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We develop a complete set of equations governing the evolution of a sharp interface sep-
arating a volatile-solvent/nonvolatile-surfactant solution from a vapor atmosphere. In
addition to a sorption isotherm equation and the conventional balances for mass, linear
momentum, and energy, these equations include a counterpart of the Hertz–Knudsen–
Langmuir equation familiar from conventional theories of evaporation-condensation. This
additional equation arises from a consideration of configurational forces within a thermo-
dynamical framework. While the notion of configurational forces is well-developed and
understood for the description of materials, like crystalline solids, that possess natural
reference configurations, very little has been done regarding their role in materials, such
as viscous fluids, that do not possess preferred reference states. We therefore provide
a comprehensive discussion of configurational forces, the balance of configurational mo-
mentum, and configurational thermodynamics that does not require a choice of reference
configuration. The general evolution equations arising from our theory account for the
thermodynamic structure of the solution and the interface and for sources of dissipa-
tion related to the transport of surfactant, momentum, and heat in the solution, the
transport of surfactant and momentum within the interface, and the transport of solute,
momentum, kinetic energy, and heat across the interface. Due to the complexity of these
equations, we provide approximate equations which we compare to relations that appear
in the literature.

1. Introduction
Continuum theories for tranformations between the liquid and vapor phases of a fluid

typically impose an interfacial equation in addition to those of kinematical origin and
those deriving from the balances for mass, momentum, and energy. Known as the Hertz–
Knudsen–Langmuir condition,† that equation dictates how a difference between the in-
terfacial temperatures of the liquid and vapor phases drives evaporation or condensation.
Specifically, on writing u for the velocity of the liquid, n for the unit orientation of the
interface (directed into the vapor), V for the scalar normal velocity of the interface in the

† Schrage (1953) Knacke & Stranski (1956) review the experimental and theoretical devel-
opments leading up to the Hertz–Knudsen–Langmuir equation, including the contributions of
Hertz (1882), Knudsen (1915), and Langmuir (1916).
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direction of n, ϑ for the (absolute) temperature of the liquid, and ϑv for the temperature
of the vapor, the Hertz–Knudsen–Langmuir equation can be expressed as

βSV
mig = −�

{
ϑ

ϑv
− 1

}
, (1.1)

where V mig = V − u·n is the migrational velocity of the interface relative to the liquid,
βS > 0 is a modulus associated with the kinetics of attachment and detachment at
the interface, and � > 0 is the latent heat of vaporization. Consistent with intuitive
expectations, (1.1) predicts evaporation when the temperature of the liquid phase exceeds
that of the vapor and condensation when the temperature of the liquid is less than that
of the vapor.

The conventional derivation of the Hertz–Knudsen–Langmuir condition involves argu-
ments from the kinetic theory of gases; a careful discussion of the hypotheses underlying
this derivation is given by Cammenga (1980). Of prominent importance among these
hypotheses is the assumption that the mechanisms underlying evaporation and conden-
sation depend only on the states of the liquid and vapor phases and are independent of
mass, momentum, and energy transfer. Despite the neglect of these effects, the Hertz–
Knudsen–Langmuir equation is, as Koffman, Plesset & Lees (1984) observe, often used
without justification in continuum problems involving mass, momentum, and energy
transfer.

The purpose of this paper is to develop, from basic considerations, a complete set of
equations governing the evolution of a sharp interface separating a solution — consisting
of a volatile solvent and a nonvolatile surfactant — from a vapor atmosphere, with focus
on providing a generalization of (1.1) that accounts properly for transport. In so doing we
account for distributions of surfactant molecules, molecular fluxes, and viscous stresses in
bulk and on the surface. While we allow for flows of heat within the solution and across
the interface, we do not allow for heat flux within the interface. We also neglect the mass
of the interface and impose a no-slip condition requiring that tangential components of
the solution and vapor velocities at the interface coincide. Specifically, writing uv for the
velocity of the vapor at the interface, this condition can be expressed as

u− uv = (u·n− uv ·n)n. (1.2)

Our approach to developing the equations resembles closely that taken by Anderson,
Cermelli, Fried, Gurtin & McFadden (2005) in their theory for two fluid phases under-
going transformation, the major differences being due to the need to treat surfactant
transport and to allow for a temperature discontinuity across the interface. However,
whereas that theory provides a detailed treatment of both fluid phases, we focus primar-
ily on the liquid phase and treat the vapor as a thermal reservoir in which the solvent
has given density. This results in a theory that is one-sided in the sense of that utilized
by Burelbach, Bankoff & Davis (1988) in their work on the evaporation-condensation of
single-component liquid films.

Like that of Anderson, Cermelli, Fried, Gurtin & McFadden (2005), our theory re-
quires a consideration of the mechanics and thermodynamics of configurational forces.
For applications involving solid-state phenomona the understanding that configurational
forces may be needed to describe defects has been clear since the groundbreaking studies
of Peach & Koehler (1950), Eshelby (1951, 1956, 1970, 1975), and Herring (1951). These
studies are performed within a variational framework where configurational forces arise on
considering variations which allow the defect to move while holding fixed the positions of
material particles. However, studies based on variational arguments are inherently unable
to characterize dissipation, a drawback that is particularly limiting when dealing with
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fluids, because of the prominence of viscous stresses. Moreover, any variationally-based
introduction of configurational forces must necessarily be predicated on an underlying
constitutive framework and, therefore, restricted to a particular class of materials.

To circumvent these restrictions, we adopt the point of view advanced by Gurtin &
Struthers (1990),† who use an argument based on invariance under observer changes
to conclude that a configurational force balance should join the standard force balance
as a basic law of continuum physics. Here the operative word is “basic.” Basic laws
are by their very nature independent of constitutive assumptions; when placed within a
thermodynamic framework such laws allow one to use the now standard procedures of
continuum thermodynamics to develop suitable constitutive theories.

The organization and central results of our paper are as follows. In §2–3 we revisit a
familiar topic: the bulk material away from the interface. This allows for a discussion of
the first and second laws of thermodynamics in forms that account explicitly for power-
expended by configurational forces. Although the configurational and standard forms
of these laws are equivalent, this simple setting provides a useful vehicle for discussing
the basic structure of these laws, a structure not at all transparent when discussing
phase interfaces. Once this basic framework is established, we turn to our stated goal: to
develop a complete set of equations governing the evolution of a sharp interface separating
a volatile-solvent/nonvolatile-surfactant solution from a vapor atmosphere.

Following a review of the kinematics of the interface given in §4, the interfacial bal-
ances for mass, surfactant molecules, linear and angular momenta, and configurational
momentum are developed in §5. The local versions of these laws are

�V mig = �vV
mig
v = −J,

◦
nx − nx(KV − divSutan) = −divS + ·n− nV mig,

divST = Tn+
J2

�v
n, T = T�,

divSC + f = Cn− J2

�v
n,




(1.3)

where � and �v are the mass densities of the solution and the vapor, V mig
v is the mi-

grational velocity of the interface relative to the vapor, J is the mass flow across the
interface in the direction n, n and nx are the bulk and interfacial molecular densities of
the surfactant, K = −divSn is the total curvature of the interface, utan is the tangential
component of the velocity u of the solution,  and  are the bulk and interfacial fluxes
of surfactant molecules, T and T are the bulk and interfacial Cauchy stress tensors, C
and C are the bulk and interfacial configurational stress tensors, f is the internal config-
urational force density, divS is the surface divergence on the interface, and a superposed
circle denotes the normal time derivative following the migration of the interface through
the solution (more precisely, the migrationally normal time derivative as introduced by
Cermelli, Fried & Gurtin, 2005). In (1.3)3,5, the terms involving J2 reflect the role of
inertia and issue from the assumption that the mass density of the vapor is negligibly
small in comparison to that of the solution. This approximation is used also by Burelbach,
Bankoff & Davis (1988) and Danov, Alleborn, Raszillier & Durst (1998).

The external power expended on a subset of the interface by both standard and config-
urational forces is discussed in §6. The final form for this power expenditure shows that

† This work is somewhat obscure; better references for the underlying ideas are Gurtin (1995,
2000).
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no power expenditure is associated with the tangential motion of the interface (which
is to be expected, since only the normal motion of the interface is intrinsic). On these
grounds, we reason that the tangential component of the internal configurational density
f must be indeterminate in the sense in which that term is used in classical mechan-
ics. As a consequence of this result, we may conclude that only the normal component
of the configurational momentum balance (1.3)5 is relevant to the theory. This normal
configurational momentum balance reads

Ctan :K + divSc + f = n·Cn− J2

�v
, (1.4)

where Ctan is the tangential component of the interfacial configurational stress C, K =
gradSn is the interfacial curvature tensor, c is the configurational shear, and f = f·n is
the normal component of the force density f.

The first and second laws of thermodynamics at the interface are developed in §7. The
local versions of these laws are

◦
εx − ϑηx(KV − divSutan) = µ

◦
nx − ·gradSµ−Ctan :D

− fV mig + c·gradSV mig + q·n− ϑηV mig + q,

ϑ
◦
ηx − ϑηx(KV − divSutan) ≥ q·n− ϑηV mig +

ϑ

ϑv
q,




(1.5)

where εx is the interfaial internal energy density, µ is the chemical potential of the
surfactant measured relative to that of the solution, Ctan = PC (with P = 1 − n⊗n)
is the tangential component of C, D is the interfacial rate of stretch, q is the bulk heat
flux, η and ηx are the bulk and interfacial entropy densities, θ and ϑv are the absolute
temperatures of the solution and the vapor, and q is the heat flow from the solution
to the vapor. Our formulation of the first two laws is predicated on two assumptions.
First, we assume that the surfactant chemical potential µ and the absolute temperature
ϑ of the solution is smooth up to the interface, and that the surface limits of these fields
is equal to the surfactant chemical potential and absolute temperature on the interface.
This requirement is often refered to as an expression of local thermochemical equilibrium.
Second, we assume that the flow of surfactant molecules to the vapor is negligible.

Along with local versions of the basic laws, our development up until this point yields
an interfacial counterpart of Eshelby’s relation for the bulk configurational stress tensor
C. In our setting, the bulk Eshelby relation has the form

C =
{
ω − 1

2�|u|
2
}
1−T, ω = ψ − nµ, (1.6)

where ω, ψ, and T denote the grand canonical potential density, the free-energy density,
and the Cauchy stress tensor of the solution. Analogously, we find that the interfacial
configurational stress tensor has the form

C = ωxP−T + n⊗c, ωx = ψx − nxµ, (1.7)

where ωx is the interfacial grand canonical potential density, ψx is the interfacial free-
energy denisty, T is the interfacial Cauchy stress tensor, and c is the configurational
shear. Because we neglect the mass of the interface, (1.7) contains no counterpart of the
kinetic energy term entering (1.6). The bulk and interfacial Eshelby tensors (1.6) and
(1.7) enter the configurational momentum balance and therefore play an important role
in determining the form taken by our generalized Hertz–Knudsen–Langmuir equation. A
derivation of the bulk result is provided in §3. This derivation is performed independent
of any particular constitutive equations and relies solely on a simple invariance argument.
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The derivation of (1.7) follows from the same notion of invariance. However, because that
proof is complicated, its essential steps are relegated to the Appendix.

In §8 we present various alternative forms for the balances (1.3)3 and (1.3)5 of standard
and configurational momentum. In particular, as a consequence of the representations
(1.6) and (1.7), the normal configurational momentum balance (1.4) becomes

Ctan :K + divSc + f = ω − 1
2�|u|

2 − n·Tn− J2

�v
. (1.8)

Also, using the representations (1.6) and (1.7) in the normal component of the sum of
(1.3)3 and (1.3)5 yields the normal combined momentum balance

ωxK + divSc + f = ω − 1
2�|u|

2, (1.9)

which can be imposed instead of the normal configurational momentum balance (1.8)
or, alternatively, instead of the normal component of the standard momentum balance
(1.3)3.

