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The occurrence of striped domains in stretched nematic elastomers has been suggested as evidence
for soft elasticity. Conversely, the neo-classical model of Bladon, Terentjev and Warner, which
displays soft elasticity, predicts striping. Here we show that the postulated director rotations and
shears in the domain regions are also predicted by more general constitutive models that do not
involve any notion of softness. Striping in nematic elastomers may therefore be a more general
phenomena that is not necessarily an indication of soft elasticity. Furthermore, constitutive models
more general than the neo-classical model may also explain the behavior of some nematic elastomers
that do not appear to exhibit striping.

PACS numbers: 61.30.Jf, 61.30.Dk, 83.80.Va

I. INTRODUCTION

Kundler & Finklemann [1] observed the formation
of striped domains during the mechanical extension of
nematic elastomeric sheets with the director initially
aligned perpendicular to the extension. As a possible
explanation of this striping instability, Verwey et al. [2]
suggested the mechanism of soft elasticity in which cer-
tain elastic moduli are small so that rotations of the di-
rector can occur with little or no energy cost. Each do-
main is then interpreted as consisting of material with
a uniformly rotated director. In fact, the neo-classical
model of Bladon et al. [3–5] predicts such director rota-
tions as minimizers of the free energy for a limited range
of extensions. Conti et al. [6, 7] further used this idea of
soft elasticity to numerically study the striping instabil-
ity in nematic elastomeric sheets with clamped boundary
conditions in order to better model the experiments.

There has been, however, some controversy over the
existence of soft elasticity and the validity of the neo-
classical model. For example, the recent rheological ex-
periments of Martinoty et al. [8] appear to contradict the
assumptions of soft elasticity. Furthermore, the experi-
ments of Mitchell et al. [9] on nematic elastomers did not
exhibit the striping instability, but rather an apparent
jump discontinuity in the director orientation.

Here we analyze the uniform extension of nematic elas-
tomers. In particular, we seek to determine whether the
occurrence of striping in nematic elastomers can be used
as evidence of soft elasticity. Our approach involves free-
energy minimization using a simple constitutive model
proposed by Fried & Sellers.[10] The model involves two
strain tensors: the left Cauchy–Green strain that de-
scribes the overall macroscopic strain, and a microstruc-
tural relative strain that describes the strain of the mi-
crostructural degrees of freedom relative to the overall
macroscopic strain. The model includes both the neo-
Hookean and the neo-classical models as special cases.

We may therefore use the model to study mechanical ex-
tension as a function of the material parameters entering
the free-energy density and thereby determine the condi-
tions under which striping may occur.

Our results show that the free-energy density we con-
sider allows director rotations for a finite range of exten-
sions without the need for any elastic modulus to be small
as in soft (or semi-soft) elasticity. Striping in nematic
elastomers therefore appears to be a phenomenon that
may occur independent of any notion of softness. The
range of extensions in which striping is allowed does, how-
ever, depend on the relative magnitudes of the two elastic
moduli entering the free-energy density. This range de-
creases as the magnitude of the relative strain term in the
free energy decreases, finally reaching the point where the
transition can experimentally appear to be discontinuous.
This may explain the apparent discontinuous transition
observed by Mitchell et al. [9] in their stretching experi-
ments.

II. CONSTITUTIVE MODEL

The constitutive model of Fried & Sellers [10] treats
the nematic elastomer as a material with microstructure
and uses a symmetric and positive-definite conformation
tensor A to account for the influence of nematic ordering
on the conformation of the polymer chains. A referential
conformation tensor, denoted by A∗, is used to account
for any anisotropy in the reference state. The free-energy
density is taken to depend on the macroscopic deforma-
tion gradient F and, in addition, on A and A∗. Stan-
dard invariance arguments show that ψ must be of the
form:[10]

ψ = ψ̂(FF>,A−1FA∗F
>,A). (1)

The quantity FF> is the left Cauchy–Green strain ten-
sor, a common measure of macroscopic strain in isotropic
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FIG. 1: Schematic of a uniaxially stretched nematic elas-
tomeric specimen showing stripes consisting of bands with
alternating pairs (θ+, δ+) and (θ−, δ−) of director orientations
and shears.

non-linear elasticity. The quantity A−1FA∗F
> is a rel-

ative strain tensor that measures the strain of the mi-
crostructure relative to the overall macroscopic strain.
When the microstructure convects with the macroscopic
deformation—so that A = FA∗F

>, the relative strain
tensor reduces to the identity. In this model the total
strain is therefore expressed by two strain measures: (i)
the left Cauchy–Green strain for the macroscopic degrees
of freedom; (ii) the relative strain for the microscopic de-
grees of freedom.

