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Abstract

The transition to turbulent flow is studied for liquids of different polarities in glass

microtubes having diameters between 50 and 247 µm. The onset of transition occurs at

Reynolds number ∼1800–2000, as indicated by greater-than-laminar pressure drop and

micro-PIV measurements of mean velocity and root-mean-square velocity fluctuations

at the centerline. Transition at anomalously low values of Reynolds number was never

observed. Additionally, the results of more than 1500 measurements of pressure drop

versus flow rate confirm the macroscopic Poiseuille flow result for laminar flow resis-

tance to within -1% systematic and ±2.5% rms random error for Reynolds numbers

less than 1800.
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1 Introduction

The transition from laminar Poiseuille flow to turbulence in a circular tube is a familiar

phenomena that is generally understood to have a minimum lower critical Reynolds number

between 1800 and 2300.1 These values have been established on purely empirical grounds,

and traditional linear stability does not adequately predict transition.2 Nonlinear theories,3,4

low-dimensional models,2 and simulations3,5, 6 have been considered to explain and predict

transition to turbulence in a circular tube, yet many questions remain open regarding the

role of disturbances such as acoustic waves, vibrations, inlet agitation, and molecular motion.

Such disturbances do not scale with the diameter of the tube, so one must allow for the

possibility of their effect when the diameter is reduced to the sub-100 µm level commonly

dealt with in microfluidics.

In microscale flows of liquids the incompressible, viscous Navier-Stokes equations are

expected to describe the fluid motion down to scales of the order of 10 molecular spacings,7

or until the tube diameter drops well below one micron. It is possible that there is a

small effect due to slip in the near vicinity of the wall.8 For hydrophilic boundaries, closer

investigations at the wall suggest that the no-slip boundary condition is valid,9 but even

if the wall material is hydrophobic, the slip length is less than 1 µm and the effect of this

conservative estimate of slip length on flow resistance is likely to be within any experimental

error for flow diameters of the order of 300–400 microns. Other factors, such as such as weak

non-Newtonian fluid properties or micro-polar molecular structure, have negligible effects on

transition in macroscopic tubes, but might become important in the extremely high shear

rates found in microtubes at Reynolds numbers approaching transition. Like the fluctuations

described above, these effects also fail to scale only with Reynolds number, and they therefore

merit critical examination.

In view of the several factors mentioned above, it is perhaps not surprising that various

investigators have interpreted experimentally observed departures from the classical linear

relationship between pressure drop and flow rate in microtubes and channels to be a mani-
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festation of anomalous transition to turbulence or non-Newtonian properties. Peng et al.10

based on measured friction factor versus Reynolds number data, report that transition to

turbulence occurs as low as Reynolds numbers of 200–700 in rectangular channels with hy-

draulic diameter 133 to 367 µm, and Mala and Li,11 again based on measured friction factor

versus Reynolds number data, report a departure from expected linear behavior in tubes

that may indicate anomalous transition at Reynolds number of 300–900. Other researchers

attribute a reduction in expected flowrate to the polar nature of certain liquid molecules for

Re∼1–20, Dh ∼ 57 µm;12 or they attribute nonlinear pressure drop to surface roughness.13,14

Wu and Little14 studied gas flows in channels with Dh ∼50–80 µm, Re ∼ 200–15000, and

Qu et al.13 investigated water flows through trapezoidal channels with Dh ∼ 50–170 µm

and Re up to 1500. Although Obot15 reports that there is “hardly any evidence to sup-

port the occurrence of transition to turbulence in smooth microchannels for Re ≤ 1000”,

this conclusion is based primarily on his renormalization of Wu and Little’s14 original data.

Renormalization is based on an arbitrary dataset which, in this case, is selected to be the

conventional friction factor versus Re data. The renormalization is a potentially useful tool in

demonstrating a scaling of the friction factor trends, but does not fully address the question

of absolute critical Reynolds numbers observed in microchannels. Additionally, although

Peng et al.16 suggested early transition based on their data, Obot15 deduces from the same

data that no transitional flow was seen to occur below Re ≤ 1000. Despite his deductions

based on data from the literature, Obot15 concludes that “there is a need for carefully crafted

experimentation aimed at determining pressure drop.. characteristics.”

The purpose of this paper is to report an extensive series of experiments in microtubes

with diameters between approximately 50 µm and 250 µm using liquids of different polarities

to quantitatively evaluate the effect of scale on the transition from laminar to turbulent flow.

