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1. Introduction: some conditions for
nonmaterial interfaces

The past half-century has seen much activity among materials sci-
entists and mechanicians concerning nonmaterial interfaces, a central
outcome being the realization that such problems generally result in an
interface equation over and above those that follow from the classical
balances for forces, moments, and mass. In two space-dimensions with
the interface a curve S, this extra interface condition takes a variety of
forms, the most important examples being:

Mullins’s equation. This is a geometric equation,

bV = ψK (1)

for the respective motions of an isotropic grain-boundary and an isotropic
grain-vapor interface, neglecting evaporation-condensation. Here V and
K are the (scalar) normal velocity and curvature of the grain-boundary
(or interface) S, while ψ, b, ρ, and L are strictly positive constants, with
ψ the interfacial free-energy (density), b a kinetic modulus (or, recipro-
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Figure 1.1 The interface
S. Our convention is
that K be positive on con-
cave upward portions of S.
The symbols (±) label the
phases on the two sides of
the interfaces.

cal mobility), ρ the atomic density of the solid, and L the mobility for
Fickean diffusion within S. The argument of Mullins (1956) in support
of (1) is physical in nature and based on work of Smoluchowski (1951),
Turnbull (1951), and Beck (1952).

Variationally derived chemical potential. Working within a frame-
work that neglects deformation and mass transport and invoking an
assumption of local equilibrium, Herring (1951) defines the chemical po-
tential U of a solid-vapor interface as the variational derivative of the
total free energy with respect to variations in the configuration of the in-
terface. Following Herring, Wu (1996), Norris (1998), and Freund (1998)
generalize earlier work of Asaro and Tiller (1972) and Rice and Chuang
(1981) to compute the chemical potential U of a solid-vapor interface in
the presence of deformation, allowing for interfacial stress. Their result
is given by

U = Ψ− Sn · Fn− (ψ − σ̄λ)K − ∂τ

∂s
. (2)

Here Ψ is the bulk free-energy (density); S is the bulk Piola stress;
F = ∇y is the deformation gradient (with y the deformation); n and t
are the interface normal and tangent (Figure 1.1); K is the curvature; s
denotes arc length; ψ is the interfacial free-energy (density); and λ = |Ft|
is the interfacial stretch. The result (2) is derived variationally. It hinges
on the assumption that the vapor pressure and vapor free-energy vanish,
and is based on standard bulk constitutive relations in the solid and a
constitutive equation ψ = ψ̂(λ, ϑ) for the interfacial free-energy, and σ̄
and τ defined by

σ̄ =
∂ψ̂

∂λ
, τ =

∂ψ̂

∂ϑ
, (3)

with ϑ the counterclockwise angle to the interface tangent t.

Kinetic Maxwell equation. This is a condition
[[

Ψ−
∑
α

ραµα − Sn · Fn
]]

= b(ϑ)V. (4)
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for a propagating coherent phase interface between two phases composed
of atomic species α = 1, 2, . . . , N . Here, µα and ρα are the chemical po-
tentials and atomic densities in bulk, [[ϕ]] = ϕ+ − ϕ− is the jump of a
bulk field ϕ across the interface, and, as in (1)1, b(ϑ) is a constitutively
determined kinetic modulus. The kinetic Maxwell condition was first
obtained by Heidug and Lehner (1985), Truskinovsky (1987), and Abe-
yaratne and Knowles (1990), who ignored atomic diffusion but allowed
for inertia. Their derivations are based on determining the local energy
dissipation associated with the propagation of the interface and then
appealing to the second law. When b = 0, (4) reduces to the classical
Maxwell equation

[[
Ψ−

∑
α

ραµα − Sn · Fn
]]

= 0 (5)

first derived variationally by Larché and Cahn (1978).1

Leo–Sekerka relation. This is a condition for an interface in equilib-
rium. Relying on a variational framework set forth by Larché and Cahn
(1978) (cf., also, Alexander and Johnson, 1985; Johnson and Alexander,
1986), Leo and Sekerka (1989) consider coherent and incoherent solid-
solid interfaces as well as solid-fluid interfaces. For an interface between
a vapor and an alloy composed of N atomic species, neglecting vapor
pressure and thermal influences, the Leo–Sekerka relation takes the form

∑
α

(ρα − δαK)µα = Ψ− Sn · Fn− (ψ − σ̄λ)K − ∂τ

∂s
. (6)

The relation (6) is based on a constitutive equation ψ = ψ̂(λ, ϑ, �δ ), with
�δ the list of interfacial atomic densities δα, α = 1, 2, . . . , N , supple-
mented by the definitions

