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Abstract. We present an accurate and fast wave tracking method that uses

parametric representations of tracked fronts, combined with modifications of level-

set methods that use narrow bands. Our strategy generates accurate computation

of the front curvature and other geometric properties of the front. We introduce

data structures that can store discrete representations of the location of the moving

fronts and boundaries, as well as the corresponding level set fields, that are

designed to reduce computational overhead and memory storage. We present an

algorithm we call Stack Sweeping to efficiently sort and store data that is used to

represent orientable fronts. Our design and implementation feature two reciprocal

procedures. The first is called forward ”front parameterization” and constructs a

parameterization of a front given a level-set field. The second is called a backwards

”field construction”, and constructs an approximation of the signed normal distance

to the front, given a parameterized representation of the front. These reciprocal

procedures are used to achieve and maintain high spatial accuracy. Close to the

front, precise computation of the normal distance is carried out by requiring that

displacement vector from grid points to the front be along a normal direction. For

front curves in a two-dimensional level-set implementation, a cubic interpolation

scheme is used and G1 surface parameterization based on triangular patches is

constructed for the three dimensional level-set implementation to compute the

distances from grid points near the front. For remote grid points in the band, a less

accurate method is used for both implementations. Boundary conditions at wall

and internal boundaries are implemented. We present examples from the resulting

code to the applications of detonation shock dynamics and dendritic solidification.

1. Introduction

We have long-standing interests in simulating detonation and combustion phenomena,

related to experimental configurations and engineering devices in complex two and

three-dimensional geometry. A representative example of such an experiment and a

corresponding simulation are shown in Figures 1 and 2. Figure 1 shows an assembly

§ To whom correspondence should be addressed (dss@uiuc.edu)
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Figure 1. Assembly sketch of the DSD validation experiment at Eglin AFB carried

by D. Lambert. Used with permission of Dr. Lambert

drawing of detonation ”wave shaper”, an explosive device designed by D. Lambert

[32] to measure the detonation dynamics of the test explosive. The white material

in Figure 1 is a condensed explosive like PBX9501. The bottom boundary is copper.

The side boundaries are partially unconfined and copper. The top boundary is water.

The gray disk embedded in the charge in this instance is lead. A small detonator and

booster pellet is placed at the bottom of the charge to initiate the detonation.

In the experiment the detonation is ignited at the bottom by firing the detonator;

the detonation shock front propagates through the explosive from the bottom and

diffracts around the inert disk. As the detonation passes over the inert (lead) disk

the detonation shock develops a hole. After the detonation passes over the disk, the

hole heals itself and the subsequent oblique collision of the retarded portions of the

detonation shock produces extraordinarily high pressures in the interior of the charge.

The experiment records the times and positions when the detonation shock breaks

out of the top of the charge. In the related applications, the high pressure generated

at the center of the wave shaper is used to precisely cut or punch a hole through the

object placed against it at the top of the charge.

Figure 2 shows the result of a 2-D axi-symmetric simulation of the same

experiment that displays the shock fronts at fixed times (measured in microseconds).

In this display the leading shock motion is of primary interest, but note that the

detonation interacts with all of the confining materials at the explosive/confinement

interface. If the shock speed is known for example, the shock relations (that use

the equation of state for the explosive) can be used to calculate the shock pressure
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Figure 2. Shock time of arrival field for a wave shaper. The shocks are shown at

the times labled, measured in microseconds. The shock pressure field is shown by

the gray-scale contours, measured in units of 100 GPa.

right behind the shock as it crosses any point in the explosive charge. Hence one can

construct a map of shock pressures generated in the interior of the charge and an

example of such a map is shown in Figure 2.

Figures 3a-b and 4 show a sequence of the motion of the shock when the inert

disk is placed off the axis of the cylinder, in which case 2-D symmetry is destroyed

and 3-D simulation is required to model the experiment. Importantly, both 2-D and

3-D simulations show the change in topology of the shock front even for this simple

experiment. The detonation wave tracking simulations shown in Figures 2, 3 and 4

are computed with the algorithms described in this paper.

In most applications it is important to track the shock or combustion front

through the device and follow its interaction with other parts of the device that

move or are static. In some cases one has an independent motion rule for the

detonation shock or the combustion front (such as surface motion under the influence

of curvature) and the calculation of the surface motion is called ”wavetracking”.
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a b

Figure 3. Detonation shock tracking simulation of the experimental device shown

in Figure 1, for two different times

Figure 4. Detonation shock tracking simulation just after the shock passes the

embedded disk
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Sometimes the motion of the front is determined by solving a coupled problem where

the interface separates two adjacent regions and one must solve field equations on

either side of a flame or phase transformation interface across which jump condition

must be satisfied. Some formulations for flame propagation and binary solidification

lead to generalized Stephan problems that are representative mathematical models

that require that the front motion be solved simultaneously with the evolution of the

fields on either side.

Engineering devices that have explosive elements have many parts and layers

of different materials that can compress and move. Each material interface (say),

can be regarded as a front that must be tracked. In a compressible flow model, the

motion of the material interface is specified by the normal velocity of the interface.

(An expanded version of our introductory example is a multi-material simulation that

solves for the motion of the detonation shock and the material states in the copper

layer and embedded disk simultaneously.) High pressure, multi-material codes are

called hydrocodes. Interface treatment is a fundamental part of a hydrocode. The

highly accurate and efficient representation of complex interfaces are central to their

improvement. Treatments of complex interfaces also arise in combustion applications

associated with turbomachinery, or micro combustion devices of current interest that

don’t necessarily involve high pressures and large material deformation except in the

fluids.

Interface representations to be used with higher-order schemes for the materials,

must be higher order and have sufficient accuracy. Because of cost considerations in 3-

D, it is important to use surface representations instead of a full-field representations.

Thus we focus on narrow band level-set methods, where the surface is stored as a zero

level-set function inside a narrow region of a fixed thickness. The thickness of the

band, measured normal to the embedded front, is taken to be some integer multiple

of the grid length. The band region can then also be used as a region of interpolation

of field values into (ghost) boundary regions or to sample field data to extrapolate

values to the front itself.

For 3D applications in particular, the memory savings achieved with narrow band

methods are substantial. Consider a 3D sphere whose surface is near the boundary of

the computational domain. At a resolution of 213 = 9206 with b = 4 the narrow band

takes up 99% of the total number of domain grid points. At the resolution of 2013

with b = 4 the narrow band takes up 14.6% of the total number of grid points and at

the resolution of 4013 = 4, 151, 588 with band width b = 4 the narrow band takes up

6.4% of the total number of grid points in D. For a 3D simulation at the resolution

of 4013 is the modest resolution at best and the memory savings are dramatic. The

use of narrow bands are essential for cost efficient computation in 3D.
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1.0.1. A Hybrid Level-Set Method Our method uses parametric representations of

tracked fronts, combined with modifications of the narrow band level-set methods and

hence is a hybrid level-set method. Higher order representation of the front enables

computation of the front curvature, and other geometric properties. We necessarily

introduce data structures that can store discrete representations of the location of

the moving fronts and boundaries, as well as the corresponding level set fields, that

are designed to reduce computational overhead and memory storage. We developed

an algorithm we call ”Stack Sweeping to efficiently sort and store data that is used to

represent orientable fronts and be very fast. A complete account intertwines numerical

and software design issues such as fast search and storage procedures.

Our design and implementation specially feature two reciprocal procedures. The

forward ”front parameterization” constructs a parameterization of a front given a

level-set field. The backwards ”field construction”, constructs an approximation of

the signed normal distance to the front, given a parameterized representation of the

front. These reciprocal procedures are used to achieve and maintain high spatial

accuracy. Close to the front, precise computation of the normal distance is carried out

by requiring that displacement vector from grid points to the front be along a normal

direction. For front curves in a two-dimensional level-set implementation, a cubic

interpolation scheme is used and G1 surface parameterization based on triangular

patches is constructed for the three dimensional level-set implementation to compute

the distances from grid points near the front. For remote grid points in the band, the

less accurate Fast Marching Method [21] is used for both implementations.

Let the forward parameterization be represented by an operator G : F → C,
where F is a set of all (real valued) functions defined on the domain D, and C
is a set of all possible physically acceptable parameterized fronts embedded in the

computational domain D. In other words, given a field function ψ which embeds

a curve Γ on the grid, one must construct highly accurate, discrete, approximate

parameterization of the physical curve Γ. The backwards ”field construction” is

represented as G−1 : C → F and assumes that we are given a parameterized curve

Γ. This procedure constructs a field ψ ∈ F such that Γ = {p ∈ D : ψ(p) = 0}.
If we know Γ exactly, then its representation can be used to find the exact normal

distance to Γ at all points inside the band domain D. Successive application of these

procedure is convergent on a limiting grid and can be used to define a fixed point

mapping between Γ and ψ in the band. The reciprocal procedures are used to achieve

and maintain high accuracy representation of Γ. In addition, if the signed normal

function is perfectly calculated in the band, one has a perfect interpolation of field

functions to Γ, with accuracy limited only by the grid density and the number of

points used in the extrapolation stencil.

Figure 5 and 6 show an example of successive applications of the forward front

parameterization and backwards field construction. The field function ψ is given
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exactly as a signed normal distance to a circle Γ of radius R = 10 centered at the

origin. The narrow band has four grid points on each side of Γ. The computational

domain is a rectangular domain −11.5 ≤ x, y ≤ 11.5 and the grid spacings considered

have dx = dy = 23.0/N , where N = 20, 40, 80, 160, 320, 640, and 1280 were used.

Nodal points on Γ are found by determining the zeros of ψ on grid lines that were

approximated from cubic interpolations of the values of ψ in two coordinate directions.

The details of these procedures are described in Section 4. The computation of the

normal vector at the nodal points on Γ can be carried out in a similar way. The solid

lines with rectangles and triangles show the maximum errors location and normal

vectors. The solid line with circles shows that the maximum error of the computed

ψ field in the vicinity of Γ, computed by composite action G−1 ◦ G, decreases by an

order of magnitude as the resolution is doubled. The dotted lines show the order of

accuracy of the forward parameterization. For high resolution, the approximation of

location is of order four, and that for the normal vector is of order three.

1.0.2. A brief review of related approaches Two methods have been widely used for

wave tracking and surface descriptions, the marker-particle method and the level-set

method. These methods differ primarily in the representation of the front location. In

the marker-particle method the location of front is identified by a set of nodal points

through which the front passes. The level-set method uses an approximation to a

real-valued function (that ideally is the signed normal distance to the zero level-set

that identifies the front) defined at grid points on a prescribed computational domain.

The motion rule determines the normal velocities of the markers or level curves and

is independent of the method.

While it is sufficient to define the velocity of the front for the marker-particle

method, the front velocity must be defined on the entire computational domain for

level-set formulation and an appropriate velocity field extension must be provided. To

avoid irregular behavior of the level-set during the time integration, (re)-initializations

of the distance function in the vicinity of front is required. The marker method

can be made more accurate than the level-set method at least in a well-defined

portion of computational domain where no topological change of the front occurs.

The marker-particle method can be made fast since only the nodal points on the

fronts are updated. In contrast all points in the domain must be updated in level-set

method. However, the marker methods are harder to implement, especially for the

surface tracking of merging and splitting fronts in 3-D domain.

Representative description of wave-tracking that uses marker methods can be

found in recent papers by Tryggvason et al [14] and by Udaykummar et al [13]. These

authors track the interfaces separating different regions given by the multi-phase

Navier-Stokes equations. The markers are connected to each other by surface elements

and stored as an ordered list of points. The surface elements constructed by surface
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points are triangular patches and are used to reconstruct the surface as simulation is

advanced in time. Once the triangular surface patches are constructed, the transfer of

the surface values such as surface tension is simple, even though the implementation

and construction of the surface patch can be complicated. Udaykummar [13] gives

a clear and systematic explanation of the assignment of values from fronts to grid

points. In his version of 2-D marker method, the fronts are parameterized by

quadratic local interpolations of marker points and then the normal distance function

is computed at the nearest grid points to the front (curve) by using orthogonality

condition between the displacement vector and the tangent vector of the curve. The

transported variables are extrapolated along the computed normal directions. The

marker method requires a complicated numerical procedure for the maintenance of

equi-spaced marker points on fronts. For example, wave-tracking in the presence of

a sharp corner is difficult and requires special treatment in order to supply sufficient

number of markers around the corner.

Work by Adalsteinsson et al ([18] and [1]), Chen and Chopp, [3], [23] a recent

book by Sethian [4], and reviews by S. Osher [22] and J. A. Sethian [20] contain

descriptions of modern level-set method and its recent applications. Chopp et al.

