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Abstract

In many applications a sustained, localized turbulent flow scours a cohesionless granular bed to

form a pothole. Here we use similarity methods to derive a theoretical formula for the equilibrium

depth of the pothole. Whereas the empirical formulas customarily used in applications contain

mumerous free exponents, the theoretical formula contains a single one, which we show can be

determined via the phenomenological theory of turbulence. Our derivation affords insight into how

a state of dynamic equilibrium is attained between a granular bed and a localized turbulent flow.
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When a water jet plunges into the free surface of a body of water of uniform depth, a

turbulent cauldron is established in the body of water under the point of entrance of the

jet. If the body of water lies on a granular bed, the turbulent cauldron starts to scour the

bed to form a pothole (Fig. 1). Under a sustained action of the jet, the pothole deepens

until a state of dynamic equilibrium is attained between the granular bed and the turbulent

cauldron. This scenario is relevant to many applications in hydrology, geomorphology, and

hydraulic engineering. For example, in the bed of a stream below an overflowing gate, a

pothole forms and may compromise the stability of the gate [1]. This application poses

the direct problem: given the power of the jet, determine the depth of the pothole under

equilibrium conditions. Other applications may pose the inverse problem. For example, the

depth of potholes and other relics of scouring found on the beds of Martian outflow channels

could be used to gauge the colossal floods that carved these channels in pre-Amazonian

times [2]. Seeking to describe the equilibrium conditions of turbulent cauldrons on scouring

beds, researchers have proposed a number of widely used empirical formulas [3]. These

formulas have been predicated on dimensional analysis and heuristic arguments, and contain

numerous free exponents that have been determined by fitting experimental results. It is

hardly surprising, therefore, if when applied to a same problem different formulas give badly

disparate predictions (see, e.g., [1] p. 658 ff.). Yet, for lack of better means, we continue

to use empirical formulas to deal with many common applications of turbulent flows. In

this letter, we use dimensional analysis and similarity methods [5] to derive a theoretical

formula containing a single free exponent—a similarity exponent. This formula subsumes

the empirical formulas proposed so far and is valid asymptotically under conditions that

are amply met in applications. Then we show that the same theoretical formula as well as

the value of the similarity exponent can be derived using the phenomenological theory of

turbulence [6]. To that end, we build on recent work [7] indicating that the phenomenological

theory may be applied to turbulence that is both anisotropic and inhomogeneous (as is the

case in the turbulent cauldron). Our method of analysis may also be useful in developing a

theoretical understanding of mine burial, bridge pier-induced erosion, and other applications

in which a turbulent flow interacts with a granular bed.

An exhaustive compilation of empirical formulas for the equilibrium depth of the pothole

was undertaken by Mason and Arumugam [3]. From that compilation, it is apparent that all

empirical formulas proposed so far are but special cases of the following generalized empirical
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FIG. 1: Geometry and notation. The jet of volume flux q plunges from a height h (called the head).

The turbulent cauldron is spanned by its largest eddies (of characteristic velocity V ). The granular

bed is composed of cohesionless grains of diameter d. Note that the geometry is two-dimensional:

the jet, the turbulent cauldron, and the pothole extend to infinity in the direction perpendicular

to the plane of the figure (or thickness).

formula,

R = Kqeqhehgegded

(

ρ

ρs − ρ

)eρ

, (1)

where R is the sum of the depth of the pothole and the depth of the body of water, R = ∆+D,

and coincides with the size of the turbulent cauldron (Fig. 1); K is a free multiplicative

constant whose value must be determined empirically; q is the volume flux of the jet per

unit thickness (measured in the direction perpendicular to the plane in Fig. 1); h is the head

of the jet; g is the gravitational acceleration; d is the diameter of the grains of the bed or

absolute rugosity; ρ is the density of water; ρs is the density of the grains of the bed; and

eq, eh, eg, ed, and eρ are free exponents whose values must be determined empirically. The

rows of table I list the values of the exponents determined empirically (or set to zero from

the start) by different researchers. (In the case of Bormann and Julien, the values of the

exponents were determined semi-empirically [4].) Each researcher (or group of researchers)

determined the values of several free parameters (including a number of exponents and the

multiplicative constant K) by fitting different experimental results. As might have been

surmised from the number of free parameters and the diversity of experimental results, and

table I confirms, in some cases different researchers obtained widely dissimilar values of a

given exponent.

