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Abstract 

 
Successful arrest and retardation of fatigue cracks is achieved with an in situ 

self-healing epoxy matrix composite that incorporates microencapsulated 
dicyclopentadiene (DCPD) healing agent and Grubbs’ first generation Ru catalyst.  
Healing agent is released into the crack plane by the propagating crack, where it 
polymerizes to form a polymer wedge, generating a crack tip shielding mechanism.  Due 
to the complex kinetics of healing a growing crack, the resulting in situ retardation and 
arrest of fatigue cracks exhibit a strong dependence on the applied range of cyclic stress 
intensity ΔKI.  Significant crack arrest and life extension result when the in situ healing 
rate is faster than the crack growth rate.  In loading cases where the crack grows too 
rapidly (maximum applied stress intensity factor is a significant percentage of the mode-I 
fracture toughness value), a carefully timed rest period can be used to prolong fatigue life 
up to 118%.  At moderate ΔKI, in situ healing extends fatigue life by as much as 213%.  
Further improvements in fatigue life-extension are achieved by employing a rest period, 
which leads to permanent arrest at this moderate ΔKI.  At lower values of applied stress 
intensity factor, self-healing yields complete arrest of fatigue cracks providing infinite 
fatigue life-extension. 
 
 
Keywords: A. smart materials, A. polymer-matrix composites, B. fatigue, 
D. fractography, self-healing  
 
 
Submitted for publication in Composites Science and Technology (2005) 



 2 

1. Introduction 
 

Self-healing materials are inspired by living systems in which damage triggers an 
autonomic healing response.  White et al. [1] have developed a self-healing polymer that 
mimics many of the features of a biological system.  Healing is accomplished by 
incorporating a microencapsulated healing agent and a catalytic chemical trigger within a 
polymer matrix.  Damage in the form of a crack initiates the self-healing process, as does 
the fracture event in biological systems.  The approaching crack ruptures the embedded 
microcapsules, releasing healing agent into the crack plane through capillary action.  
Polymerization of the healing agent is activated by contact with the embedded catalyst, 
bonding the crack faces. 

Successful self-healing has been demonstrated for an epoxy composite modified 
with 5-25 wt% microencapsulated dicyclopentadiene (DCPD) monomer and 2.5 wt% 
Grubbs’ first generation transition metal (Ru) catalyst. The embedded microcapsules 
were shown to rupture in the presence of a crack and release the DCPD monomer into the 
crack plane. Contact with the embedded Grubbs’ catalyst [2] initiated ring opening 
metathesis polymerization (ROMP) of the DCPD [3,4] and rebonded the crack plane. 
This self-healing epoxy was able to recover over 90% of its virgin fracture toughness [5] 
and provide recovery from delamination damage in a reinforced composite [6,7].  In 
addition to providing an efficient mechanism for self-healing, the presence of DCPD-
filled polymeric microcapsules also increased the inherent fracture toughness of the 
epoxy.  Under monotonic loading the maximum toughness with microcapsules was 127% 
greater than neat epoxy [8].  The increased toughening associated with fluid-filled 
microcapsules was attributed to crack pinning along with increased hackle marking and 
subsurface microcracking.  Brown et al. [9] also investigated the influence of 
microcapsules on fatigue crack propagation behavior of epoxy with the effects of self-
healing precluded.  The addition of microcapsules significantly decreased the fatigue 
crack growth rate and increased the fatigue life above a transition value of the stress 
intensity factor [9]. 

In the current work, we investigate the performance of this successful self-healing 
epoxy system under cyclic loading (fatigue) conditions. Characterization of fatigue 
response is more complex than monotonic fracture due to dependence on the applied 
stress intensity range ΔKI = Kmax-Kmin, the loading frequency f, the ratio of applied stress 
intensity R=Kmax/Kmin, as well as the healing kinetics and any rest periods employed. Only 
a few studies of fatigue crack healing have been reported in the literature for polymeric 
materials.  Daniel and Kim [10] investigated fatigue damage in asphalt by measuring the 
increase in the specimen compliance as microcrack growth occurred.  After a rest period, 
gains in stiffness were observed and attributed to healing of the microcracks.  Zako and 
Takano [11] performed a tensile fatigue test on a notched specimen to investigate crack 
healing in an epoxy composite.  The specimen was fatigued until the stiffness decreased 
by 12.5%.  The test was stopped and the crack was healed by application of heat, which 
triggered flow and subsequent polymerization of embedded particles of B-staged resin.  
The fatigue test was resumed with almost full recovery of stiffness.  Following healing, 
the stiffness decreased at a similar rate to the virgin specimen.  Both of these 
investigations considered successful healing as the recovery of stiffness lost due to 
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damage induced by cyclic loading.  Neither the effect on crack-growth rate or absolute 
fatigue life was considered. 