[15] and Keck [16] showed that accurate computation and parameterization of the

zero level-set is required in order to accurately re-distance the level-set so as to

maintain a robust and accurate method. Keck showed that accurate calculation of

the normal distance from the nearest grid points to the front improves the accuracy of

re-initialization. Chopp ([15]) used a cubic interpolation of level-set function (defined

on grid points) around the front and used the orthogonality condition to compute

the location of the front and developed a higher order modification of Sethian’s Fast

Marching, although it is computationally expensive, in three-dimensions. Our work is

related to the approaches described above and like them can be described as a second

generation front tracking method. We use a hybrid combination of the level-set ideas

and and particle tracking methodology and we discuss the unique aspects below.

Our implementation captures the front accurately and constructs a parameteri-

zation of the front (surface and curve) similar to marker methods. We identify disjoint

segments of the front if it is multiply connected. Once a front (i.e. all segments) is

constructed, the orthogonality condition is used to compute the signed normal dis-

tance to grid points in the neighborhood of the front. In the 2-D implementation

we place three layers of grid point around the front. The first layer of grid points

are the nearest to the front are denoted VΓ. The second layer of grid point is the is

the set of grid points nearest to the first layer in the ”vicinity of VΓ” and we denote

them as ṼΓ. The third layer is the remaining set of points in the band domain and

we refer to them as points ”remote” to the front. Using the orthogonality condition

we compute the exact signed distance function in the set VΓ and its vicinity, ṼΓ. Us-

ing the information in these two layers, the front construction and the level-set field
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Mesh size Chopp’s method WaveTracker

20× 20 1.81× 10−3 3.47× 10−4

40× 40 1.41× 10−4 7.28× 10−5

80× 80 1.36× 10−5 2.92× 10−6

160× 160 1.96× 10−6 1.43× 10−7

320× 320 2.74× 10−7 9.33× 10−9

Table 1. Comparison of accuracy of distance function by WaveTracker with

Chopp’s result shown in paper [15] (Table 4.2) on the error measurements in L∞

norm ,

construction are shown to be reciprocal procedures accurate to fourth-order. In the

remote zone, we use a modified Fast-Marching method for approximate computation

of the distance function to fill out the band.

The addition of an extra surrounding layer in which the exact normal distance

to the parameterized zero level-curve is computed greatly increases the accuracy of

the computation. Table 1 shows a comparison of accuracy of the distance to a circle

using the Chopp’s method that computed the exact normal distance only on the

nearest grid points and our method were we use two layers of grid points surrounding

the zero level-set including grid points nearest the front. Table 1, shows an order

of magnitude decrease in the L∞ error at the same grid resolution. In addition our

method uses less grid points to locate the position of zero level-set and presumably

uses less computation time. We find the front location by Newton iteration on a scalar

function, whereas Chopp computes the distance to the zero level-set with formulation

that uses sixteen algebraic equations at each grid cell two-variable polynomial.

Thus our hybrid algorithm uses exact computation nearest the front and

approximate computation remote to the front for the re-distancing procedure to

maintain a high accuracy front approximation. The reconstruction of narrow-band

computational domain is carried out before the computation of the distance function

and the procedure maintains an approximately equal number of grid points equal on

both sides of Γ. The advantage of using the level-set-based parameterization of the

front compared with the marker method is that the automatically captured nodal

points are always fairly evenly spaced. Little computational over-head is associated

with the reconstruction of fronts, unlike the general marker method. The difficulty

in parameterization of fronts near corners is also diminished through the use of the

local level-set method.

In three dimension, computation of the normal distance grid points (in the

vicinity of VΓ ) to a given parameterized surface is straightforward, given good seed

points for the numerical iteration on the orthogonality condition. But this procedure

is quite expensive. Therefore in the 3-D implementation we use only two layers,

VΓ and the remote zone which leads to a 2nd order accurate computation of re-
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initialization or velocity extension, similar to the second order accurate computation

obtained by Chopp [23] in his two-dimensional calculations.

The algorithms that parameterize a surface are well developed (for example, see

[25]). Hence we focus on the description of our algorithm that constructs an ordered

set of nodal points that represents the surface. To make the construction method

fast and robust we devised a simple, generic, and robust technique called the Stack-

Sweeping Method. The algorithm for a front in 2-D is quite simple but is more

complicated for a surface in 3-D. The Stack-Sweeping Method uses two lists (address

stacks) to store the memory addresses of nodal points on the surface and from a seed

point, the surface is constructed on the surface the set of ordered nodal points that

captures the surface is constructed by outward propagation and by the switching the

address stacks (See section 4.1.5).

In previous a paper [9], we gave an application of level-set methods to detonation

shock dynamics (DSD). An important feature of DSD applications is that the

detonation shock is attached to internal and external boundaries at a prescribed angle.

The angle attachment condition comes from physical considerations of confinement.

Angle control condition is a novel method used in DSD, that is not a part of the

standard level-set formulation. These angle boundary conditions are similar to angle

conditions found in contact problems of immiscible fluids with surface tension. Hence

the techniques for angle control, originally developed for DSD, are applicable to other

physically important problems.

In Section 2. we describe briefly the basic theory of level-set method. In Section

3. we describe the code architecture and give definitions that define required data

structures. In Section 4. we presented a detailed overview of the algorithms and

give some of the implementation details needed to build the WaveTracker code. In

Section 5. we present the results of tests and applications. Specifically we describe

the applications to detonation wave front tracking, and applications to explosive

engineering. We also describe an application to dendritic solidification, where the

front moves according to a prescribed motion law, coupled to evolving temperature

field solutions on either side. In a sequel to this work we will explain how the interface

representations described in this paper can be integrated into a high-order multi-

material hydrocode that in turn can be used to engineer complex devices that may

contain energetic materials.

2. Preliminaries

Let ψ be a piecewise continuous function defined on the domain of propagation. Let

the contour ψ = 0 represent the front or curve of physical interest at a given time;

the same curve or front is denoted Γ. Let Vn be the normal velocity of the front. The



Wave Tracking in Complex Geometries 12

level-set function ψ satisfies

∂ψ

∂t
+ Vn |∇ψ| = 0 , (1)

where ψ is initially given as a monotonic function which is negative in the interior to

Γ and positive exterior to Γ. Typically, the initial ψ-field is taken to be the signed

normal distance function

ψ(p) = sgnp min
s∈I
||p− Γ(s)|| (2)

where Γ(s) is a prescribed parameterization of front such that ψ(Γ(s)) = 0 and sgnp

is the sign ±1 is used to determine on which side of Γ the point p lies. The set I is

the domain of parameter s of Γ and ||p− Γ(s)|| is the distance from a point p to a

point Γ(s). If one defines T (x, y) as the crossing time field associated with the sweep

of the front through the domain, (for DSD applications this is called the ”burn time”

and we use tb(x, y) ≡ T (x, y), with Vn > 0), then the boundary-value formulation, is

alternatively given by

|∇T |Vn = 1 , (3)

where the physical surface Γ is given by Γ = {(x, y)| T (x, t) = t}. The boundary data

is a specification of the initial surface T (x, y) = 0.

For the level surface ψ = constant, we define the normal to the surface, the total

curvature and the normal velocity by

n̂ =
∇ψ
|∇ψ| , κ = ∇ · n̂ , Vn = −∂ψ

∂t

1

|∇ψ| . (4)

Since Vn on Γ is the normal velocity, we define its extension in the domain of

computation such that its spatial gradient lies in the surface ψ = constant. Since

∇ψ is in the direction normal to the level surface, Vn satisfies

∇ψ · ∇Vn = 0 . (5)

Sethian’s fast marching method solves (3) in combination with (5). The method

starts with the initial locus at t = 0, on which Vn is known to approximate the T -field

off the curve, followed by using (5) to calculate an extension of Vn off the same curve.

The solution then marches outward from the initial curve.

A narrow band is simply a domain of finite width that embeds the physical

surface Γ. For a given grid the discrete version of the narrow band is defined as a

collection of points inside the band. The level-set contours are maintained in the

band. The evolution of the level-set contours, and hence the motion of the Γ defined

by ψ = 0, is computed inside the band. If one is solving for the motion of a surface

whose motion is defined by the values of field variables defined in the surface or jumps

of the same across Γ, then the band is a region that is used for interpolating field

variables or their derivatives onto Γ from either side, or both sides. In particular,
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interpolation of field values onto the band requires that the signed normal distance

function from Γ be found exactly at the grid points in the band. We do this by using

a parametric representation of the physical surface Γ and exact determination of the

normal distance at the neighboring grid points. The velocity extension in the band

is constructed in a manner similar to that described in [1].

3. Code Architecture: Definitions, Data Structures and Procedures

Here we give definitions and describe data structures and procedures that are needed

to build the code. The WaveTracker can be used as a stand-alone application to

compute static surfaces, (in which case the surface velocity is zero) the intrinsic

motion of a surface that only depends on its current shape, or motion of fronts

that is determined by the solution of moving boundary problems (such as dendritic

solidification or flame propagation) that require that the field on either side of the

interface be solved simultaneously with the motion of the interface. A motion rule

must be specified that determines the normal velocity of the interface, Vn on Γ, and

when the motion is coupled to the fields on either side of Γ, one-sided extrapolation

of the field values to the boundary is required. Since we compute the exact normal

distance to Γ in the nearest neighbor region, highly accurate extrapolation is possible.

From an architecture view, the field application always consists of at least

two parts; a ”Geometry Specifier” that specifies the domain, internal and external

boundaries and a ”Field Problem Solver” that solves for the fields and controls the

location of the front and possibly requires an iteration of the position (or velocity)

of the front as discussed above. The Field Problem Solver updates field values on

internal and external boundaries and on the front as required, and controls the time

stepping for the entire simulation. The ”WaveTracker” code element constructs and

maintains the front based on known values of a level-set evaluated on a computational

domain and computes the signed minimum distance field to Γ. It enforces any front

boundary condition at intersection with other internal and external boundaries as

required by the formulation. Figure 7 shows a flow chart for a typical application

program, with a detailed breakout for the WaveTracker. When Γ is determined by its

intrinsic dynamics, the application is simply a driver. When Γ is found as a solution

to a moving boundary problem, the WaveTracker interrogates the field on either side

and evaluates a residual on Γ (or uses an equivalent procedure).

The WaveTracker consists of five basic procedures below:

(I) Initialization This procedure specifies geometry from the field application,

defines data structures specifically associated with the narrow bands and

allocates memory. (See section 3.1).

(II) Surface Parameterization This procedure computes the front parameteriza-

tion Γ from an existing level-set ψ, represented by G : F → C. It exports the
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Figure 7. Flow chart of the WaveTracker interacting with a field application.

front information to the field application and defines the normal velocity on Γ.

(See section 4.1).

(III) Field Construction This procedure computes the signed distance field, ψ in

the narrow band once Γ has been specified, and is represented by G−1 : C → F .

(See section 4.2).

(IV) Velocity Extension This procedure extends the normal velocity defined on Γ

to all the band regions. (See section 4.3).

(V) Front Advance This procedure solves the level-set PDE according to the

velocity extension defined in the band. The details of the update depend on

the field application. Typically one needs a conventional upwinding strategy to

solve the level-set PDE. The front advance may also be influenced by boundary

conditions (See section 4.4).

(VI) Boundary Update This procedure enforces the front boundary conditions at

the intersection internal and external boundaries, consistent with the application

(See section 4.5).
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Figure 8. Sketch of the Physical Set up and continuous sets for the a simulation

of the WaveTracker and the structure of BANDSET Bb of bandwidth b = 4.

3.1. Geometric Objects and Definitions

Here we define continuous and discrete objects that we use to represent the front,

boundaries and so on. These definitions allow us to define and organize the data

structures that are used to carry out the discrete computation.

The domain D is the region in which the front is allowed to propagate and may

have embedded regions inside it through which Γ is not allowed to propagate. Hence

D may be multiply connected. For convenience we take D to be an open set so that

strictly speaking a point on the boundary of D does not lie in D. The boundary of

D is W = ∂D. The extended domain, Dext is the computational domain that fully

embeds D and it includes non physical regions where the surface is not allowed to

propagate. We assume that D is discretized with a uniform rectangular mesh such

that (in 2D) the grid points (xi, yj) defined by xi = xmin + i dx, yj = ymin + j dy with

dx = (xmax − xmin)/N and dy = (ymax − ymin)/M and 0 ≤ i ≤ N, 0 ≤ j ≤M .

The ”wall” set W can always be decomposed into a collection of piecewise

smooth, parameterized boundary curves W i that define the shape of D and such

that W = ∪iW i. The boundary curves W i separate the computational domain Dext

into two domains D and Dext|D ≡ Dext −D. We use the level-set φ to represent the

signed minimum distance to the wallW, with the property that φ = 0 corresponds to

the boundary set W . In many applications the boundary level-set φ remains static

and then the set of parameterizations of wall curves W i is an initial input.