We now ascertain to what extent a theoretical formula may be predicated on dimensional

analysis and similarity methods. We start by choosing a suitable set of variables. Because

the turbulence is fully developed in applications, the viscosity need not be included in our
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Researcher(s) (Year) eq eh eg ed eρ

Schoklitsch (1932) 0.57 0.2 0 -0.32 0

Veronese (1937) 0.54 0.225 0 -0.42 0

Eggenberger & Müller (1944) 0.6 0.5 -0.3 -0.4 4/9

Hartung (1959) 0.64 0.36 0 -0.32 0

Franke (1960) 0.67 0.5 0 -0.5 0

Kotoulas (1967) 0.7 0.35 -0.35 -0.4 0

Chee & Padiyar (1969) 0.67 0.18 0 -0.063 0

Chee & Kung (1974) 0.6 0.2 0 -0.1 0

Machado (1980) 0.5 0.3145 0 -0.0645 0

Bormann & Julien (1991) 0.6 0.5 -0.3 -0.4 0.8

Theory 2/3 2/3 -1/3 -2/3 1

TABLE I: Sets of values of the exponents of eq. (1) empirically determined (or set to zero) by

different researchers. Adapted from [3] and [4]. Also shown are the theoretical values of the

exponents determined here.

set of variables. After evaluating a number of alternatives, we decide for the following set of

6 variables: R, ρ, g, ρs, d, and P . P is the power of the jet per unit thickness, P = qρgh, and

therefore the power that sustains the turbulent cauldron. The choice of P places the focus

of our analysis on the energetics of the turbulent cauldron, and constitutes the key to our

results. The dimensional equations [P ] = [ρ][g]3/2[R]5/2, [ρs] = [ρ], and [d] = [R] show that

the dimensions of three of the variables (P , ρs, and d) can be expressed as products of powers

of the dimensions of the other variables; it follows from Buckingham’s Π theorem [5] that we

can reduce the functional relation among P , R, ρ, g, ρs, and d to an equivalent functional

relation among three dimensionless variables. With the sensible choice of dimensionless

variables Π1 ≡ P/ρg3/2R5/2, Π2 ≡ ρs/ρ (the relative density of the bed), and Π3 ≡ d/R (the

relative roughness of the bed), we may write Π1 = F [Π2, Π3] or, equivalently,

P = ρg3/2R5/2F

[

d

R
,
ρs

ρ

]

, (2)

where F is a dimensionless function of the relative density and of the relative roughness

of the bed. To make further progress, we note that in applications d/R � 1, and seek to
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formulate an asymptotic similarity law for d/R → 0. There are two possible similarities:

complete and incomplete [5]. In the case of complete similarity in d/R, F [d/R, ρs/ρ] becomes

independent of d/R as d/R → 0. If this were the case, R would be independent of d for

d/R � 1, which is incompatible with the empirical values of the exponent ed in table I.

In the case of incomplete similarity in d/R, (2) admits the following power-law asymptotic

expression [5], F [d/R, ρs/ρ] = (d/R)α G [ρs/ρ]+o [(d/R)α], where α is a similarity exponent,

which cannot be determined by dimensional analysis, and G is a dimensionless function of

the relative density of the bed, ρs/ρ. By substituting the leading term of this asymptotic

expression in (2) and rearranging, we obtain the following formula for R,

R = Kqeqhehgegded H

[

ρs

ρ

]

(3)

where eq = eh = 2/(5 − 2α), eg = −1/(5 − 2α), ed = −2α/(5 − 2α), and we have defined

H[Π2] ≡ 1/K(G[Π2])
2/(5−2α), where K is a dimensionless constant. The theoretical formula

of eq. (3) has the same form as the generalized empirical formula of eq. (1) (provided

that H [Π2] = 1/(Π2 − 1)eρ). Nevertheless, the exponents that appear in both formulas

(with the exception of eρ) are now revealed to be functions of a single free parameter,

the similarity exponent. Because these functions were unknown, researchers developing

empirical formulas treated the exponents of (1) as free parameters whose values had to be

determined empirically (table I). A much improved way of determining these exponents

suggests itself now, via the empirical determination of the similarity exponent. Yet we will

not pursue this way of determining the exponents. Instead, we will show presently that

eq. (3) as well as the function H[ρs/ρ] and the value of the similarity exponent can be

derived in a completely independent way using the phenomenological theory of turbulence.

