motility,
and other adhesion-controlled cellular functions.

Over the past decade, single molecule force measurement techniques, such as atomic force
microscopy and optical tweezers, have been extensively used to explore the dissociation of

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4810845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


nonconvalent bonds. In such experiments, the force probe is attached by a flexible linker to
a molecule, moved into a position where the molecule can bind to a corresponding molecule
on a fixed surface, and then pulled away at a constant velocity. The external force needed to
break the bond under a given loading rate is measured, the magnitude of the force exhibits
a distribution rather than a determined value [2, 3, 4]. To explain the distribution of the
rupture forces, the dissociation of a bond is modelled as the thermally assisted crossing of an
activation barrier in the framework of the Kramers diffusion theory of chemical reactions [5].
The external force modifies the molecular interaction potential that determines the chemical
kinetics. By assuming that the force linearly diminishes the activation energy barrier, one
finds that the rate coefficient depends on the time dependent external force by the relation [6,
7]

koff(t) = k0exp[f(t)∆x] . (1)

Eq. 1 is most commonly used to analyze the pulling experiments due to the explicit descrip-
tion of the coupling between the off-rate and the force. This formula is also an extension
of Bell’s model that was first proposed [8] to describe the off-rate under a constant force.
However, the assumption that the force changes the energy barrier linearly limits the range
of the validity [9] to the diffusive barrier crossing under small forces. Hummer [10] used the
Kramer time to calculate the off-rate for a harmonic potential with a sharp barrier. A simple
expression of off-rate valid for a high barrier was derived. Based on the predicted average
rupture force under linear loading, they developed an alternative way to extract the intrinsic
off-rate from single bond rupture experiments.

The above descriptions apply to single molecular bonds. In biological systems, the num-
ber of ligand–receptor pairs mediating adhesive contacts between cells varies from a few (for
tethering leukocytes to vessel walls) to > 105 (mature cell–matrix contact). While char-
acterizing adhesive bonds at the single molecule level provides insights into the physics of
nonconvalent bond rupture under a dynamic force, it is more biologically relevant to un-
derstand what determines the strength of adhesion mediated by multiple bonds in parallel.
One of the main differences between the two systems is that multiple bond contact allows
for rebinding [11, 12], which rarely happens for single bond rupture under force [13]. The
reason is that for a single bond, the bond is pulled apart by the elastic relaxation of a linker
molecule and there is no constraint to keep the ruptured pair close enough to rebind. Rup-
tured bonds between two extended surfaces, however, can rebind as long as the distance
between the surfaces is held close by the survived bonds.

For adhesion involving a small number of bonds, the number of survived bonds in the
adhesive contact is a time-dependent random variable that fluctuates significantly. The
stochastic kinetics can be described by a master equation using the probability theory for
kinetics of a small system [14]. The master equation has been solved numerically for adhesion
mediated by no more than ten bonds, for the scenarios involving a constant force [15, 16] or a
linear loading [17]. A mathematically equivalent approach is to use Monte Carlo simulation.
Each bond in the system can be switched between two states (on and off) at different time
steps. In this manner, the chemical kinetics can be coupled to more complicated processes.
For example, the adhesive dynamics method combines the analysis of particle motion in flow
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with a Monte Carlo simulation of chemical kinetics describing the survival and rupture of
the ligand-receptor bonds. The simulation predicts a phase diagram [18] of different particle
motions based on values of the intrinsic on-rate k0

f and the fitting parameter ∆x in Eq. 1.
The simulation results can be directly compared to flow chamber experiments where ligand-
coated beads are driven by a flow with controllable velocity over a surface bearing receptors.

For adhesive contacts with a large ensemble of bonds, the most important quantity to
describe the adhesion between surfaces is the average number of survived bonds. The ge-
ometry of the model is generically set as shown in Fig. 1. A phenomenological description
based on a rate equation can be used to describe the evolution of the survived population
under external forces [8, 19]. Obviously, the choice of the reaction constants used in the rate
equation directly determine the survived population during a pulling process. The present
understanding relating the calculation of rate coefficients for thermally activated barrier
crossing has been surveyed in a review paper by Hänggi et al. [20].