We assume that Γ consists of disjoint segments such that Γ = ∪iΓi where Γi are

piecewise smooth, parameterized segments of the front that must be specified inside
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the domain D. The initial set of parameterizations for Γi are initial inputs. We use ψ

to represent a set of level contours in D that embed the contour ψ = 0, that represents

the front Γ. The level-set ψ is advanced as the front Γ moves. The front Γ splits the

physical domain D into two domains D− = {x ∈ D|ψ ≤ 0} and D+ = {x ∈ D|ψ > 0}.
If the front propagates forward into fresh material (as in the DSD application) one

can think of D− as being the ”burnt’ region and D+ as being the ”fresh” region.

The set of regularly spaced grid points (xi, yj) is superimposed on Dext. We

define an edge to be a straight line segment that connects adjacent grid points. The

set EΓ is the set of all edges in D through which Γ passes. The set EW is the set

of all edges in Dext through which W passes. Likewise, the set VΓ is the set of all

vertices of edges corresponding to EΓ, and the set VW is the set of all vertices of

edges corresponding to EW . Furthermore it is useful to define subets of VW such

that V
+
W ⊂ D, and V

−
W ⊂ Dext|D. Note that since D is an open set, vertex points

that might lie exactly on the boundary W belong to V
−
W . We call V

−
W the ”outer”

boundary points and V
+
W the ”inner” boundary points and they are disjoint. We also

define the subets of VΓ such that V
+
Γ ⊂ D+, and V−

Γ ⊂ D−. We call V
+
Γ the ”outer”

front points and V
−
Γ the ”inner” front points and they are disjoint as well.

A continuous narrow band can be defined as follows. In 2D, for each point on

Γ, considers a circle of radius b centered on any point on Γ. Then the continuous

narrow band is the union of all such sets, and in 2D the boundaries of the band set

would be two curves parallel to Γ of width b on either side. An alternative is to

construct the bands from a union of square bounding boxes of width 2 b. The discrete

version of the narrow band set that we use is the set of vertex points related to the

square boxes. One starts with the previously identified sets of vertex points that

enclose Γ, VΓ. We include in the discrete narrow band Bb, those grid points (xi, yj)

such that they are contained in the box x0 − (b− 1)△x ≤ x ≤ x0 + (b− 1)△x and

y0 − (b− 1)△y ≤ y ≤ y0 + (b− 1)△y, where (x0, y0) ∈ VΓ.

For the purpose of extrapolation of the value of the level-set function ψ

throughout Bb one needs to identify a subset of Bb that are grid points that form the

”boundary” of Bb, which we refer to as ∂Bb. Since the points are exterior points they

always have a neighbor that does not belong to Bb and hence are easily identified by

a simple test on nearest neighbors. In the next section, we describe computer data

structures of band set Bb.

3.2. Data Structures

The design of the data structure defines data storage and hence determines the

efficiency of the overall computation. While computational domain Dext and the

physical domain D are generally fixed, the size and shape of the band domain and

hence Bb, changes dynamically during the computation. Memory should be allocated

dynamically for efficiency. We introduce ADDRESMATRIX as a matrix with entries
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Dext : Extended computational domain

D : Computational domain in which surface propagates

W : Wall surface enclosing D
Bb : Discrete band set of width b.

Dext|D : Dext −D
∂Bb : Boundary grid points of band set Bb

EΓ : The set of all edges in D through which Γ passes

EW : The set of all edges in Dext through which W passes

VΓ : The set of all vertices of edges corresponding to EΓ

ṼΓ : The vicinity of VΓ defined in section 4.2.1

VW : the set of all vertices of edges corresponding to EW

Vn : Normal velocity function defined on D
D+ : {x ∈ D|ψ > 0}
D− : {x ∈ D|ψ ≤ 0}
V
−
Γ (⊂ D−) : Grid points which are vertices of edges in EΓ and in D−

V
+
Γ (⊂ D+) : Grid points which are vertices of edges in EΓ and in D+

V
−
W : Inner boundary points

V
+
W : Outer boundary points

ψ : Level-set function such that ψ = 0 defines Γ

φ : Level-set function such that φ = 0 defines W
F : The set of all possible ψ functions on D
C : The set of all possible Γ embeded in D
G : F → C : Forward parameterization

G−1 : C → F : Backward field construction

ADDRESSMATRIX : Data structure for grid points in Dext

BANDSET : Data structure for narrow band Bb

SURFACE : Data structure for the edges EΓ and Γ

Table 2. Summary of Terms and Definitions

for each for each grid point in Dext, BANDSET which stores lists of grid points Bb and

SURFACE which stores lists of edges EΓ with accompanying structured data entries.

SURFACE stores the location of Γ. ADDRESSMATRIX points to the addresses of

data entries that include the values of ψ and φ at the same grid points listed in

BANDSET, Bb. Since the two sets D and Dext|D are disjoint, ADDRESSMATRIX

can be used to store the addresses of both the values of the level-set ψ and the

boundary level-set φ simultaneously. In a similar manner, SURFACE is a structured

list of edges that can be generated from BANDSET.

3.2.1. ADDRESSMATRIX In 2-D, ADDRESSMATRRIX is (N +1)× (M +1) and

stores the information of the set membership and the addresses for the values of ψ
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and φ at grid points in Bb. Each entry of ADDRESSMATRIX is 4 bytes (32 bits).

The first 4 bits are used to determine the set membership of grid points. The first bit

of the status flag is 0 if the grid point is in D and 1 if the grid point is in Dext|D. The

second bit of the status flag is 1 if the grid point is used for computation, otherwise

it is 0. The next two bits can be reserved for other program use and are specific to

the application. The status flag is set to -1 if the grid point is not in Bb.

The last 28 bits are used for the addresses of the memory locations of member of

BANDSET and are divided into a 12 bit segment address segment and 16 bit offset

address segment. Note that 16 bits of the offset address segment can represent up to

216 = 65, 536 unique addresses and the 12 bit address segment can represent up to

212 = 4, 096 blocks of address, each of which can have 64 K address locations. For

a typical two dimensional computation, one or two segments of address allocation is

enough to represent all of the grid point addresses in BANDSET. But for the 3-D

example of the sphere at a resolution of 2003, 19 (block) segments of addresses are

required. The maximum number of addresses by this scheme is 4096 segments, and

this simple method will allow addressing for as high resolution as 32003. One can

extend this scheme further by using 64 bit words address scheme instead of 32 bit

scheme explained here. As the computation progresses, we allocate in increments of 64

K units of structured memory as memory is needed. The data structure of BANDSET

and SURFACE and the association with the addresses of ADDRESSMATRIX with

the grid points is explained next.

3.2.2. BANDSET and SURFACE Each entry of BANDSET consists of five items.

The first is the ordered pair for the grid point, (i, j) in 2-D. The second item stores

the absolute value of floating point value for ψ. The third item stores the normal

velocity at that point. If the grid point is in V
−
W , then the third item stores the value

of φ.

The fourth item (in 2D) is used in the front parameterization and for the Front

Advance when ψ evolves. For front parameterization, an ordered pair of 32 bit word

addresses are stored as pointers to SURFACE. The first address is the address of the

horizontal edge and the second is the address of a vertical edge. During the Front

Advance step (Step V), the memory is used to hold a temporary value of ψ. The

fifth item is a 1 byte (8 bit) status item that indicates the structure of Bb. If the

first bit is 1 then the grid point is a member of the boundary of the BANDSET, ∂Bb.

Otherwise the point is a regular interior member of BANDSET. The next three bits

are used to store information for the surface reconstruction. The fifth bit is used for

the sign of ψ at the grid points. The last 3 bits are held in reserve.

The data structure SURFACE stores the list of edges EΓ and hence stores the

location of Γ. Like BANDSET, each entry of SURFACE consists of five items. The

first item contains an ordered pair (i, j) for a vertex (grid point) for an edge. In
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Figure 9. Data structures ADDRESSMATRIX, BANDSET and SURFACE

2-D the edge is either at the bottom (for a vertical face edge) or at the left edge

(for a horizontal face edge). The next item is the directed distance starting from

the vertex to the intersection of Γ with that edge. Note that these distances are

enough to describe all of the intersections of Γ with the grid lines. The third item

contains an ordered pair of addresses that are 32 bit words that serve as pointers

to other entries of SURFACE. Our parameterization of Γ assumes that the curve

(in 2D) is orientable, and that arclength along the curve increases. Therefore the

addresses correspond to the locations of the adjacent intersection points of Γ with

the grid lines. The first address corresponds to the intersection point to the left

and the second address correspond to the intersection point to the right as arclength

increases. The fourth item is again a 1 byte (8 bit) status item that consists of flags

called 1 bit ”PASS”, 1 bit ”AXIS” that are used to store logical information used
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in the surface parameterization step. The last item is the identification of a curve

segment. Recall that Γ may consist of several disjoint segments Γi. The total data

storage for one entry of SURFACE is 22 bytes. Figure 9 shows the three main data

structures and their relationship to each other.

4. Algorithms

In this section we describe the algorithms. Specifically these algorithms parameterize

the front, find and order nodal points which are the intersections of the front with the

grid, assign values to the data structures, interpolate values to the grid, reconstruct

the normal distance field through the use of the orthogonality condition, carry out

the velocity extension, advance the front advance and update boundary values.

4.1. Front Parameterization G : F → C

The forward ”front parameterization” is one of the reciprocal operations. We start

with a ψi,j at grid location (i, j) stored in the first item of BANDSET. Generally Γ

and hence the ψ field will change in time, but for these procedures one can think of

Γ as static, and these algorithms could represent any surface. Next we identify the

set VΓ, which is the set of vertices corresponding to the set EΓ, which is the set of all

edges through which Γ passes.

BANDSET is a list of structured items that can be indexed by k = 0, 1, 2, . . ..

But the entries of BANDSET are not strictly ordered, in that their order is possibly

based on a previous sweeping operation through the grid and the order of entry on

the list are influenced by that operation. Recall that if one gives ψi,j in BANDSET,

then one can initialize all the addresses that must be stored in ADDRESSMATRIX.

Also recall that if some grid point of ADDRESSMATRIX is not in BANDSET, then

one sets the address value equal to -1 as a status flag.

4.1.1. Constructing Sets EΓ and VΓ in Bb. We start by checking an entry of

BANDSET with index k = 0 (say), that corresponds to (i, j) = (i∗, j∗) (say), and

ψi∗,j∗ . Since the value of k is known ( k = 0 say) and corresponds to grid location

(i∗, j∗), one can go to ADDRESSMATRIX and find the values of k for the two

neighboring cell vertices (i∗ + 1, j∗) and (i∗, j∗ + 1). For neighbors in BANDSET

one computes the products ψi∗,j∗ ψi+1∗,j∗ and ψi∗,j∗ ψi∗,j+1∗ respectively. If the sign

is negative it corresponds to a sign change in the stored level-set values across a grid

line and indicates that a transverse intersection of Γ has occurred with the respective

grid line. This means that the kth item (i∗, j∗) is in VΓ.

We can identify crossing vertices and edges as follows. Recall that each entry

of BANDSET has four items. The fourth item U (see Figure 9), consists of 8 bits,

which is divided into 1 bit for BDY and 3 bits for SNB, 1 bit for SGN, and 3 bits that
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are reserved. If for example, ψi∗,j∗ ψi+1∗,j∗ < 0, then there is a horizontal crossing we

set the first bit of SNB equal to 1, otherwise it remains 0. If ψi∗,j∗ ψi∗,j∗+1 < 0, then

there is a vertical crossing and we set the second bit of SNB equal to 1; otherwise it

remains 0. Finally if ψi∗,j∗ = 0, then we set the third bit of SNB is set to 1. (This

means that Γ lies on the grid point!). By using this status item in BANDSET we are

able to identify both VΓ and EΓ. We can repeat this procedure for all members of

BANDSET by successive examination of each member of the list. Therefore we can

count the number of all the edges and thus can allocate the exact amount memory

needed for SURFACE.

Each edge stored in SURFACE represents a grid intersection point for Γ. Each

entry in SURFACE corresponds to a member in set EΓ. Next we precisely determine

the intersection points of Γ with each member of EΓ, and then we assign that distance

information to corresponding item in SURFACE. By doing this, we will determine the

distance from any vertex in VΓ to Γ along the edge (in 2D this is either the horizontal

or vertical distance as measured from the vertex point).