The local version of the second laws as derived in §7 combines with the various inter-
facial balances to yield a dissipation inequality. In §9 we develop constitutive equations
consistent with that inequality. In addition to equations of state of the form

ψx = ψ̂x(nx, ϑ), µ =
∂ψ̂x(nx, ϑ)

∂nx
, ηx = − ∂ψ̂x(nx, ϑ)

∂ϑ
, (1.10)

we restrict our attention to uncoupled, linear, isotrotropic relations

Ctan = −{κS + ζS}(trD)P− 2ζS(nx, ϑ)D0, c = −αSgradSV mig,

f = −βSV mig,  = −mSgradSµ, q = −λS(ϑ− ϑv),

}
(1.11)

in which the dilatational viscosity κS+ζS ≥ 0, rotational viscosity αS ≥ 0, shear viscosity
ζS ≥ 0, kinetic coefficient βS ≥ 0, molecular mobility mS ≥ 0, and heat transfer coefficient
λS ≥ 0 may depend on (nx, ϑ). In (1.11)1, D0 = D− 1

2 (trD) is the deviatoric component
of the interfacial rate of stretch. In view of (1.7), the theory also determines auxiliary
constitutive equations

T =
{
ωx + (κS + ζS)trD

}
P + 2ζSD0, ωx = ψ̂x(nx, ϑ)− nx ∂ψ̂x(nx, ϑ)

∂nx
, (1.12)

the first of which was proposed by Scriven (1960). Further, (1.12)1 implies that the
surface tension σ = 1

2 trT has the form

σ = ωx + (κS + ζS)trD. (1.13)

and therefore consists of an equilibrium contribution coincident with the interfacial grand
canonical potential, per unit area, and a dissipative contribution associated with the
interfacial rate of dilation.

In §10 we discuss sorption isotherms. Our considerations here stem from the hypothesis
of local thermochemical equilibrium. Supposing that ψ and ψx are given by equations of
state of the form ψ = ψ̂(n, ϑ) and ψx = ψ̂x(nx, ϑ), this hypothesis yields the interfacial
condition

µ =
∂ψ̂(n, ϑ)

∂n
=

∂ψ̂x(nx, ϑ)
∂nx

. (1.14)

We argue that ψ̂x is invertible in nx for ϑ fixed; granted this, (1.14) defines a soprtion
isotherm of the form nx = I(n, ϑ). We also provide a simple derivation of the classical
Langmuir (1918) sorption isotherm.
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The general interfacial equations that arise on using the constitutive equations devel-
oped in §7 in the balances (1.3)2,3, (1.4), and (1.5)1 are presented in §11. Those equations
are complicated and, for that reason, in §12 we develop approximate equations based on:
(i) the assumption that the behavior of the system remains close to a flat equilibrium
state, and (ii) a scaling under which various dissipative processes are negligible. The re-
duced versions of the molecular balance, energy balance, standard momentum balance,
and normal configurational momentum balance are

◦
nx − nx(KV − divSutan) = divS

{
mS gradSµ

}
−

{
m gradµ

}
·n− nV mig,

ϑv
{◦
ηx − ηx(KV − divSutan)

}
= −

{
k gradϑ

}
·n− �V mig,

σKn + gradSσ + 2divS
{
ζSD0

}
= 2�νDn−

{
p− J2

�v

}
n,

βSV
mig = −�

{
ϑ

ϑv
− 1

}
−

{
p− J2

�v

}
− ψ0

{
n

n0
− 1

}
+ 1

2�|u|
2,




(1.15)

where m is the bulk surfactant mobility, � is the latent heat of evaporation, and ψ0 and
n0 is the bulk densities of the free energy and surfactant molecules at flat equilibrium. A
comparison of (1.1)4 and (1.15) shows that our simplfied normal configurational momen-
tum balance provides a slight generalization of the Hertz–Knudsen–Langmuir equation.
If we set ψ0 = 0 and assume that the terms −J2/�v and 1

2�|u|2 are negligible, then
(1.15)4 reduces to an equation,

βSV
mig = −�

{
ϑ

ϑv
− 1

}
− p (1.16)

used by Ajaev & Homsey (2001) in place of the Hertz–Knudsen–Langmuir equation.
Pressure effects aside, (1.15)4 shows that the vapor recoil effect† embodied by the term
−J2/�v in the standard momentum balance (1.15)3 may exert a direct influence on
evaporation-condensation. Also evident in (1.15)4 are influences of the bulk molecular
density n and the bulk kinetic energy density 1

2�|u|2.
The reduced version of normal combined momentum balance

βSV
mig = ωxK − �

{
ϑ

ϑv
− 1

}
− ψ0

{
n

n0
− 1

}
+ 1

2�|u|
2 (1.17)

provides an alternative to (1.15)4 in which the term p− J2/�v associated with pressure
and vapor recoil is replaced by the term ωxK involving the product of the interfacial
grand canonical potential, per unti area, with the total curvature. If we formally set
ψ0 = 0, and neglect kinetic energy, then (1.17) reduces to the kinetic Gibbs–Thomson
equation

�θ = ωxK − βSV
mig, θ =

ϑ− ϑv
ϑv

, (1.18)

utilized by Voronkov (1964) to study solidification.‡ The theory therefore demonstrates
that, in lieu of effects associated with pressure and vapor recoil, processes of evaporation
and condensation may be influenced by the curvature of the interface.

† The early experiments of Hickman (1952, 1972) idenitifed the importance of vapor recoil
in the stability of liquid-vapor interfaces. Stability analyses incorporating the vapor recoil term
in the standard momentum balance while using the Hertz–Knudsen–Langmuir equation are
provided by Palmer (1976) and Burelback, Bankoff & Davis (1988).
‡ See also Gurtin (1988), who uses configurational forces to derive (1.18) and its anisotropic

generalization.
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The paper concludes with a comparison, in §13, of the reduced equations (1.15) with
the equations utilized by Danov, Alleborn, Raszillier & Durst (1998).

2. Theory in bulk
Throughout this section P(t) denotes an arbitrarily chosen bulk region that convects

with the solution and m(x, t) denotes the outward unit normal to ∂P(t).

2.1. Kinematics
We write u(x, t) for the velocity and

L = gradu, D = 1
2 (L + L�), and W = 1

2 (L− L�) (2.1)

for the velocity gradient, rate of stretch, and rate of spin. We assume that the solution is
incompressible, so that

divu = trD = 0. (2.2)

We use a superposed dot to denote the material time-derivative; e.g., for a scalar field
Φ(x, t),

Φ̇ =
∂Φ
∂t

+ (gradΦ)·u. (2.3)

Then, for P(t) for a region that convects with the solution and any field Φ(x, t),

d
dt

∫
P(t)

Φ dv =
∫
P(t)

Φ̇ dv. (2.4)

2.2. Balance of surfactant molecules
We write n(x, t) and (x, t) for the molecular density and molecular flux of surfactant in
the solution. The balance of surfactant molecules then requires that, for P(t) any region
that convects with the solution,

d
dt

∫
P(t)

n dv = −
∫

∂P(t)

·m da (2.5)

or, equivalently, by (2.4) and the divergence theorem, that the local law

ṅ = −div  (2.6)

holds in the solution.

2.3. Standard balances for linear and angular momentum
We write � for the (constant) mass density and T(x, t) for the Cauchy stress. The balances
of linear and angular momentum then require that, for any region P(t) that convects with
the solution,

d
dt

∫
P(t)

�udv =
∫

∂P(t)

Tm da (2.7)

and

d
dt

∫
P(t)

(x− 0)×�udv =
∫

∂P(t)

(x− 0)×Tm da (2.8)
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or, equivalently, by (2.4) and the divergence theorem, that the local laws

�u̇ = divT and T = T� (2.9)

hold in the solution.
The incompressibility of the solution requires that the Cauchy stress T admit a de-

composition

T = −p1 + S (2.10)

into a constitutively indeterminate pressure p(x, t) and a symmetric, traceless extra stress
S(x, t) available for constitutive prescription.

2.4. Digression: the chemical potential
We view the chemical potential as a primitive quantity that enters the theory through
the manner in which it appears in the basic law expressing balance of energy. This con-
trasts sharply with what is most often done in the literature, where chemical potentials
are either defined as derivatives of free energy with respect to molecular densities or are
introduced variationally as Lagrange multipliers corresponding to constraint expressing
the conservation of mass. To the contrary, we use a framework in which the balance of
energy is basic and take the view that that balance should account properly for energy
carried with the flow of molecules through the material (Eckart 1940; Gurtin and Var-
gass 1971). To characterize the energy carried into regions by molecular transport, we
introduce a chemical potential µ(x, t); specifically, the flux of surfactant molecules, as
represented by , is presumed to carry with it a flux of energy described by µ; thus

−
∫

∂P(t)

µ ·m da (2.11)

represents the net rate at which energy is carried into P by the diffusive flow of surfactant
molecules across ∂P.

2.5. Balance of energy. Growth of entropy
We write ε(x, t) and η(x, t) for the internal energy density and entropy density, µ(x, t) for
the chemical potential of the surfactant (measured relative to the chemical potential of
the solvent), q(x, t) for the heat flux, and ϑ(x, t) for the (absolute) temperature. The first
and second laws of thermodynamics, namely balance of energy and growth of entropy,
require that, for P(t) any region that convects with the solution,

d
dt

∫
P(t)

{
ε + 1

2�|u|
2
}

dv =
∫

∂P(t)

Tm·uda −
∫

∂P(t)

µ ·m da −
∫

∂P(t)

q·m da (2.12)

and
d
dt

∫
P(t)

η dv ≥ −
∫

∂P(t)

q
ϑ
·m da, (2.13)

or, equivalently, by (2.2) and the divergence theorem, (2.4), (2.9), and (2.10), that the
local laws

ε̇ = S :D + µṅ− ·gradµ− divq (2.14)

and

η̇ ≥ −div
q
ϑ

(2.15)
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hold in the solution.
If we define the free energy density ψ(x, t), measured relative to the free energy density

of the vapor, via

ψ = ε− ϑη, (2.16)

then, subtracting (2.15) from (2.14), we arrive at the local free-energy inequality

ψ̇ + ηϑ̇− µṅ− S :D + ·gradµ +
1
ϑ
q·gradϑ ≤ 0. (2.17)

2.6. Constitutive equations
As constitutive equations for the solution, we take the classical state relations

ψ = ψ̂(n, ϑ), µ =
∂ψ̂(n, ϑ)

∂n
, η = − ∂ψ̂(n, ϑ)

∂ϑ
, (2.18)

the Newtonian viscous flow relation

S = 2�ν(n, ϑ)D, (2.19)

the Fick–Soret law

 = −m(n, ϑ) gradµ−ms(n, ϑ)gradϑ, (2.20)

and the Fourier–Dufour law

q = −kd(n, ϑ) gradµ− k(n, ϑ)gradϑ. (2.21)

Here, the kinematic viscosity ν, surfactant mobility m, Soret coefficient ms, Dufour co-
efficient kd, and thermal conductivity k obey

ν ≥ 0, m ≥ 0, k ≥ 0, and mk ≥ 1
4 (ms + kd)2. (2.22)

Granted (2.22), the constitutive relations (2.18)–(2.21) are consistent with the free-energy
inequality (2.17).

Also important in what follows is the grand canonical potential density defined by

ω = ε− ϑη − nµ = ψ − nµ, (2.23)

and described by the constitutive equation

ω = ω̂(n, ϑ) = ψ̂(n, ϑ)− n
∂ψ̂(n, ϑ)

∂n
. (2.24)

Somewhat more conventional alternatives to (2.20) and (2.21) arise on using (2.18)2
to express gradµ in terms of the gradients of gradϑ and gradn.