Bell [8] analyzed the kinetics of reversible bonds under a constant force, and calculated
the equilibrium strength of surface adhesion, using Bell’s model for the off-rate and assume
that the on-rate is unaffected by the applied force. Seifert [19] used the same dependence
of the kinetic rates on an imposed dynamic force and implemented a scaling analysis of
the rate equation to reveal different loading regimes for the rupture force. But the results
are erroneous due to an incorrect scaling of the rate equations. Seifert [12] constructed
a rather elaborate statistical mechanics framework to estimate the bulk force required to
rupture two adherent surfaces when the surfaces are separated with a constant separating
rate v. However, using one-step reaction model with rates calculated from the Kramers
rate formula [5], he assumed both the rupture barrier and the rebindng barrier satisfy U>>
kBT . The assumption does not hold for the separating process of two surfaces linked by
nonconvalent bonds. The rupture barrier for a nonconvalent adhesion bond is of order 1-20
kBT , as shown in various of measurements [21, 22]. The intrinsic rebinding barrier is smaller
than the rupture barrier. It is also likely that the height of the rupture barrier becomes
comparable with kBT as the force applied changes energy profile during a pulling process.
The Kramers rate formulae (both for the smooth barrier and for the edge-shaped barrier)
hold only if the energy barrier U is much greater than kBT [20]. Thus, the Kramers rate
formula can not accurately predict the rate constants for bonds rupture and formation during
a pulling process.

In this paper, we addressed some remaining questions based on previous work. First of all,
how to apply Seifert’s statistical mechanics framework for the process of separating parallel
non-convalent bonds? Second, why does the dependence of the rupture force on loading
rates vary in different puling rate regimes? How to estimate loading rates that define the
crossover between different regimes? Finally, How does the rupture force correlate with the
thermodynamic and kinetic parameters in different regimes?

We use a Brownian dynamics simulation to compute the force-distance curve and the
rupture force for separating adhesive surfaces with a constant rate. The model assumes a
superposition of the intrinsic ligand-receptor force, the shared external pulling force, and the
Brownian force along the pulling coordinate. The relative position of an adhesion pair along
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the pulling coordinate, which is correlated to the state of the bond, is determined by the
over-damped Langevin equation. This allows to determine the state of each bond and the
total force exerted on the surface as a function of pulled distance.

We also use a two-step reaction model to describe the kinetics and implement rate co-
efficients based on a single integral mean first passage time (IMFPT) [23] and the Kramers
time for a sufficiently high barrier. In Section 3.1, we compare the rate constants in a pulling
process based on the IMFPT expression with those based on the Kramers time. We show the
evolution of the survived bond population in a pulling process calculated from the two-step
rate equation using the IMFPT expression agrees with that obtained from Brownian dynam-
ics simulations. Using the Brownian dynamics simulations, We also verify the assumption
that the survived bonds are Boltzmann-distributed in the on-state. Finally, we show that
the rupture forces calculated from the statistical mechanics framework with reaction rates
using the IMFPT expression match those obtained from Brownian dynamics simulations.

Finally, we show that the dependence of the rupture forces and the separating rate falls
into three regimes: near-equilibrium, non-equilibrium and far-from-equilibrium. In the near-
equilibrium regime, the separating rate v is slower than a critical rate. In this regime, the
rupture force asymptotically approaches the equilibrium rupture force, which is determined
by the intrinsic free energy difference between two states. In Section 3.3, we derive the
expression for estimating the critical separating rate using a simple physical argument. The
value of the predicted critical separating rates for various systems are in good agreement
with the results from Brownian Dynamic simulations. In In Section 3.4, we show that in the
non-equilibrium regime, the rupture force increases with the separating rate and correlates
with the bond rupture energy and the intrinsic off-rate. In the far from the equilibrium
regime where the rebinding is relevent, the rupture force is determined by the bond rupture
energy.

2 Theory

2.1 A model for molecular adhesion between surfaces

Suppose two surfaces, joined by adhesive molecules as shown in Fig. 1(A), are pulled apart
at a constant rate v, separate a distance L = vt after time t. We will consider the motion
of two molecules along the pulling coordinate, measuring the distance between the paired
adhesion molecules along this coordinate by the variable x. In this case, we assume that the
total potential