4.1.2. Constructing the Data Structure SURFACE. Each grid point in BANDSET

that has non zero entries in SNB are members of VΓ, and have either a horizontal

or vertical intersection of Γ with the edge attached to that grid point vertex. As we

pass through BANDSET, when we find a member of VΓ, we copy information into an

entry in SURFACE. If there are horizontal and vertical intersections, then we use one

or two storage locations in SURFACE. We copy the (i,j) location of the vertex point

into the first item of SURFACE, determine the intersection point on the edge for a

given face and store that value as the second item of for the entry of SURFACE. (The

method we use to compute the distance is described below.) We know the direction

of the edge, i.e. whether it is an x or a y edge, and that information is stored at 2

bits item of the fourth item of SURFACE (in a status item, called AXIS, see Figure

9). If the value is 0 the edge is an x-edge; if the value is 1 the edge is a y-edge; if the

value is 2, Γ passes through its one of the vertices.

4.1.3. Finding Nodal (Grid Intersection) Points for the Parameterization of Γ. The

computation of the directed distance from a grid point to the intersection point x,

on an edge is done by using a cubic interpolation of ψ values with four points (for

the horizontal case ) with one to the left, the vertex point itself and two to the right

(in the vertical case, one below the vertex and two above). These four values can

be used to fit a unique cubic interpolating polynomial for ψ. Then one solves ψ = 0

for value x, using that interpolation. By experimentation we found that an ordinary

Newton method was fast enough so that three or four iterations obtain an absolute

error accuracy of O(10−10). The computed value is stored in the item d of SURFACE.

A special implementation is required when two different segments of Γ are close
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Figure 10. The neighbors of a point and the ordering of nodal points on curve Γ.

to each other. There is a discontinuity in the gradient of ψ between two segments, so

cubic interpolation with a four point scheme is not appropriate. The segments can

be identified by the procedure described below. One identifies non smooth regions of

ψ by checking the number of zeros of the cubic interpolation of ψ in the range of the

four node points. If two zeros occur, we put a marker indicating a possible singularity

at a nodal point in SURFACE. Later the marked nodal points are associated with

particular curve segments and the precise location of marked nodal points can be

corrected by one-sided interpolation.

4.1.4. Ordering Nodal Points for the Parameterization of Γ in 2D At this point one

has passed through BANDSET and has made entries into SURFACE that store Γ,

(i.e. the grid location of points in VΓ) specifically the distance from that grid point

to the intersection along edges, and a status item that indicate whether an edge is

horizontal or vertical. In what follows, we refer to the intersection points of Γ with

the grid lines as nodal points.

Next we order the entries in SURFACE so that we can construct a

parameterization for ordered curve segments. We sort the nodal points needed to

describe Γ (and stored in SURFACE) in order to generate an ordered, parameterizable

interpolant for Γ. We do this by one pass through SURFACE. We make an

assignment of the values of the third storage item, called ”LINK” in SURFACE

and the identification of the segments of Γ into item ID, as described below, (see

Figure 10). For the purposes of orienting the surface, we always assume that positive

increments in the surface parameterization coordinates are such that in the (2-D)
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plane the motion associated with change of direction is counter-clockwise.

Assume for a moment that we have found a point on a Γ, say q0 as shown in

Figure 10. The adjacent nearest neighbor nodal points of q0 on Γ are represented

by q−1 and q+1. Note that q0 corresponds to a member of VΓ, call it p. One can

find the nearest neighbors as follows. First note that p defines a rectangular cell

with vertices (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1) and such that p corresponds

to the bottom, leftmost vertex (i, j) as the local origin. Suppose that ψ(p) < 0

and that the edge is a horizontal edge. Then the curve Γ enters the cell from the

bottom. Given reasonable smoothness and moderate variation assumptions for Γ

with a sufficiently small grid spacing, one can assume that Γ must exit the same cell

through only one other point on the cell boundary. From the vertex indices (i, j)

one can go to the ADDRESSMATRIX to determine the addresses of the other cell

vertices and their membership in BANDSET. From interrogation of BANDSET one

can determine whether any other vertices are members of VΓ and hence whether the

curve Γ exits the cell.

If the curve exits then one knows the address of q+1 in SURFACE and writes

that address to the second (right) item of LINK, for the entry for q0. If the curve

enters the cell from below, then it must also be the case that Γ left the box below

it. And in a similar manner one can interrogate the members of BANDSET of the

box below, to find vertices that are in VΓ. Once found, one writes that address to

be associated with q−1 in the first item of LINK for the entry for q0 of SURFACE.

Therefore for every member in SURFACE, with a small number of queries, one can

determine the address of its nearest neighbor ahead of it, and behind it, in the sense

of increasing arc length of Γ, defined by counter clockwise traverse where the region

with ψ < 0 lies in the interior. If ψij = 0, there is some ambiguity in determining

the oriented direction of Γ. This is easily resolved by inspecting the larger rectangle

centered at (i, j) with vertices at (i± 1, j), (i, j ± 1), (i± 1, j ∓ 1), (i∓ 1, j ± 1).

4.1.5. The Stack Sweep Algorithm to Order the Surface Entries Note that Γ

may possibly be comprised of disjoint segments. Some of the segments may be

closed. Some can terminate on boundaries. The next task is to develop a global

sorting procedure that examines each entry of SURFACE and stores the necessary

information such that we can determine ordered nodal points that correspond to

continuous segments of Γ that can be parameterized by increasing arc length (say).

We perform this procedure by using the ”Stack Sweeping” algorithm and describe

that next for the 2-D application. The algorithm has been extended to construct

ordered 3-D surface segments and indeed, the 3-D application is the impetus for this

invention.

Figures 11 and 12 show an example of the realization of the Stack Sweep

algorithm in 2-D. Note that there are two segments shown, a closed segment and a
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Figure 11. Segments of Γ and with the nodal label in SURFACE shown

segment that terminates on boundaries. Note that the order of entries in SURFACE

are not likely to have a strict order that is associated with incremental storage of the

nodes. The Stack Sweep algorithm starts with the first entry of SURFACE. Recall

from the prior discussion above that by simple queries we determine nearest neighbor

points on Γ. For example for entry 0, there is no next neighbor, but there is a

nearest neighbor that corresponds to entry, where the sense of advance in the counter

clockwise direction. For entry 3 there is a previous neighbor 4 and a next neighbor

0, in the sense of advance in the counter clockwise direction.

The Stack Sweep algorithm in 2-D uses a pair of memory storage stacks S0 and

S1 (say), that are use to store temporary information as we sort through the list.

We also introduce a set of simple operations on these stacks, which we have simply

named, POP and PUSH and SWITCH. Figure 11 shows the list of LINK items of

SURFACE. For 2-D, the item of each LINK has two components calls NEXT and

PREV, (see Figure 9). Before the Stack Sweep, the list is initialized to - 1. There

are 21 nodal points in this example of Figure 11 and hence there are 21 items in

SURFACE. Normally those items carry address locations, with the exception that if

there is no previous or next neighbor then the value remains at -1. Figure 12 shows

2 address stacks S0 (left) and S1 (right) that can store two address each on the top

and bottom. Note that in 2D, the length of each stack is just two but in 3-D it can

be of variable size.

One starts the sorting process with the very first entry labeled in 0 in Figure

11 and identified in Figure 12. We set an index for the segment identification to 0

for the first segment. Next we find the nearest neighbors of entry 0 in the manner
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Figure 12. Illustration of the Stack Sweep Algorithm that shows the assigment of

the LINK entries of SURFACE that corresponds to Figure 11

described previously. In this case there is no next neighbor but there is a previous

neighbor 3. One inserts the address for 3 into the previous (top) LINK item for entry

0. One ”PUSHES” the address to node 3 to the top of stack S0. Then one ”POPS”

the address to node 3 out, and we set a flag called ”PASS”, which is stored in first

bit of the status item of SURFACE for node 3 (See Figure(9)). Then the neighbors

of 3 are sought. In Figure 11, one see that the previous neighbor of node 3 is 0 and

the next neighbor of node 3 is 4. The addresses for 4, the previous and 0, the next

are copied into the top and bottom of the third item of SURFACE for the entry for

node 3. Note that node 0 has been previously used and the PASS flag for node 0 is
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set to true, (or 1, say). So the new, unexamined neighbor is 4. We then push the

address of node 4 into the top of stack S1. Both entries of the first stack S0 is empty,

so we then ”SWITCH”, the entries of the S0 and S1, stacks. The address for node 4

is now in the top of stack S0, so we ”POP” that address out. We again look for the

neighbors of node 4 and find the previous node 9 and the next node 3. The addresses

for 9, the previous and 3, the next are copied into the top and bottom of the third

item of SURFACE for the entry for node 4.

This process continues to include nodes 9 and 8. However after we POP out

the address for node 8, the check of both stacks S0 and S1, shows that both are

simultaneously empty. This is a termination signal. This indicates that the segment

has terminated. Also a check of node 8, shows that there is only one next neighbor 8

and no previous neighbor. Hence the addresses stored in LINK for node 8, have the

address of node 9 in the bottom location, but a -1 in the top location. In constructing

the segment the appearance of -1 signals termination at a boundary. Hence we have

illustrated how the bottom segment shown in Figure 11 is sorted and how those

addresses are assigned. The values stored in LINK of SURFACE are shown in the

middle of Figure 12.

Once a termination is encountered, we increase the segment index by one and

one checks the next entry of SURFACE. In this case it would be the entry for node

1. One also check whether the flag PASS is set to true or false, (0 or 1). If true, that

means the node is part of another segment, hence one can advance to the next item

in SURFACE. One continues to check each item in this way until the PASS flag is

false.

We continue the same algorithm as before, except that we start with the entry

for node 1. The segment index is now 1. Here PASS was set to false. We find the

previous neighbor 2 and the next neighbor 5 of node 1. We copy those addresses into

the top and the bottom of LINK of SURFACE for node 1. Both nodes 2 and 5 have

not been previously used, so we PUSH the addresses of 2 and 5 into stack S0. Next

we POP the address for node 2, and we find the neighbors of node 2 whose PASS

flag is false. In this case there is a previous neighbor, node 6. We next PUSH the

address of node 6 into the top of S1. Then we POP the address for node 5, to empty

stack S0. Next we find the neighbors of 5 with a false PASS flag, in this case node 10.

Since the stack S0 is empty we SWITCH the information in stack S0 and S1, such

that S1 is empty. We can repeat this procedure in the same manner until we have

node 20 in the top of stack S0. Then we POP out the address of node 20 and we find

the neighbors of 20, which are nodes 16 and 19. But PASS flags are true, hence these

nodes have been used. There are no new addresses to PUSH and both stack S0 and

S1 are empty, which indicates a STOP for that segment.

Figure 12 shows the values stored in LINK of SURFACE at the bottom of the

figure after the second segment has terminated. If desired one can use the bottom
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Figure 13. Structure of polygon patches.

addresses of LINK of SURFACE to list ordered nodes in the sense of increasing

arclength. The Stack Sweep algorithm compactly constructs sequentially ordered list

that identifies disjoint segments of Γ.

4.1.6. Ordering Nodal Points for the Parameterization of Γ in 3D If one gives two

nodal points on Γ and assigned normal vectors at these points in 2-D, and three

nodal points on Γ and assigned normal vectors at these points in 3-D, a smooth

parameterization can be constructed with the methods described in Appendix 7.1. In

the last section, we described an algorithm for ordering the nodal points on a curve to

represent segments of Γ. Now we describe a similar algorithm for ordering the vertices

on a given surface in 3-D. We first compute the location of nodal points (vertices) on

surface in the same way as we did in the 2-D implementation. Note that in 3-D, two

curves pass through each nodal point and each of these curves lie in one of the three

orthogonal planes defined by the orthogonal grid system as shown in Figure 13(b).

The surface Γ is composed of a system of polygonal patches whose vertices

are the intersection points of the surface and grid lines of the rectangular grid

system. Once the system of polygonal patches with their associated normal vectors is

determined, a smooth parameterization can be constructed such that normal vector

field is continuous across the boundary curves of the patches of Γ, [29]. Since two

boundary curves pass through each nodal point, a normal vector can be computed

from the cross product of the two linearly independent tangent vectors of the curves

passing through the point.

The goal is to represent the surface by an ordered list of the addresses of the

vertices and normal vectors of the polygonal patches. The line segments connecting

the vertices define the boundary of the patch. The segmented boundary curve of each

patch is closed, and orientable. Any patch, say, P in the system of polygonal patches

should contain the following information: The ordered vertices (nodal points), their
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normal vectors and the link information that identifies the neighboring patches that

share boundary curves with P . Therefore a memory slot that points to the address

of the polygon, P is added to the data structure of SURFACE.

