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Abstract 
 

As a first step towards a new crack healing methodology for cyclic loading, this 
paper examines two promising crack-tip shielding mechanisms during fatigue of a 
microcapsule toughened epoxy.  Artificial crack closure is achieved by injecting 
precatalyzed monomer into the crack plane to form a polymer wedge at the crack tip.  
The effect of wedge geometry is also considered, as dictated by crack loading conditions 
during infiltration.  Crack-tip shielding by a polymer wedge formed with the crack held 
open under the maximum cyclic loading condition (Kmax) yields temporary crack arrest 
and extends the fatigue life by more than 20 times.  Hydrodynamic pressure and viscous 
damping as a mechanism of crack tip shielding are also investigated by injecting mineral 
oil into the crack plane.  Viscous fluid flow leads to retardation of crack growth 
independent of initial loading conditions.  The success of these mechanisms for retarding 
fatigue crack growth demonstrates the potential for in situ self-healing of fatigue damage. 
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1. Introduction 
 

Thermosetting polymers are used in a wide variety of applications ranging from 
structural composites to microelectronics.  Due to low strain-to-failure, these polymers 
are highly susceptible to damage in the form of cracks.  In structural composites these 
cracks can lead to fiber/matrix debonding and inter-ply delamination, ultimately resulting 
in component failure.  Susceptibility to cyclic loading is particularly problematic because 
a crack will grow, however slowly, above a threshold range of stress intensities ΔKth that 
is significantly lower than the critical stress intensity KIC.  Prevention of fatigue failure 
currently depends on accurate life prediction and implementation of inspection 
procedures. 

Polymer fatigue has been studied extensively in both homogeneous and composite 
structures (e.g., [1–15]).  In most polymers, fatigue crack growth rates (da/dN) are 
accurately described by the Paris power law [16], 
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where C0 and n are material constants and ΔKI is the applied range of stress intensity.  
Typical Paris power law crack growth behavior is shown schematically by the solid curve 
in Fig. 1.  Despite this understanding of cyclic crack growth, fatigue failure remains a 
major cause of component failure. 
 

 
 

Fig. 1.  Representative relationship between fatigue crack growth rate (da/dN) and the applied 
stress intensity range (ΔKI) in the Paris power law region.  Improved fatigue behavior can be 
obtained by: (a) increasing the range of stress intensity before crack growth instability ΔKult, 
(b) reducing the crack growth rate da/dN for a given ΔKI, (c) reducing the crack growth rate 
sensitivity to ΔKI, i.e. reduce n, or (d) increasing the threshold ΔKth at which crack growth arrests. 
 

Strategies for improving fatigue life are shown schematically in Fig. 1 and 
include: (a) increasing the range of stress intensity before crack growth instability ΔKult, 
(b) decreasing the crack growth rate da/dN for a given ΔKI, (c) decreasing the crack 
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growth rate sensitivity to ΔKI, i.e. reduce n, and (d) increasing the threshold ΔKth at which 
crack growth arrests.  In the case of brittle thermosetting polymers, incorporation of a 
rubbery second phase [8–10], solid particles [11–13] or microcapsules [14,15] 
significantly improves fatigue performance by increasing the fracture toughness (Fig. 1a) 
and decreasing the Paris power law exponent (Fig. 1c).  Of relevance for the current 
work, the presence of liquid-filled microcapsules increases the fracture toughness of 
epoxy by up to 127% [17].  The addition of microcapsules also significantly decreases 
the Paris power law exponent above a transition value of the stress intensity factor ΔKT 
[14].  In this regime, the Paris power law exponent decreases from approximately 10 for 
neat epoxy to 4.5 for concentrations above 10 wt% microcapsules. 

In contrast to steady-state crack growth described by the Paris power law, many 
fatigue response mechanisms evolve over the course of loading, causing the fatigue crack 
growth rate to accelerate or decelerate under constant ΔKI.  Crack-tip shielding 
mechanisms such as crack closure can significantly retard fatigue crack growth.  Initial 
work on crack closure by Elber [18,19] is based on the development of a local plastic 
zone that shields the crack tip such that the crack tip stress state cannot unload beyond 
Kclosure (Fig. 2b).  This shielding mechanism leads to a local driving force for fatigue ΔKeff 
that is less than the applied ΔKI, and effectively reduces the crack growth rate. 
 

 
 

Fig. 2.  Schematic of cyclic loading profile with crack-tip shielding nomenclature for three 
conditions: (a) no shielding (ΔKeff = ΔKI), (b) shielding from crack closure preventing unloading 
to Kmin, and (c) combined shielding from Kmax and Kmin (adapted from Sharp, Clayton, and 
Clark [23]). 
 