In Part I of this paper [12], we reported successful healing of fatigue cracks 
through manual injection of precatalyzed DCPD resin into the crack plane.  Healing 
efficiency was defined by the fatigue life-extension, 
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where Nhealed is the total number of cycles to failure for the self-healing sample and Ncontrol 
is the total number of cycles to failure for a similar sample without healing.  Just after 
injection, the viscous polymer in the crack effectively shielded the crack tip and slowed 
crack growth. With time, a polyDCPD wedge was formed at the crack tip, leading to 
artificial crack closure and fatigue life-extension of λ > 2000%.  In Part II, we build on 
the success of these mechanisms for retarding fatigue crack growth to achieve the first 
demonstration of in situ self-healing of fatigue damage. 
 
 
2. Fatigue test method 
 
2.1. Materials and specimen preparation 
 

Materials, specimen preparation and testing were nearly identical to that described 
in Part I of this paper [12].  Tapered double-cantilever beam specimens were cast from 
EPON® 828 epoxy resin (DGEBA) and 12 pph Ancamine® DETA (diethylenetriamine) 
curing agent with 20 wt% 180 µm diameter microcapsules [13] and 2.5 wt% Grubbs’ 
catalyst mixed into the resin.  The microcapsule concentration of 20 wt% was chosen to 
ensure adequate presence of healing agent in the crack plane.  Control samples were also 
fabricated with no catalyst (only microcapsules) to preclude the effects of self-healing. 
The epoxy mixtures were degassed, poured into a closed silicone rubber mold and cured 
for 24 hours at room temperature, followed by 24 hours at 30° C. 
 
2.2. Mechanical testing 
 

The fatigue-crack propagation behavior of the self-healing epoxy was investigated 
using the tapered double-cantilever beam (TDCB) specimen geometry presented in Part I 
of this paper [12].  The TDCB geometry provides a crack length independent relationship 
between the applied stress intensity factor ΔKI and load ΔP, 
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where α = 11.2x103 m-3/2 for the current system [5].   Samples were precracked and 
immediately cyclically loaded. A triangular frequency of 5 Hz was applied with a load 
ratio (R = Kmin/Kmax) of 0.1.  Crack lengths were measured optically and by a calibration 
based on specimen compliance [9,12].  Each loading condition was investigated with 
continuous cyclic loading to sample failure and with rest periods to allow for healing with 
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stationary crack faces.  In all cases, fatigue crack growth in a self-healing sample was 
compared to that in a control sample (with no healing) under identical loading conditions 
and healing efficiency evaluated via Eq. (1). 
 
 
3. Self-healing of the in situ system 
 

In situ healing was investigated by measuring the fatigue life-extension of 
samples manufactured with 20 wt% microcapsules and 2.5 wt% catalyst.  For successful 
in situ self-healing, the healing agent released into the crack plane must have enough time 
to polymerize.  If the crack growth rate is too fast, little or no healing will occur. In 
previous work, Brown et al. [5] measured the development of healing efficiency in this 
same materials system through monotonic fracture tests performed at prescribed times 
following the initial virgin fracture.  After an initial dwell period of about 25 min during 
which no appreciable healing was measured, the healing efficiency increased 
exponentially and stabilized at maximum healing efficiency after about 10 h (see Fig. 1).  
Comparison of the development of healing efficiency with the degree of cure (α) for bulk 
DCPD measured by Kessler and White [3] using differential scanning calorimetry (DSC) 
shows a similar exponential relationship with time (Fig. 1).  Moreover, the development 
of measurable healing efficiency at 25 min closely corresponds to α=1/3, the theoretical 
gel point for a tetrafunctional monomer such as polyDCPD [14]. 
 

 
 
Fig. 1.  Comparison between the development of healing efficiency and degree of cure of DCPD.  
Healing efficiency was obtained from monotonic fracture tests performed at prescribed times 
following the initial virgin fracture [5].  Differential scanning calorimetry (DSC) was used to 
measure degree of cure data for 30°C isothermal polymerization of DCPD with 2 g L−1 of 
Grubbs’ catalyst [3]. 
 