The phenomenological theory [6] is based on two tenets pertaining to the steady pro-

duction of turbulent (kinetic) energy: (1) The production occurs at the lengthscale of the

largest turbulent eddies in the flow and (2) The rate of production is independent of the

viscosity. From these tenets, it is possible to obtain a scaling expression for the rate of

production of turbulent energy per unit mass of cauldron (which we denote by ε) in terms

of the velocity of the largest eddies (which we have denote by V ) and of the size of the

largest eddies (which scales with R) [6]. The result is Taylor’s scaling, ε ∼ V 3/R [8], where

the symbol “∼” stands for “scales with.” Further, it is possible to show that the velocity

of the turbulent eddies of size l, ul, scales in the form ul ∼ (εl)1/3, valid for l � η, where
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FIG. 2: Three grains of diameter d lying at the surface of the pothole. The dashed line is the trace

of a wetted surface S tangent to the peaks of the grains at the surface of the pothole.

η = ν3/4ε−1/4 is the Kolmogórov (viscous) lengthscale and ν the kinematic viscosity [6, 7].

By combining ε ∼ V 3/R and ul ∼ (εl)1/3 we obtain the Kolmogórov scaling, ul ∼ V (l/R)1/3

(valid for l/η � 1). We shall recall these results later on.

Now we consider the energetics of the turbulent cauldron and seek to obtain a scaling

expression for V , the velocity of the largest eddies. The production of turbulent energy is

driven by the jet, whose power per unit thickness is P = qρgh. Therefore, P must equal

the rate of production of turbulent energy per unit thickness of cauldron (note that P is

independent of the viscosity, in accord with the second tenet of the phenomenological theory

stated above), and we can write P = εM , where ε is the rate of production of turbulent

energy per unit mass of cauldron, and M ∼ ρR2 is the mass per unit thickness of cauldron.

It follows that ε ∼ qgh/R2 and, from a comparison with ε ∼ V 3/R, that

V ∼

(

qg
h

R

)1/3

, (4)

which is the sought expression for the velocity of the largest eddies in the cauldron.

Next we consider the surface of the pothole and seek to obtain a scaling expression for

the shear stress exerted by the flow on that surface. Let us call S a wetted surface tangent

to the peaks of the grains at the surface of the pothole (Fig. 2). Under conditions of fully

developed turbulence, the shear stress acting on S is the Reynolds stress, τ = ρ|vnvt|, where

vn and vt are the fluctuating velocities normal and tangent to S, respectively, and an overbar

denotes time average. We study vn first, and start by making a crucial observation: if the

relative roughness is small (d/R � 1), eddies of sizes larger than, say, 2d, can make only

a negligible contribution to vn (this is entirely a matter of geometry; see Fig. 2). On the

other hand, eddies smaller than d fit in the space between successive grains on the bed, so

that these eddies can make a sizable contribution to vn. Nevertheless, where these eddies
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are smaller than, say, d/2, their velocities are negligible compared with the velocity of the

eddies of size d. (Recall that according to the Kolmogórov scaling, ul ∼ V (l/R)1/3 (valid

for l/η � 1); therefore, the smaller the size of an eddy, l, the smaller its velocity, ul.) Thus,

assuming that d/η � 1, vn is dominated by ud, the velocity of the eddies of size d. In other

words, vn ∼ ud. We now turn to vt. Eddies of all sizes can provide a velocity tangent to S.