More recently, artificial crack closure induced by infiltration of a polymer was 
reported to reduce constant ΔKI fatigue crack growth and increase the fatigue threshold in 
metals [20].  Cyclic loading was halted after the fatigue crack had grown significantly 
and an uncured polymer resin was injected into the crack plane.  Once the resin cured, 
constant ΔKI cyclic loading was resumed.  The presence of the polymer wedge prevented 
full unloading at the crack tip, increased the effective minimum value of the cyclic stress 
intensity (from Kmin to Kclosure) and reduced the local driving force for fatigue ΔKeff, even 
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though the applied ΔKI dictated by far-field loading was unchanged.  Fatigue 
life-extensions from 100% [20,21] to 1000% [22,23] were observed with polymer 
infiltration.  The cyclic loading profiles of the applied ΔKI and ΔKeff arising from the 
crack closure mechanism are illustrated schematically in Fig. 2a,b (adapted from [23]).  
Although Sharp et al. [23] proposed a further reduction of ΔKeff could be achieved by 
reducing the crack tip opening and thereby decreasing the effective maximum value of 
the cyclic stress intensity from Kmax to Kopening (Fig. 2c), this mechanism led to negligible 
increases in fatigue life. 

Hydrodynamic pressure crack-tip shielding due to viscous flow within a fatigue 
crack has also been reported to decrease the effective range of mode-I stress intensity and 
reduce fatigue crack growth rate [24,25].  These investigations were restricted to metals 
and performed with the specimens immersed in the fluid of interest. The forces required 
to squeeze a viscous fluid out of the crack during unloading and draw fluid into the crack 
during loading provided effective crack-tip shielding.  Crack growth rates measured in 
oils were lower than in air.  Greater reductions in crack growth rate occurred for higher 
viscosity oils [26–28], until an upper limit was reached and the fluid could no longer 
penetrate to the crack tip [29,30].  For metals, crack-tip shielding from hydrodynamic 
pressure provided nearly 50% reduction in crack growth rate [29,31]. 

In this work, we present a new methodology for retardation and repair of fatigue 
cracks based on the self-healing concept developed by White et al. [32]. In Part I we 
investigate two crack-tip shielding mechanisms during fatigue of a microcapsule 
toughened epoxy.  Artificial crack closure is achieved by injecting precatalyzed monomer 
into the crack plane to form a polymer wedge at the crack tip.  Hydrodynamic pressure 
and viscous damping at the crack tip are investigated by injecting mineral oil into the 
crack plane.  Building on the success of these mechanisms for retarding fatigue crack 
growth, Part II [33] reports on in situ self-healing of fatigue damage. 
 
 
2. Fatigue test method 
 
2.1. Materials and sample preparation 
 

Urea-formaldehyde microcapsules containing dicyclopentadiene (DCPD) 
monomer were manufactured with average diameter of 180 µm using the emulsion in situ 
polymerization microencapsulation method outlined by Brown et al. [34].  Shell wall 
thickness was 190 ± 30 nm for all batches.  Tapered double-cantilever beam specimens 
were cast from EPON® 828 epoxy resin (DGEBA) and 12 pph Ancamine® DETA 
(diethylenetriamine) curing agent with 20 wt% of microcapsules mixed into the resin.  
For the work presented in this paper the effect of in situ self-healing was excluded by 
omitting the catalyst phase in the resin formulation.  The epoxy mixture was degassed, 
poured into a closed silicone rubber mold and cured for 24 hours at room temperature, 
followed by 24 hours at 30° C.  Relevant physical and material properties are listed in 
Table 1. 
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Table 1 
Properties of the constituent materials [14] 
Property Epoxy Urea-formaldehyde 

microcapsules 
Epoxy with 20 wt% 
microcapsules 

KIC (MPa m1/2) 0.55±0.04 — 1.0±0.2 
Young’s modulus (GPa) 3.4±0.1 — 2.7±0.1 
Paris power law exponent, n 9.7 — 4.3 
Paris power law constant, C0 8.2 × 10−2 — 3.8 × 10−4 
Density (kg/m3) 1160 ~1000 ~1120 
Diameter (µm) — 180±40 — 
Wall thickness (nm) — 190±30 — 

 
2.2. Mechanical testing 
 

The fatigue-crack propagation behavior of microcapsule toughened epoxy was 
investigated using the tapered double-cantilever beam (TDCB) specimen geometry, 
shown in Fig. 3.  The fatigue experiment and specimen geometry are outlined by Brown 
et al. in [14] and [35], respectively.  Side grooves are included to ensure controlled crack 
growth along the centerline of the brittle specimen.  The TDCB geometry, developed by 
Mostovoy et al. [36], provides a crack-length-independent relationship between applied 
stress intensity factor KI and load P, 
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which only requires knowledge of the coefficient α = 11.2x103 m-3/2 [34].  A constant 
range of mode-I stress intensity factor ΔKI was achieved by applying a constant range of 
applied load ΔP, independent of crack length. 