U(x, L) = U0(x) + Us(x, L) , (2)

where U0(x) is the intrinsic energy for an adhesion pair. An example of a typical potential at
a pulled distance L is shown in Fig. 1B. Us(x, L) is due to the external force transmitted at
the separation distance L by the linker that connects the molecule to the surface in Fig. 1(A).
Theoretically, one can obtain the bond rupture energy profile from the single molecule pulling
experiments [24, 25]. The instantaneous energy along the pulling path can also be computed
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Figure 1: (A) shows a schemetic view of our model. The top surface bears molecules tethered
by identical soft linkers and N0 complementary molecules are confined to a parallel fixed
surface on the bottom. The top surface is moving with a constant rate v normal to the
surface. For a given pair of molecules, the coordinate x measures the distance between the
paired adhesion molecules along the pulling direction. The pulled distance since the initial
time is L = vt. The total force applied F (L) is measured as a function of the pulled distance
L. (B) shows a typical bond potential U0(x), as a function of the reaction coordinate x. The
adhesion bonds can be in the bound state A, the transition state T, and the free state B.

from Molecular dynamics simulations [7]. In this work, we choose U0(x) to be

U0(x) =
1

2
kA(kA − x)2 for x ≤ xT, (3)

U0(x) =
1

2
kB(xB − x)2 + ∆U0 for xT < x < xB. (4)

U0(x) = ∆U0 for x > xB. (5)

Here kA and kB are the curvatures of the energy profile in state A and B. xA and xB are
the equilibrium positions of states A and B. xT is the position of the transition state. ∆U0

is the energy difference of the two energy minima. We assume the pulling force is harmonic

Us(x, L) =
1

2
k(L− x)2 , (6)

where k is the spring constant, L is the pulled distance L = vt at time t with a constant
separating rate v.

2.2 A Brownian dynamics simulation describing the pulling pro-
cess

We use Kramers’s one dimensional diffusion model to describe the rupture of a nonconvalent
bond between an adhesion molecule pair. The molecules undergo Brownian motion in a
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force field. The distance x between a pair of adhesion molecules evolves according to the
over-damped Langevin equation,

γẋ = −∂xU(x, t) + ξ(t) , 〈ξ(t)〉 = 0 , 〈ξ(0)ξ(t)〉 = 2γkBTδ(∆t) . (7)

Here, γ is the drag coefficient, −∂xU(x, t) is the systematic force between the paired adhesion
molecules, and ξ(t) is a Brownian random force with mean zero force and variance 2γkBT .

A second order Runge-kutta method gives a more accurate and stable integrator. Rewrit-
ing the Langevin equation as a finite difference equation:

x1 = x(t) + ∆t(−∂xU(x, t)) +
√

2D∆tR(t) , (8)

x2 = x(t) + ∆t(−∂xU(x1, t)) +
√

2D∆tR(t) , (9)

x(t + ∆t) = x1 + x2. (10)

where diffision coefficient D = kBT/γ, and R(t) is a Gaussian random number of unit
variance. A system of N0 pairs correspond to N0 trajectories.

In this model, we assume that different bound pairs do not interact with each other.
Therefore, Eq. 7 can be solved individually for different bonds. We implemented a computer
program to solve the stochastic differential equation. The Gaussian random number R(t) is
generated by applying the Box-Muller transformation [26] to the uniform distributed random
numbers given by the ran2 [27] subroutine. In the program, we can vary the parameters
of the intrinsic energy profile kA, kB, xA and xB, the stiffness of the pulling linker k, and
the separating rate v. To model the system includes N0 bonds, we generate N0 independent
trajectories. Using the trajectories, we then calculate the important features of the system
that we are interested in. For example, the population of the survived bonds NA(L), the
distribution of the survived population in the bound state, and the external force F (L)
measured when the two surfaces are separated with a constant separating rate v can be
easily computed from the trajectories. For a typical simulation with N0 = 10, 000 and
∆t = 0.001 ns, the computer program required about an hour of execution time on a Pentium
4 PC to run a 1 µs simulation.

2.3 Rate equation for the kinetics of rupture

The phenomenlogical description based on a rate equation has long been used for describing
the average behavior of adhesive bonds [8, 12, 10]. We use a 3-state model and denote the
three states as the bound state A, the transition state T, and the free state B as shown in
Fig. 1(B). We consider the transition between the state A and the state B as a two-step
reaction A ⇀↽ T ⇀↽ B.