σ̄ =
∂ψ̂

∂λ
, τ =

∂ψ̂

∂ϑ
, µα =

∂ψ̂

∂δα
. (7)

2. The need for a configurational force balance
One cannot deny the applicability of the interface conditions dis-

cussed above; nor can one deny the great physical insight underlying
their derivation. But in studying these derivations one is left trying to
ascertain the status of the resulting equations (1), (2), (4), (5), and (6):

1Cf. also Eshelby (1970), Robin (1974), Grinfeld (1981), James (1981), and Gurtin (1983),
who neglect compositional effects.
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are they balances, or constitutive equations, or neither?2 This and the
disparity between the physical bases underlying their derivations would
seem to at least indicate the absence of a basic unifying principle.

That additional configurational forces may be needed to describe phe-
nomena associated with the material itself is clear from the seminal work
of Eshelby (1951, 1956, 1970, 1975), Peach and Koehler (1950), and Her-
ring (1951) on lattice defects. But these studies are based on variational
arguments, arguments that, by their very nature, cannot characterize
dissipation. Moreover, the introduction of configurational forces through
such formalisms is, in each case, based an underlying constitutive frame-
work and hence restricted to a particular class of materials.3

A completely different point of view is taken by Gurtin and Struthers
(1990),4 who — using an argument based on invariance under observer
changes — conclude that a configurational force balance should join the
standard (Newtonian) force balance as a basic law of continuum physics.
Here the operative word is “basic”. Basic laws are by their very nature
independent of constitutive assumptions; when placed within a thermo-
dynamic framework such laws allow one to use the now standard pro-
cedures of continuum thermodynamics to develop suitable constitutive
theories.

3. A framework for the study of evolving
nonmaterial interfaces

A complete theory of evolving interfaces in the presence of deforma-
tion and atomic transport may be developed using a framework based
on: (a) standard (Newtonian) balance laws for forces and moments that
account for standard stresses in bulk and within the interface; (b) an
independent balance law for configurational forces that accounts for con-
figurational stresses in bulk and within the interface;5 (c) atomic bal-
ances, one for each atomic species, that account for bulk and surface
diffusion; a mechanical (isothermal) version of the first two laws of ther-

2Successful theories of continuum mechanics are typically based on a clear separation of
balance laws and constitutive equations, the former describing large classes of materials, the
latter describing particular materials.
3A vehicle for the discussion of configurational forces within a dynamical, dissipative frame-
work derives configurational force balances by manipulating the standard momentum balance,
supplemented by hypereslastic constitutive relations (e.g., Maugin, 1993). But such derived
balances, while interesting, are satisfied automatically whenever the momentum balance is
satisfied and are hence superfluous.
4This work is rather obtuse; better references for the underlying ideas are Gurtin (1995,
2000).
5As extended by Dav̀ı and Gurtin (1990), Gurtin (1991), Gurtin and Voorhees (1995), and
Fried and Gurtin (1999, 2003) to account for atomic transport.
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modynamics in the form of a free-energy imbalance that accounts for
temporal changes in free-energy, energy flows due to atomic transport,
and power expended by both standard and configurational forces; (d) ther-
modynamically consistent constitutive relations for the interface and for
the interaction between the interface and its environment.

One of the more interesting outcomes of this approach is an explicit
relation for the configurational surface tension σ in terms of other inter-
facial fields; viz.,

σ = ψ −
∑
α

δαµα − σ̄λ. (8)

This relation, a direct consequence of the free-energy imbalance applied
to the interface, is a basic relation valid for all isothermal interfaces,
independent of constitutive assumptions and hence of material; it places
in perspective the basic difference between the configurational surface
tension σ and standard surface tension σ̄. There is much confusion in
the literature concerning surface tension σ and its relation to surface
free-energy ψ. By (8), we see that these two notions coincide if and only
if standard interfacial stress as well as interfacial atomic densities are
negligible.

4. The normal configurational force balance and
the dissipation inequality

The configurational force balance for the interface takes the simple
form

∂c
∂s

+ g + [[C]]n = 0. (9)

Here c is the configurational surface stress, g is a dissipative internal
force associated with the rearrangement of atoms at the interface, and
C is the configurational stress in the solid. The tangential and normal
components σ = c · t and τ = c · n of c are the configurational surface
tension and the configurational shear; thus, in contrast to more classical
discussions, the surface tension actually represents a force tangent to the
interface, with no a priori relationship to surface energy. The theory in
bulk shows C to be the Eshelby tensor

C =
(
Ψ−

∑
α

ραµα
)
1− F�S, (10)
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a relation that bears comparison with (8). Of most importance is the
component

σK +
∂τ

∂s
+ n · [[C]]n + g = 0, g = g · n, (11)

of (9) normal to the interface, as this is the component relevant to the
motion of the interface.