A polygonal patch is not necessarily a triangular patch, see Figure 13. We only

parameterize triangular patches so the polygonal patch can not be used directly if it is

not triangular. Therefore splitting of a non-triangular polygonal patches into triangles

is required if the polygon has more than three vertices by choosing one of the vertices

of the polygon. We choose the splitting vertex for the decomposition to be the one

whose incident angle is the largest, as shown in the Figure 13. In the figure, the vertex

3 is chosen to the splitting vertex. We set the splitting vertex to be the first item

in the ordered list of vertices of polygon for simplicity. The construction of the list

of polygonal patches needed for the surface is constructed with the Stack-Sweeping

algorithm explained previously. We describe the first few steps of the algorithm for

patches and the remaining steps follow recursively.

The boundary curves of polygonal patches lie on one of three planes, XY, YZ, or

ZX. We construct the list of surface patches as follows: Figure 13, shows the relevant

vertices marked with a number enclosed by a black filled, indexed circle and we refer

to these numbers in what follows. For vertex 0, (say) on Γ, there are four polygon

patches that share vertex 0. This follows from the fact that there are two plane curves

with the directions shown in the figure 13. Recall that in 2D curve segments can be

defined to have an orientation (i.e. a assigned direction) that is determined uniquely

by the of the level-set function. That is also case for any of the plane curves. Hence

the direction of the boundary curves of the polygon patches are uniquely specified.

A polygonal patch made of its list of addresses of the vertices and the address

list is stored in SURFACE. The first address stored in the list is the address of

splitting vertex if the number of vertices is greater than three. Next we explain how to

construct the list of vertices. Note that initially a list of vertices exists, and is stored

in SURFACE, but they are not necessarily ordered and associated with polygonal

patches. The same procedures that were described in the 2D implementation are

used in 3D. One vertex 0 (say) is the first item in the SURFACE. Next allocate

memory for the four polygons that share vertex 0, [P 0
0 , P

0
1 , P

0
2 , P

0
3 ] and store these

addresses with vertex 0 in SURFACE. For each associated polygonal patch, put the

address for vertex 0 in list of vertices. The vertex 0 has four neighboring vertices;

two of them are marked in the Figure 13(a) as 1 and 4.

For each vertex neighboring 0, the following that identifies associated vertices is

carried out: Given a vertex say, 1, there is a plane boundary (edge) curve, e0 that

connects 0 and 1 and one knows that the polygons P 0
1 and P 0

0 share the edge e0.

We add the addresses of polygons, P 0
1 and P 0

0 to the list of polygons of the vertex 1.

The polygon P 0
1 contains the vertex 4 and there is a plane curve say e4 connecting

these two vertices, 0 and 4. The vertex 1 has another plane curve e1 transverse to
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e0. Assume without loss of generality that the vertex 4 is the previous point of the

vertex 0 in the ordering of nodal points of e4, as determined by the direction. Then

if the dot product of the tangent of e1 and e4 is positive (i.e. its interior angle is less

than 180 degrees), we add the previous vertex 2 of vertex 1, as determined by the

direction of e1, to the polygon P 0
1 . Otherwise we add the next vertex of vertex 1 to

the polygon P 0
1 . We repeat the same procedure for the other three polygons P 0

0 , P 0
2

and P 0
3 .

Recall that the Stack Sweep algorithm has two stacks, S0 and S1, say. Initially the

address of vertex 0 is stored in S0. We ”pop” the address stored in S0 and carry out the

vertex identification as described above and mark the vertex 0 as COMPUTED. Since

each vertex has two curves that passes through the vertex, there are four neighboring

vertices associate with it. ”Push” the addresses of neighboring vertices of vertex 0

into S1 unless that vertex is not marked as COMPUTED. Then ”switch” the two

stacks and repeat the stack sweep procedures. The terminal condition is when both

stacks are empty.

The lists of the vertices of the polygonal patches are complete at the end of

the stack sweep. For each patch we can determine the splitting vertex and use that

vertex as the first entry in the list of vertices. We further order the entries of the list

of vertices so that it reflects the sequence of vertices encountered in a traverse around

the boundary and this is easily accomplished since each vertex has the previous and

next flags set on the boundary curves that pass through it. Then each polygonal

patch is decomposed into triangular patches suitable for parameterization. Figure 13

(a) shows the vertex 2 with one line segment added for the subdivision. Each vertex

of the subdivided triangular patch has one normal vector and it is parameterizable in

terms of barycentric coordinates.

4.2. The field reconstruction G−1 : C 7−→ F

So far we have described the algorithm for the forward front parameterization which

takes a discrete level-set field represented by BANDSET, sorts and constructs an

ordered discrete version of Γ which is stored in SURFACE. Next we describe the

reciprocal procedure, which we call backward field reconstruction, G−1 : C 7−→ F .

This procedure assumes that we know exactly the zero level-set curve Γ in terms of

a suitable parameterization which is used to find the exact normal distance to Γ at

all points inside the band domain Bb. We assume that all the information we need

to describe Γ is stored in SURFACE.

The procedure G−1 : C 7−→ F is based on the computation of distance from a

given point in the set VΓ to a local parameterization Γ by orthogonality as described

in Appendix (7.2). As shown in the Figure (14) our computational band domain Bb

consists of VΓ, (its vicinity), and the remote field. In this section, we describe the

computation of distance from a point in VΓ and its vicinity (4.2.1) and the extension
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sweeping.

of the computed function to the rest of the computational domain (4.2.2).

4.2.1. Computation of normal distance at points in VΓ and in its vicinity The ψ

field in the vicinity of Γ is computed as follows. Every nodal point on Γ that is stored

in SURFACE has at most two grid points in VΓ that are vertices of the edge through

which a plane curve passes. Therefore any grid point in VΓ is connected by one or

two nodal points of Γ. The normal distance from the point to Γ can be computed

easily using these connected nodal points for seed points for the iteration procedures

described in section 7.2. If a vertex point in VΓ is connected to two different segments

of Γ, we take the minimum of all calculated distances from one vertex and attribute

it to the ψ value at the point. Note that in even in such cases of multiple choices

of origin, there is only one sign of ψ at that (vertex) grid point. After we finish the

computation on VΓ, we also calculate the normal distance at points in ṼΓ, the vicinity

of VΓ.

A neighbor of a grid point, say, p located at (i, j) is by definition one of the grid

points located at (i ± 1, j ± 1). For all grid points in VΓ, there are at most three

neighbors which are not in VΓ. For example, in Figure 21, the point p0 is in VΓ and

the point p2 is the only neighbor of p0 which is not in VΓ. But a neighbor point of VΓ

can have more than one neighbor point in VΓ. The grid point p1 in Figure (15) has

two neighbors in VΓ while p2 and p3 have only one neighbor each. For each neighbor

p which are not in VΓ, we find all its neighbors which are in VΓ and collect all nodal

points associated with the neighboring points of VΓ.
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circles are in VΓ and the points marked by black rectangles are their neighbors.

The arrows drown from points to Γ show the closest points from these points.

In the example shown in Figure 15, p1 has two neighbors and the collected points

are {q3,q4,q5}, p2 has one neighbor and the collected point is {q2}, and p3 has one

neighbor and the collected point is {q1}. To determine an appropriate origin of a

local coordinate system for interpolation, we find the closest nodal point among the

collected nodal points. Once an origin is found, we use the interpolation method

described before to find the normal distance from the point to the interpolation

polynomial.

When the equation for the normal distance to Γ given by equation (38) in

Appendix I is solved with initial guess given by the minimizing procedure discussed

above, the initial guess x can be at the edge of the range of the interpolation

appropriate for the selected local coordinate system. In such cases, with aid of the

orientation of nodal points in SURFACE, we change the local coordinate system to

that which origin is close to the initial guess. For example, if (x−1, x0, x1, x2) are the

nodes associated with a chosen local interpolation, and x is close to x2 or x−1, we

change the coordinate system with local origin x−1 , x1 or x2 according to the position

of x0. Note that the sign of distance function ψ at neighbors of grids in VΓ is always

the same as the sign of their neighbor points in VΓ. So the sign of ψ field at points

off VΓ is determined by the sign of value of ψ on VΓ.

4.2.2. Computation of Normal Distance at Points Remote from Γ Having computed

the ψ field for all the neighbors of VΓ in vicinity of Γ, with the orthogonality condition

applied, we proceed to calculate the normal distance to additional grid points in the
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band that are located farther out. If we continue to use the orthogonality condition

for those neighbors, the computational cost associated with finding the proper ini-

tial guess is too expensive. Instead, we use an approximate calculation of the signed

normal distance to Γ for those points in Bb, now denoted as the ”remote” members.

Figure 14 shows the grid points labeled as members of VΓ, points in the vicinity and

remote points of Γ. We use the Fast Marching Method starting with known values of

ψ for points in the vicinity of VΓ.

The Fast Marching Method solves the Eikonal equation

|∇ψ| = 1 , (6)

according to the discretization
[
max(D−x

ij ψ ,−D+x
ij ψ , 0)2 + max(D−y

ij ψ ,−D+y
ij ψ , 0)2

]
= 1 . (7)

where

D−x
ij ψ =

ψi,j − ψi−1,j

△x D+x
ij ψ =

ψi+1,j − ψi,j

△x . (8)

Note that this discretization allows to solve for ψi,j in the upwind direction, i.e.

propagating away from Γ. Also note that (7) is a quadratic equation for an unknown

value ψi,j and can be solved simply.

4.3. Velocity Extension

For the applications that we are concerned with, one assumes that there is a motion

rule that advances Γ. In a primitive physical formulation of a problem, this rule is

given by specification of the normal velocity on Γ. But the level set method is an

embedding technique and requires that the surface normal velocity Vn be extended

continuously into regions on either side of Γ, and that Γ is uniquely embedded by

a set of level contours or surfaces. It is always the case that one must implement a

velocity extension to define Vn everywhere in the band surrounding Γ.

Given Γ with defined normal velocities Vn at each point on Γ (held either by an

exact analytic description or by an interpolation held by a set of nodal points), the

normal velocity is extended in such a way that it satisfies the following geometric

condition on Γ itself, namely

∇Vn · ∇ψ = 0 . (9)

If ψ = 0 represents Γ then ∇ψ is normal to Γ, and similarly if Vn is the normal

velocity defined on the surface then ∇V lies in the tangent plane of Γ. Equation (9)

is simply an orthogonality condition that extends Vn to the band and guarantees that

on each level curve ψ = constant the gradient of Vn on each curve is orthogonal to
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its corresponding normal vector. Since we know ψ, we construct the extension of Vn

to satisfy (9).

We explained how to use Stack Sweep Algorithm to determine the normal

distance to Γ in the band. The first two steps of Stack Sweep uses an orthogonality

condition to compute the normal distance to Γ from the points of the set VΓ and the its

nearest neighbors. Thus for any point we can, by interpolation, find the coordinates

of the intersecting point on a line normal to Γ that passes through that point. Call

the intersection point p. For example, if the normal velocity on Γ is a prescribed

function of the local curvature then one must compute the curvature and store its

values (typically in SURFACE), along with the node values that define Γ, so that

one can interpolate. Similarly, if Vn is defined by field or even derivatives that are

extrapolated onto Γ, or jumps in those values across Γ, then the values that define

the motion rule for the application must be stored.

The simplest velocity extension consistent with (9) is to set Vn(q) = Vn(p). Note

that it follows simply that

∇Vn · ∇ψ =

(
∇Vn ·

∇ψ
|∇ψ|

)
|∇ψ| = (∇Vn · n̂) |∇ψ| . (10)

Since ∇Vn · n̂ = dVn/dn (i.e. the directional derivative of Vnwith respect to n), if Vn

is extended as a constant along a normal then its corresponding directional derivative

is zero and hence (9) is automatically satisfied. We use this method of extension for

all points in VΓ and their neighbors.

For the remainder of points in BANDSET we use a discretization of (9) to

calculate the values for Vn since ψ is known. The Fast Marching Method is an

upwinding method that propagates values out from Γ. The calculation of ψ that uses

the min-heap data structure discussed above, and the computation of the velocity

extension to the remote field shown in Figure 14, can be carried out simultaneously.

One uses values closer to Γ to compute the velocities farther from Γ. For example, if

Vn (i+1,j), Vn (i+1,j) and ψi+1,j , ψi,j, ψi,j+1 are known, then Vn (i,j) can be computed from

the upwind approximation of (9),

Vn (i+1,j) − Vn (i,j)

dx

ψi+1,j − ψi,j

dx
+
Vn (i+1,j) − Vn (i,j)

dy

ψi,j+1 − ψi,j

dy
= 0 .(11)

A detailed description of this upwinding scheme is found in Sethian’s book [4].