Since the bonds in state T will relax quickly to A or B, we assume that T is always at
steady-state with its infinitesimal population, and we can use a first order kinetic equation
to describe the reaction. Let koff(L) be the off-rate from state A to state B, and kon(L) the
on-rate from B to A. For a large ensemble of bonds, the fluctuation between state A and B
is less important. and the population in state A and B approximate to the average number.
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Thus, we have a rate equation to describe how the population in state A changes with the
pulled distance L under a constant separating rate v:

v
dNA(L)

dL
= −koff(L)NA(L) + kon(L)(N0 −NA(L)) . (11)

In order to proceed with our calculation, we need values for the kinetic rates. These come
directly from the potential U(x, L), according to the formula of rate constants from either
the Kramers rate formula or the IMFPT expression. Both of the formulae are originally
defined for a time independent thermodynamic system, but are used to determine the rates
of transition between nonequilibrium states for driven Brownian motion in a time-dependent
potential [20]. Notice the kinetic rates kon(L) and koff(L) are functions of the pulled dis-
tance L. The reason is that the pulling force changes the potential U(x, L), including the
equilibrium positions xA and xB. The instantaneous kinetic rates at a pulled distance L are

koff(L)−1 = τ(pA
eq(x, L), xT) + τ(pB

eq(x, L), xT)ZA/ZB , and (12)

kon(L)−1 = τ(pB
eq(x, L), xT) + τ(pA

eq(x, L), xT)ZB/ZA . (13)

kon(L)/koff(L) = ZA/ZB is used to derive Eq. 12, 13. ZA and ZB represent the partition
functions which are defined as

ZA =
∫ xT

0
dxexp[−U(x)/kBT ] , and (14)

ZB =
∫ ∞

xT

dxexp[−U(x)/kBT ] . (15)

The IMFPT τ(1, 2) is defined as the average time elapsed for a bond to start at state
1 and reach state 2 at the first time. τ(pA

eq(x, L), xT) and τ(pB
eq(x, L), xT) represent the

IMFPT for an equilibrium distribution of bonds in state A and B to transition position xT,
respectively,

τ(pA
eq(x, L), xT) =

∫ xT

0
dx[DpA

eq(x, L)]−1
∫ x

0
dypA

eq(y, L) , and (16)

τ(pB
eq(x, L), xT) =

∫ ∞
xT

dx[DpB
eq(x, L)]−1

∫ ∞
x

dypB
eq(y, L) , (17)

where the equilibrium distribution pA
eq(x, L) and pB

eq(x, L) are defined as

pA
eq(x, L) = Z−1

A (L)exp[−U(x)/kBT ] , and (18)

pB
eq(x, L) = Z−1

B (L)exp[−U(x)/kBT ] . (19)

The formula for the calculation of the IMFPT is directly generated from the exact solution
of the one dimensional Smoluchowski equation. The reaction dynamics it predicts are in a
good agreement with the exact numerical calculation including the limit when the energy
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barrier is comparable to kBT [23]. For a potential profile with a high edge-shaped barrier
U >> kBT , the IMFPT can be simplified to a formula similiar to the Kramers time,

τ(xA(L), xT) =
γ

kA + k

√
π

kBT

U1(L)
exp[

U1(L)

kBT
] , and (20)

τ(xB(L), xT) =
γ

kB + k

√
π

kBT

U2(L)
exp[

U2(L)

kBT
] . (21)

Here U1(L) and U2(L) are the height of the rupture barrier and the rebinding barrier at the
pulled distance L.

2.4 Measuring the rupture force in phenomenlogical description

At the equilibrium separation under zero separating rate, we assume the distribution of
bonds on the energy profile satisfies the Boltzmann distribution,

N eq
A = N0 ∗

∫ xT

0
dx[−U(x, L)]/

∫ ∞
0

dx[−U(x, L)] . (22)

The force measured at the pulled distance L is given by

F (L) = N0 ∗
∫ ∞
0

dx k(L− x)exp[−U(x, L)]/
∫ ∞
0

dx exp[−U(x, L)] . (23)

We define the peak of the force distance curve as the equilibrium rupture force F r
eq, and

define the corresponding pulled distance as the equilibrium rupture distance Lr
eq. Given

the knowledge of the individual bond energy profile, Eq. 23 can be used to estimate the
equilibrium rupture force of adhesive surfaces.