Fatigue crack propagation studies were performed using an Instron DynoMight 
8841 low-load frame with 250 N load cell.  Samples were precracked with a razor blade 
while ensuring the precrack tip was centered in the groove and then pin loaded.  A 

 
Fig. 3.  Tapered-double-cantilever-beam geometry [35].  All dimensions in mm. 
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triangular frequency of 5 Hz was applied with a load ratio (R = Kmin/Kmax) of 0.1.  Fatigue 
cracks were grown under mode-I stress intensity factor range ΔKI = 0.473 MPa m1/2.  
Crack lengths were measured optically and by specimen compliance [14].  First, the 
optically measured crack-tip position and specimen compliance were plotted against 
number of cycles.  A linear relationship between crack length and specimen compliance 
was then used to calculate the crack-tip position at all times during the experiment. 

The constant ΔK nature of the fatigue test yields a constant crack-growth rate over 
the majority of the length of the specimen.  The degree of observed crack acceleration 
fluctuates with loading conditions and sample material.  In the absence of secondary 
shielding mechanisms, the rate is defined by the Paris power law dependence on the 
applied range of mode-I stress intensity factor ΔKI [14].  Any deviation during a given 
test (e.g. crack growth retardation or arrest) is therefore an isolated effect of either 
viscous flow or artificial crack closure.  To account for the complexity associated with 
changing fatigue crack growth rates under cyclic loading conditions, fatigue-healing 
efficiency is defined by fatigue life-extension, 
 

  

! 

" =
N
healed

# N
control

N
control

,  (3) 

 
where Nhealed is the total number of cycles to failure for a self-healing sample and Ncontrol is 
the total number of cycles to failure for a similar sample without healing. 
 
 
3. Results 
 

Healing under fatigue loading was first investigated by manual injection of 
precatalyzed healing agent in the crack plane (DCPD mixed with 2 g L−1 of Grubbs’ first 
generation Ru catalyst).  Healing agent was injected into the crack plane under three 
loading conditions: zero-load, constant Kmax, and continuous cyclic loading.  For a control 
experiment, a fatigue crack was grown in a sample without injection until failure 
occurred (Ncontrol = 1.71 × 105 cycles).  Infiltration of a viscous fluid (with no 
polymerization) was also explored for an additional comparison case. 

For the zero-load case, a crack was grown for several mm at which point fatigue 
loading was interrupted, precatalyzed healing agent was injected into the crack plane, and 
all external loads were removed from the sample.  Fatigue loading was reestablished after 
a 10 h healing (cure) period at room temperature.  The crack-tip position is plotted 
against number of cycles for this case in Fig. 4.  Following healing, the crack retreated to 
the approximate location of the sample prenotch.  Upon the resumption of cyclic loading, 
an interfacial crack rapidly initiated between the polyDCPD and epoxy and propagated to 
the crack-tip position prior to healing.  Crack growth in the neat epoxy commenced at its 
prehealed rate until sample failure.  The fatigue-healing efficiency λ defined by Eq. (3) 
and calculated using the data from the control sample was less than 1%. 
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Fig. 4.  Crack length vs. fatigue cycles of manual injection sample healed under zero-load and 
tested to failure, λ < 1%.  ΔKI = 0.473 MPa m1/2, Kmax = 0.525 MPa m1/2, Kmin = 0.053 MPa m1/2, 
R = 0.1, f = 5 Hz, and a0 = 24.3 mm. 
 

For the second loading case, a crack was grown for several mm, fatigue loading 
was interrupted, the sample was held at constant Kmax, and precatalyzed healing agent was 
injected into the crack plane.  Fatigue loading was reestablished after a 10 h healing 
period at room temperature.  Crack-tip position is plotted against number of cycles for 
this case in Fig. 5.  Crack growth through the polyDCPD region exhibited three regimes 
of relatively stable crack-tip position.  After significant life extension, crack growth in the 
toughened epoxy resumed at its prehealed growth rate.  Sample failure of the healed 
specimen occurred after Nhealed = 3.68 × 106 total applied cycles.  For this case, the 
fatigue-healing efficiency λ defined by Eq. (3) was 2000%. 
 

