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Abstract

We consider the question of whether a nematic elastomer cross-linked in an isotropic state and then
subjected to an isochoric, homogenous deformation can exhibit a disclination. The theory that we
use allows for the polymer chains that comprise the network to adopt spherical, uniaxial, or biaxial
conformations. The conformation is represented in terms of an orthogonal pair of directors and an
associated pair of asphericities. A disclination is a tubular region in which the asphericities vanish
and the directors are undefined, so that the conformation is spherical and the material appears to
be isotropic. We apply the theory to a cylindrical specimen with circular cross-section deformed
so that each cross-section becomes an ellipse. Assuming that, when they exist, the directors are
parallel to the level sets of the deformation, the governing equations of the theory reduce to a
boundary-value problem involving a pair of semilinear elliptic partial-differential equations for
the asphericities. Numerical solutions of that problem predict that the specimen can adopt states
in which an isotropic tubular core with characteristic cross-section on the order of 10−2 µm is
surrounded by material in which the conformation is biaxial. Energetic considerations show that,
for reasonable choices of the material parameters, such states are preferred for strains greater
than or equal to 0.7% and thus are very likely to be observed. The theory also predicts that the
transition between the undistorted isotropic reference state and the biaxial disclinated state is of
second order.
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1 Introduction

A nematic elastomer is a rubber-like solid formed by cross-linking a polymeric fluid that includes
liquid–crystalline molecules as elements of its main chain and/or as pendant side groups. Like nematic
liquid crystals, such materials possess local orientational order but lack the long–range translational
order of crystalline solids.

Recently, Fried and Todres1,2 considered the question of whether a nematic-elastomeric specimen
subjected to inhomogeneous deformations involving an isochoric combination of radial and axial dis-
tortions can sustain disclinations. In that work, it was assumed that the material was cross-linked in
an uniaxial state and subsequently annealed to create an isotropic reference state. Furthermore, the
molecular conformation was restricted to be either spherical or uniaxial. Fried and Todres found that,
even for mild distortions of the specimen, the material exhibits an energetic preference for states in
which the molecular conformation is uniaxial except within a cylindrical core, surrounding the axis
of the specimen, where the molecular conformation is spherical. That core region, which has charac-
teristic dimension 10−2 µm, is identified as a disclination. As an extension of previous work, Fried,
Korchagin and Todres3 explored the possibile existence states in the conformation in the extra-core
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region is biaxial. Their results indicate a strong energetic preference for such states over alternative
states in which the conformation within the extra-core region is uniaxial.

Here, we address the question of whether a nematic-elastomeric specimen cross-linked in an
isotropic state and then subjected to an isochoric, homogeneous deformation can sustain energetically
preferred states involving disclinations. Because of the relative ease of producing isotropic specimens
and the simplicity of homogenous deformations, these choices should facilitate experimental validation
of theorical predictions.

To achieve this, we employ a framework developed by Fried, Korchagin and Todres.3 That frame-
work allows for the polymer chains that comprise the network to adopt spherical, uniaxial, or biaxial
conformations. The conformation is represented in terms of an orthogonal pair of unit directors and
an associated pair of asphericities. A disclination is then a tubular neighborhood about a space curve
within which the asphericities vanish and the directors are undefined. Within a disclinated zone, the
conformation is spherical and the material appears to be isotropic.

We consider a cylindrical specimen with circular cross-section and investigate the response of that
specimen to deformations under which each undeformed cross-section is transformed homogeneously
into an ellipse while preserving area locally. Assuming that, where they exist, the directors are parallel
to the level sets of the deformation, the governing equations of the theory reduce to a boundary-value
problem involving a pair of semilinear elliptic partial-differential equations for the asphericities which
determine the conformation. We use numerical methods to obtain solutions to that system subject to
variationally-natural boundary conditions, with the objective of determining whether the isochoric,
homogeneous deformation of a specimen cross-linked in an isotropic state can generate disclinations.