If thermal equilibrium between the two states is not satisfied for a pulling process with
a separating rate, the above method is not applicable. We assume the intrinsic molecular
interaction is short-ranged and the survived bonds are the main contribution to the measured
force. We also assume the survived bonds in state A satisfy the Boltzmann distribution
during a pulling process. Thus, the total force exerted by the bonds can be calculated, based
on the survived population in each potential well described by the rate Eq. 11. The total
force can then be expressed as

F (L) = NA(L) ∗ f(L) , (24)

f(L) =
∫ xT

0
dx k(L− x)exp[−U(x, L)]/

∫ xT

0
dx exp[−U(x, L)] . (25)

3 Results and Discussion

3.1 Comparison of kinetic rate models

In Section 2 , we described two different methods to estimate the chemical kinetic rate
constants. Fig. 2 shows the estimated rate constants using the kramers time formula deviate
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from those using the IMFPT expression in a pulling process when the energy barriers do not
satisfy U >> kBT . As a further illustration of the comparsion, Fig. 3 shows the evolution of
the survived bond population in a pulling process calculated from the rate equation using the
IMPFT expression matches with that from the Brownian dynamics simulations for different
separating rates, In addition, Fig. 4, the instanetuous distribution of the survived population
obtained from the Brownian dynamics simulations, shows a Boltzmann distribution in the
bound state. Thus, we can expect the rupture force calculated from Eq. 24 using the IMPFT
expression agree with that from the Brownian dynamics simulations, as shown in Fig. 7.

3.2 Kinetically trapped in the bound state cause excess force

As shown in Fig. 5, NA(L) approaches the value for the equilibrium separation predicted
from Eq. 22 At slow separating rates. For a pulled distance L, the faster the separating rate,
the larger is NA(L). The reason is that with the faster separating rate, the bonds are given
less time to escape to the free state for a certain surface pulled distance. The observation
that more bonds are kinetically trapped in the bound state with faster pulling is also shown
in force curves in Fig. 6. In the first stage of the surface separation, the force curves for
different separating rates overlap and increase linearly with the pulled distance with the
slope as the pulling spring constant k = 1.0. The reason is that most of the bonds are in
the bound state, and the force increases linearly due to the elongation of the linkers. In
the second stage, the bonds start to escape to the free state. The force curves for different
separating rates separate and reach the maximum at different distances. For the same pulled
distance, the force achieved at faster separating rates are larger since more bonds are trapped
in the bound state, which are the main contribution to the total force. In the third stage, all
the bonds ruptured and the calculated force is the hydrodynamic force and increases linearly
with the separating rate.

3.3 Near-equilibrium rupture

As shown in the Fig. 8, the rupture force asymptotically approaches the equilibrium rupture
force F r

eq normalized by the total bonds at the initial time N0, 2.5916. 2.5895, 3.1168, 3.3566
for the four molecular pairs. The rupture force reaches F r

eq if the separating rate is slower
than a critical separating rate, which can be derived using a simple physical argument. If
the separating distance reaches Lr

eq slow enough so that the system is given enough time
to relax to the thermal equilibrium on the energy potential corresponds to the equilibrium
rupture distance Lr

eq, the rupture force approaches the equilibrium value.
We know that a system initially in state A relaxes exponentially,

NA(t) = C1 + C2exp[−((koff (L
r
eq) + (kon(Lr

eq))t] (26)

with C1 = −C2 = ZA(Lr
eq)/(ZA(Lr

eq) + ZB(Lr
eq)), and the relaxation time is defined as

τ = (koff (L
r
eq) + kon(Lr

eq))
−1 (27)
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On one hand, it takes the system time t >> τ for the number of the bonds between state
A and state B to equilibrate on the potential corresponding to the moved distance Lr

eq. On
the other hand, the time that it takes for moving surface the distance Lr

eq is give by Lr
eq/v.

A separating rate that gives the system a time longer than the relaxation time can ensure
that the system will rupture near equilibrium. Thus the critical separating rate vc satisfies

vc >> Lr
eq/τ (28)

Example values of Lr
eq/τ are shown in Table 1. By comparing the values of the critical

separating rate to the locations of the asymptotes plotted in Fig. 8, we see that the estimation
from Eq. 28 is in a good agreement with the results from Brownian dynamics simulations.

As shown in the Fig. 9, the rupture force in the near-equilibrium regime is not correlated
with both the intrinsic kinetic rates and the rupture energy barrier, but the free energy
difference, Ln(kon/koff).

3.4 Non-equilibrium rupture

If the separating rate is above the critical separating rate vc, the excess of the rupture force
over the equilibrium rupture force F r

eq. As shown in the Fig. 9, the rupture force in the
non-equilibrium regime is correlated with both the the logarithm of intrinsic off-rate and the
rupture energy barrier instead of the the free energy difference.

In the far-from-equilibrium regime, the rebinding is not important. Theoretical prediction
of this regime has been given by Hummer [10]. Fig. 9 shows a clear correlation of the rupture
force with the logarithm of intrinsic off-rate and the rupture energy barrier.