4.4. Front Advance

From the previous subsection we can assume that Vn has been extended throughout

the band and that the level-set PDE is given by

∂ψ

∂t
+ Vn|∇ψ| = 0 . (12)
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Further we can always assume a velocity decomposition

Vn = V0 + V1 (13)

where V0 is a constant and V1 has spatial variation that depends on location in the

domain. Here we think of V0 as being the dominant contribution in size to the velocity

and V1 as a correction, although this is not a required interpretation. In typical

applications V0 is the velocity of a steady traveling front, whose value is known. Also

if V1 were zero then the front would be advanced by a Huygen-construction and the

underlying dynamics of the front advance is governed by a first-order hyperbolic PDE.

In the case of detonation shock dynamics, V0 = DCJ , where DCJ is the Chapman-

Jouguet wave speed. In other applications it would be the laminar flame speed or

a value of a planar solidification front. In any event, the value V0 is usually known,

and hence V1 is calculated either from the intrinsic properties of the ψ-field or by

an interrogation of the field problem. Since we use the method of lines to integrate

(12) we can break the updates for ψ into an advection operator ψt + V0|∇ψ|, and a

correction, ψt = −V1|∇ψ|. Similar to our previous work on level-set method applied

to detonation shock dynamics, [9] and [4], we use a straightforward, weighted second-

order accurate ENO scheme for the advection update and use central differences to

approximate the updates associated with −V1|∇ψ|, for the diffusion operator. If, as

explained above, V0 is known, the velocity V1 is defined by V1 = V − V0 where V

is the velocity extension of Vn. The gradient of ψ associated with the correction is

approximated with central differences.

Points of the difference stencil that lie in BANDSET are in the interior of Bb

and are advanced in the standard way. Points in the stencil outside of BANDSET

and in ∂Bb use quadratic extrapolation from the interior to define the values of the

level-set. The maximum normal velocity on Γ is used to define a time step so that

the motion of Γ is restricted to advance no more than one cell width.

4.5. Boundary Update

An angle boundary condition on the shape of Γ is enforced by the level- set evolution

and ψ is extended to the exterior of wall boundary regions to satisfy the boundary

condition. The implementation of ψ on EW is generally application specific. Here we

review an example of the angle boundary condition that was originally implemented

for detonation shock dynamics (DSD), but is general in nature. The boundary

condition is enforced by specifying the ψ values on the corresponding discrete set

V
−
W , (see the list of definitions). Therefore we construct the field ψ on V

−
W such that

the angle condition is satisfied not only at the intersection of the zero level curve and

W but also at all intersections of level curve or surfaces of ψ and wall W. Figure 16

shows the local coordinates and the stencil used for implementation of the boundary

conditions and is adapted from [9]. We assume that the level set field φ on V −
W is
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Figure 16. Local coordinates for application of boundary conditions adapted from

[9]

already calculated and stored in BANDSET. Note that this calculation is done only

once at the initialization step by using the same procedure G−1 : C 7−→ F . Therefore

we can easily find the projection of V −
W on W.

We give the case is when the angle of intersection of Γ with the wall is prescribed.

We assume dx = dy = h. Let n̂b be the unit normal vector to the wall boundary

pointing away from the interior of Bb. Let n̂Γ be the outer normal vector to Γ

at the wall intersection point pointing in the direction of propagation. Note that

n̂Γ = ∇ψ/|∇ψ|. Let ω be the angle between the two normal vectors such that at the

wall they are calculated according to

cos(ω) = n̂b · n̂Γ =
∇ψ
|∇ψ| · n̂Γ =

ψη

|∇ψ| , (14)

where η is the local surface-attached coordinates in the normal direction as shown in

Figure (16).

Let a point q be a point representing a grid point, say (i, j) in 2-D. Let the

nearest point on the wall W to q be a point p. Let the distance between these two

points be φq. Then the vector n̂b = (q− p)/|q− p| is the normal vector to W at

p. According to the stencil shown, the quadratic approximation to the values ψη at

point p are given as follows

ψη =
ψ2 − 4ψ1 + 3ψq

2h
− ψ2 − 2ψ1 + ψq

h2
φq (15)

where the values ψp, ψ1 and ψ2 are the values of the level-set function ψ evaluated at

q, p1 = q− hn̂b, and p2 = q− 2 hn̂b respectively. We use a bi-linear interpolation to
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evaluate ψ1 and ψ2.

From equations (14) and (15), the formula for ψq is

ψq

(
3

2h
− φq

h2

)
= cos(ω)|∇ψ| −

(
ψ2 − 4ψ1

2h
− ψ2 − 2ψ1

h2
φq

)
(16)

where the gradient |∇ψ| is evaluated at point q by using a linear interpolation of

gradients defined at grid points. The gradients at grid points in the interior of

the band-set is calculated when the level-set function ψ is updated as described in

section 4.4. The gradient at points in V −
W is computed by a linear extrapolation of

|∇ψ| defined on the interior domain. Equation 16 is a system of nonlinear algebraic

equations for ψq, q ∈ V −
W and is solved with a root solver as in [9]. Note that

the discretization of the derivative along the tangential direction is not used here,

unlike the method used in [9]. Our current method is more convenient in a 3-D

implementation of angle boundary condition.

5. Tests and Applications

Here we present the results of testing the WaveTracker for representative applications.

The first application is curvature dependent front propagation, illustrated for

detonations. We develop exact solutions and compare with the computed results

to measure the normal distance function, the front position and curvature.

The second application is to detonation shock dynamics, (DSD) whereby the

motion of the front is determined from the geometry of the front and the angle at

the intersection of the front (shock) with internal or external boundaries. Hence we

include a description of the implementation of the boundary condition, which must be

added to the WaveTracker. The third example is a Stefan problem that represents a

model of dendritic solidification problem. In this example the zero level set represents

the solid/liquid interface. We chose this test problem because it is an oft-computed

test problem and it is closely related to combustion problems that treat the reaction

front as a sharp interface. In both cases, the front must be located as a solution to

a moving boundary problem, determined by continuous fields on either side of the

front. Simple problems with exact solutions are available for each application.

5.1. Curvature Dependent Front Propagation

Consider a circle expanding according to the motion rule

Dn = DCJ (1− ακ) (17)

where Dn is the normal velocity, κ is the curvature of a moving front and DCJ and α

are constant. An exact solution of the problem for a given circular front of radius R
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Res.\∆t Max. Error On

100(0.4) 2.1× 10−5 -

200(0.2) 1.7× 10−6 3.61

400(0.1) 1.1× 10−7 3.91

800(0.05) 7.7× 10−9 3.90

1600(0.025) 6.6× 10−10 3.54

Table 3. Accuracy of distance function ψ̃ for the test problem in section5.1.

at time t = 0 is given by [9]:

t =
1

DCJ

(
r −R+ α log

(
r − α
R − α

))
(18)

where r is the radius of the expanding circle. The numerical solution given by

WaveTracker is compared to exact solution (18) to measure the error. The curvature

is related to the radius by r = 1/κ and the formula for the curvature a level curve in

2-D is given by

κ(x, y) = ∇ · ∇ψ|∇ψ| =
ψ2

xx − 2ψyψxy + ψyyψ
2
x

(ψ2
x + ψ2

y)
3/2

, (19)

and central differences are used to compute derivatives for the error measurements.

For the test we use a rectangular computational domain [−20, 20]× [−20, 20] with a

circle of initial radius R = 3.38, with DCJ = 7.6 and α = 0.14.

The distance function measured from the expanding circle can be compared with

in the band in both the nearest neighbors grid points VΓ and their vicinity ṼΓ (ie.

closest two layers to Γ). The orthogonality condition is use to compute the normal

distance to the grid points the nearest neighbor region. The Fast Marching method is

used to approximate the normal distance to the zero level-set in the remote regions.

Our test uses a narrow band domain Bb of width b = 5. The distance function ψ̃ is

defined only on the subset B̃b = VΓ ∪ ṼΓ of Bb.

Let d̃n
(i,j) be the distance approximation at grid (i, j) to the curve of interest and

dexact
(i,j) be the exact distance from the point. Table 3 shows the result of error in the

maximum norm En = max
(i,j)∈B̃b

|d̃n
(i,j) − dexact

(i,j) | computed with resolution 2n × 100

with n-integer. Then E1 stands for the error at resolution 100 × 100. The order of

accuracy On is calculated according to the formula

On(t) = log2 (En−1(t)/En(t) ) , (20)

and measures the rate of reduction of error when the resolution is doubled. Table

3 shows that the order of accuracy of our field reconstruction is approximately

equal to the order of accuracy of the forward front parameterization, the polynomial

interpolation on the nodal points of zero level-set.
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Res.\∆t Max. Error On

100(0.4) 1.1× 10−1 -

200(0.2) 1.4× 10−2 2.97

400(0.1) 2.9× 10−3 2.27

800(0.05) 6.6× 10−4 2.14

1600(0.025) 1.5× 10−4 2.14

Table 4. Accuracy of distance function computed by 2nd-order Fast Marching

Method for the test problem in section 5.1.

Table 4 shows the error measurement for the distance function in the remote

region, Bb − VΓ ∪ ṼΓ, computed with the Fast Marching Method. Note that the Fast

Marching method is formally second order and the results Table 4 indicates the order

estimate decreases from above toward two, as resolution increases.

Next we consider position and curvature errors measured on the interface of

the expanding circle. As the front expands according to the previously defined

motion rule, we measure the L1 position error on the interface calculated with the

WaveTracker against the exact solution at different times. The results are shown in

Figure 17. The formula for the error is given by

En(tn) =
1

N

∑

k≤N

|rn
k (tn)− r(tn)| , (21)

where N is the number of nodal points on rn(t) at the time t and rn
k is the distance

from the origin to the k − th nodal point on the computed interface at time tn.

Table 5 shows the error measurement for the curvature computed from the

distance function ψ in the band. The values listed in the column under κ0 represent

the maximum error for the curvature in the set (1st layer) VΓ set, those under

κ1 represent the maximum error computed curvature in ṼΓ (in the vicinity of VΓ)

and those under κ2 represent the maximum error of the computed curvature in the

remote zone. In VΓ, the computation of curvature is quite accurate and at least first

order. In other outer regions the higher resolution does not improve the accuracy.

In part, our measurement in the remote regions is flawed since we used a central

difference formula to compute the curvature, which is inconsistent with the upwind

Fast Marching Method. However in the nearest neighbor regions, we can justify using

central difference scheme to compute curvature.

Figure 17 shows the L1 error for three different resolutions and the corresponding

order of accuracy comparisons as the circular interface expands. The figure shows

the L1 error of the location of the front on the left (shown with symbols), and the

corresponding order of accuracy on the right computed with formula (20) (shown

without symbols) as a function of time. The results show that the accuracy of the

front position is at least second order but that the order of accuracy drops as the front
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Res. κ0 κ1 κ2 On
0 On

1 On
2

100 2.7× 10−3 1.4× 10−2 3.8× 10−1 - - -

200 1.2× 10−3 1.0× 10−2 1.2× 10−1 1.17 0.512 1.7

400 5.6× 10−4 9.2× 10−3 1.2× 10−1 1.13 0.133 0.024

800 2.6× 10−4 1.0× 10−2 1.1× 10−1 1.07 −0.17 0.112

1600 1.3× 10−4 9.6× 10−3 1.1× 10−1 1.03 0.11 −0.0028

Table 5. Accuracy of curvature field after re- initialization
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Figure 17. L1 error of the location of front at time t. Numerical order of accuracy

are shown in the graph.

approaches the approaches the boundary of the computational domain near the final

time t = 2.0. This loss in accuracy is expected due to the fact that computation in

parts of the band domain is affected by the one-side extrapolation near the rectangular

computational boundary.

5.2. Detonation Shock Dynamics, DSD

Detonation shock dynamics is an asymptotic theory that describes the evolution of a

multi-dimensional, curved detonation shock in terms of an intrinsic evolution equation

for the shock surface. An overview of the theory can be found in [11]. One of the

results of DSD theory provides a relation of normal velocity of the shock, V ≡ Dn to

the total shock curvature, κ. This Dn−κ relation depends on the equation of state of

the explosive and the rate law. The Dn − κ relation is the motion rule for moving Γ.

The simplest DSD model assumes the shock angles are specified at the shock–inert

(wall) interfaces, and if the wall material changes then the shock angle intersection



Wave Tracking in Complex Geometries 40

can change with the inert material. The first use of level-sets for shock dynamics and

DSD was given in [9].

Therefore we assume that under suitable conditions the detonation shock

propagates according to

Dn = DCJ(1− α(κ)) (22)

where Dn is the normal shock velocity (previously designated Vn ), DCJ is the

CJ detonation velocity, and α(κ) is a function of the total shock curvature. We

use a Dn − κ relation that models the explosive PBX9501, consistent with Hull’s

experimental data([12]), as shown in Figure 2, and Lambert’s experiment shown in

Figure 1.