3. Configurational mechanics and thermodynamics in bulk
We now modify the discussion of Anderson, Cermelli, Fried, Gurtin, and McFadden

(2005), which recasts in a spatial setting Gurtin’s (1995, 2000) approach to configura-
tional forces, to account for solute diffusion.

3.1. Balance of configurational momentum
We consider a configurational momentum balance involving three fields: a specific con-
figurational momentum p(x, t), a configurational stress C(x, t), and an internal config-
urational force density f(x, t). The balance of configurational momentum then requires
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that, for any region P(t) that convects with the solution,

d
dt

∫
P(t)

�pdv =
∫

∂P(t)

Cmda +
∫
P(t)

f dv, (3.1)

or, equivalently, by (2.4) and the divergence theorem, that the local law

�ṗ = divC + f (3.2)

holds in the solution.

3.2. Migrating control volumes. Observed and relative velocities

To characterize the way that configurational forces perform work, a means of capturing
the kinematics associated with the transfer of material is needed. We accomplish this
with the aid of control volumes R(t) that migrate relative to the solution and thereby
result in the transfer of matter to — and the removal of material from — R(t) at ∂R(t).
Here it is essential that regions P(t) convecting with the solution not be confused with
control volumes R(t) that migrate relative to the solution.

Unless specified to the contrary, R(t) is a migrating control volume with V∂R(x, t) the
(scalar) normal velocity of ∂R(t) in the direction of the outward unit normal m(x, t).
To describe power expenditures associated with the migration of R(t), we introduce a
velocity field v∂R(x, t) for ∂R(t). Compatibility then requires that v∂R have V∂R as its
normal component,

v∂R ·m = V∂R, (3.3)

but v∂R is otherwise arbitrary.
Nonnormal velocity fields, while not intrinsic, are important. For example, given an

arbitrary time-dependent parametrization x = x̂(ξ1, ξ2, t) of ∂R(t), the field defined by
v∂R(x̂(ξ1, ξ2, t), t) = ∂x̂(ξ1, ξ2, t)/∂t (holding (ξ1, ξ2) fixed), is a velocity field for ∂R(t),
but v∂R(x, t) is generally nonnormal. We refer to the normal velocity V∂R and any choice
of the velocity field v∂R for ∂R as observed velocities for ∂R, since they represent velocity
fields that characterize the motion of R through space, independent of the motion of the
solution. While it is important that we allow for the use of nonnormal velocity fields,

we require that the theory itself not depend on the particular observed velocity
field used to describe a given migrating control volume. (#)

We refer to the hypothesis (#) as intrinsicality. Intrinsicality is reminiscent of, but different
from, the general requirement that physical theories be independent of the observer.

It is also possible to characterize the motion of R relative to the solution; in this case
we use the migrational velocities

vmig
∂R = v∂R − u and V mig

∂R = V∂R − u·m. (3.4)
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3.3. Basic laws for a migrating control volume

Since divu = 0, we may use (2.3), (3.4)2, and the divergence theorem to conclude that

d
dt

∫
R(t)

Φ dv =
∫
R(t)

∂Φ
∂t

dv +
∫

∂R(t)

ΦV∂R da

=
∫
R(t)

{
Φ̇− u·gradΦ

}
dv +

∫
∂R(t)

Φ
{
V mig
∂R + u·m

}
da

=
∫
R(t)

Φ̇ dv +
∫

∂R(t)

ΦV mig
∂R da. (3.5)

By integrating the local laws (2.9)1, (2.6), (2.14), (2.15), and (3.2) over R(t) and using
(3.5) and the divergence theorem, we obtain versions of those laws valid for a migrating
control volume:

d
dt

∫
R(t)

�udv =
∫

∂R(t)

{
Tm + �uV mig

∂R

}
da,

d
dt

∫
R(t)

�pdv =
∫

∂R(t)

{
Cm + �pV mig

∂R

}
da +

∫
R(t)

f dv,

d
dt

∫
R(t)

n dv = −
∫

∂R(t)

{
·m− nV mig

∂R

}
da,

d
dt

∫
R(t)

{
ε + 1

2�|u|
2
}

dv =
∫

∂R(t)

{
Tm·u− µ ·m

− q·m +
{
ε + 1

2�|u|
2
}
V mig
∂R

}
da,

d
dt

∫
R(t)

η dv ≥ −
∫

∂R(t)

q·m− ϑηV mig
∂R

ϑ
da.




(3.6)

In view of (3.4), the first two of (3.6) suggest that Tm + �uV mig
∂R = {T + �u⊗vmig

∂R }m
and Cm+ �pV mig

∂R = {C+ �p⊗vmig
∂R }m be viewed as effective tractions. Similarly, (3.6)3

and (3.6)5 suggest that  − nvmig
∂R and {q − ϑηvmig

∂R }/ϑ be viewed as effective fluxes of
surfactant molecules and entropy. While correct, the interpretation of −T�u + µ  + q−
{ε + 1

2�|u|2}v
mig
∂R as an effective energy flux is of limited value.

The energy balance (3.6)4 accounts only implicitly for the power expended by con-
figurational forces. We next consider an alternative version of that balance in which
cofigurational power expenditures are accounted for explicitly.

3.4. Configurational form of the first law

Following Gurtin (1995, 2000) and Anderson, Cermelli, Fried, Gurtin, and McFadden
(2005), a version of energy balance for a migrating control volume R(t) that accounts
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explicitly for configurational power expenditures is

d
dt

∫
R(t)

{
ε + 1

2�|u|
2
}

dv =
∫

∂R(t)

{
(Tm + �uV mig

∂R )·v∂R + (Cm + �pV mig
∂R )·vmig

∂R

}
da

︸ ︷︷ ︸
W (R(t))

−
∫

∂R(t)

µ
{
·m− nV mig

∂R

}
da

︸ ︷︷ ︸
E(R(t))

−
∫

∂R(t)

{
q·m− ϑηV mig

∂R

}
da

︸ ︷︷ ︸
Q(R(t))

. (3.7)

Before establishing the precise way in which (3.7) is equivalent to the standard form
(3.6)4, we discuss the physical ideas underlying (3.7).

The abstract structure of (3.7) treats a migrating control volume as a “thermody-
namic entity” in which the inflow of energy is subsumed by an expenditure of power —
accounting for both standard and configurational forces — and effective flows of energy
associated with surfactant and heat transport.

The physical hypothesis underlying the chosen form for the power expenditure W (R)
is the presumption that configurational forces expend power in consort with transfers
of material. In particular, we view Cm + �pV mig

∂R as a force, per unit area, associated
with the transfer of material across ∂R; since the migrational velocity v∂R−u represents
the velocity with which material is transferred across ∂R, we take v∂R − u to be an
appropriate power-conjugate velocity for Cm + �pV mig

∂R and, therefore, assume that the
migration of R is accompanied by the power expenditure∫

∂R(t)

{
Cm + �pV mig

∂R

}
·(v∂R − u) da (3.8)

In deciding on the appropriate expenditure by extended standard traction, it is important
to emphasize that material is continually being transfered across ∂R as a result of its
migration through the solution; hence, ∂R(t) has no intrinsic material description. We
therefore take the observed velocity v∂R of ∂R, rather than the material velocity u,
as the appropriate conjugate velocity for Tm + �uV mig

∂R and write the standard power
expenditure in the form ∫

∂R(t)

{
Tm + �uV mig

∂R

}
·v∂R da. (3.9)

Finally, the body force f , being internal, is viewed as acting within the control volume
∂R; as such, f cannot affect the external power expenditure W (R).

The integral E(R) represents the effective energy flow induced by the flow of surfac-
tant molecules across ∂R. The chosen form of E(R) is completely consistent with the
reasoning leading to the conventional term (2.11) entering the energy balance for a region
P convecting with the solution: granted the interpretation of  − nV mig

∂R as the effective
flux of surfactant molecules on ∂R, µ{ − nV mig

∂R } is the associated energy flux and we
are led to consider

E(R(t)) = −
∫

∂R(t)

µ
{
·m− nV mig

∂R

}
da (3.10)

as the appropriate choice for the effective energy flow across ∂R.
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The integral Q(R) represents the effective heat flow across ∂R. The chosen form of
Q(R) is completely consistent with the relation between heat flux and entropy flux un-
derlying the conventional statements (2.12) and (2.13) of the first two laws. Specifically,
granted the interpretation of {q− ϑηvmig

∂R }/ϑ as the effective flux of entropy on ∂R, we
require that, on ∂R,

entropy flow per unit area =
heat flow per unit area

ϑ
,

then we are led to consider

Q(R(t)) = −
∫

∂R(t)

{
q ·m− ϑηV mig

∂R

}
da (3.11)

as the appropriate choice for the effective heat flow across ∂R.

3.5. Equivalence of the standard and configurational form of the first law. The Eshelby
relation as a consequence of intrinsicality

The basic laws (3.6) for a migrating control volume involve only the intrinsic normal
migrational velocity V mig

∂R and, thus, satisy the intrinsicality hypothesis (#). The power
expenditure W (R) entering the configurational statement (3.7) of the first law involves,
however, the vectorial migrational velocity vmig

∂R and, therefore, is not necessarily intrinsic.
In Appendix A, we establish the following

Equivalency Theorem The first law in the configurational forms (3.7), subject to
the intrinsicality hypothesis (#), is equivalent to this laws in the standard form (3.6)4,
supplemented by the Eshelby relation

C =
{
ψ − µn− 1

2�|u|
2
}
1−T (3.12)

and the configurational-momentum relation

p = −u. (3.13)

Before proceeding, we note that, by (2.24), the Eshelby relation (3.12) admits an
alternative form

C =
{
ω − 1

2�|u|
2
}
1−T, (3.14)

involving the grand canonical potential density ω.

3.6. Role of the bulk configurational momentum balance in the theory

Roughly speaking, the configurational system — that is, the configurational stress C,
momentum p = −u, and internal force density f — is related to the integrity of the body’s
material structure and expends power in concert with the transfer of material and in the
motion of defects. For a solution free of bulk defects, one therefore expects that the bulk
configurational momentum balance should be irrelevant to the theory. Consistent with
this expectation, we view f as determined via the configurational momentum balance. In
view of the linear momentum balance (2.9)1 and the Eshelby relation (3.14), it follows
that �u̇−divC = −grad

{
ω− 1

2�|u|2
}

(independent of constitution). The configurational
momentum balance (3.2) therefore implies that f = −grad

{
ω − 1

2�|u|2
}

and, granted
this and the relations (3.12) and (3.13), the configurational force balance is a direct
consequence of the standard force balance. On the other hand, as we shall see, the
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configurational balance on the interface separating the solution and the vapor is an
independent balance, not derivable from standard interfacial results.†

4. Interfacial kinematics
We assume that the interface separating the solution and the vapor is a smoothly

evolving surface S(t) oriented by a unit normal field n(x, t) directed into the region
occupied by the vapor. We write V (x, t) for the (scalar) normal velocity of S(t).

4.1. Interfacial fields
An interfacial field is a smooth field defined on S(t) for all time t. An interfacial vector-
field g(x, t) is tangential if

g·n = 0. (4.1)

For an interfacial tensor field G(x, t) we require that‡
Gn = 0; (4.2)

if, in addition,

G�n = 0, (4.3)

so that G maps tangent vectors to tangent vectors, we then say that G is fully tangential.
An example of a fully tangential interfacial tensor field is the projection

P = 1− n⊗n (4.4)

onto S. Each interfacial tensor field G admits a decomposition of the form

G = Gtan + n⊗g, (4.5)

in which Gtan = PG is fully tangential and g = G�n is tangential. The verification of
the decomposition (4.5) is straightforward: simply expand PG using (4.4).