Thus, vt is dominated by V , the velocity of the largest eddies, and vt ∼ V . We conclude that

|vnvt| ∼ udV , and therefore τ ∼ ρudV [9]. We may now substitute (4) and ud ∼ V (d/R)1/3

in τ ∼ ρudV to obtain

τ ∼ ρ
(qhg)2/3 d1/3

R
, (5)

which is the sought expression for the shear stress exerted by the turbulent cauldron on

the surface of the pothole, valid for η � d � R. To discuss eq. (5), it is convenient

to rewrite it in terms of the power of the jet per unit thickness, P = qρgh, with the result

τ ∼ P 2/3(ρd)1/3/R. Consider now the instant when a jet of power P plunges into the surface

of a body of water of uniform depth D. Then, the pothole starts to form, and as the depth

∆ of the pothole increases, the size R = ∆+D of the cauldron increases accordingly, leading

to a decrease in the shear stress on the surface of the pothole. Eventually, the shear stress

decreases to a critical value τc, and the scouring ceases. Thus the condition of equilibrium

between the turbulent cauldron and the granular bed is τ = τc [10].

To obtain a scaling expression for the critical stress τc, we follow Shields [11] in recognizing

that the grains at the surface of a granular bed are subjected to a Reynolds stress τ ∼ ρudV

(exerted by the turbulent flow), a gravitational stress τg ∼ (ρs − ρ)gd, and a viscous stress

τν ∼ ρνV/d. Then, if the equilibrium condition is satisfied, we can perform a straightforward

dimensional analysis using three variables: τ = τc, τg, and τν . The result is τc ∼ τg I[Red],

where I is a dimensionless function of a Reynolds number Red ≡ τ/τν = ud d/ν. By recalling

that ε ∼ u3
d/d, η = ν3/4ε−1/4, and d/η � 1, we conclude that Red ∼ (d/η)4/3 � 1, and seek

to formulate a similarty law for Red → ∞. If we assume complete similarity in Red, then

I[Red] tends to a constant as Red → ∞ (as indicated by experimental results on incipient

motion of granular beds [11]), and therefore τc ∼ (ρs − ρ)gd, which is the sought expression

for the critical stress.

We are now ready to impose the equilibrium condition. By substituting (5) and τc ∼
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(ρs − ρ)gd into τ = τc and rearranging, we obtain the following scaling expression for R,

R ∼ q2/3h2/3g−1/3d−2/3

(

ρ

ρs − ρ

)

. (6)

This expression gives (up to a multiplicative constant) a complete theoretical formula to

compute the equlibrium depth of the pothole as ∆ = R − D, where D is the depth of

the body of water (Fig. 1). A comparison of (6) with (3) indicates that eq = eh = 2/3,

eg = −1/3, and ed = −2/3, in accord with a similarity exponent of value α = 1. Thus, the

theory gives values of eq, eh, eg, and ed that relate to one another in the form necessitated

by the independent analysis that yielded (3). Further, a comparison of (6) with (3) indicates

that H [Π2] = 1/(Π2 − 1), which corresponds to the generalized empirical formula of eq. (1)

with eρ = 1. The theoretical values of the exponents appear in table I, where they may be

compared with the corresponding empirical values determined by various researchers. This

comparison affords a considerable degree of experimental support to our theoretical results,

even though for each exponent the alternative empirical values vary over a sizable range, as

might have been expected where many different, very difficult experiments were involved.

In this letter, we have focused on the energetics of the turbulent cauldron to derive (up

to a multiplicative constant) a theoretical formula for the depth of a pothole in equilibrium

with a turbulent cauldron driven by a jet of constant power. The formula represents the

power-law asymptotic behavior of a fully developed turbulent flow of incomplete similarity

in the relative roughness of the cohesionless granular bed. In deriving the formula based on

the phenomenological theory, we have gained insights into the form of interaction between

the cauldron and the granular bed. These insights are of obvious theoretical import, but

they also suggest improved ways of dealing with applications. Thus, for example, on the

bed of an overflowing dam a pothole is frequently excavated in advance in order to confine

the dissipation of excess hydraulic power [12]. Our discussion of the equilibrium condition

between the bed and the cauldron, τ = τc, suggests that to incorporate a physically mean-

ingful safety factor in the design of such a pothole we might impose the design condition

τ = τc/f , where f > 1 is the safety factor. The design value of the depth of the pothole

would then be ∆design = f∆ + (f − 1)D, where ∆ is the equilibrium value of the depth. In

conclusion, our results indicate that despite current practice, theory may be advantageously

used instead of empirical formulas in the analysis and design of overflowing gates, weirs,

dams, and natural obstructions.
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