Here we assume that the nematic elastomer is incom-
pressible, so that detF = 1, and we assume that the
eigenvalues of A are unaffected by the deformation, so
that A is a rotation of A∗. This is approximately valid
far from the nematic-isotropic transition temperature. In
this case, a simple properly invariant expression for ψ lin-
ear in the two strain tensors is

ψ =
µ1

2
tr(FF>− I) +

µ2

2
tr(A−1FA∗F

>− I), (2)

where the µi are non-negative elastic moduli. This ex-
pression reduces to the neo-classical free energy when µ1

vanishes. Likewise, it reduces to the neo-Hookean ex-
pression when µ2 vanishes. Here we do not assume that
µ1 is small relative to µ2.

III. MECHANICAL EXTENSION

We now consider a problem involving the mechanical
extension of a uniaxial nematic elastomer. We assume
that the elastomer is uniformly aligned, then stretched
by the amount λ in the direction perpendicular to the
director. We choose a Cartesian coordinate system with
the direction of the extension along the x-axis and direc-
tor initially aligned along the y-axis. The conformation
tensor of the reference configuration then has the form

A∗ =

 1 0 0

0 r 0

0 0 1

 , (3)

where r is a material parameter that indicates the
anisotropy of the elastomer: r > 1 corresponds to prolate
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µ1/µ2 = 1, r = 2

solution 1: θ = 0
solution 2: θ = π/2
solution 3

ψ

λ

FIG. 2: The free energy corresponding to the 3 solutions with
elastic modulus ratio µ1/µ2 = 1 and r = 2.
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µ1/µ2 = 10, r = 2

solution 1: θ = 0
solution 2: θ = π/2
solution 3

ψ

λ

FIG. 3: The free energy corresponding to the 3 solutions with
elastic modulus ratio µ1/µ2 = 10 and r = 2.

chain shapes, r < 1 to oblate chain shapes, and r = 1
to isotropic chain shapes. For the conformation tensor
in the deformed configuration, we allow for a director
rotation with angle θ, so that

A−1 =


cos2 θ + r−1 sin2 θ 1

2 (r−1 − 1) sin 2θ 0
1
2 (r−1 − 1) sin 2θ sin2 θ + r−1 cos2 θ 0

0 0 1

 .
(4)

A choice of the deformation gradient that obeys detF = 1
and allows for an extension λ as well as a shear δ consis-
tent with director rotations is given by

F =

 λ δ 0

0 λyy 0

0 0 1/(λλyy)

 . (5)

Substitution of (3)–(5) into the free-energy density (2)
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yields:

ψ =
µ1

2
(λ2 + λ2

yy + λ−2
yy λ

−2 + δ2 − 3)

+
µ2

2
(
λ2 + λ2

yy + λ−2
yy λ

−2 + rδ2 − 3

− (r − 1)(λyyδ sin 2θ

+ (λ2r−1 − λ2
yy + δ2) sin2 θ)

)
. (6)

Equilibrium states minimize the free energy and satisfy
the following three equations:

∂ψ

∂δ
= µ1δ + µ2rδ

− µ2(r − 1)( 1
2λyy sin 2θ + δ sin2 θ) = 0,

∂ψ

∂θ
= µ2(r − 1)

(
λyy δ(2 sin2 θ − 1)

− 1
2 (λ2r−1 − λ2

yy + δ2) sin 2θ
)

= 0,

∂ψ

∂λyy
= µ1(λyy − λ−3

yy λ
−2) + µ2

(
λyy − λ−3

yy λ
−2

+ (r − 1)(λyy sin2 θ − 1
2δ sin 2θ)

)
= 0.



(7)

In the above equations, λ is the imposed extension, and
the quantities δ, θ, and λyy are to be determined.

There are exactly 3 physically-relevant classes of solu-
tions to (7):

1. θ = 0, δ = 0, λyy = λ−1/2, for λ ≥ 1;

2. θ = π/2, δ = 0, λyy =
(
λ3

c/r
)1/4

λ−1/2, for λ ≥ 1;

3. θ = θ±(λ) = ± tan−1
√

r(λ2−λ2
c)

λ2
c(r−λ2λc)

,

δ = δ±(λ) = ±λ−1
√

(λ2 − λ2
c)(1/λc − λ2/r),

λyy = λ
1/2
c λ−1, for λc ≤ λ ≤ (r/λc)1/2.