4.2. Interfacial gradient. Interfacial divergence theorem
The interfacial gradient gradS is defined by the chain rule; that is, for ϕ(x, t) an interfacial
scalar field, g(x, t) an interfacial vector field, and z(λ) an arbitrary curve on S,

d
dλ

ϕ(z(λ), t) =
[
gradSϕ(z(λ), t)

]
· dz

dλ
and

d
dλ

g(z(λ), t) =
[
gradSg(z(λ), t)

] dz

dλ
.

Since dz/dλ is tangent to S, this defines gradSϕ and gradSg only on vectors tangent to
S, but in accord with (4.1) and (4.2), we extend gradSϕ and gradSg by requiring that
(gradSϕ)·n = 0 and (gradSg)n = 0. Thus gradSϕ is a tangential vector field, while gradSg
is an interfacial tensor field. The interfacial divergence of g is then defined by

divSg = tr(gradSg), (4.6)

† Cf. the materials science literature, where one often finds interfacial configurational balances
determined via a minimum principle, assuming equilibrium, and then used as missing interface
conditions for dynamical problems.
‡ An interfacial tensor field would generally be defined at each x on S(t) as a linear transfor-

mation of the tangent space at x into R3; the requirement (4.2) allows us to consider G(x, t) at
each point x on S(t) as a linear transformation of R3 into R3.
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while the interfacial divergence divSG of a interfacial tensor field G is the interfacial
vector field defined through the identity

h·divSG = divS(G�h)−G :gradSh (4.7)

for all interfacial vector fields h.
A smooth interfacial field can always be extended smoothly to a (three-dimensional)

neighborhood of any given point x of S(t). Such local extensions can be used to express
gradS in terms of the bulk gradient operator. For example,

gradSϕ = Pgradϕ and gradSg = (gradg)P, (4.8)

so that, for the particular vector field g(x) = x,

gradSg = P. (4.9)

Let g and h be surface vector fields with g tangential, and let G be an interfacial tensor
field. Then the interfacial divergence theorem asserts that, for any subsurface A of S,∫

∂A

g·mds =
∫
A

divSg da,
∫
∂A

Gmds =
∫
A

divSGda,

∫
∂A

Gm·hds =
∫
A

{
h·divSG + G :gradSh

}
da,




(4.10)

where m denotes the unit normal to ∂A. Granted (4.7), (4.10)2, and (4.10)3 are simple
corollaries of (4.10)1: to obtain (4.10)2 from (4.10)1, choose g = G�a with G a superificial
tensor field a �= 0 constant; to obtain (4.10)3 from (4.10)1, choose g = G�h with G an
interfacial tensor field and h a (not necessarily tangential) interfacial vector field.

4.3. Interfacial curvature tensor. Total curvature. Scalar normal velocity
The curvature tensor K defined by

K = −gradSn (4.11)

is fully tangential and symmetric, and

K = trK = −divSn (4.12)

is the total curvature (i.e., twice the mean curvature). Then, by (4.4), we have the identity

divSP = Kn. (4.13)

Since G�n = 0 for any fully tangential tensor field G, choosing h = n and G fully
tangential in (4.7), (4.11) yields the useful identity

n·divSG = G :K for G fully tangential. (4.14)

Recalling that V (x, t) denotes the (scalar) normal velocity of S, we then have the
useful identities

gradS(V n) = n⊗gradSV − VK.

divS(V n) = −KV.

}
(4.15)

4.4. Interfacial limit of the bulk velocity. Interfacial velocity-gradient
We write utan(x, t) for the tangential component of the interfacial limit of the bulk
velocity, as defined by

utan = Pu. (4.16)
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Then, the interfacial limit of u can be expressed as

u = utan + (u·n)n (4.17)

and, by (4.11), has interfacial gradient

gradSu = gradSutan − (u·n)K + n⊗gradS(u·n) (4.18)

and interfacial divergence

divSu = divSutan − (u·n)K. (4.19)

Additionally, we may define the interfacial velocity gradient, interfacial rate of stretch,
and interfacial rate of spin by

L = gradSu = LP = (D + W)P.

D = 1
2 (PL + L�P) = PDP

W = 1
2 (PL−L�P) = PWP,


 (4.20)

where it is understood that L, D, and W are evaluated on S. The tensors D and W are
fully tangential.

4.5. Interfacial velocity fields
We let v(x, t) denote a velocity field for S—that is, a velocity field describing the evolution
of the interface. The normal component of v must then satisfy

V = v·n, (4.21)

but the tangential component of v, namely Pv, which is not intrinsic, may be arbitrarily
chosen. The fields

vmig = v− u and V mig = V − u·n (4.22)

represent migrational velocites of S relative to the bulk solution.
Consider an arbitrary migrating subsurface A(t) of S(t). To describe the migration

of A(t), we introduce a field v∂A(x, t) defined over ∂A(t) for all t. Compatibility then
requires that

v∂A ·n = V and v∂A ·m = V∂A, (4.23)

where V∂A, which is intrinsic, is the scalar normal velocity of ∂A in the direction of its
normal m.

The motion of ∂A relative to the solution is described by the migrational velocity
v∂A − u. Further,

V mig
∂A = V∂A − utan ·m (4.24)

represents the normal migrational velocity of ∂A.
Let w∂A(x, t) be defined by the decomposition

v∂A = v + w∂A. (4.25)

Then, by (4.21) and (4.23)1, w∂A ·n = v∂A ·n− v·n = V − V = 0 and w∂A is tangential.
The component of v∂A tangential to ∂A is not intrinsic and may be arbitrarily chosen.

We require that the theory not depend on the velocity field v∂A chosen to characterize
the migration of ∂A, and therefore that the theory be invariant under transformations
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of v∂A of the form

v∂A → v∂A + t, t tangent to ∂A. (4.26)

4.6. Migrationally normal velocity field for S
We continue to write V (x, t) for the scalar normal-velocity of S(t). In addition, we let
v(x, t) denote a (arbitrary) velocity field for S(t). In discussing the formulation of integral
balance laws for the interface S what is needed is not the normal velocity V of S, but,
instead, a velocity that characterizes, intrinsically, the migration of that surface. We
therefore seek a velocity field v for S that renders the migrational velocity v−u normal.
With this in mind, note that

v− u = v − (u·n)n− utan = (V − u·n)n + (vtan − utan),

so that, choosing vtan = utan, we arrive at a choice of velocity field v for S that renders
its migrational velocities v− u± normal and hence intrinsic:

v− u = (V − u·n)n. (4.27)

The resulting velocity field v, called the migrationally normal velocity field for S, has the
specific form

v = V n + utan (4.28)

and is important because it is normal when computed relative to the bulk solution.
Finally, granted (4.28), the relations (4.24), (4.25), and (4.27) imply that

w∂A ·m = (v∂A − u)·m−
= 0︷ ︸︸ ︷

(v− u)·m = V mig
∂A . (4.29)

4.7. Migrationally normal time-derivative following the interface. Transport theorem for
interfacial fields

Let ϕ(x, t) be an interfacial field and v the migrationally normal velocity field (4.28).
Given any time t0 and any point x0 on S(t0), let z(t) denote the unique solution of

dz(t)
dt

= v(z(t), t), z(t0) = x0,

and define

◦
ϕ(x0, t0) =

dϕ(z(t), t)
dt

∣∣∣∣
t=t0

. (4.30)

The interfacial field ◦ϕ defined in this manner is referred to as the migrationally normal
time-derivative of ϕ following S.

The velocities V mig and V mig
∂A defined in (4.22) and (4.29) represent respective migra-

tional velocities of S and ∂A relative to the bulk solution. Similarly, the migrationally
normal time-derivative ◦ϕ following S utilizes, as a velocity field v for S, one that renders
normal the migrational velocity v− u relative to the bulk solution.

Important to what follows is the
Interfacial Transport Theorem† For ϕ a smooth surface scalar field and ◦

ϕ its
migrationally normal time-derivative following S,

d
dt

∫
A(t)

ϕ da =
∫
A(t)

{◦
ϕ + ϕdivSutan − ϕKV

}
da +

∫
∂A(t)

ϕV mig
∂A ds. (4.31)

† Cf. Cermelli, Fried & Gurtin (2005).
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A+

n

A−

−n

m

∂A

S
A

Figure 1. Schematic of a migrating subsurface A(t) of the interface S showing an enlarged
view of the associated surface-pillbox.

4.8. Migrating pillboxes
Consider an arbitrary migrating subsurface A(t) of S(t). The migrating interfacial-pillbox
determined by A is a control volume of infinitesimal thickness consisting of (Fig. 1):
• a surface A+(t), with unit normal n(x, t), lying in the vapor;
• a surface A−(t), with unit normal −n(x, t), lying in the solution;
• a lateral bounding surface ∂A(t) with outward unit normal m(x, t).

In what follows we formulate basic laws for the interface using an arbitrary migrating
interfacial-pillbox.

5. Mechanical balances at the interface
5.1. Balance of mass. No-slip condition

Let �v and uv, respectively, denote the mass density and velocity of the vapor at the in-
terface, so that, bearing in mind (4.22), the respective migrational velocities of S relative
to the bulk solution and vapor are given by

V mig = V − u·n and V mig
v = V − uv ·n. (5.1)

The net mass flow into any migrating interfacial-pillbox A(t) is given by
∫
A(�vV mig

v −
�V mig) da and balance of mass requires that this net mass flow vanish; hence

�V mig = �vV
mig
v = −J. (5.2)

The field J represents the mass flow across S in the direction of n.
It is clear from (5.2) that, because of the discrepancy in solution and vapor densities,

we must have uv·n �= u·n. On the other hand, we assume that the tangential components
of the solution and vapor velocities at the interface coincide:

Pu = Puv (no-slip condition); (5.3)

equivalently,

uv − u = (uv ·n− u·n)n. (5.4)

5.2. Balance of surfactant molecules at the interface
We endow the interface with an interfacial molecular density nx(x, t) and an interfacial
molecular flux (x, t). We write n and  for the interfacial limits of the bulk molecular
density and flux. Let A(t) be an arbitrary migrating interfacial-pillbox. Surface diffusion
then results in a flow ·m of surfactant molecules across ∂A, while bulk diffusion results
in a flow ·n of surfactant molecules to A from the solution. The migration of ∂A within
S results in a flow nxV mig

∂A of surfactant molecules across ∂A, while the migration of S
results in a flow −nV mig of surfactant molecules into A across A−.
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In view of the foregoing discussion, balance of surfactant molecules requires that, for
A(t) any migrating interfacial-pillbox,

d
dt

∫
A(t)

nx da = −
∫

∂A(t)

{
·m− nxV mig

∂A

}
ds +

∫
A(t)

{
·n− nV mig

}
da (5.5)

or, equivalently, using the interfacial divergence theorem (4.10)1 and the transport the-
orem (4.31), that the local law

◦
nx − nx(KV − divSutan) = −divS + ·n− nV mig (5.6)

hold on the interface. As Cermelli, Fried & Gurtin (2005) note, (5.6) is equivalent to a
balance obtained by Mavrovouniotis & Brenner (1993).†

5.3. Momentum flows
5.3.1. Standard flows

Given any migrating interfacial pillboxA(t), there are linear momentum flows−�uV mig

and �vuvV mig
v into A across A− and A+, so that, by (5.2) and (5.4), the flows of linear

and angular momentum into A are given by

−
∫
A(t)

J(uv ·n− u·n)nda and −
∫
A(t)

J(x− 0)×(uv ·n− u·n)nda. (5.7)

On the other hand,

uv ·n− u·n =
J(1− δ)

�v
, δ =

�v
�
, (5.8)

and the standard momentum flows (5.7) become

−
∫
A(t)

J2(1− δ)
�v

nda and −
∫
A(t)

(x− 0)×
{
J2(1− δ)

�v
n

}
da. (5.9)

5.3.2. Configurational flow
By (3.13), p = −u, and assuming the same holds for the specific configurational

momentum of the vapor, so that pv = −uv, the argument leading to (5.9)1 yields∫
A(t)

J2(1− δ)
�v

nda (5.10)

for the configurational momentum flow into the pillbox A.