5.2.1. DSD Boundary Conditions The simplest DSD boundary conditions enforces

an angle boundary condition at the intersection of Γ with the boundary. Let ω be

the angle between the wall normal direction and a normal to the detonation shock.

Let ωc be a special sonic flow and let ωs a different sub-sonic flow angle. Both are

assumed to be constant with ωc ≤ ω ≤ ωs. We implement the same conditions as

in [9]. Quoting from the summary (on page 394 of that reference), ”In summary,

... (i) when the flow in the explosive is supersonic (i.e. ω < ωc ) the continuation

and outflow boundary condition is applied. This corresponds to extrapolating the

front to the exterior without changing the angle at the boundary. (ii) When the flow

turns sonic, ω = ωs, two cases can arise: (a) The pressure induced by the inert is

below that [found] immediately behind the detonation shock and the confinement has

no influence on the detonation. The sonic boundary condition is applied, ω = ωs:

(b) The pressure induced in the inert above that immediately behind the detonation

shock. The angle ω increases i.e., ω > ωs until the pressure in the inert and explosive

are equilibriated. This angle ω = ωc is the equilibrium value for the angle and is

regarded as a material constant that is a function of the explosive/inert pair. Thus

the boundary condition recipe is as follows: (1) A continuous boundary condition is

applied for supersonic flows, and (2) when the flow becomes either sonic or subsonic,

ω is bounded from above by a critical angle ωc (unique for each explosive/inert pair)

that is determined using the above discussion.”

5.2.2. DSD Modeling of a Detonation Wave Shaper One application of condensed

explosive detonation is to cut materials through the concentrated effect of converging

shock waves. A way to do this is to place an inert in an explosive charge, ignite the

charge at the bottom, and diffract the detonation wave around an inert. The detona-

tion diffraction results in the collision of detonation fronts to produce extraordinarily

high pressures in the interior of the charge. When the detonation breaks out at the

top of the charge it carries with it the same high pressure which in turn can be used
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Dn-kappa relation for PBX9501

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 -0.1 0 0.1 0.2 0.3

κ ( mm   )-1

D
n

 (
m

m
/µ

s
e

c
)

Figure 18. Dn − κ relation that models the explosive PBX9501, consistent with

Hull’s experimental data ([12]).

to precisely cut the object placed against it.

Figure 1 is an example of such a device and the explosive material is taken to be

PBX9501. The inert confinement on the bottom and sides is copper. The inert block

in the center is lead. The top boundary is unconfined. Using the equation of states for

unreacted PBX9501 and copper we compute angle boundary conditions by matching

shock polars on a material interface, given a regular reflection of the detonation and

inert shock waves at the interface. Therefore on the PBX9501/copper boundaries the

confinement angle is ωc = 75 degrees. The sonic angle for the explosive is taken to

be ωs = 50 degrees.

The charge is initiated at the bottom by a smaller cylindrical detonation at time

t = 0.0µ sec. Figure 2 shows an axi-symmetric 2-D, DSD calculation carried out with

the WaveTracker. We use the Dn− κ relation, as shown in Figure 18. The gray scale

in Figure 2 shows the pressure measured on a 100 GPa scale, as calculated from a

shock Hugoniot calculation. It indicates relative regions of high pressure experienced

at the shock as the shock passes through the interior of the explosive, i.e. a shock

pressure map of the interior. The solid lines show the shock location at various times,

measured in µ second from t = 0. The calculation shown was for a 152× 164 domain

with a 2nd order Runge-Kutta time integration. The entire computation took about

40 seconds on a 1 Ghz Dell Inspiron 4100 (2001-model) laptop computer. This time

estimate includes the graphics rendering as well as data recording and the actual

compute time; without rendering, approximately 5 millisecond for every time step is
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required.

Next we illustrate the same simulation but in 3-D. We relocate the lead disk and

place it off of the axis of symmetry of the charge so that the simulation is necessarily

three-dimensional, for example compare Figure 2 with Figures 3 and 4. The 3-D

simulation computes the exact normal distance to grid points in the band using the

orthogonality condition only on VΓ and the distance function is extended to remote

points using the Fast Marching Method and the 3-D simulation is less accurate than

2-D simulation. The number of iterations needed for the root solver for this 3-D

angle boundary condition was not significantly increased when compared with the

corresponding 2-D implementation, even though the number of unknowns in the 3-D

simulation is much bigger than that of the 2-D simulation.

5.3. Dendritic Solidification

Our second example is the application of the same algorithms to the classical model

of dendritic solidification, whose formulation uses the Gibbs-Thompson relation at

the solid/liquid interface. In this case the motion rule for the interface depends on

the curvature of the front, the values of a field quantity (temperature) on the front

and the jump in the derivatives (the normal temperature gradient) across the front.

The dendritic solidification problem is a much studied and standard test case, and

has similar complexity to problems that solve for the motion of flames.

The dendritic solidification problem is specified as follows. On either side of the

solid-liquid interface, designated by Γ the heat equation holds

∂T

∂t
= ∇2T . (23)

A heat balance across Γ is

Vn = [∇T ] · n̂ across Γ , (24)

where [ ] designates a jump [ ] = |solid − |liquid, and n̂ is a unit normal vector pointing

into the liquid. The Gibbs-Thompson relation holds on Γ prescribed by

T = −a κ− b Vn , (25)

where a is the surface tension coefficient and b the molecular kinetic coefficient.

5.3.1. Self-Similar Solution: Frank Spheres Self similar solutions called Frank

spheres form a class of exact solutions that are used to test the algorithms. The

initial front is a circle of radius S with center at origin. The initial temperature

distribution inside and on the front is equal to zero. The temperature is equal to a

constant T∞ in the far field. The solution when a = b = 0 can be found as follows.

Let r =
√
x2 + y2 and s = r/

√
t. The phase change surface is located at r = S

√
t,
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where S is a constant. Then the heat equation is transformed into a ordinary linear

differential equation

2sT
′′

+ (2 + s2)T
′

= 0 , (26)

where ′ = d/ds. The general solution of this equation is

T (s) = C1Ei(s
2/4) + C2 , (27)

where

Ei(x) =
∫ ∞

x

e−u

u
du . (28)

By applying the boundary conditions T (0) = 0 and T (∞) = T∞, we find that

C1 = −T∞/Ei(s
2/4) and C2 = T∞. The solution is re-written as

T = 0 for s < S and T = T∞

(
1− Ei(s

2/4)

Ei(S2/4)

)
for s > S .(29)

Since Vn = dr/dt = S/(2
√
t) on the interface, and [∇T ] · n̂ = (dT/ds)/(

√
t) evaluated

at s = S+ on the liquid side, then the condition Vn = [∇T ] · n̂ leads to the formula

S

2

[
Ei(S

2/4))/E
′

i(S
2/4)

]
= T∞ . (30)

The solution for the undercooled value T∞ = −0.5 is S = 1.56.

5.3.2. Computation of heat equation It is assumed that Γ has been advanced by the

previous step’s determination of Vn and the heat equation is solved by an implicit

scheme in D, with the position of Γn+1 frozen. The heat equation is time advanced

as

T n+1
ij = T n

ij + ∆t ∇2T n+1
ij (31)

with boundary condition along Γ defined implicitly as follow.

T n+1 = −aκ− bV n+1 and Vn =
∂T

∂n

∣∣∣
solid

Γ
− ∂T

∂n

∣∣∣
liquid

Γ
. (32)

A standard 5-point stencil is used for the discretization of ∇2T n+1
ij so that

∇2T n+1
ij =

T n+1
i+1,j − 2T n+1

i,j + T n+1
i−1,j

h2
+
T n+1

i,j+1 − 2T n+1
i,j + T n+1

i,j−1

h2
, (33)

where h is the grid size.

We use one-sided cubic polynomial extrapolations (from either side) in order to

calculate the second order derivatives of the temperature on Γ and points in VΓ. Then

(31) becomes a system of nonlinear algebraic equations having the following general

form

T n+1
i,j = Ci,j T

n
i,j + fi,j(T

n+1
i,j+1, T

n+1
i,j−1, ...) (34)
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where fi,j is a function that is determined by (33) or from one-sided extrapolation.

The unknowns are Ti,j and the temperature on at the node point on Γ stored in

SURFACE. A simple method, the Gauss-Seidal iteration scheme suggested by Chen

et al [3], is used to find the solution. The stopping criterion is

M∑

i,j=1

(T n+1,N+1
i,j − T n+1,N

i,j ) < TOL, where TOL = 1.0× 10−12 (35)

where T n+1,0 = T n
i,j and M is the total number of grid points in the computational

domain. Appendix III give details for the iteration procedure.

5.3.3. Comparison of the Computed Solution with Exact (Franks Spheres) Solution

The computational domain is the rectangle [−5, 5]× [−5, 5] ⊂ R2. The exact solution

of the heat equation for the Frank Sphere at time t = 1.0 is used as an initial condition

for the temperature. The initial interface is a circle of radius 1.56 and the temperature

in the far field is approximately -0.5 as calculated from equation (30).

Figure 19 we present results that show the numerical solution at time t = 1.5 for

various resolutions and Table 1 displays our computed error estimates based on the

exact solution of this model problem. The L1 norm is about O(10−4) for all resolutions

and even moderate resolution (80×80) provides an accurate result. Our results show

an improvement over those shown in a recent those found in recent papers [3] and

[8] with roughly speaking our N ×N resolution being as accurate as their 2N × 2N .

Specific comparisons for N = 20, 40, 80 and 160, are shown in Figure 19.

5.3.4. Numerical Simulation of Unstable Dendritic Growth Figure 20 presents

results for long time unstable growth of slight perturbations to Frank Sphere solution,

computed with resolutions 100× 100 and 200× 200 respectively. We adapted Chen

et al ’s example (in section 5.2.1 [3]), and used the following initial conditions for

the interface,

x(s) = (R+P cos(8πs)) cos(2πs) , y(s) = (R+P cos(8πs)) sin(2πs) ,(36)

where R = 1.57 and P = 0.08. The temperature distribution outside of the interface

is the solution of the Frank Sphere at time t = 1.0 and zero temperature is set to the

inside of the interface. We set ∆t = 0.001, a = 0.002 and b = 0.0. Time levels shown

are in increments of 0.5 up to the final time 9.0.

6. Conclusions

Motivated by the need for high-resolution representation of complex surfaces and

front for applications to muti-dimensional detonation and shock physics, combustion
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Res.\∆t 0.1 0.01 0.001 0.0001

80 1.917665 1.909899 1.909029 1.908939

160 1.920441 1.911303 1.910429 1.910339

320 1.92783 1.911274 1.910638 1.910545

Table 6. Average radius at time t = 1.5. Exact value is 1.910602

Res.\∆t 0.1 0.01 0.001 0.0001

80 7.06E-03 7.03E-04 1.57E-03 1.66E-03

160 9.84E-03 6.97E-04 1.73E-04 2.63E-04

320 1.72E-02 1.57E-03 1.81E-04 1.83E-04

Table 7. L1 error for Radius at time t = 1.5

Res.\∆t 0.1 0.01 0.001 0.0001

80 9.74E-04 1.41E-04 1.57E-04 1.66E-04

160 1.04E-03 2.07E-04 1.64E-04 1.73E-04

320 1.24E-03 2.53E-04 2.03E-04 2.07E-04

Table 8. L1 error for Temperature field.

and multi-material hydro-code simulation, we have developed an advanced, hybrid-

level set method. We introduced algorithms that use parametric representations for

the tracked fronts and interpolation to positions on the fronts. We used reciprocal

procedures to generate the level-set fields in narrow bands, with the most accurate

representation of the signed normal distance function near the front (on two layers

of grid points surrounding the zero level-set). It is very important to have efficient

sorting and storage procedures to generate segmented, parameterizable fronts, and

they require well-designed data structures. We developed the Stack Sweeping

algorithm reduced the complexity of our code implementation. We were able to show

that we can successfully implement these algorithms to solve quite different moving

boundary problems, including that where the front propagates according to intrinsic

dynamics and others that depend on interpolation of field values to the front. By

using the schemes described here, we obtain very high accuracy in the computation

of distance function to the zero level-set, which is useful for re- initialization and

essential in level-set method. We presented a clear description of the construction

of a moving narrow band domain. Our description is robust, simple, and generic in

that it can be used in 2-D and 3-D simulation with some obvious modification of the

size of data structures in composing the narrow band domain. With our reciprocal

procedures to generate the level-set fields in narrow bands, we have shown that the

accuracy of the computation of distance function is nearly the same as the accuracy

of the parameterization of the zero level-set. In a sequel to this paper we will show
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how this interface strategy can be use to improve the accuracy of multi-material

simulation.