4 Future work

We have shown that Brownian dynamics simulation is accurate and straightforward in de-
scribing the kinetics of molecules which determine adhesive interactions between two sepa-
rating surfaces. We look for the correlation between the rupture force and the measurable
thermodynamic parameters in different loading regimes. We can compare our predictions
with experiments and physiological processes. Furthermore, Brownian dynamic simulation
is easily implemented to simulate rupture under a variety of physical conditions in order to
compare with experiments. For example, we can add the curvature of the two surfaces in
the model in order to compare the surface force measurements.
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Pair F r
eq/N0 Lr

eq τ Lr
eq/τ

A 2.5916 2.05 82.6 0.0056
B 2.5895 2.02 361 0.0107
C 3.1168 2.53 237 0.0015
D 3.3566 2.73 2020 0.0010

Table 1: Estimate the critical separating rates for the four molecular pairs in Fig. 8. The
equilibrium rupture force f r

eq is the peak in the force-distance curve described by Eq. 23.
The equilibrium rupture distance Lr

eq is the pulled distance corresponding to the peak in the
force-distance curve. The relaxation time τ is calculated from Eq. 27. The critical separating
rate Lr

eq/τ is calculated according to Eq. 28.
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Figure 2: Rates constants, koff(L) and kon(L), as a function of the pulled distance L. The
solid curve uses the IMFPT expressions in Eq. 16 and Eq. 17. The dashed curve uses the
Kramers time formulae in Eq. 20 and Eq. 21. The parameters used are U1 = 12, k1 = 24,
U2 = 2, k2 = 1, k = 1, γ = 1. The units used in the computation are kBT for the energy,
4.1pN for the force, nm for the distance, and ns for the time.
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Figure 3: Survived population NA(L), normalized by the total bonds at the initial time N0,
as a function of the pulled distance L for v = 0.1 and v = 1.0. NA(L) is calculated by three
methods. The solid curve is from the rate equation Eq. 11 with rates using the IMFPT
expressions in Eq. 16 and Eq. 17. The solid curve is from the rate equation with rates using
the Kramers time in Eq. 20 and Eq. 21. The dotted curve is obtained from the Brownian
dynamics simulations. Other parameters are the same as in Fig. 2.
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Figure 4: Distribution of the normalized survived population for v = 0.1 and v = 1.0 obtained
from Brownian dynamics simulations. Three curves correspond to three pulled distance,
before-rupture-distance, at-rupture-distance, and after-rupture-distance. The fitting lines
are calculated assuming the distribution of the survived bond population satisfy Boltzmann
distribution. Other parameters are the same as in Fig. 2.
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Figure 5: The normalized survived population NA(L)/N0 as a function of the pulled distance
L for various separating rates. The survived bond population NA(L) is obtained from the
Brownian dynamics simulations. The separating rates are, from left to right, v = 0.001,
0.01, 0.1, 1.0. The squares are obtained from Eq. 22 for v = 0. Other parameters are the
same as in Fig. 2.
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Figure 6: The normalized rupture force F (L)/N0 as a function of the pulled distance L for
various separating rates. The total force F (L) is obtained from the Brownian dynamics
simulations. The separating rates are, from left to right, v = 0.001, 0.01, 0.1, 1.0. The
squares are obtained from Eq. 22 for v = 0. Other parameters are the same as in Fig. 2.
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Figure 7: The normalized rupture force F r/N0 as a function of the separating rate v. The
total force F r is calculated from three methods: Eq. 24 with rates using the IMFPT ex-
pressions, Eq. 24 with rates using the Kramers time formulae, and the Brownian dynamics
simulations. The rupture force is assumed as the peak of the force-distance curve. Other
parameters are the same as in Fig. 2.

10-4 10-3 10-2 10-1 100 101 102

2

4

6

8

10

12

14

16

18

20

Fr /N
0

v

 A, U 1=10, k1=20, U 2=2, k2=1
 B, U 1=12, k1=24, U 2=4, k2=2
 C, U 1=12, k1=24, U 2=2, k2=1
 D, U 1=15, k1=30, U 2=4, k2=2

Figure 8: The normalized rupture force F r/N0 as a function of the separating rate v. The
total force F r is calculated from the Brownian dynamics simulations. The rupture force is
assumed as the peak of the force-distance curve in Fig. 6. The rupture force is computed
for various molecular parameters as shown in the plot. Other parameters are the same as in
Fig. 2.
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