5.3.3. Vapor approximation
We neglect configurational stress in the vapor. We suppose that counterparts of the

bulk constitutive equations (2.18) and the bulk Eshelby relation (3.12) hold also in the
vapor. Then, consistent with our neglect of configurational stress, we neglect standard
stress and kinetic energy in the vapor,‡ and, what is cogent to what follows, we require
that the

bulk and interfacial free energy densities of the solution be reckoned relative to
free energy density of the vapor. (∗)

† See also Mavrovouniotis (1989) and Edwards, Brenner & Wassan (1991).
‡ But a partial accounting of inertial effects is retained in the momentum flows (5.12).
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Further, the mass density of the vapor is much smaller than that of the solution. Thus,
bearing in mind that δ = �v/�, we henceforth assume that

δ = 0. (5.11)

An important consequence of (5.11) is that the momentum flows (5.9) and (5.10) become

−
∫
A(t)

J2

�v
nda, −

∫
A(t)

(x− 0)×
{
J2

�v
n

}
da

︸ ︷︷ ︸
standard flows

, and
∫
A(t)

J2

�v
nda

︸ ︷︷ ︸
configurational flow

(5.12)

5.4. Standard balances of linear and angular momentum
5.4.1. Momentum balances

We endow the interface with Cauchy interfacial-stress T(x, t), but neglect interfacial
distributions of linear momentum. We write T for the interfacial limit of the bulk stress.
Let A be an arbitrary migrating interfacial-pillbox. The portion of S exterior to A then
exerts a standard traction Tm across ∂A, while the solution exerts a traction −Tn on
A−. Since we neglect vapor stress, these represent the only standard forces on A.

In view of (5.9) and (5.12)1, the balances of linear and angular momentum require
that, for A(t) any migrating interfacial-pillbox,∫

∂A(t)

Tmds−
∫
A(t)

{
Tn +

J2

�v
n

}
da = 0 (5.13)

and ∫
∂A(t)

(x− 0)×Tmds−
∫
A(t)

(x− 0)×
{
Tn +

J2

�v
n

}
da = 0 (5.14)

or, equivalently, using the interfacial divergence-theorem, that the local laws

divST = Tn +
J2

�v
n and T = T� (5.15)

hold on the interface. These local laws appear also in the work of Mavrovouniotis &
Brenner (2003).†

Since T is an interfacial tensor field, it follows from (5.15) that

T�n = 0, (5.16)

and the Cauchy interfacial-stress T is fully tangential. Thus (4.14) implies that n·divST =
T :K and the component of the linear momentum balance (5.15)1 in the direction n

normal to the interface takes the form

T :K = n·Tn +
J2

�v
(5.17)

of a generalized Young–Laplace relation.

5.5. Balance of configurational momentum
We endow the interface with a configurational interfacial-stress C(x, t) and an internal
configurational force density f(x, t), measured per unit area. Consistent with our ne-
glect of interfacial distributions of linear momentum, we neglect interfacial distributions

† See also Mavrovouniotis (1989) and Edwards, Brenner & Wassan (1991) .
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of configurational momentum. Let A be an arbitrary migrating interfacial-pillbox. The
portion of S exterior to A then exerts a configurational traction Cm across ∂A, while
the solution exerts a configurational traction −Cn.

Bearing in mind (5.12)2, balance of configurational momentum requires that, for A(t)
any migrating interfacial-pillbox,∫

∂A(t)

Cmds +
∫
A(t)

{
f−Cn +

J2

�v
n

}
da = 0 (5.18)

or, equivalently, appealing to the interfacial diverence thorem (4.10)2, that

divSC + f = Cn− J2

�v
n (5.19)

holds on the interface.
In terms of the decomposition

C = Ctan + n⊗c (5.20)

(cf. (4.5)), Ctan represents configurational forces that act tangential to S, while n⊗c (or,
more simply, the interfacial configurational shear c) represents shearing forces that act
normal to S.

We let

f = f·n (5.21)

denote the normal part of the internal configurational force. Thus, on applying (4.5) to
C and using (4.11), (4.14), and (5.20),

divSC = divSCtan + divS(n⊗c)

= (Ctan :K + divSc)n + PdivSCtan −Kc (5.22)

and it follows that the interfacial configurational balance (5.19) may be decomposed into
a normal configurational momentum balance

Ctan :K + divSc + f = n·Cn− J2

�v
(5.23)

and a tangential balance

Pf = −PdivSCtan + Kc + P

{
Cn− J2

�v
n

}
(5.24)

that is irrelevant to what follows (cf. the discussions following (6.5) and (7.14)).

6. Power
To express the power expended by the tractions, we proceed as in §3.4 and mimick

the reasoning leading to the expression W (R(t)) (cf. §3.4) for the power expenditure
on a control volume migrating through the solution. The configurational and standard
tractions Cm and Tm are distributed over the boundary ∂A of the pillbox. As in our
discussion of the bulk phases, we take the migrational velocity v∂A − u of ∂A to be
the appropriate power conjugate velocity for Cm. For Tm, we reason by analogy to
our treatment of the power expended by the standard traction on a migrating control
volume and take as power conjugate the observed velocity v∂A of ∂A. We therefore write
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the power expended by the standard and configurational interfacial stresses C and T
— on A across ∂A — in the form

w(A) =
∫

∂A(t)

{
Tm·v∂A + Cm·(v∂A − u)

}
ds (6.1)

The effective configurational and standard tractions −(Cn + �pV mig) and −(Tn +
�uV mig) are treated exactly as in §3.4: as power-conjugate for the former we take the
velocity vmig = v−u of S relative to the underlying material, as power-conjugate for the
latter we take the observed velocity v of S. The external power expended on A(t) then
has the form

W x(A(t)) = w(A) −
∫
A(t)

{(
Tn +

J2

�v
n

)
·v +

(
Cn− J2

�v
n

)
·vmig

}
da. (6.2)

As for the power W (R) acting on a migrating control volume (cf. §3.4), we require that
the power W x(A(t)) be consistent with the intrinsicality hypothesis (#). As shown in
Appendix B, this implies a interfacial pre-Eshelby relation

C = ϕP−T + n⊗c. (6.3)

We recall (cf. (5.16)) that T is fully tangential. Further, because both P and T are fully
tangential and symmetric, so also is the tangential component Ctan = ϕP−T of C:

Ctan = C�tan. (6.4)

Furthermore, just as the bulk pre-Eshelby relation (A 4) yields an intrinsic expression
for the power W (R(t)) expended on a migrating control volume R(t), we show in Ap-
pendix B that, as a consequence of the interfacial pre-Eshelby relation and requiring that
the velocity field v for S be migrationally normal, the power (6.2) expended on A admits
the intrinsic form

W x(A(t)) =
∫

∂A(t)

ϕV mig
∂A ds

−
∫
A(t)

{
ϕ(KV − divSutan) + Ctan :D + fV mig − c·gradSV mig

}
da. (6.5)

From (6.5) that there is no expenditure of power associated with tangential motion of
the interface S (which is to be expected, since only the normal motion of S is intrin-
sic). Consistent with a constraint of this type, we leave as indeterminate the tangential
component Pf of the internal configurational force density f. This assumption renders
the tangential balance (5.24) irrelevant and allows us to restrict attention to the nor-
mal configurational force balance (5.23). This will be the case throughout what follows;
for that reason, we shall henceforth leave unmentioned the tangential component of the
configurational momentum balance.
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7. First two laws at the interface
7.1. Local equilibrium hypotheses

As a basic hypothesis for the interface between the solution and the vapor we assume
that:

In bulk, the surfactant chemical potential µ and temperature ϑ are smooth up to
the interfacial S, and the interfacial limits of µ and ϑ are equal to the surfactant
chemical potential and temperature on S.

(+)

We assume further that:
The flow of surfactant molecules to the vapor is negligible. The temperature ϑv
of the vapor is constant; we admit the possibility that ϑ �= ϑv.

(++)

7.2. Balance of energy and the entropy imbalance for the interface
We endow the interface with internal-energy density εx(x, t) and entropy density ηx(x, t).
We neglect interfacial heat-flux, and, consistent with our neglect of surface distribu-
tions of linear momentum, we neglect interfacial distributions of kinetic energy. We write
ψx(x, t) for the interfacial free-energy density, as given by

ψx = εx − ϑηx. (7.1)

Guided by the statements (3.7) and (3.6)5 of energy balance and entropy growth for a
migrating control volume R(t), we express the first two laws for a migrating pillbox A(t)
in the forms

d
dt

∫
A(t)

εx da = W x(A(t))

−
∫

∂A(t)

µ{·m− nxV mig
∂A }ds +

∫
A(t)

{
µ( ·n− nV mig)

}
da

︸ ︷︷ ︸
Ex(A(t))

+
∫

∂A(t)

ϑηxV mig
∂A ds +

∫
A(t)

{
q·n− ϑηV mig + q

}
da

︸ ︷︷ ︸
Qx(A(t))

, (7.2)

and

d
dt

∫
A(t)

ηx da ≥
∫

∂A(t)

ηxV mig
∂A ds +

∫
A(t)

{
q·n− ϑηV mig

ϑ
+

q

ϑv

}
da

︸ ︷︷ ︸
Hx(A(t))

, (7.3)

where the power W x(A(t)) expended on A(t) is given by (6.1) or its intrinsic equivalent
(6.5), while Ex(A(t)), Qx(A(t)), and Hx(A(t)) represent flows of energy, heat, and en-
tropy into A that account for the migrational flows µnxV mig

∂A , ϑηxV mig
∂A , and ηxV mig

∂A and
also for the flows q and q/ϑv of heat and entropy from the solution to the vapor.

The transport theorem (4.31) implies that

d
dt

∫
A(t)

εx da =
∫
A(t)

{◦
εx + εxdivSutan − εxKV

}
da +

∫
∂A(t)

εxV mig
∂A ds. (7.4)
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Because of (6.5), the interfacial energy balance (7.2) subject to (7.4) therefore contains
a term ∫

∂A

{
ϕ− εx + ϑηx + µnx

}
V mig
∂A ds (7.5)

on its right side, there being no other term containing V mig
∂A . Since the migrating subsur-

face A(t) is arbitrary, we may at any given time vary V∂A and (hence) V mig
∂A = V∂A−u·m

arbitrarily without changing any of the remaining fields involved in the balance (7.2) as
supplemented by (6.5) and (7.4). For this augmented balance to be valid, for all choices
of the migrating subsurface A(t), we must therefore have

ϕ = εx − ϑηx − µnx = ψx − µnx. (7.6)

Thus, (6.3) takes the form of a interfacial Eshelby relation

C = (ψx − µnx)P−T + n⊗c (7.7)

which bears comparison to the bulk Eshelby relation (3.12). The Eshelby relation may
also be written in the form

C = ωxP−T + n⊗c (7.8)

with

ωx = ψx − nxµ (7.9)

a grand canonical potential for the interface.
Next, using (7.7) in the intrinsic form (6.5) for the power expended on A(t), we find

that (7.2) can be expressed as

d
dt

∫
A(t)

εx da =
∫

∂A(t)

εxV mig
∂A ds +

∫
A(t)

(ψx − µnx)
{
divSutan −KV

}
da

−
∫
A(t)

{
Ctan :D + fV mig − c·gradSV mig

}
da +

∫
A(t)

µ
{
·n− nV mig

}
da

+
∫
A(t)

{
q·n− ϑηV mig + q

}
da−

∫
∂A(t)

µ·mds. (7.10)

Further, applying the interfacial divergence theorem (4.10)1 to the final term in (7.10)
and invoking the molecular balance (5.6), we obtain

d
dt

∫
A(t)

εx da =
∫

∂A(t)

εxV mig
∂A ds +

∫
A(t)

{
ψx(divSutan −KV ) + µ

◦
nx − ·gradSµ

}
da

−
∫
A(t)

{
Ctan :D + fV mig − c·gradSV mig − q·n + ϑηV mig − q

}
da, (7.11)

or, equivalently, by using the interfacial divergence theorem (4.10)1, the transport theo-
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rem (4.31), and the molecular balance (5.6), that the local law

◦
εx − ϑηx(KV − divSutan) = µ

◦
nx − ·gradSµ−Ctan :D

− fV mig + c·gradSV mig + q·n− ϑηV mig + q, (7.12)

holds on the interface.
Similarly, appealing to the interfacial divergence theorem (4.10)1 and the transport

theorem (4.31), (7.3) localizes to yield the local law

ϑ
◦
ηx ≥ ϑηx(KV − divSutan) + q·n− ϑηV mig +

ϑ

ϑv
q (7.13)

for the interface.
Subtracting (7.13) from (7.12) and using (7.1) and (7.6), we arrive at the interfacial

dissipation inequality

◦
ψx + ηx

◦
ϑ− µ

◦
nx + Ctan :D + fV mig − c·gradSV mig + ·gradSµ +

{
ϑ

ϑv
− 1

}
q ≤ 0.