For an interface in the presence of deformation and atomic transport,
the normal configurational force balance (11), when combined with (8),
(10), and the standard force, moment, and atomic balances, yields the
normal configurational force balance (Fried and Gurtin, 2003)

∑
α

([[ρα]] + δαK)µα = [[Ψ− Sn · Fn]] + (ψ − σ̄λ)K +
∂τ

∂s
+ g, (12)

with σ̄ the standard surface-tension. This balance is basic, as its deriva-
tion utilizes only basic laws; as such it is independent of material.

The free-energy imbalance localized to the interface using the basic
balances yields the interfacial dissipation inequality

�

ψ − σ̄
�

λ− τ
�

ϑ−
∑
α

µα
�

δα +
∑
α

hα
∂µα

∂s
+ gV ≤ 0, (13)

with a superposed box denoting the time derivative following the normal
trajectories of S; this inequality, which is also basic, is used as a starting
point for the discussion of constitutive relations.

5. Relation of the normal configurational force
balance to the classical equations

Each of the interface conditions in §1 may be derived — without
assumptions of local equilibrium — within the framework set out in §3.

Leo–Sekerka relation. If we take g ≡ 0, then the normal configura-
tional force balance (12) reduces to the Leo–Sekerka relation (6). The
relation (6) follows rigorously as an Euler–Lagrange equation associated
with the variational problem of minimizing the total free-energy of a solid
particle surrounded by a vapor. Thus, for solid-vapor interfaces in equi-
librium, the format adopted here is completely consistent with results
derived variationally. The Leo–Sekerka relation (6) (or similar relations
for other types of phase interfaces) is typically applied, as is, to dynam-
ical problems, often with an accompanying appeal to an hypothesis of
“local equilibrium”, although the precise meaning of this assumption
is never spelled out. The more general framework leading to the nor-
mal configurational force balance (12) would allow for a nonequilibrium
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term −g, with g = −b(ϑ)V , on the right side of (6). The question as to
when the Leo–Sekerka relation is applicable in dynamical situations is
equivalent to the question as to when the internal force g is negligible.
Our more general framework provides an answer to this question: for
sufficiently small length scales g cannot be neglected, because the term
emanating from g in the evolution equations for the interface is of the
same order of magnitude as the other kinetic term in these equations,
which results from accretion (Fried and Gurtin, 2004, §26.3).

Variationally derived chemical potential. We restrict attention to
a single atomic species, take g = 0, and neglect the adatom density.
Further, consistent with the variational treatment we assume that the
vapor pressure and vapor free-energy (and hence the standard and con-
figurational forces) vanish in the vapor. This allows us to replace the
jumps by negative interfacial limits from the solid (so that [[Ψ]] becomes
−Ψ− = −Ψ, and so forth). Then the normal configurational force bal-
ance reduces to (2) with U = ρµ. The chemical potential U is, by its
very definition, a potential associated with the addition of material at
the solid-vapor interface, without regard to the specific composition of
that material. As such, U cannot be used to discuss alloys. As with the
Leo–Sekerka relation, the more general framework discussed here allows
for a kinetic term b(ϑ)V on the right side, and hence for a nonequilibrium
chemical potential.

Mullins’s equation and the kinetic Maxwell equation. If in (12)
we neglect deformation, adatoms, and all fields related to the bulk ma-
terial, and consider constitutive relations of the form ψ = ψ̂(ϑ) and

τ =
∂ψ̂

∂ϑ
, g = −b(ϑ)V, (14)

with b(ϑ) ≥ 0 a kinetic modulus, then the dissipation inequality (13)
is satisfied and the normal configurational force balance (11) reduces to
the curvature-flow equation

b(ϑ)V =
[
ψ(ϑ) + ψ′′(ϑ)

]
K, (15)

proposed by Uwaha (1987) and independently, using configurational
forces, by Gurtin (1988); for an isotropic material, (15) reduces to
Mullins’s equation (1).

Similarly, the kinetic Maxwell equation (4) follows from (11) upon
neglecting atomic transport as well as interfacial structure and taking
g = −b(ϑ)V .
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6. A final remark
Interface conditions that in other theories play the role of the normal

configurational force balance are typically based on an assumption of lo-
cal equilibrium or on a chemical potential derived as a variational deriva-
tive of the total free-energy with respect to variations in the configuration
of the interface. By their very nature, such variational paradigms cannot
involve the normal velocity V . To the contrary, a framework based on
a configurational force balance allows for nonequilibrium terms of this
form.
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