Anticipating that the competition between polymerization kinetics and mechanical 
crack growth would be a major factor influencing successful healing, three different 
levels of applied range of stress intensity ΔKI were prescribed, one low-cycle fatigue case 
and two high-cycle fatigue cases.  Low-cycle fatigue refers to the fatigue regime where 
ΔKI approaches KIC and rapid crack growth causes sample failure after very few cycles 



 5 

(< 10,000 cycles).  High-cycle fatigue refers to the fatigue regime of low ΔKI, relatively 
slow crack growth rate and longer fatigue life (> 10,000 cycles). 
 
3.1. In situ low-cycle (high ΔKI) fatigue-healing 
 

Under low-cycle fatigue conditions (Nhealed < 10,000), crack propagation in the 
self-healing epoxy proceeded at a constant rate (Fig. 2) comparable to a control sample 
with no self-healing.  Control sample data were virtually identical to the self-healing 
sample data indicating no retardation was taking place due to healing because crack 
propagation was so rapid.  Sample fatigue life in the low-cycle fatigue regime was much 
shorter (2.5 x 104 cycles ~1.4 h) than the 10 hours necessary for the healing agent to fully 
polymerize in the crack plane.  The fatigue life-extension was essentially zero, λ ~ 0%.  
The effect of rest periods was also investigated on two additional low-cycle fatigue cases.  
In the first case, loading was stopped after a small amount of crack growth and the 
samples were allowed to heal unloaded for 10 h to ensure full cure of the healing agent.  
The crack tip regressed to the approximate position of the TDCB notch, as shown in 
Fig. 3.  However, after only a few cycles the crack tip rapidly progressed through the 
healed region to its location prior to healing.  The fatigue healing efficiency λ for this 
case was essentially zero. 

In the second case, fatigue loading was stopped after a small amount of crack 
growth and healing was allowed under load at Kmax for 10 h.  Figure 2 shows the 
regression and retardation of a fatigue crack achieved in this case.  Similar to the samples 
repaired by manual injection described in Part I of this paper [12], healing while loaded at 
Kmax was much more effective.  Under these conditions, polymerized healing agent 
formed a wedge at the crack tip, as shown in profile by optical microscopy in Fig. 4a.  
Electron micrographs of the fracture plane (Fig. 4b,c), revealed that the polymer wedge 

 

 
 
Fig. 2.  Crack length vs. fatigue cycles of in situ sample tested in low-cycle fatigue regime 
without and with a rest period (under load at Kmax), λ = 0 and 118% respectively.  
ΔKI = 0.405 MPa m1/2, Kmax = 0.450 MPa m1/2, Kmin = 0.045 MPa m1/2, R = 0.1, f = 5 Hz, and 
a0 = 31.2 mm. 
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consisted of a region of polyDCPD extending ~1 mm from the crack tip.  The wedge 
penetrated into the sharp tip of the crack along the majority of the crack front line and 
had a significant out-of-plane thickness away from the crack tip.  Because the interface 
was formed at Kmax, it was under zero stress when the applied cyclic load reached Kmax 
and under a compressive stress at all other points in the cycle.  Under low-cycle-fatigue 
conditions (Nhealed < 10,000, high ΔKI) fatigue life-extension λ for in situ self-healing 
epoxy with a rest period at Kmax ranged from 73–118% for three samples.  The 1–2 mm 
regression of the crack tip due to self-healing calculated from compliance measurements 
corresponded with direct microscopy measurements of the polymer wedge at the crack 
tip. 
 
3.2. In situ high-cycle (low ΔKI) fatigue-healing 
 

Under high-cycle fatigue conditions (Nhealed > 10,000) the applied range of stress 
intensity ΔKI was reduced, decreasing the crack growth rate and increasing the number of 
cycles to sample failure.  In this regime, the sample fatigue life exceeded the time for the 
healing agent to gel (and quasistatic healing efficiency to develop).  Self-healing fatigue 
life-extension was investigated for a number of samples under this type of loading.  The 
effect of rest periods was also considered. 