(7.14)

This inequality is basic to our discussion of constitutive equations. Since the tangential
part, Pf, of the configurational force density f does not enter (7.14), we consider Pf as
indeterminate, a consideration consistent with the discussion following (6.5).

8. Standard and normal configurational momentum balances
revisited

8.1. Standard momentum balance
Recalling (5.16) and, thus, that the Cauchy interfacial-stress T is fully tangential, the
decomposition (5.20) and the interfacial Eshelby relation (7.7) imply that T = ωxP −
Ctan. Thus, using (4.13),

divST = ωxKn + gradSωx − divSCtan (8.1)

and we may rewrite the standard momentum balance (5.15)1 in the form

ωxKn + gradSωx − divSCtan = Tn +
J2

�v
n. (8.2)

8.2. Normal configurational momentum balance
Using the bulk Eshelby relation (3.14) in (5.23), we find that the the normal configura-
tional momentum balance can be expressed as

Ctan :K + divSc + f = ω − 1
2�|u|

2 − n·Tn− J2

�v
. (8.3)

8.3. Normal combined momentum balance
The interfacial Eshelby relation (7.7) couples the Cauchy and configurational stresses T
and C. That coupling allows us to obtain an equation that usefully combines the normal
components of the standard and configurational momentum balances for the interface.
To obtain that equation, we add (5.17) to (5.23) and use (3.13) to yield the relation

(Ctan + T):K + divSc + f = n·(C + T)n, (8.4)
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which when supplemented by the bulk and interfacial Eshelby relations (3.14) and (7.7)
has the form

ωxK + divSc + f = ω − 1
2�|u|

2. (8.5)

8.4. Complete set of momentum balances
A complete set of momentum balances for the interface consists of:

(i) the standard momentum balance in the form (8.2) and
(ii) either the normal configurational momentum balance in the form (8.3) or the

normal combined momentum balance (8.5).

9. Constitutive equations for the interface
9.1. Equations of state

Guided by our treatment of the bulk phases, we suppose that the free-energy density,
chemical potential, and entropy density of the interface are determined by state relations

ψx = ψ̂x(nx, ϑ),

µ = µ̂x(nx, ϑ) =
∂ψ̂x(nx, ϑ)

∂nx
, ηx = η̂x(nx, ϑ) = − ∂ψ̂x(nx, ϑ)

∂ϑ
.


 (9.1)

By (9.1), differentiating the identity εx = ψx + ϑηx yields the Gibbs relation
◦
εx = µ

◦
nx + ϑ

◦
ηx. (9.2)

9.2. Dissipative constitutive relations
Granted (9.1), (7.14) takes the form of a reduced dissipation inequality

−Ctan :D + c·gradSV mig − fV mig − ·gradSµ− q

{
ϑ

ϑv
− 1

}
≥ 0, (9.3)

which we use to develop a constitutive theory compatible with the second law. Specifi-
cally, we consider constitutive equations giving Ctan, c,f ,  and q when D, gradSV mig,
V mig, gradSµ, and ϑ− ϑv are known. Here, to avoid lengthy equations that obscure the
underlying physics, we restrict attention to uncoupled, linear, isotropic relations between†

Ctan and D, c and gradSV mig, f and V mig, etc.,

with moduli signed to ensure satisfaction of the dissipation inequality (9.3).
Specifically, we consider: (i) a relation

Ctan = −κS(nx, ϑ)(trD)P− 2ζS(nx, ϑ)D, (9.4)

between the tangential configurational stress and the stretch-rate, with dilatational vis-
cosity κS(nx, ϑ) + ζS(nx, ϑ) ≥ 0 and shear viscosity ζS(nx, ϑ) ≥ 0; (ii) a relation

c = αS(nx, ϑ)gradSV mig (9.5)

between the configurational shear and the gradient of the migrational velocity, with
rotational viscosity αS(nx, ϑ) ≥ 0; (iii) a kinetic relation

f = −βS(nx, ϑ)V mig, (9.6)

† More generally, mixed terms that couple the various dissipative mechanisms entering (9.3)
are possible; such terms, whose inclusion involves only cosmetic changes, are, for convenience,
neglected.
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with kinetic coefficient βS(nx, ϑ) ≥ 0; (iv) Fick’s law

 = −mS(nx, ϑ)gradSµ, (9.7)

with interfacial molecular mobility mS(nx, ϑ) ≥ 0; (v) a vapor heat-flow relation

q = −λS(nx, ϑ)(ϑ− ϑv), (9.8)

with heat transfer coefficient λS(nx, ϑ) ≥ 0. To render the resulting interface conditions
more transparent, we suppress the argument (nx, ϑ) when discussing the foregoing moduli
and write

κS = κS(nx, ϑ), ζS = ζS(nx, ϑ), αS = αS(nx, ϑ),

βS = βS(nx, ϑ), mS = mS(nx, ϑ), λS = λS(nx, ϑ).

}
(9.9)

9.3. Constitutive relation for T

By (9.1), the grand canonical potential density ωx = ψx−nxµ (cf. (7.9)) of the interface
obeys the constitutive relation

ωx = ω̂x(nx, ϑ) = ψ̂x(nx, ϑ)− nx ∂ψ̂x(nx, ϑ)
∂nx

. (9.10)

Thus a consequence of the relation (9.4) for the tangential component Ctan of the inter-
facial configurational stress, supplemented by (6.3) and (7.6), is a constitutive equation

T =
{
ωx + (κS + ζS)trD

}
P + 2ζSD0 (9.11)

for the Cauchy interfacial-stress, where

D0 = D− 1
2 (trD)P (9.12)

is the deviatoric stretch-rate. Further, (9.16) implies that the interfacial tension

σ = 1
2 trT (9.13)

has the form

σ = ωx + (κS + ζS)trD. (9.14)

and therefore consists of an equilibrium contribution coincident with the grand canonical
potential density and dissipative contribution associated with the rate of dilation of S.

Note that, since trD = 0, it follows from (4.20) that

trD = tr(PDP) = −n·Dn. (9.15)

Thus, by (9.11) and (9.14),

T = σP + 2ζSD0 (9.16)

with

σ = ωx − (κS + ζS)n·Dn. (9.17)

10. Sorption isotherms
10.1. General sorption isotherm

In view of the hypothesis (+) of local thermochemical equilibrium, the bulk and surface
constitutive relations (2.18)2 and (9.1)2 yield a condition (Evans & Wennerström 1999;
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Fried & Gurtin 2004)

µ =
∂ψ̂(n, ϑ)

∂n
=

∂ψ̂x(nx, ϑ)
∂nx

. (10.1)

For each fixed value of ϑ, (10.1) relates the surface limit of the bulk molecular density n
to the surface molecular density nx and, therefore, defines a sorption isotherm. When the
function ∂2ψ̂x/∂nx∂nx is strictly positive, ∂ψ̂x(nx, ϑ)/∂nx is invertible in nx for fixed ϑ;
in this case we may express the sorption isotherm (10.1) in the explicit form

nx = I(n, ϑ). (10.2)

10.2. Langmuir sorption isotherm
The specific forms for the response functions ψ̂ and ψ̂x determining the bulk and super-
ificial free-energy densities dictate the nature of the sorption isotherms. In particular,
granted the classical choices (Evans & Wennerström 1999)

ψ̂(n, ϑ) = ψ0(ϑ) + nµ0(ϑ) + kBnϑ

{
log

(
n

n0(ϑ)

)
− 1

}
, (10.3)

where µ0(ϑ) and n0(ϑ) denote reference values of the bulk chemical potential and the
bulk molecular density at temperature ϑ, and†

ψ̂x(nx, ϑ) = ψx
0(ϑ) + nxµx

0(ϑ)

+ kBϑ

{
nx log

(
nx

nx
sat(ϑ)

)
+ (nx

sat(ϑ)− nx) log
(

1− nx

nx
sat(ϑ)

)}
, (10.4)

where µx
0(ϑ) denotes a reference value of the interfacial chemical potential at tempera-

ture ϑ and nx
sat(ϑ) denotes the saturation value of the interfacial molecular density at

temperature ϑ, for ψ̂ and ψ̂x (both of which are consistent with the hypothesis (∗) stip-
ulating that the free energy densities be reckoned relative to the free energy density of
the vapor), (10.1) then requires that

µ0(ϑ) + kBϑ log
{

n

n0(ϑ)

}
= µx

0(ϑ) + kBϑ log
{

nx

nx
sat(ϑ)− nx

}
. (10.5)

On defining

N(ϑ) = n0(ϑ)exp
{
µx

0(ϑ)− µ(ϑ)
kBϑ

}
, (10.6)

(10.5) therefore yields, as a special version of (10.2), the classical Langmuir sorption
isotherm (Langmuir 1918)

nx

nx
sat(ϑ)

=
n

N(ϑ) + n
. (10.7)

11. General evolution equations for the interface
Apart from the appropriate kinematical equations, the equations for the interface con-

sist of:

† For the particular choice (10.4) of ψ̂x, the response function ω̂x determining the grand
canonical potential density ωx — or, equivalently, the equilibrium contribution to the surface
tension (cf. (9.17)) — has the specific form ω̂x(nx, ϑ) = ψx

0(ϑ)+ kBϑn
x
sat(ϑ) log(1−nx/nx

sat(ϑ)),
which is the Frumkin (1925) equation of state.
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• the sorption isotherm condition

µ =
∂ψ̂(n, ϑ)

∂n
=

∂ψ̂x(nx, ϑ)
∂nx

, (11.1)

expressing local thermochemical equilibrium for the surfactant at the surface; and the
balances (5.6), (7.12), (8.2), and (8.3) for surfactant molecules, energy, standard linear-
momentum, and normal configurational momentum, and energy, augmented by the con-
stitutive relations (9.1) and (9.4)–(9.8) for the surface. Bearing in mind the decomposition
(2.10) of T and the constitutive relation (2.19), (2.20), and (2.21) for S, , and q, the
resulting conditions are:
• molecular balance

◦
nx − nx(KV − divSutan) = divS

{
mS gradSµ

}
−

{
m gradµ + ms gradϑ

}
·n− nV mig, (11.2)

• energy balance

ϑ
{◦
ηx − ηx(KV − divSutan)

}
= −

{
kd gradµ + k gradϑ

}
·n

− ϑηV mig − λS(ϑ− ϑv) +D0, (11.3)

• standard momentum balance

σKn + gradSσ + 2divS
{
ζSD0

}
= 2�νDn−

{
p− J2

�v

}
n, (11.4)

• and either normal configurational momentum balance

βSV
mig = −

{
ω − 1

2�|u|
2 + p− J2

�v

}
+

{
2�ν + (κS + ζS)K

}
n·Dn

− 2ζSD0 :K + divS
{
αS gradSV mig

}
(11.5)

or normal combined momentum balance

βSV
mig = ωxK + divS

{
αS gradSV mig

}
− ω + 1

2�|u|
2. (11.6)

These equations are derived as follows: (11.2) follows from (2.20), (5.6), and (9.7); (11.3)
follows from (2.21), (7.12), and (9.2); (11.4) follows from (8.2), (9.4), and (9.17); (11.5)
follows from (8.3), (9.4), (9.5), and (9.6); (11.6) follows from (8.5), (9.5), and (9.6).