2 Theory

The kinematic description of a nematic elastomer involves two fields: the vector-valued deformation y
and the symmetric, positive-definite, tensor-valued, molecular conformation A. Associated with y is
the deformation-gradient F , which serves as a macroscopic measure of the distortion of the polymer
network. Assuming that the medium is incompressible, we must have detF = 1. The molecular
conformation is a macroscopic measure of the nematically-induced distortion of the polymer chains
that comprise the network. Being symmetric and positive-definite, A may be spherical, uniaxial, or
biaxial. When A is spherical, the medium behaves as conventional isotropic rubber. Otherwise, the
optical-mechanical behavior of the material is anisotropic. In general, we may represent A in the form

A = a(1 + q1)−
1
3 (1 + q2)−

1
3 (1 + q1n1⊗n1 + q2n2⊗n2), (1)

with a = detA > 0, q1 > −1 and q2 > −1 scalar asphericities, and n1 and n2 orthogonal (n1·n2 = 0),
unit (|nβ | = 1, β = 1, 2) directors. The polymer chains are oblate, spherical, or prolate about nβ
according to whether −1 < qβ < 0, qβ = 0, or qβ > 0.

We restrict attention to a nematic elastomer that is cross-linked in an isotropic state. In view
of the representation (1), the net free-energy density should vary with F , q1, q2, n1, and n2. To
account for energetic contributions associated with conformational inhomogeneities, we allow also for
dependence on the gradients h1 = Gradq1, h2 = Gradq2, G1 = Gradn1, and G2 = Gradn2 of the
asphericies and directors. To be definite, we work with the particular free-energy density

ψ =
µ

2

(
(1 + q1)

1
3 (1 + q2)

1
3

(
|F |2 − q1

1 + q1
|F�n1|2 −

q2
1 + q2

|F�n2|2
)
− 3

)

+ Φ(q1, q2) +
α

2
|h1|2 +

α

2
|h2|2 + Γ (q1)K(F ,n1,G1) + Γ (q2)K(F ,n2,G2). (2)

The first term on the right side of (2) is the neo-classical free-energy density 1
2µ(tr (A−1FΛF�)−

ln det(A−1Λ)−3) of Warner, Blandon and Terentjev4 specialized to the case where conformation Λ at
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the instant of cross-linking is isotropic (Λ = a1 ) and rewritten in terms of the explicit representation
(1) for A. Here, µ > 0 is the shear modulus.

The second term on the right side of (2) is a potential that penalizes deviations of the asphericities
q1 and q2 from the referentially preferred isotropic values q1 = 0 and q2 = 0. Accordingly, the potential
Φ should be convex obey

Φ(0, 0) < Φ(q1, q2) if q1 �= 0 or q2 �= 0. (3)

Consistent with the notion that overly oblate or prolate conformations should be energetically costly,
we assume that Φ obeys

Φ(q1, q2)→ +∞ as q1 → −1,+∞ or q2 → −1,+∞. (4)

Further, motivated by the observation that the expression (1) determiningA in terms of q1, n1, q2, and
n2 is invariant with respect to transformations of the form {(q1,n1), (q2,n2)} 
→ {(q2,n2), (q1,n1)},
we assume that Φ is symmetric in the sense that

Φ(q1, q2) = Φ(q2, q1) for all (q1, q2). (5)

The third and fourth terms on the right side of (2) are quadratic in the asphericity gradients
h1 = Gradq1 and h2 = Gradq2. These terms, which involve a single parameter α > 0 that might be
referred to as an asperical elasticity modulus, penalize spatial inhomogeneities of the asphericities.

The last two terms on the right side of (2) are generalizations of the free-energy density arising in
the Oseen–Zöcher–Frank theory for uniaxial nematic liquid crystals.2 The factor K appearing in both
of these terms has the particular form

K(F ,n,G) =
κ1

2
(F ·G)2 +

κ2

2
|F�G|2 +

κ3(|F�GF�n|2 + |G�FF�n|2)
2|F�n|2

+
κ4

2
(F�G)·(G�F ) +

κ5(F�GF�n)·(G�FF�n)
2|F�n|2 . (6)