Here

λc =
(

µ1 + µ2

µ1r−1 + µ2

)1/3

.

The first solution is the standard elastic solution with no
rotation, so that the director remains perpendicular to
the axis of extension. The second solution has the direc-
tor rotated π/2 degrees, so that the director is parallel
to the axis of extension. The shear δ vanishes for both
the first and the second solutions. The third class of
solutions describes two oppositely-oriented director ori-
entations θ±(λ) ranging from θ = 0 at λ = λc to θ = π/2
at λ = (r/λc)1/2 as well as two oppositely oriented shears
δ±(λ). For each value λ of the extension in this transi-
tion region, there are two possible pairs of director ori-
entations and shears (θ+, δ+) and (θ−, δ−). These pairs
can be used to construct striped solutions (Figure 1).

Figures (2) and (3) illustrate the free energy for the
three solutions as a function of the extension λ. For small
extensions, the first solution is the absolute minimizer of
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FIG. 4: As the ratio µ1/µ2 increases, the rotation of the di-
rector takes place over a more limited range of strains. The
bounds both converge to r1/3 in the limit µ1/µ2 →∞.
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FIG. 5: The director orientation θ+ as a function of extension
λ.

the free energy. For very large extensions, the second
solution is the absolute minimizer. But there is also a
transition region λc ≤ λ ≤ (r/λc)1/2 where the third
class of solutions are the absolute minimizers. As the
extension is increased from λc to (r/λc)1/2 in this tran-
sition region, the director continuously rotates from the
initial perpendicular state to the final parallel state. In
concert with this, a nontrivial shear develops.

Figure (4) shows how the bounds λc and (r/λc)1/2 of
the transition region vary with µ1/µ2. The model pre-
dicts that this transition region will always exist, but
that the range of such extensions decreases as µ1/µ2 in-
creases. If the ratio µ1/µ2 is significantly increased, the
transition region will eventually shrink to the extent that
it may appear experimentally unobservable. In this case,
the first solution may appear to transform discontinu-
ously to the second solution with a jump in the director.
Were this the case, striping would not be observed. This
might explain the observations of Mitchell et al. [9]

Figures (5) and (6) show the angle θ and shear δ of the
third solution as the elastic modulus ratio µ1/µ2 varies.
They clearly illustrate the change in the size of the tran-
sition region as a function of the ratio µ1/µ2 of the elastic
moduli.

For the special case µ1 = 0 where (2) reduces to the
neo-classical expression, λc = 1 and the 3 solutions above
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reduce to those given on page 159 of Warner & Terentjev
[5].

IV. DISCUSSION

We have shown that, during the extension of a nematic
elastomer modeled by the simple free-energy density (2),
there exists a transition region in which the director con-
tinuously rotates from perpendicular alignment to paral-
lel alignment regardless of the ratio µ1/µ2 of the elastic
moduli. If we interpret the stripes observed in exten-
sional experiments of the kind performed by Kundler
& Finkelmann[1] as alternating domains (θ+, δ+) and
(θ−, δ−), then a model based on (2) seems to predict
striping as a general phenomenon that may occur inde-
pendent of softness.

This result raises the question whether such transition
regions are predicted by other free-energy densities. For
example, one could also consider more general expres-
sions involving higher order terms, such as a term pro-

portional to the second invariant of FF> as done in the
Mooney energy density.[10] It is easily shown that such a
free-energy density also predicts transition regions where
an initially perpendicular director rotates upon exten-
sion.

In fact, as long as the free-energy density depends ex-
plicitly on the relative strain tensor A−1FA∗F

>, then
one should expect the existence of solutions with transi-
tion regions. We can intuitively understand this idea as
follows. A term proportional to the relative strain ten-
sor penalizes deformations in which the microstructure
does not convect with the macroscropic deformation—
that is deformations for which A 6= FA∗F

>. The neo-
classical free-energy density is an example of a free-energy
density which is linear in the relative strain, where the
so-called soft deformations are simply deformations for
which A = FA∗F

>. On the other hand, terms involving
the Cauchy–Green strain tensor penalize deformations
in which the microstructure convects with the macro-
scopic deformation. For a free-energy density consist-
ing of both such terms, such as (2), actual solutions will
involve a competition between the terms tending to fa-
vor deformations in which the microstructure convects
with the macroscopic deformation and those that penal-
ize them. As the importance of the purely elastic terms
increases, we would expect a diminishing tendency for
the microstructure to convect with the macroscopic de-
formation, which is in fact illustrated in Figs (2) and (3).
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