 
 

Fig. 5.  Crack length vs. fatigue cycles of manual injection sample healed under Kmax and control 
sample tested to failure, λ = 2052%.  ΔKI = 0.473 MPa m1/2, Kmax = 0.525 MPa m1/2, 
Kmin = 0.053 MPa m1/2, R = 0.1, f = 5 Hz, and a0 = 26.1 mm. 
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The load–displacement response changes significantly over the course of the 
sample fatigue life, shown in Fig. 6.  In the early cycles, prior to injection of DCPD, the 
load–displacement relationship is linear with increasing compliance as the crack 
propagates.  Following healing agent injection and polymerization at Kmax, the load–
displacement relationship remains linear with a reduced compliance.  After numerous 
cycles without crack advance, the load–displacement curve becomes bimodal.  The 
portion of the load–displacement curve above the knee becomes increasingly compliant 
as the crack length increases.  Simultaneously, the knee occurs at decreasing load levels.  
Crack growth approaches the prehealed rate when the load–displacement curves return to 
a linear regime. 
 
 

 
 

Fig. 6.  Load–displacement curves for select cycles corresponding with Fig. 5. 
 
 

For the continuous cyclic loading case, a crack was grown for several mm at 
which point precatalyzed healing agent was injected into the crack plane.  The DCPD 
flowed backward and forward in the fracture plane corresponding to the closing and 
opening of the crack.  The extent of flow decreased with time as the DCPD polymerized 
in the crack plane.  Immediately following injection, the sample compliance decreased 
slightly and the crack arrested for the first 1.5 h following injection (2.7 × 104 cycles).  
Following gelation, the increased stiffness of the rubbery polymer appeared as a 
regression of the crack tip.  Once the polyDCPD reached the glassy regime—
characterized by the degree of cure for the glass transition temperature to exceed the 
ambient temperature [37]—the crack tip stabilized until debonding initiated.  The fatigue 
life-extension λ associated with the temporary crack growth retardation shown in Fig. 7 
was 56%. 
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Fig. 7.  Crack length vs. fatigue cycles of manual injection sample healed under continuous cyclic 
loading and tested to failure, λ = 55.9%.  ΔKI = 0.473 MPa m1/2, Kmax = 0.525 MPa m1/2, 
Kmin = 0.053 MPa m1/2, R = 0.1, f = 5 Hz, and a0 = 22.9 mm. 
 

For comparative purposes, infiltration of a non-healing viscous fluid was also 
investigated.  A crack was grown for several mm in a microcapsule-toughened epoxy 
sample and mineral oil (Fisher Scientific, New Jersey) was injected into the crack plane.  
Injection of mineral oil—an inert hydrocarbon oligomeric compound with a viscosity 
(30 cP at 40°C) approximately 40 times higher than DCPD—dramatically reduced the 
crack growth rate (Fig. 8).  Unlike the case of a submerged sample, where crack growth 
rates are reported to be steady [25], the retarded crack growth exhibited significant 
variability.  Notably, crack growth retardation lagged the injection event, potentially due 
to the time required for the oil to be drawn into the crack tip.  After a period of arrest, the 

 

 
 

Fig. 8.  Crack length vs. number of cycles for manual injection of mineral oil λ = 101%.  
Hydrodynamic pressure from the viscous fluid dramatically reduces the crack growth rate and 
leads to significant life extension.  ΔKI = 0.473 MPa m1/2, Kmax = 0.525 MPa m1/2, 
Kmin = 0.053 MPa m1/2, R = 0.1, f = 5 Hz, and a0 = 21.4 mm. 
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crack growth rate increased (although never resuming the preinjection rate) in 
combination with an observed loss of oil from the crack plane. 
 
 
4. Discussion 
 

Manual injection of precatalyzed monomer healing agent extends the fatigue life 
of microcapsule toughened epoxy through a combination of crack-tip shielding 
mechanisms.  In samples injected with precatalyzed DCPD and healed at Kmax, crack 
closure due to the formation of a polyDCPD wedge at the crack tip provides the dominant 
shielding mechanism for fatigue crack retardation (Fig. 5).  Conversely, the wedge 
polymerized at zero-load does not result in any crack-tip shielding through artificial crack 
closure (Fig. 4).  As described previously for metals [21], a polymer wedge formed at or 
above Kmax provides maximum shielding efficiency and approaches a stress free crack tip.  
Shin, Huang and Li [23] have also reported that injection must occur at Kmax or larger to 
achieve any significant fatigue crack retardation. 