On setting F = 1 in (6), we may identify κ1 + κ2 + κ4, κ2, κ2 + κ3, and κ2 + κ4 with the classical
splay, twist, bend, and saddle-splay moduli of the Oseen–Zöcher–Frank theory; κ3+κ5 is an additional
modulus that accounts for interactions between the distortion of the network and the orientation of
the molecular conformation as described by the directors n1 and n2. The remaining factor appearing
in the last two terms on the right side of (2) mollifies singularities that accompany disclinations. Like
Fried and Todres2 and Fried, Korchagin and Todres,3 we view a disclination in a nematic elastomer is a
tubular region within which the asphericities vanish and the directors are undefined. When a director
is undefined, its gradient is singular. Hence, the associated quantity K is also singular. The molifying
factor Γ of the final, two terms on the right side of (2) render any such singularities integrable.5 As
such, Γ should obey

Γ (q) = O(q2
β) as q → 0,

Γ (q) > 0 for q �= 0,

Γ (q)→ +∞ as q → −1,+∞.




(7)

If we restrict attention to states in which the asphericity is uniaxial, so that, without loss of
generality, q1 ≡ q �= 0 and q2 ≡ 0, then the free-energy density (2) resembles the expression used
by Fried, Korchagin and Todres,3 the difference being in the properties of the potential Φ. Here,
because we consider a material that is cross-linked directly in an isotropic state, Φ has only a single
well. In contrast, Fried, Korchagin and Todres3 use a multiwelled potential that embodies energetic
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preferences for a uniaxial state present at the time of cross-linking and an isotropic reference state
obtained subsequently by annealing.

As a consequence of the dependence of the free-energy density (2) on the variables F , q1, q2,
h1 = Gradq1, h2 = Gradq2, n1, n2, G1 = Gradn1, and G2 = Gradn2, the theory gives rise to the
following variationally-based equilibrium equations:

Div
( ∂ψ

∂F

)
= F−�Gradp,

Div
( ∂ψ

∂h1

)
=

∂ψ

∂q1
,

Div
( ∂ψ

∂h2

)
=

∂ψ

∂q2
,

Div
( ∂ψ

∂G1

)
+

( ∂ψ

∂G1
·G1

)
n1 =

∂ψ

∂n1
,

Div
( ∂ψ

∂G2

)
+

( ∂ψ

∂G2
·G2

)
n2 =

∂ψ

∂n2
.




(8)

Here, all differentiation of ψ is performed on the manifold associated with the constraints detF = 1,
|n1| = 1, and |n2| = 1. In particular, p denotes the pressure required to maintain the first of these
constraints. While (8)1 expresses the conventional force balance associated with y, (8)2, (8)3, (8)4,
and (8)5 express generalized force balances associated, respectively, with the additional kinematical
degrees of freedom q1, q2, n1, and n2.

Consider a specimen that occupies a region R. For a subset S of the boundary ∂R of R with
unit outward normal ν, variationally-based natural boundary conditions to accompany the governing
equations (8) are:

( ∂ψ

∂F
− pF−�

)∣∣∣
∂R
ν = 0,

∂ψ

∂h1

∣∣∣
∂R
· ν = 0,

∂ψ

∂h2

∣∣∣
∂R
· ν = 0,

∂ψ

∂G1

∣∣∣
∂R
ν = 0,

∂ψ

∂G2

∣∣∣
∂R
ν = 0.




(9)

While (9)1 expresses the requirement that S be traction-free in the standard sense, (9)2, (9)3, (9)4,
and (9)5 express the requirment that S be free of the generalized tractions associated with q1, q2, n1,
and n2.

3 Application

We now apply the theory to study the deformation of a cylindrical specimen with circular cross-section.
Specifically, we choose a fixed orthonormal basis {e1, e2, e3} and consider a reference state in which
the medium occupies the cylindrical region

R = {x :
√

x1
2 + x2

2 ≤ R,−∞ < x3 <∞},
with xi = x·ei. We introduce cylindrical-polar coordinates (r, θ, z) via

R =
√

x1
2 + x2

2, θ = arctan(x2/x1), z = x3,
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and let {er, eθ, ez} denote the associated physical basis.
We assume that the lateral surface of the specimen is free of all tractions. Thus, the natural

boundary conditions (9) hold with S = {x : |x| = R} and ν = er.
We suppose that the specimen is subjected to the particular deformation

y(r, θ, z) = λx1e1 +
x2

λ
e2 + x3e3, with λ ≥ 1. (10)

The deformation gradient is then homogeneous and of the form

F = λe1⊗e1 +
1
λ
e2⊗e2 + e3⊗e3. (11)

Further, a direct calculation shows that detF = 1 holds throughout R; thus, the assumed deformation
is isochoric. Under a deformation of the form (10), each circular cross-section of the cylinder R is
transformed into an ellipse with major and minor axes λR and R/λ.