The balances (11.3)–(11.4) should be supplemented by: the bulk and surface constitu-
tive equations for entropy

η = − ∂ψ̂(n, ϑ)
∂ϑ

, ηx = − ∂ψ̂x(nx, ϑ)
∂ϑ

; (11.7)

the bulk and surface constitutive equations for grand canonical potential

ω = ψ̂(n, ϑ)− n
∂ψ̂(n, ϑ)

∂n
, ωx = ψ̂x(nx, ϑ)− nx ∂ψ̂x(nx, ϑ)

∂nx
; (11.8)

the surface-tension relation

σ = ωx − (κS + ζS)n·Dn; (11.9)
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and the expression

D0 = (κS + ζS)(n·Dn)2 + 2ζS |D0|2 + αS |gradSV mig|2 + βS(V mig)2 + mS |gradSµ|2
(11.10)

for the nonthermal dissipation density.

12. Approximate conditions at the interface
12.1. Flat-equilibrium conditions

If we assume that all velocities, bulk thermal and diffusive fluxes, and time-derivatives
vanish, then the basic equations (11.2)–(11.5) reduce to

ω = ωxK, ωxKn + gradSωx = −pn,
divS

{
mS gradSµ

}
= 0, λS(ϑ− ϑv) = 0.

}
(12.1)

A solution of these equations in which the interface is flat (K = 0) and all of the basic
fields uniform on the interface, so that µ = constant, and ωx = constant, has

ω = 0, p = 0, ϑ = ϑv, (12.2)

and may be referred to as describing a flat equilibrium. The condition ω = 0 is the
familiar assertion that, in a flat equilibrium, the value of the grand canonical potential ω
on the surface of the solution must coincide with that of the vapor, here normalized to be
zero (cf. Larché & Cahn 1985). Similarly, the condition p = 0 is the assertion that, in a
flat equilibrium, the value of the pressure p on the surface of the solution must coincide
with that of the vapor, here also normalized to be zero. The final condition ϑ = ϑv is the
assertion that, in a flat equilibrium, the value of the temperature ϑ on the surface of the
solution must coincide with that of the vapor.

12.2. Bulk thermodynamic quantities close to a flat equilibrium

If we assume, for the moment, that the system is in a flat-equilibrium state, then we may
conclude from the paragraph containing (12.2) that, in particular,

ω = 0, n = n0, ϑ = ϑv, (12.3)

with n0 the equilibrium value of the surfactant molecular density in bulk. Then, using a
subscripted zero to denote field-values at this equilibrium,

ω0 = ψ0 − n0µ0 = ε0 − ϑvη0 − n0µ0 = 0, (12.4)

where, by (2.18),

ψ0 = ψ̂(n0, θv), µ0 =
∂ψ̂(n, ϑ)

∂n

∣∣∣∣
(n,ϑ) = (n0,θv)

, η0 = − ∂ψ̂(n, ϑ)
∂ϑ

∣∣∣∣
(n,ϑ) = (n0,θv)

. (12.5)

Now, if the system remains close to flat-equilibrium, we then have that

δ =
∣∣∣∣ nn0
− 1

∣∣∣∣ +
∣∣∣∣ ϑ

ϑv
− 1

∣∣∣∣� 1. (12.6)
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We now expand the bulk grand canonical potential ω near equilibrium. Then we may
use (12.4) and (12.5) to conclude that

ω = µ0(n− n0)− η0(ϑ− ϑv) + O(δ2)

= ψ0

{
n

n0
− 1

}
+ �

{
ϑ

ϑv
− 1

}
+ O(δ2), (12.7)

where � defined via

� = −ϑvη0 (12.8)

is the latent heat of evaporation. Similarly,

η = η0 + O(δ) and ϑη = ϑvη0 + O(δ) = −� + O(δ). (12.9)

12.3. Scaling of dissipative quantities
Introducing characteristic length and time scales l∗ and t∗ and characteristic values µ∗
and ϑ∗ of the chemical potential µ and the temperature ϑ, we assume that the material
moduli �, ν, m, ms, kd, k, κS , ζS , αS , βS , mS , and λS are consistent with the relations

msϑ∗
mµ∗

� 1,
kdµ∗
kϑ∗

� 1,
�ν

βSl∗
� 1,

ζS
βSl2∗

� 1,

κS + ζS
βSl2∗

� 1,
αS
βSl2∗

� 1,
βSl

3
∗

kϑ∗t2∗
� 1,

λSl∗
k
� 1,


 (12.10)

While (12.10)1,2 stipulate that the coupling effects embodied by the Soret and Dufour
coefficients are neglibile), (12.10)3–5 stipulate that dissipative effects associated with vis-
cous stresses in the bulk and on the surface are dominated by that associated with the
exchange of solvent between solution and vapor, (12.10)6 stipulates that the dissipative
effect associated with spatial variations in the migrational velocity of the evaporation
surface are dominated by that associated with the exchange of solvent between solution
and vapor, and (12.10)7,8 stipulate that the dissipative effects associated with the ex-
changes of solvent and heat between solution and vapor are negligible in comparison to
that associated with the transport of heat in bulk.

12.4. Simplified interfacial evolution equations
Performing an obvious scaling based on the characteristic values of length, time, chemical
potential, and temperature introduced above (with l∗/t∗ assumed to provide a charac-
teristic velocity) and neglecting terms of O(δ) in (11.3) and of O(δ2) in (11.5), we find
that the interfacial balances (11.2)–(11.5) reduce to

◦
nx − nx(KV − divSutan) = divS

{
mS gradSµ

}
−

{
m gradµ

}
·n− nV mig,

ϑv
{◦
ηx − ηx(KV − divSutan)

}
= −

{
k gradϑ

}
·n− �V mig,

σKn + gradSσ + 2divS
{
ζSD0

}
= 2�νDn−

{
p− J2

�v

}
n,

βSV
mig = −�

{
ϑ

ϑv
− 1

}
−

{
p− J2

�v

}
− ψ0

{
n

n0
− 1

}
+ 1

2�|u|
2,




(12.11)

while, with terms of O(δ2) neglected, the alternative (11.6) to (11.5) reduces to

βSV
mig = ωxK − �

{
ϑ

ϑv
− 1

}
− ψ0

{
n

n0
− 1

}
+ 1

2�|u|
2. (12.12)
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13. Comparison
We now compare the above approximate equations for the evaporation surface with

the equations used by Danov, Alleborn, Raszillier & Durst (1998). All comparisons are
made using our notation: in particular, u, utan, n, nx, ϑ, and ϑv correspond, respectively,
to v, vs, c, Γ, T , and Te of Danov, Alleborn, Raszillier & Durst (1998).

13.1. Molecular balance
Danov, Alleborn, Raszillier & Durst (1998) work with concentrations instead of molecular
densities. We ignore this trivial distinction and instead simply interpret the concentra-
tions of Danov, Alleborn, Raszillier & Durst (1998) as molecular densities. Employing
our notation, the molecular balance of Danov, Alleborn, Raszillier & Durst (1998) reads†

∂nx

∂t
+ divS

{
nxutan

}
= divS

{
DSgradSnx

}
−

{
Dgradn

}
·n− nV mig, (13.1)

where D and DS denote bulk and interfacial molecular diffusivities. When compared
to (12.11)1, this equation shows obvious differences in the forms of its rate terms and
diffusive fluxes.

Whereas the flux terms in (12.11)1 involve the surface gradient gradSµ of the chemical
potential on the evaporation surface and the limit, from the solution, of the gradient
gradµ of the chemical potential in bulk, those in (13.1) involve the surface gradient
gradnx of the surface molecular density and the limit from the solution, of the gradi-
ent gradn of the molecular density in bulk. These differences are easily reconciled by
assuming that the cross terms associated with the mixed partial derivatives that result
on computing the surface and bulk gradients of the state relations (9.1)2 and (2.18)2
are neglibile in a suitable sense. With such assumptions, the right side of (12.11)1 re-
duces to that of (13.1). To illustrate this point, we focus on the surface molecular flux
 = −mSgradSµ. By the state relation (9.1)2,

gradSµ = gradS

{
∂ψ̂x(nx, ϑ)

∂nx

}
=

∂2ψ̂x(nx, ϑ)
∂(nx)2

gradSnx +
∂2ψ̂x(nx, ϑ)

∂nx∂ϑ
gradSϑ. (13.2)

Thus, on defining the surface molecular diffusivity DS and Soret coefficient DSs via

DS(nx, ϑ) = mS(nx, ϑ)
∂2ψ̂x(nx, ϑ)

∂(nx)2
, DSs (nx, ϑ) = mS(nx, ϑ)

∂2ψ̂x(nx, ϑ)
∂nx∂ϑ

(13.3)

and assuming, analogous to (12.10)1, that DSs ϑ∗/D
Sµ∗ � 1, where µ∗ and θ∗ are the

characteristic values of chemical potential and temperature introduced in connection with
the relations (12.10), it follows that

 = −mSgradSµ→ −DSgradSnx. (13.4)

A completely analogous argument starting with (2.18)2 yields m gradµ→ Dgradn, with
the bulk molecular diffusivity D defined by D(n, ϑ) = m(n, ϑ)(∂2ψ̂(n, ϑ)/∂n2). What is
important here is that the diffusivities D and DS should not be assigned independently of
the state relations defining the chemical potential in bulk and on the evaporation surface.
In particular, as is shown in § 10.1, the chosen expressions for ψ and ψx determine the
sorption isotherm. The forms of the sorption isotherm and the molecular diffusivities
are therefore thermodynamically linked, albeit with some freedom allowed through the
chosen forms for molecular mobilities in bulk and on the surface.

The more significant difference between (12.11)1 and (13.1) concerns their rate terms.

† Cf. equation (3b) of Danov, Alleborn, Raszillier & Durst (1998).
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Consider the partial derivative ∂nx/∂t on the left side of (13.1). For a surface field such
as nx, the difference quotient

nx(x, t + τ)− nx(x, t)
τ

(13.5)

is generally undefined because, even for sufficiently small τ , there is no assurance that x
lies on S(t+τ) when x lies on S(t). Without explanation, conventional partial derivatives
like ∂nx/∂t are therefore meaningless. If, as discussed by Cermelli, Fried & Gurtin (2005),
one uses the normally constant extension of nx to define the partial time-derivative, then

∂nx

∂t
= ◦

nx − utan ·gradSnx (13.6)

and, since nxdivSutan + utan ·gradSnx = divS
{
nxutan

}
, the left side of (12.11)1 can be

expressed as

∂nx

∂t
+ divS

{
nxutan

}
− nxKV. (13.7)

In conclusion, granted suitable assumptions concerning the cross terms associated with
the mixed partial derivatives that result on computing the surface and bulk gradients of
the state relations (9.1)2 and (2.18)2 and that the partial time-derivative is defined via
the normally constant extension (so that (13.6) holds), the molecular balance (12.11)1 of
our theory becomes

∂nx

∂t
+ divS

{
nxutan

}
− nxKV = divS

{
DS gradSµ

}
−

{
D gradµ

}
·n− nV mig (13.8)

which differs from the molecular balance (13.1) of Danov, Alleborn, Raszillier & Durst
(1998) only by an additional term, −nxKV , on its left side. Due to the factor of the total
curvature, we expect that this term may influence the stability of the evaporation surface.
In particular, this term is likely to be very important in the evaporation or condensation
of a droplet.