In situ samples were precracked and fatigued to failure.  A typical plot of crack 
length vs. fatigue cycles is shown in Fig. 5.  The initial release of healing agent during 
precracking retarded the crack growth, and led to some crack regression.  Following this 
period of crack arrest, the crack eventually grew past the healed precrack 
(~ 3.5 × 105 cycles).  After this point, the fatigue crack growth behavior transitioned 
between periods of constant crack growth rate and periods of crack retardation.  During 

  
 (a) (b) 

 
Fig. 3.  Crack length vs. fatigue cycles of in situ sample with a rest period in the unloaded 
configuration, λ ≅ 0.2%.  (a) Plotted for the entire fatigue life and (b) plotted in the region of the 
rest period.  ΔKI = 0.472 MPa m1/2 Kmax = 0.524 MPa m1/2, Kmin = 0.052 MPa m1/2, R = 0.1, 
f = 5 Hz, and a0 = 30.2 mm. 
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the periods of crack retardation, the crack-tip position corresponded to locations of 
exposed catalyst on the fracture plane.  Polymerized healing agent was only present in the 
vicinity of exposed catalyst and formed an undulating structure with significant 
out-of-plane dimension, as evidenced by the fracture surface in Fig. 6.  The local 
variation in concentration and imperfect dispersion of catalyst resulted in the localized 
periods of arrest.  Total fatigue life-extension of six samples ranged from 89–213% and 
was amplified by increasing both the number of arrest events (i.e. increasing the number 
of catalyst particles exposed) and the duration of the individual arrest events.  The recent 
development of wax-protected catalyst for self-healing by Rule et al. [15]—yielding 
improved dispersion of catalyst with increased reactivity—has the potential to provide 
more uniform an effective in situ healing in this loading regime, ultimately yielding even 
greater fatigue life-extension. 
 

 
 
Fig. 4.  PolyDCPD wedge at the crack tip of in situ sample tested in low-cycle fatigue regime 
with a rest period under load (see Fig. 2).  (a) Optical micrograph of crack tip side view following 
rest period.  The polymer wedge extends ~1 mm from the crack tip.  (b) SEM micrograph of the 
fracture surface in the region of the crack tip.  The polyDCPD wedge (blue) extends ~1 mm from 
the crack tip, with the cross section (red) tapering from a finite thickness to a sharp point at the 
crack tip.  The region of the fracture surface where the polyDCPD has separated from the epoxy 
matrix is indicated in green.  (c,d) PolyDCPD fills the crack to the tip along most of the crack 
front.  In some regions, indicated in yellow, the DCPD does not penetrate fully to the crack tip. 
Note: The crack propagation is from left to right in all images. 
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Fig. 5.  Crack length vs. fatigue cycles of in situ sample tested to failure in high-cycle fatigue 
regime, λ = 213%.  ΔKI = 0.338 MPa m1/2, Kmax = 0.376 MPa m1/2, Kmin = 0.038 MPa m1/2, R = 0.1, 
f = 5 Hz, and a0 = 35.4 mm. 
 

 
 

Fig. 6.  (a) SEM micrograph of the in situ healed polyDCPD film (blue) on fatigue surface in the 
vicinity of a sites of exposed catalyst (orange). (b) The film forms an undulating structure due to 
cyclic loading during cure.  Note: The crack propagation is from left to right in both images. 
 
 

The fatigue life-extension due to precrack healing was dramatically improved by 
adding a rest period at Kmax.  In situ samples healed for 10 h at Kmax following precracking 
and tested in the high-cycle fatigue regime exhibited permanent crack arrest in the two 
samples tested (see Fig. 7).  As in the low-cycle fatigue case healed at Kmax, a solid 
polyDCPD wedge formed at the crack tip during the rest period, with similar effect.  The 
retardation elicited by the wedge was more efficient in this regime of loading.  If Kmax 
was reduced even further (ΔKI < 0.5 KIC), threshold conditions were achieved without a 
rest period.  As shown in Fig. 8, the precrack regressed approximately 1 mm and never 
progressed further in the time frame of the test.  In contrast, the precrack in the control 
sample was slowly growing at a constant rate.  This effect was observed repeatably in 
four samples tested.  Again, the healing agent released during the precrack event formed 
a partial polymer wedge at the crack tip (Fig. 9).  Similar to the polyDCPD formed in the 
cycling crack under higher Kmax (Fig. 6), the wedge created under lower cyclic load 
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conditions had undulating surface features, but covered far more of the crack plane.  A 
summary of life extension values under the different loading conditions is given in 
Table 1. 
 