Further, we assume that the asphericities are independent of z, viz.,

qβ(r, θ, z) = qβ(r, θ), β = 1, 2. (12)

Except where the material is isotropic and n1 and n2 are undefined, we assume that

n1 =
cos2 θ + λ2 sin2 θ√
cos2 θ + λ4 sin2 θ

er +
(λ2 − 1) sin θ cos θ√

cos2 θ + λ4 sin2 θ
eθ,

n2 =
cos2 θ + λ2 sin2 θ√
cos2 θ + λ4 sin2 θ

eθ −
(λ2 − 1) sin θ cos θ√

cos2 θ + λ4 sin2 θ
er.




(13)

As a consequence of these choices, the constraints |n1| = 1 and |n2| = 1 are satisfied whenever n1

and n2 are defined. Where they exist, the directors are therefore perpendicular and parallel to the
level sets of deformation. Most importantly, n1 and n2 as given are undefined on the axis of the
specimen. A state corresponding to these choices then involves a disclination of strength +1 about
the axis of the specimen. The combined ansatz embodied by (10) and (13) therefore allows us to
consider whether the governing equations of the theory admit solutions and, moreover, whether such
solutions are energetically feasible—that is, preferred for certain values of λ.

A direct calculation shows that, when n1 and n2 are defined,

G1(r, θ, z) =
λ2(cos2 θ + λ2 sin2 θ)

r(cos2 θ + λ4 sin2 θ)
3
2
eθ⊗eθ −

λ2(λ2 − 1) sin θ cos θ

r(cos2 θ + λ4 sin2 θ)
3
2
er⊗eθ,

G2(r, θ, z) =
λ2(cos2 θ + λ2 sin2 θ)

r(cos2 θ + λ4 sin2 θ)
3
2
er⊗eθ −

λ2(λ2 − 1) sin θ cos θ

r(cos2 θ + λ4 sin2 θ)
3
2
eθ⊗eθ.




(14)

Using (11)–(14) in (6) gives

K(F ,n1,G1) =
λ2

2r2(cos2 θ + λ4 sin2 θ)

(
κs +

κb(λ4 − 1)2 sin2 θ cos2 θ
(cos2 θ + λ4 sin2 θ)2

)
,

K(F ,n2,G2) =
λ6κb

2r2(cos2 θ + λ4 sin2 θ)3
,




(15)

where κs = κ1 + κ2 + κ4 and κb = κ2 + κ3 denote, respectively, the splay and bend moduli. Hence,
of the parameters κ1, κ2, κ3, κ4, and κ5 entering the generalized Oseen–Zöcher–Frank expression (6),
the assumed forms (11) and (13) for the deformation and directors ensure that only the splay and
bend moduli are of importance.
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Since the deformation is prescribed via (10) and the directors are either given as in (13) or un-
defined, the only unknowns are the pressure p and asphericities q1 and q2. Granted knowledge of q1
and q2, using (11)–(14) in the conventional force balance (8)1 and corresponding boundary condition
(9)1 yields a relation that determines the pressure; like the deformation, the asphericities, and the
directors, the pressure is independent of the axial coordinate. In view of (11)–(14), the bulk equa-
tions (8)2,3 and corresponding boundary conditions (9)2,3 yield a seminlinear elliptic boundary-value
problem for the asphericities. Finally, granted (13), a lengthy calculation shows that (10)4,5 and
(8)4,5 are satisified identically. Thus, the problem under consideration reduces to the study of the
boundary-value problem for q1 and q2.