The success of crack closure is strongly dependent on how efficiently the crack 
tip is shielded from the applied cyclic loads. The progression of the load–displacement 
curves in Fig. 6 is representative of crack closure and correlates well with the temporary 
crack arrest events observed in Fig. 5 following injection at Kmax.  The stages of the crack 
closure mechanism are summarized schematically in Fig. 9.  In the early cycles prior to 
injection of DCPD (Fig. 9a,b), the corresponding load–displacement curve in Fig. 6 
(curve I) is linear with increasing compliance as the crack propagates.  Following healing 
agent injection and cure (Fig. 9c,d), the load–displacement curve in Fig. 6 (curve II) 
remains linear with a reduced compliance due to the shorter, healed crack length.  After 
numerous cycles without crack advance, the load–displacement curve becomes bimodal 
(Fig. 6, curve III), representative of the crack closure mechanism proposed by Elber [18].  
The portion of the load–displacement curve above the knee, which represents the open 
crack condition and the portion of the cyclic load experienced by the crack tip, become 
increasingly compliant indicating progressive debonding of the healed DCPD interface as 
shown Fig. 9e.  The portion of the load–displacement curve below the knee, which 
represents the closed crack condition (Fig. 9f), retains a compliance corresponding to the 
healed crack geometry.  Simultaneously, the knee occurs at decreasing loads, indicating 
an increase in the effective cyclic stress intensity at the crack tip.  As the crack grows past 
the DCPD wedge (Fig. 9g,h), the crack growth rate increases with increasing ΔKeff 
approaching the prehealed rate and proceeds in this fashion until sample failure. 

Hydrodynamic pressure at the crack tip associated with viscous healing agent in 
the crack plane also provides a shielding mechanism in microcapsule toughened epoxy.  
Injection experiments with both catalyzed healing agent (Fig. 7) and mineral oil (Fig. 8) 
demonstrate reduced crack growth rates.  The effectiveness of DCPD at providing 
shielding by hydrodynamic pressure is dependent on the degree of cure (α).  Low 
viscosity DCPD monomer (α = 0) has a low resistance to flow, providing nominal 
crack-tip shielding.  As the degree of cure and viscosity increase, significant crack 
growth retardation is obtained.  Further polymerization leads to crack regression as the 
shielding mechanism transitions from hydrodynamic pressure to crack closure. 
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The shielding effect of hydrodynamic pressure has been modeled analytically 
[29,30] and numerically [38] for fatigue crack growth in metals.  As shown schematically 
in Fig. 10, the effective loading at a viscous fluid-filled crack tip lags behind and has a 
significantly different shape than the applied cyclic stress intensity profile.  The models 
predict a reduction of crack growth rates for increased fluid viscosity, lower stress ratios 
R, lower applied ranges of stress intensity ΔKI, larger crack thickness b, and higher cyclic 
frequencies f.  Because fatigue crack growth in metals is less sensitive to changes in ΔKI 
(Paris power law exponent n ~ 3), partial shielding yields only a modest reduction in 
crack growth rate, with greater potential for brittle polymers (n = 4.5–10), as 
demonstrated in the current work. 
 
 
5. Conclusions 
 

Experiments were performed to elucidate mechanisms of fatigue crack growth 
retardation and arrest in microcapsule-toughened epoxy.  A protocol based on fatigue 
life-extension was established for measuring crack healing efficiency under cyclic 
loading.  Fatigue life-extension was achieved by a combination of crack-tip shielding 
mechanisms.  Viscous flow of the healing agent in the crack plane retarded the crack 
growth process.  Polymerization of the healing agent led to a short term adhesive effect 
and a long term crack closure effect, which prevented full unloading of the crack tip.  

 
 

Fig. 9.  Schematic summary of crack closure mechanism and the apparent crack-tip positions for 
Kmax and Kmin loading conditions: (a) original crack at maximum crack opening, and (b) at 
minimum opening (Fig. 6, curve I), (c,d) crack closure immediately after crack is filled with 
infiltrant (curve II), (e,f) following crack growth through the infiltrant, which is accompanied by 
onset of a bimodal compliance curve (curve III), and (g,h) after crack growth past the infiltrant, 
which is accompanied by diminished crack-tip shielding from artificial crack closure (curve IV). 
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Significant fatigue-crack retardation was achieved by artificial crack closure induced by a 
polymerized healing agent (DCPD) wedge at the crack tip that prevented full crack-tip 
unloading.  Moreover, successful crack closure was independent of the adhesive strength 
of the interface.  Crack closure from the polymer wedge continued to retard crack growth 
long after the crack started to propagate through the healed region. 

The mechanisms for retardation and repair associated with manual injection 
represent the first steps towards a new crack healing methodology.  Further development 
of this methodology is presented in Part II of this paper [33] where retardation and repair 
of fatigue cracks is achieved through in situ self-healing. 
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