Acknowledgements

This work was carried out with support from the US Air Force Wright Laboratories

Armanent Directorate, Eglin Air Force Base F08630-00-1-0002, the US Air Force

Office of Scientific Research, Physical Mathematics, F49620-00-1-0005 and support

from the UIUC Center for Simulation of Advanced Rockets, U. S. Department of

Energy through University of California subcontract B341494.



Wave Tracking in Complex Geometries 47

-3 -2

1.6

2.4

-3 -2.5 -2

2

2.5

3

Figure 20. Comparisons of dendritic growth for grid resolutions 100×100 (bottom)

and 200× 200 (top)

7. Appendix I

7.1. Local Approximation Formula

Given three points p0,p1 and p2 and their associated unit surface normal vectors

n0,n1 and n2, the local representation of surface is given by the formula

Γ(α) =
n∑

i=0

αipi + h(α)
n∑

i=0

αini (37)

where n = 1, 2 and α = (α0, ...αn) is a barycentric coordinate, so
∑n

i=0 αi = 1. The

function h(α) is a displacement function depending on the vectors p0,p1,p2,n0,n1,

and n2.
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Figure 21. The distance function F and minimization function D.

For n = 1, the displacement function can be defined as a function of one variable

t (say, by letting α0 = 1− t and α1 = t) as follow

h(t) = [p0 − p1] · n0H1(t) + [p0 − p1] · n1H2(t)

where H1(t) = (1− t)2t, H2(t) = (1− t)t2, and 0 ≤ t ≤ 1.

For n = 2, the displacement fuction h(α) is defined by loft operators and their

blending operations as described by Smits et al , see [29].

7.2. Computation of Normal Distance Using Orthogonality

Let p be a point in VΓ. The condition that the tangent vector and the displacement

vector be orthogonal can be expressed as

F (s) ≡ (Γ(s)− p) · dΓ

d s
= 0 . (38)

Then F (s) is a polynomial of fifth degree and its zero gives s̄ such that Γ(s̄) =

mins ||Γ(s)−p||. A Newton-Raphson iteration on the fifth order polynomial generally

converges rapidly with only few iterations required to obtain an absolute error of

O(10−10) if the initial guess is sufficiently close to the solution.

Another way to compute the distance is to minimize the following function:

D(s) = ||Γ(s)− p||2 (39)

One method of the minimization is the successive iteration by quadratic interpolation

of the function D (see [31]). The function D is a quadratic-like function as shown in

figure 21. Given three values of parameters s0, s1 and s2, the three-point quadratic

formula D̃ of approximation to D is

D̃(s; s0, s1, s2) =
2∑

k=0

2∏

i = 0

i 6= k

(s− si)

(sk − si)
D(sk) (40)
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The value s̄ that gives the minimum value of D̃ is obtained by the formula:

s̄ =
1

2

y12D(s0) + y20D(s1) + y01D(s2)

s12D(s0) + s20D(s1) + s01D(s2)
(41)

where yij = s2
i − s2

j and sij = si − sj .

Therefore the procedure of the minimization can be summarized as: i) Initial

step: Select three initial guess s0 = 0, s1 = 0.5 and s2 = 1.0, ii) (Loop): com-

pute s̄ = f̄(s0, s1, s2), remove a parameter s ∈ {s̄, s0, s1, s2} such that D(s) =

max{D(s0), D(s1), D(s2), D(s̄)}, and set these remainders to {s0, s1, s2}, iii) Repeat

the step (Loop) four times.

For the computation of distance, we use a combination of the Newton method

for F (s) and the minimization method for the function D(s). After four iterations of

minimization method, the resulting value s̄ is used to begin the iteration of Newton

method for F (s) = 0 if F (s̄) > ǫ, where ǫ = 1.0 × 10−8. Once a solution for s is

obtained, the distance of p to Γ is known from evaluating the distance ||Γ(s̄) − p||
and is assigned to ψ at that grid point.

The direction of the tangent vector t is found unambiguously to be pointing

along Γ in the direction of increasing arclength, with the interior (locally) on the

left; n points to the exterior. (For example if t = (x, y), then the outward normal

n = (−y, x). ) Note that there can be more than one solution of the equation (38).

For example, if Γ is a circle and the point y is the center of the circle, then all of the

points on the circle are the solutions of (38). However, the issue of nonuniqueness

can can generally be avoided by using sufficient resolution in the narrow band.

For the surface Γ(α, β, γ) defined on a triangular patch in baricentric coordinates

(α, β, γ), the corresponding orthogonality condition from a grid point p can be written

as a system of two equations;




F (α, β) = [Γ− p] ·
(

dΓ
d α
− dΓ

d γ

) ∣∣∣
(α,β,1−α−β)

= 0,

G(α, β) = [Γ− p] ·
(

dΓ

d β
− dΓ

d γ

) ∣∣∣
(α,β,1−α−β)

= 0.
(42)

To carry out the distance compuation, we first select a triangle [p0,p1,p2] and

check if q = p + d Np0,p1,p2
is inside the domain. The normal Np0,p1,p2

is a normal

vector of a plane determined by the three vertices {p0,p1,p2}. The distance d from

the point p to the triangle is given by a simple formula

d = N/|N| · (p1 − p) . (43)

The computed position q has a corresponding barycentric coordinate (α, β, γ)

with respect to the triangle [p0,p1,p2]. This barycentric coordinate (α, β, γ) can be
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computed by a simple system of equation (see [33])
(
m00 m01

m01 m11

)(
α

β

)
=

(
(p0 − p2) · (p− p2)

(p1 − p2) · (p− p2)

)
(44)

where m00 = (p0 − p2) · (p0 − p2), m11 = (p1 − p2) · (p1 − p2) and m01 =

(p0 − p2) · (p1 − p2) and γ = 1− α− β.

If 0 ≤ α, β, γ ≤ 1.0, then the point q is inside the triangle [p0,p1,p2]. The

corresponding distance d is the distance from the point p to the surface patch to the

first order of accuracy. We used a Broyden’s method ([34]) to compute the equation

(42) while the partial derivatives are computed by that of interpolation polynomials.

The initial guess of the barycentric coordinate (α, β, 1 − α − β) for the iteration in

Broyden’s method is given by the solution of equation 44.

We can use a minimization method to generate an initial guess for the Newton

iteration for the distance to a surface, but we found that much more iteration is

required to have a good guess. Instead of using a minimization procedure, we first

compute the distance from a point to the boundary curves. Then we check the

direction of tangents at the closest point of a curve, we choose a patch for the

computation of the equation (42). In most cases, the closest point lies on the chosen

patch. If not, we use a special subroutine to find another patch which is a neighbor

of the previously chosen patch. If there is a corner on a boundary curve of a selected

patch, we use a first order computation of distance around this corner.

7.3. Re-initialization of the level set fuction ψ by using the Stack Sweeping

Algorithm

In this section we provide an example that describe an algorithm for re-initializing

the level set function ψ in the band Bb by using our Stack Sweeping Algorithm. This

discription is a variant of the algorithm for computing temperary ψ described by

Sethian et al in the paper [4].

First we reserve two stacks, again named S0 and S1, whose lengths are twice the

total number of nodal points in SURFACE.

STEP-I

(1) (Initialization) Starting with the first (0-th) item, say E0 in SURFACE, get the

vertices associated with the item E0. Note that the vertices of E0 (say) are the

members of VΓ. PUSH the addresses of all these vertices into S0. Repeat this

procedure until all items in SURFACE are used. After we have done this step,

the stack S0 contains all addresses of grid points in VΓ.
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(2) . (Computation) For each address in S0 which represents a grid location, say (i, j),

compute the normal distance from that point (i, j) to Γ by use of the orthogonal

condition and save the distance into the corresponding item in BANDSET.

STEP-II:

(1) POP one address from stack S0, if the stack is empty STOP.

(2) Find the grid location addressed by the POP-ed value say, (i, j).

(3) Find grid points among the neighbor of (i, j) i.e., (i+ 1, j), (i− 1, j), (i, j+ 1) or

(i, j − 1), which are not in VΓ but in Bb.

(4) (Computation) If there are no such points, go back to step II-1, otherwise compute

the normal distance at these points. Set the sign of ψ(i±1,j±1) at these points to

the same sign of ψij . Note that the location of nodes on Γ is determined partly by

the sign of ψ at grid points in VΓ. Set the result in the corresponding BANDSET

and PUSH the address of BANDSET of the item into stack S1.

(5) Go to II-1

STEP-III:

Switch the stack S0 and S1. If both stacks are empty, STOP.

STEP-IV:

(1) POP an address from S0 If S0 is empty then STOP.

(2) Find neighbors whose ψ field are not computed.

(3) (Computation) Compute ψ values by using the Fast Marching method, with

known values at grid points determined in STEP-II.

(4) PUSH the addresses of neighbors into S1.

(5) Go to IV-1.

STEP-V: Go to STEP-III

The Use of Min-Heap Storage for the PUSH and POP Operations For the PUSH

operation that is used to fill stack S1 at STEP-II and STEP-IV, we use the min-

heap storage strategy to partially order the entries in S1. Let us briefly review this

sorting strategy. Assume that J is the total number of address entries in stack S1

and for our current purpose the addresses of S1 run from 0 to J − 1. Initially J = 0,

when the stack is empty. The ordered entries in S1 can be indexed by j from j = 0 to

j = J − 1. The stack is structured by the relation between child and parent entries.

The relation between parent and child is as follows. A parent of the j − th entry is

the entry (j − 1)/2. A child entry with index k is 2 k + 1.

The band-building PUSH operation has several steps. The first PUSH operation

saves the PUSH-ed address in the first position of S1 and J is increased by one. Let
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A be the address to be PUSH-ed into S1. Copy A into J − th entry of S1 (i.e. at

the end of the stack). Compare the ψ-value of A with the ψ value of its parent node,

which is (J − 1)/2. If the magnitude ψ of A is smaller than the ψ value of its parent,

then switch the contents of the child and parent entry in S1. If the value ψ of A is

larger or equal to ψ value of the parent node, then stop. If the J − th entry is 0-th

node, then stop. Otherwise, one repeats the process and continues till it terminates.

Once the stack S0 is empty, the stack S1 is filled with structured addresses according

to the min-heap tree structure. The stacks are SWITCH-ed and the addresses of S0

reside in S1 as shown in STEP-III.

The POP operation removes an item from stack S0, but since we use the min-

heap algorithm, the POP operator in the loop STEP IV breaks the tree-valence and

so after having removed the first entry of S0, we must ”re-balance” the stack S0. If j

is the S0 location of the item that is POP-ed, compare that ψ (i.e the parent) value

with ψ values of its children nodes, i.e. those stored at 2 j + 1 and 2 j + 2. Next we

copy the address of the child with the smallest magnitude of ψ to the j − th storage

location in S0 and we remove the child node by setting its entry to the value −1.

We carry out the same removal procedure for the child entry which was copied to

the parent entry. And we repeat the removal until we encounter the end of the tree

structure, i.e. when both children are −1.

Appendix III: Iteration Procedure for the Heat Equation

Step A Initialize the temperature T n+1,N
i,j = T n

i,j, with N = 0.

Step B For each (i, j), compute the left hand side of the equation (34) and update

T n+1,N
i,j according to

T n+1,N
i,j ← Ci,jT

n,N
i,j + fi,j,N(T n+1

i,j+1, T
n+1
i,j−1, ...) . (45)

Step C Increment N : N ← N + 1. If the criteria (35) for N and N − 1 steps is not

satisfied, Goto Step B; otherwise STOP.

We use the Stack Sweeping method described in section 3.3.4 to carry out the

Gauss-Seidel iteration of Step B for temperature in the whole field. We use the same

steps (without STEP-II) described previously. Instead of ψ (marked computation

in section 3.3.4), we compute the temperature T , according to (34). The modified

computation for STEP-I must include the procedure of extrapolation of temperature

to Γ. The PUSH and POP operations simply copy and remove addresses from the

stacks and the min-heap sorting is not required. We found that this conditioning of
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the Gauss-Seidal iteration leads to accelerated convergence to the updated solution

T n+1,∞
i,j for the temperature at the time step t = tn+1.

Therefore our numerical procedure can be summarized as follows (see the flow

chart in Figure 7)

(1) Initialize the temperature field and initial location of the front at time t = t0.

(2) Start the WaveTracker.

(3) When WaveTracker requests the computation of the normal velocity on Γ at

t = tn+1, carry out the following two steps; i) Use the Gauss-Seidal iteration

to advance the temperature on both side of the front. ii) Compute the normal

velocity at all points on Γ using (32b).
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