4 Scaling. Final governing equations

To extract information from the boundary-value problem for the asphericities, we introduce a dimen-
sionless radial coordinate x = r/R and define

Qβ(x, θ) = qβ(Rx, θ), β = 1, 2. (16)

Additionally, we introduce a parameter ν > 0, with dimensions of energy per unit volume that
measures the characteristic strength of the convex potential Φ. (For instance, ν might be defined by
the Hessian of Φ evaluated at (q1, q2) = (0, 0), where, consistent with (3), Φ attains its sole minimum).
Bearing in mind that the molifier Γ is dimensionless, a simple dimensional argument based on (2),
(6), and (15), leads to the identification of four dimensionless groups

µ∗ =
µ

ν
, α∗ =

α

R2ν
, κ∗s =

κs
R2ν

, and κ∗b =
κb
R2ν

. (17)

Using the kinematical assumptions (10)–(13) in (8)2 and (8)3 and taking advantage of the foregoing
scaling, we arrive at the dimensionless partial-differential equations

α∗

x

∂

∂x

(
x
∂Q1

∂x

)
+

α∗

x2

∂2Q1

∂θ2 =
µ∗(1 + Q2)

1
2

6(1 + Q1)
2
3

(
λ2 +

1
λ2

+ 1
)
− µ∗(3 + Q1)(1 + Q2)

1
3λ2

6(1 + Q1)
5
3 (cos2 θ + λ4 sin2 θ)

− µ∗Q2(cos2 θ + λ8 sin2 θ)
6(1 + Q1)

2
3 (1 + Q2)

2
3λ2(cos2 θ + λ4 sin2 θ)

+
1
ν

∂Ψ(Q1, Q2)
∂Q1

+
λ2Γ ′(Q1)

2x2(cos2 θ + λ4 sin2 θ)

(
κ∗s +

κ∗b(λ
4 − 1)2 sin2 θ cos2 θ

(cos2 θ + λ4 sin2 θ)2

)
(18)

and

α∗

x

∂

∂x

(
x
∂Q2

∂x

)
+
α∗

x2

∂2Q2

∂θ2 =
µ∗(1 + Q1)

1
3

6(1 + Q2)
2
3

(
λ2+

1
λ2

+1
)
− µ∗(3 + Q2)(1 + Q1)

1
3 (cos2 θ + λ8 sin2 θ)

(1 + Q2)
5
3λ2(cos2 θ + λ4 sin2 θ)

− µ∗Q1λ
2

6(1 + Q1)
2
3 (1 + Q2)

2
3 (cos2 θ + λ4 sin2 θ)

+
1
ν

∂Ψ(Q1, Q2)
∂Q2

+
λ6Γ ′(Q2)κ∗b

2x2(cos2 θ + λ4 sin2 θ)3
(19)

for Q1 and Q2; similarly, the boundary conditions (9)2 specialize to yield

∂Q1

∂x

∣∣∣
x=1

= 0 and
∂Q2

∂x

∣∣∣
x=1

= 0. (20)
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5 Numerical results

The partial differential equations (18) and (19) involve functions Φ and Γ . In addition to being convex,
Φ must obey the restrictions (3), (4), and (5); Γ is restricted by (7). Although many choices would
satisfy these restrictions, for our numerical investigations we took

Φ(q1, q2) =
νq4

1

2(1 + q1)2
+

νq4
2

2(1 + q2)2
(21)

and, as in Fried and Todres,2

Γ (q) =




q2

(1 + q)2
if −1 < q ≤ 0,

q2 if q ≥ 0.

(22)

We emphasize that the particular forms for (21) and (22) are pragmatically based. While defined
piecewise, the particular choice (22) of Γ is twice continuously-differentiable.

For our simulations, we chose µ = 105 J/m3, ν = 106 J/m3, and R = 1 cm. Underlying the chosen
value of ν is the notion that, whereas µ should scale like kBθ per polymer chain, with kB Boltzmann’s
constant and θ the absolute temperature, ν should scale like kBθ per monomer. To attain the high
extensibilities associated with rubber-like behavior requires upwards of 15–100 monomers per chain,
whereby ν should exceed µ by at least an order of magnitude. For traditional nematics at temperatures
in a wide range below the clearing temperature, the bend modulus κb is on the order of 10−12 J/m
and is three-halves to twice the splay modulus κs.6–9 The values of these moduli have not yet been
determined for nematic elastomers, but, because of the rubbery nature of these materials, it seems
reasonable to expect that the moduli would be at least an order of magnitude greater.10 So, we took
κs = 10−11 J/m and κb = 2× 10−11 J/m. The value of the splay modulus is also in line with values
used in previous work.1–3,10–11 With the expectation that the regularizing modulus should not exceed
the splay modulus, we chose α = 10−11. As a result of the foregoing assumptions,