13.2. Energy balance
Employing our notation, the energy balance of Danov, Alleborn, Raszillier & Durst (1998)
reads†

LJ =
{
λ gradϑ

}
·n, (13.9)

where L and λ are related to our quantities �, �, and k by

L =
�

�
and λ = k. (13.10)

The obvious difference between (12.11)2 and (13.9) is the absence of rate terms in the
latter. To reconcile this difference, let ηx

∗ denote a characteristic value of the entropy
density ηx on the evaporation surface. Granted (5.2) and (13.10), the energy balance
(12.11)2 then reduces to (13.9) provided that ηx

∗ l∗/kt∗ � 1, which corresponds to assum-
ing that the time scale associated with the redistribution of the entropy density within
the evaporation surface is much slower than that associated with thermal transport from
the solution to the evaporation surface.

† Cf. equation (3d) of Danov, Alleborn, Raszillier & Durst (1998), who instead of the migra-
tional velocity work with the mass flow across the evaporation surface and use a latent heat
L = 
/�L, measured per unit mass. Also, Danov, Alleborn, Raszillier & Durst (1998) use λ
instead of k to denote the thermal conductivity of the solution.
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13.3. Standard momentum balance
To account for van der Waals interactions that may affect surfactant films with thick-
nesses ranging between 10 nm and 20 µm, Danov, Alleborn, Raszillier & Durst (1998)
include a disjoining pressure Π in their statement of standard momentum balance on the
evaporation surface. With this effect taken into account, (12.11)3 becomes

σKn + gradSσ + 2divS
{
ζSD0

}
= 2�νDn−

{
p + Π− J2

�v

}
n, (13.11)

which is exactly the form taken by the standard momentum balance of Danov, Alleborn,
Raszillier & Durst (1998) in our notation.† Hence, setting aside the absence of the dis-
joining pressure term, the standard momentum balance (12.11)3 of our theory is identical
to that of Danov, Alleborn, Raszillier & Durst (1998).

13.4. Normal configurational momentum balance
The notions of normal configurational momentum balance or combined momentum bal-
ance do not enter the considerations of Danov, Alleborn, Raszillier & Durst (1998). These
authors instead impose the Hertz–Knudsen–Langmuir equation (1.1), expressed as‡

J = Jϑ(ϑ− ϑv), (13.12)

where Jϑ is related to our quantities �, βS , and � via

Jϑ =
��

βSϑv
. (13.13)

It is not difficult to reduce the normal configurational momentum balance (12.11)4
to an equation of the form (13.12). Indeed, if we assume that ψ0/� � 1, p/� � 1,
J2/�v� � 1, and �l2∗/�t

2
∗ � 1, (12.11)4 reduces immediately to (1.1), which, with (5.2)

and (13.13), coincides with (1.1). Hence, our theory yields the Hertz–Knudsen–Langmuir
equation in the form (13.12) used by Danov, Alleborn, Raszillier & Durst (1998) provided
that the flat equilbrium value of the free-energy density, the pressure, the vapor recoil
term, and the kinetic-energy density are all neglible as compared with the latent heat of
evaporation.

As noted in §1, (12.11)4 also contains as a special case a generalization of the Hertz–
Knudsen–Langmuir equation used by Ajaev & Homsey (2001). Specifically, these authors
consider the equation¶

KJ =
ϑ

ϑv
− 1 + δp, (13.14)

and K and δ are related to our quanties �, βS , and � via

K =
βS
��

and δ =
1
�
. (13.15)

This equation obviously ensues from (12.11)4 on replacing p by p− pv, taking (p− pv)/�
to be of order unity, and assuming that ψ0/�� 1, J2/�v�� 1, and �l2∗/�t

2
∗ � 1.

† Cf. equation (3c) of Danov, Alleborn, Raszillier & Durst (1998), who do not measure the
pressure of the solution relative to that of the vapor and, therefore, instead of p have p − pv,
where pv denotes the vapor pressure (so that the pressures p and pv of the solution and the
vapor are measured with respect some independent gauge).

‡ Cf. equation (6) of Danov, Alleborn, Raszillier & Durst (1998).
¶ Cf. equation [19] of Ajaev & Homsey (2001). Like Danov, Alleborn, Raszillier & Durst

(1998), Ajaev & Homsey (2001) work with p− pv instead of p.
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As a final remark, we note that if the standard momentum balance is generalized to
account for a disjoining pressure Π, then the general form (11.5) of the normal configu-
rational momentum balance (12.11)4 should be generalized accordingly to read

βSV
mig = −

{
ω − 1

2�|u|
2 + p + Π− J2

�v

}
+

{
2�ν + (κS + ζS)K

}
n·Dn

− 2ζSD0 :K + divS
{
αS gradSV mig

}
. (13.16)

Corresponding to this is a generalization of the simplfied statement of normal configura-
tional momentum balance (12.11)4 of the form

βSV
mig = −�

{
ϑ

ϑv
− 1

}
−

{
p + Π− J2

�v

}
− ψ0

{
n

n0
− 1

}
+ 1

2�|u|
2. (13.17)

As should be expected, addition (13.11) and (13.17) yields the normal combined momen-
tum balance (12.12).

Appendix A. Proof of the Equivalency Theorem
Consider the first law in the configurational form (3.7) and note that the requirement

that (3.7) satisfy the intrinsicality hypothesis (#) is equivalent to the requirement that

the power W (R(t)) be independent of the choice of observed velocity field v∂R
chosen to characterize the migration of R(t). (#)

Our first step is to determine the consequences of the invariance requirement (#). Since
all observed velocity fields have the same normal component, while the tangential com-
ponents are arbitrary, (#) is equivalent to the requirement that W (R(t)) be invariant
under all transformations of the form

v∂R �→ v∂R + t (A 1)

with t tangential to ∂R, or, equivalently, that∫
∂R(t)

{
(T + C)m + �(u + p)V mig

∂R

}
·tda = 0 (A 2)

for all such transformations. Then, granted (A 2), since R and t (tangential to ∂R) may
be arbitrarily chosen, it follows that{

(T + C)m + (u + p)U
}
·t = 0 (A 3)

for all t and m with t orthogonal to m and any scalar U . Since U is arbitrary, we obtain
the configurational-momentum relation (3.13).

Next, bearing in mind (3.13), it follows from (A 3) that, for each m, (T + C)m must
lie in the direction of m, a restriction satisfied if and only if T+C = ϕ1, with ϕ a scalar
field. Invariance therefore yields the pre-Eshelby relation

C = ϕ1−T. (A 4)

In view of (A 4), the power expended on R has the form

W (R(t)) =
∫

∂R(t)

{
Tm·u + (ϕ + �|u|2)V mig

∂R

}
da, (A 5)
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which is clearly consistent with the intrinisicality hypothesis in the form (#).
Further, by (2.16), (3.4)2, and (A 5), the energy balance (3.7) becomes

d
dt

∫
R(t)

{
ε + 1

2�|u|
2
}

dv =
∫

∂R(t)

Tm·uda−
∫

∂R(t)

µ ·m da−
∫

∂R(t)

q·m da

+
∫

∂R(t)

{
ϕ + ε− ψ + µn + �|u|2

}
V mig
∂R da, (A 6)

a relation that coincides with the standard form (3.6)4 provided we take

ϕ = ψ − µn− 1
2�|u|

2. (A 7)

Granted (A 7), (A 4) reduces to the Eshelby relation (3.12).
Finally, (A 7) is also a necessary for (A 6) to be satisfied for all migrating control

volumes R(t). Indeed, by (3.5),

d
dt

∫
R(t)

{
ε + 1

2�|u|
2
}

dv =
∫
R(t)

˙{
ε + 1

2�|u|2
}

dv +
∫
R(t)

{
ε + 1

2�|u|
2
}
V mig
∂R dv,

a relation that when combined with (A 6) yields∫
R(t)

˙{
ε + 1

2�|u|2
}

dv =
∫

∂R(t)

Tm·uda−
∫

∂R(t)

µ ·m da−
∫

∂R(t)

q·m da

+
∫

∂R(t)

{
ϕ− ψ + µn + 1

2�|u|
2
}︸ ︷︷ ︸

=A

V mig
∂R da. (A 8)

Since the choice of migrating control volume is arbitrary, the normal velocity V∂R and
(hence) the normal migrational velocity V mig

∂R in (A 8) may, at any time, be considered an
arbitrary scalar field on ∂R (without disturbing the remaining fields in (A 8)). Hence we
must have A = 0, which is (A 7). This completes the proof of the Equivalency Theorem.

Appendix B. Migrationally normal expression for the power
expended on the surface

Consider the power (6.1) expended on A(t) and note that the requirement that (6.1)
satisfy the intrinsicality hypothesis (6) is equivalent to the requirement that

the power w(A) be independent of the choice of observed velocity field v∂A chosen
to characterize the migration of ∂A.

(‡)

Necessary and sufficient that (‡) be satisfied is that

w(A(t)) =
∫

∂A(t)

{
Tm·v∂A + Cm·(v∂A − u)

}
ds (B 1)

be invariant under all transformations of the form

v∂A �→ v∂A + t, t·m = 0, (B 2)

which, by (4.25) and the tangential nature of w∂A, is necessarily accompanied by the
transformation

v∂A − u �→ v∂A − u + t. (B 3)
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The requirement (‡) therefore holds if and only if∫
∂A(t)

(T + C)m·tds = 0 (B 4)

for all subsurfaces A of S and all fields t tangential to ∂A. It follows that T + C must
satisfy t·(T+C)m = 0 whenever t and m are orthogonal and tangent to S. Thus (T+C)m
must lie in the direction of m for each m orthogonal to n, which is possible if and only if
the tangential component (T+C)tan of T+C has the form (T+C)tan = ϕP, with ϕ
a surface scalar field. Bearing in mind (4.5) and (5.16), invariance therefore implies that
the interfacial configurational stress C must be of the form (6.3).

Next, by (4.25), (4.29), and (6.3), it follows that

w(A(t)) =
∫

∂A(t)

{
ϕV mig

∂A + Tm·v + Cm·vmig
}

ds. (B 5)

Further, using the surface divergence theorem (4.10)3 and the surface balances (5.15)
and (5.19) for standard and configurational momentum, we have

w(A(t)) =
∫

∂A(t)

ϕV mig
∂A ds +

∫
A(t)

{
T :gradSv + C :gradSvmig

}
da

+
∫
A(t)

{(
Tm +

J2

�v
n

)
·v +

(
Cm− J2

�v
n− f

)
·vmig

}
da, (B 6)

which allows us to rewrite (6.2) in the form

W x(A(t)) =
∫

∂A(t)

ϕV mig
∂A ds +

∫
A(t)

{
(T + C):gradSv−C :L− f·vmig

}
da. (B 7)

Toward further simplification of (6.2), consider the second term on the right side of
(B 7). By (6.3),

(T + C):gradSv =
{
(T + C)tan + n⊗c

}
:gradSv

= ϕdivSv + (n⊗c):gradSv. (B 8)

Also, by (4.20), (5.16), and (6.3),

C :L = C : (PL + n⊗L�n)

= Ctan :D + C :W + C�n·L�n

= Ctan :D + (ϕP−T):W + (c−T�n)·L�n

= Ctan :D + (n⊗c):L

= Ctan :D + (n⊗c):gradSu. (B 9)

Thus,

(T + C):gradSv−C :L = ϕdivSv−C :D + (m⊗c):gradSvmig. (B 10)

Finally, we require that the velocity field v for S be migrationally normal. Then,
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recalling (4.27), (4.28), and (4.29), we have

v = V n + utan, vmig = V mign,

divSv = −KV + divSutan, w∂A ·m = V mig
∂A ,

}
(B 11)

which together with (B 10) allow us to express the power (6.1) expended on A(t) in the
intrinsic form (6.5).
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