To date, the conclusions regarding anomalous transition to turbulence in microchannels have

been drawn based on bulk flow measurements in the absence of supporting statistical velocity

data. In the current study, it is shown using both bulk flow resistance data and micro-PIV
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velocity data that over the range of diameters studied, the transition occurs between 1800

and 2300, in agreement with results for large tubes. Thus, at least down to the scale of

50 µm diameter, the transition behaves in a classical manner, unaffected by any of the

effects described above.

The experimental study of transition in microchannels is difficult because extreme pres-

sure gradients are needed to achieve the Reynolds numbers at which one expects transition to

occur, i.e., ∼ 2000. Standard techniques for identifying transition either plot friction factor

versus Reynolds number and observe deviations from the laminar relationship or measure

RMS axial velocity as a function of Reynolds number and identify the Reynolds number at

which the RMS increases above zero. To establish transition by either of these criteria, one

must be able to identify, with confidence, the characteristics of laminar microtube flow, a

subject that one expects, at first blush, to be trivial. However, the body of experimental

knowledge concerning the anticipated laminar flow regime in microtubes is complicated by

reports in several investigations of nonlinear relationships between pressure drop and flow

rate and/or anomalously high pressure drop, suggestive of turbulent flow. Since transition

is, by definition, the departure from laminar flow behavior, it is clear that an investigation of

transition cannot proceed without first conclusively establishing the nature of laminar flow

in microtubes.

The Darcy friction factor for flow in a duct is defined as

f = 2Dh

(
−dP/dx

ρU2
B

)
(1)

where the hydraulic diameter Dh = 4A/P . A is the cross-sectional area, P is the wetted

perimeter, ρ is the density, UB is the bulk velocity, x is the streamwise (axial) direction, and

P is the mean pressure. If the fluid obeys Newtonian rheology, the friction factor for steady,

fully developed laminar should be given by

f =
8C1

ReDh

(2)

where C1 is a constant that depends on the cross-sectional shape, ReDh
= ρUBDh/µ and µ
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is the dynamic viscosity.

For a round cross-section, C1 = 8, and the numerator of Eq. 2 has the well-known value

of 64. The flow resistance may also be stated in terms of the Poiseuille number, whose

definition is

Po ≡ − 1

µ

dp

dx

D2
h

2UB

=
fReDh

4
= 2C1. (3)

Numerical values of Po for various non-circular channels are tabulated in Sharp et al.17

Results found in the literature for various cross-sectional shapes are summarized in

Fig. 1(a) in which Po/2C1 is plotted versus Reynolds number. The theoretical laminar

value of Po/2C1 is unity for each cross-section, and the peak scatter exceeds ±40% about

this value. The scatter is clearly unphysical and much larger than expected for such simple

flows. Part of the scatter in Fig. 1(a) may be associated with using the hydraulic diameter

to correlate flow resistance in non-circular cross-sections. However, a plot of Po/16 versus

Reynolds number using only the data for circular cross-sections (Fig. 1(b)) reveals similarly

large scatter. Hence, the validity of the conventional macroscopic description of flow in

these microchannels has been called into question. Having performed their recent resistance

experiments in microchannels, Pfund et al.18 stated that “After considering experimental

uncertainties and systematic errors, significant differences remained between the results and

classical theory.” Even more recently, Sobhan and Garimella19 stated that “Given the di-

versity in the results in the literature, a reliable prediction of the heat transfer rates and

pressure drops in microchannels is not currently possible..”.

2 Experiments

2.1 Apparatus

The experimental apparatus, shown in Fig. 2, operated in a manner similar to a blow-down

wind tunnel. Liquid from the charged pressure vessel was forced through a long, nearly-
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constant diameter capillary and collected in a weighing vessel, mounted atop an electronic

scale. Measurements of the pressure in the pressure vessel and mass flow rate at the outlet

were simultaneously acquired by a computer. The gas pressure in the vessel was recorded

using a Validyne CD 15-30 pressure transducer. A Sartorius Model BL310 balance was used

to collect the fluid as it flowed out of the capillary tube.

The capillaries used in these experiments were fused silica, externally coated with poly-

imide, obtained from Polymicro Technologies, with nominal inner diameter ranging from

50 µm to 250 µm. Accurate determination of each capillary diameter was essential to ob-

tain reliable data. The manufacturer’s specification of diameter is accurate to within ±6%.