µ∗ = 10−1 and κ∗s = 1
2κ
∗
b = α∗ = 10−13. (23)

A some larger and, thus, more realistic value of α would lead to smaller values of α∗, κ∗s, κ
∗
b and, thus,

intensify the challenge of performing simulations.
We now present the results of numerical simulations performed using FISHPAK.13

5.1 The core radius

Figures 1–2 shows plots of Q1 and Q2 along the radial direction for θ taking values of 0, π2 , π, and 3π
2 .

They show a sharp transition between isotropic (Q1 = Q2 = 0) and anisotropic (Qβ �= 0, β = 1, 2)
regions along the cylinder radius, thereby indicating the presence of a disclination. From Figures 1–2,
the transition zone between the isotropic and anisotropic regions appears to be at x ≈ 10−6, which
corresponds to a core with characteristic dimension on the order of 10−2 µm. This agrees with the
predictions of Fried and Todres1,2 and Fried, Korchagin and Todres,3 and is of the same order as
values observed for liquid-crystalline melts.12

The characteristic dimension of the core is more easily visualized using the contours of the as-
phericities, Q1 and Q2, in the deformed geometry. To exhibit the contours of asphericity, we employ
the coordinate stretching

X = λx
1
4 cos θ, Y =

y
1
4 sin θ

λ
. (24)

Figure 3 shows the density and surface plots of the asphericities as functions of position in the
deformed domain for λ = 1.2. The boundary of the core corresponds to the region where Q1 (or Q2)
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Figure 1: Plots of the asphericity Q1 as a function of dimensionless radial position x (in log scale) for
µ∗ = 10−1, κ∗s = α∗ = 10−13, and κ∗b = 2× 10−13. Here: (a) θ = 0; (b) θ = π

2 ; (c) θ = π; (d) θ = 3π
2 .
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µ∗ = 10−1, κ∗s = α∗ = 10−13, and κ∗b = 2× 10−13. Here: (a) θ = 0; (b) θ = π

2 ; (c) θ = π; (d) θ = 3π
2 .

Table 1: Comparison of the asphericities Q1 and Q2 with varying distortion λ

λ max
0≤r≤1
θ=0,π

Q1(r, θ) max
0≤r≤1
θ=π2 ,

3π
2

Q1(r, θ) min
0≤r≤1
θ=π2 ,

3π
2

Q1(r, θ) min
0≤r≤1
θ=0,π

Q1(r, θ)

1.1 0.1284 0.1293 −0.1131 −0.1131
1.15 0.1610 0.1626 −0.1370 −0.1370
1.2 0.1867 0.1963 −0.1545 −0.1545
1.25 0.2081 0.2081 −0.1681 −0.1681
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increases or decreases rapidly to a nonzero value. Inside the disclination core, Q1 = Q2 = 0. Hence
inside the disclination core the material is isotropic. Outside the disclination core, Q1 and Q2 both
take non-trivial values. The states obtained numerically therefore involve biaxial conformations.

Table 1 compares the maximum and minimum values of Q1 and Q2 for various values of λ. The
data indicates that Q1 and Q2 are out of phase by π

2 , which is consistent with the orthogonality of
the corresponding directors n1 = er and n2 = eθ.

5.2 Energetic status of biaxial states

To investigate the energetic status of the numerically-determined biaxial disclinated states, we intro-
duce the dimensionless free-energy density Ψ = ψ/ν and compare the dimensionless free-energy

Ψ tot =
∫ 2π

0

∫ 1

0

Ψ(x, θ)xdxdθ (25)

to the neo-Hookean energy

Ψ tot
e =

µ∗π

2

(
λ2 +

1
λ2
− 2

)
. (26)

Whereas Ψ tot gives the free-energy of a generic cross-section for a biaxially disclinated specimen,
Ψ tot
e gives the free-energy of a comparison specimen that deforms like conventional rubber with neo-

Hookean free-energy density µ(tr (FF�)− 3).
Using the computed values of Q1 and Q2, we calculate the total energy Ψ tot. To determine whether

our numerically determined disclinated states are energetically preferred, we plot both Ψ tot and Ψ tot
e

(Figure 4). While Ψ tot
e increases monotonically with λ, Ψ tot has an inflection point at λ ≈ 1.007. For

λ ≤ 1.007, Ψ tot is slightly greater than Ψ tot
e . However, for λ ≥ 1.007, Ψ tot < Ψ tot

e . Thus, for strains in
excess of the 0.7%, the material shows an energetic preference for a disclinated state.