 
 

 
 

Fig. 7.  Crack length vs. fatigue cycles of in situ sample tested in high-cycle fatigue regime with a 
rest period of 10 h at Kmax after precracking, λ = ∞.  ΔKI = 0.338 MPa m1/2, Kmax = 0.376 MPa m1/2, 
Kmin = 0.038 MPa m1/2, R = 0.1, f = 5 Hz, and a0 = 31.6 mm. 
 
 
 

 
 

Fig. 8.  Crack length vs. fatigue cycles of in situ sample in the threshold regime, λ = ∞.  
ΔKI = 0.270 MPa m1/2, Kmax = 0.300 MPam1/2, Kmin = 0.030 MPa m1/2, R = 0.1, f = 5 Hz, and 
a0 = 29.7 mm. 
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Fig. 9.  SEM micrograph of the polyDCPD wedge at the crack tip of in situ sample tested in 
high-cycle fatigue regime resulting in crack arrest. (a) Image of the fracture surface in the region 
of the crack tip.  The polyDCPD wedge (blue) extends from the crack tip forming a wavy pattern 
with many areas uncovered by polyDCPD (yellow).  The region of the fracture surface where the 
polyDCPD has separated from the epoxy matrix is indicated in green. (b) PolyDCPD fills the 
crack to the tip along most of the crack front.  Note: The crack propagation is from left to right in 
both images. 
 
Table 1 
Fatigue life-extension from self-healing 

Fatigue life-extension, λ Regime Range of applied 
stress intensity, ΔKI 
(MPa m1/2) 

Continuously cycled to 
failure 

With one rest period at 
Kmax 

tfail << theal 0.7–0.9 KIC ~0% 73–118% 
tfail ~ theal 0.5–0.7 KIC 89–213% ∞a 

tfail >> theal < 0.5 KIC ∞ — 
a Infinite fatigue life-extension denotes no optically measurable crack extension after at least 

3×106 cycles (7 days of testing). Note: theal ~ 10 h from monotonic fracture [5]. 
 
 
4. Conclusions 

 
The crack growth behavior of self-healing epoxy under fatigue loading was 

investigated using a protocol based on fatigue life-extension.  Significant crack arrest and 
life extension resulted when the in situ healing rate was faster than the crack growth rate.  
In loading cases where the crack grew too rapidly (maximum applied stress intensity 
factor is a significant percentage of the mode-I fracture toughness value), carefully timed 
rest periods were used to prolong fatigue life.  At lower values of applied stress intensity 
factor, crack growth was arrested completely.  The self-healing material system 
demonstrated great potential for extending component life under fatigue loading, with the 
degree of life extension dependent on a number of interrelated variables such as stress 
amplitude, frequency, in situ healing rate, and rest periods. 

Fatigue life-extension from in situ self-healing was achieved by a combination of 
crack-tip shielding mechanisms.  First, viscous flow of the healing agent in the crack 
plane retarded crack growth.  Second, polymerization of the healing agent provided a 
short term adhesive effect and a long term crack closure effect, which prevented 
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unloading of the crack tip.  Successful healing resulted in reduced crack length and 
retardation of additional crack growth.  These shielding mechanisms also contributed to 
increasing the threshold ΔKth, effectively increasing the amplitude of applied ΔKI that the 
material can be subjected to without crack propagation.  Above the threshold ΔKth, the 
self-healing shielding mechanisms led to temporary arrest of fatigue crack growth and 
significantly extended fatigue life. 

The dominant shielding mechanism observed for in situ self-healing was crack 
closure induced by the formation of a polyDCPD wedge at the crack tip.  Similar to the 
case of artificial crack closure achieved by manual injection, the profile of the load–
displacement curves progresses from linear to bi-modal as the crack propagates through 
the healed region. 

The success of crack closure was strongly dependent on how efficiently the crack 
tip was shielded from the applied cyclic loads.  A polymer wedge formed at or above Kmax 
provided maximum shielding, approaching a stress free crack tip.  Conversely a polymer 
wedge polymerized at zero-load provided minimal crack tip shielding.  Because the 
polymer wedge formed under continuous cyclic loading was created between moving 
boundaries, the wedge structure was irregular and resulted in shielding efficiency 
between the two extremes. 
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