Optical measurements of the inner diameter of the capillary using end-on views through

a 40X objective were only accurate to ±2.5 µm. SEM measurements, accurate to within

± 3%, of capillary cross-sectional diameters at various positions along the tubes, indicated

variations between 0.7% and 4% over less than 20 mm axial separation. To achieve accurate

determination of a length-averaged diameter, direct observations were replaced by experi-

ments, accurate to within ± 2.5%, that inferred the diameter from the linear (Poiseuille flow)

pressure drop versus the flowrate curve in low-Reynolds number region, 20 < ReD < 400 in

which the flow clearly obeyed classical behavior with ∆p/Q constant. (The regions for which

ReD ≤ 400 are noted in Figs. 3(a) and 3(b)). This procedure was verified by comparing

measurements of the diameter using different liquids in the same tube. At least two different

liquids were used in each of four tubes, and the comparisons of diameter were accurate to

within better than 1%. Since data in this range of Reynolds number were used to infer the

mean diameter of each tube, we exclude them from the set of data used to characterize the

laminar flow that occurs prior to transition, i.e. data for ReD > 400.

De-ionized water, 1-propanol and a 20% solution by weight of glycerol were used as

working fluids, and the total viscosity range was 1.8:1. These liquids have different levels of

polarity. Measurements were acquired using D = 50–247 µm, and for Reynolds numbers in

the ranges 20–400 and 400–2900.
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While the measurement of flow resistance in a capillary is simple conceptually, a number

of effects can contribute to experimental error, including entrance effects, induced velocity

due to streaming potential, microtube compliance, accuracy of the pressure transducer mea-

surement, accuracy of balance measurement, and temperature variations of viscosity. The

magnitudes of the individual effects are discussed in Sharp.20 Taking all errors into consid-

eration, the measurements of Po and f were expected to be accurate to within ±2.5% rms.

2.2 Transition and flow resistance

Before discussing the transition to turbulence, we first show that the laminar flow prior to

transition obeyed the the relationships accepted for classical Poiseuille flow in round tubes.

The pressure drop versus flowrate data from more than 1500 measurements are summarized

in Figs. 1(b), 3(a), and 3(b). In Fig. 3(a), the pressure drop is presented in a dimensionless

form,

∆p∗ =
∆p

32µ2L
ρD3

(4)

versus Reynolds number. Thus, the accepted macroscopic Poiseuille flow result corresponds

to ∆p∗ = ReD. Clearly, the flow resistance depends linearly on the flowrate up to a critical

Reynolds number ReDcrit
of approximately 2000. (A magnified view of the data for Re ≥ 1500

is presented in Fig. 3(a) in order that the deviations from laminar theory can be better

observed.) Below ReDcrit
, the data verify the linear dependence of pressure drop on flow

rate and viscosity over the full range of Reynolds numbers, and the dependence on diameter

is verified for ReD above 400. (The dependence on diameter is also believed to be correct

for ReD below 400, but since these data were used to determine diameter as discussed

previously, the diameter dependence is not strictly verified in the ReD < 400 region as it is

for 400 < ReD < ReDcrit
.)

Fig. 3(b) gives the same results in the conventional form of Darcy friction factor, f ,

versus Reynolds number, ReD. This figure is slightly more revealing, in that one can see the

measurements falling systematically below the Poiseuille curve for ReD above 400. Generally,
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the measured friction factor agrees to within -1% systematic and ±2.5% rms random error

for all experimental ReD up to transition (50 < ReD < 2000) for water, 1-propanol, and

20% glycerol flowing through fused silica microtubes with D ∼ 50 µm–250 µm. Occasional

discrepancies larger than the error bars tended to occur in the Reynolds number range

1200 < Re < 2000, but in no case is the discrepancy greater than -4%. A likely source of the

systematic error lies in the measurement of, or variations in, the diameter of the capillary,

but a small microscale physical effect can not be definitively ruled out to within the accuracy

of the data. Evenso, for present purposes the data are adequate to prove conclusively that

the pressure drop gives absolutely no evidence for transition to turbulence anywhere below

the nominal critical value of 2,000.

The present measurements are compared to other experiments in Fig. 1(b). To eliminate

any inconsistencies due to channel geometry, the only results presented in Fig. 1(b) are for

liquids flowing in circular microtubes. Below ReD ∼ 2, 000 the agreement of the present mea-

surements with the value of unity for laminar Poiseuille is remarkably close when compared

with other published results. They scatter about the accepted value almost as much below

the critical ReD as they do above, suggesting that departures from the laminar Poiseuille

value in these experiments should not be attributed to transition. In this plot the present

data can be seen to begin to systematically increase above Po/16 = 1 at ReD = 1800,

but depending on one’s definition, the critical Reynolds number could be assigned an value

anywhere from 1,800–2,300.