Because the graph of Ψ tot exhibits only a single minimum, the theory predicts that, for a specimen
cross-linked in an isotropic state and then deformed in the homogenous manner considered here,
the transition to a biaxially anisotropic disclinated state is of second order. This result stands in
contrast to the results of Fried and Todres2 and Fried, Korchagin and Todres,3 who, for a cylindrical
specimen cross-linked in a uniaxial state, annealed, and then subjected to isochoric radial expansion
or contraction, observe a first-order transition between the isotropic reference state and an anisotropic
disclinated state.

Denoting by

Ψ core =
∫ 2π

0

∫ xc

0

Ψ(x, θ)xdxdθ (27)

the dimensionless free-energy of the core portion for any given cross-section of the specimen, we also
considered the ratio Ψ core/Ψ tot, which gives the free-energy of the disclination core relative to that of
the whole domain. From Figure 5, it is evident that Ψ core is a vanishingly small percentage of Ψ tot.
This is because of the relatively small size of the core and the fact that Ψe is of a comparatively large
magnitude across the entire radial extent of the cylinder. The proportion of total energy contained in
the core remains relatively constant up to the value of λ corresponding to the inflection point of Ψ tot.
A sharp increase then occurs and continues monotonically until leveling off at λ ≈ 1.025, at which
stage the free-energy of the core remains fixed but more energy goes into stretching the network and
altering the asphericity of the polymer chains in the extra-core region.

For a specimen deformed as described here, there is also the possibility that uniaxial disclinated
states may exist. However, such states represent local energy minima and are, thus, unlikely to be
observed. To illustrate this, Figure 6 shows plots of Ψ tot and the total free-energy Ψ tot

uni corresponding
to a disclinated state where theconformation in the extra-core region is uniaxial about the orientation
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n1 as defined in (13)1. From this plot it is clear that the transition between an isotropic state and
a uniaxial disclinated state is, like the isotropic-biaxial transition, of second order. However, such
a transition requires greater strain to be induced. Most importantly, Ψ tot

uni is always greater than or
equal to Ψ tot. Hence, for λ ≥ 1.007, biaxial disclinated states are energetically preferred over both
the uniaxial and the isotropic alternatives and, thus, represent energy minima.

6 Discussion

In contrast to the studies undertaken by Fried and Todres1,2 and Fried, Korchagin and Todres,2 we
address the question of whether a nematic elastomeric material cross-linked in an isotropic state and
subjected to an isochoric homogeneous deformation is capable of sustaining disclinations. In particular,
we consider a cylindrical specimen with circular cross-section that is subjected to a deformation
which transforms a generic cross-section of the undeformed specimen homogeneously into an ellipse
while preserving area locally. Assuming that, when they exist, the directors are perpendicular and
parallel to the level sets of the deformation, the theory developed by Fried, Korchagin and Todres3

then yields a system of semilinear elliptic partial-differential equations for the asphericities. We use
numerical methods to study those equations subject to variationally-natural boundary conditions.
Our numerical results indicate that the specimen can exhibit states in which an isotropic tubular
core with characteristic cross-section on the order of 10−2 µm is surrounded by an extra-core region
in which the conformation is biaxial. Energetic considerations show that, for reasonable choices of
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the material parameters, such biaxial disclinated states are preferred over both isotropic and uniaxial
disclinated alternatives whenever the strain is greater than or equal to 0.7%. Thus, the theory predicts
that an even relatively mild distortions are likely to induce dislinations in isotropically cross-linked
nematic elastomers. Further, our results show that the mechanically-induced transition between the
isotropic and biaxial nematic states in such a material is of second order.
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