2.3 Transition and the axial velocity

Using the same flow delivery and test sections described previously, micro-PIV experiments

were also performed to quantitatively measure the axial, u, component of velocity within

the microtubes. In these experiments, a steady pressure was maintained inside the pressure

vessel to within ±0.4% to produce very nearly steady flow and thereby to permit time

averaging. In all cases, the measurements were obtained at a streamwise location, (x/D)
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that was greater than 0.06ReD, the entrance length needed to achieve fully developed flow.21

Thus, the flow was not expected to change in the streamwise direction across the length

of the PIV image, unless there were spatial-time variations due to turbulence or spatial

variations due to surface roughness effects. The micro-PIV measurements were capable of

detecting fluctuations in t or x, thereby allowing us to assess each effect.

An optical access window, approximately 8 mm in length for each test section, was created

by burning off a small section of polyimide coating. To minimize optical distortion resulting

from viewing through a curved surface, the optically-accessible measurement volume was

encased in a small glass jig with rectangular cross section and filled with water.

Two 15 mJ/pulse Nd:Yag lasers (New Wave, Inc.) provided illumination. The fluores-

cent particles (diameter ∼ 2 µm) had excitation frequencies close to 532 nm, the Nd:Yag

wavelength, and emission frequencies in the red spectrum. A filter cube was used to direct

the green light entering the back of the microscope through the objective and into the test

section, and to prevent stray reflected green (532 nm) light from entering the camera.

A 12-bit cooled TSI PIVCAM 13-8 was used to capture images. This camera has 1280

pixels in the horizontal direction, and 1024 pixels in the vertical direction spaced 6.7 µm in

each directions. The time between pulses, ∆t, was 3 µs. TSI’s Insight 3.2 software controlled

the timing and acquisition of all images, PIV SLEUTH software22 was used to interrogate

them. Interrogation windows of 32 pixels by 128 pixels, each containing approximately 5–10

particles, were used in all but the 100.5 µm diameter microtubes. A streamwise offset of up to

80 pixels was used in locating the second interrogation window, depending on the magnitude

of UB. The spacing between vectors was approximately 16 µm in the spanwise direction,

except for the smallest diameter case (D = 100.5 µm), in which a smaller interrogation

windows reduced the spanwise resolution to 8 µm.

The micro- PIV measurements were made in an x–y plane passing through the centerline

of the circular microtube (x = streamwise coordinate, y = 0 corresponds to the center of

the tube in the micro-PIV plane). Despite the steps taken to reduce optical aberration by
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the walls of the tube, image distortion was significant, so attention was restricted to PIV

measurements of ucl = u(x, 0), the velocity on the centerline of the tube where the distortion

was a minimum.

Statistics of the centerline velocity were averaged in three ways. The spatial average of

a PIV field in the x-direction is denoted by 〈 〉x. The time average over multiple PIV fields

taken at separated times is denoted by u. Combined averages over x and time are denoted

by 〈u〉x. Velocity fluctuations about the time average are denoted by u′.

In Fig. 4 the space-time averaged centerline velocity, 〈u〉x normalized by bulk velocity, UB,

is compared, as a function of Reynolds number, to the measurements from two macroscale

studies23,24 of transition in pipe flow. According to Poiseuille theory for fully-developed flow,

the measured centerline velocity should be 2UB for Reynolds numbers less than critical, and

in this range the present data scatter +/- 10% about the theoretical value. Above the critical

Reynolds number in macroscale studies, the centerline velocity decreases smoothly to a value

around 1.2UB as the mean velocity profile becomes flatter than parabolic. To within ±10%

scatter the micro-scale data generally agree with the macroscopic experiments23,24 through

the transition region. The departure from the laminar value of 2.0 at Reynolds numbers

less than critical is not unexpected. As noted by Wygnanski and Champagne,25 “Deviations

from a parabolic profile took place long before any turbulence could be observed.”

Unsteady fluctuations of the velocity are clear indicators of the transition to turbulence.

The root mean square value of the fluctuating centerline velocity, averaged over x, is plotted

in Fig. 5 for test sections with D ≥ 177 µm. In the definitively laminar region, u′2 is expected

to be zero. The roughly 1% RMS level observed there is interpreted to be the consequence

of slight variations in the total flow rate between PIV frames (0.4%) and measurement noise,

which is commonly of order of 1% for PIV measurements. The first evidence of transition,

in the form of an abrupt increase in the RMS, occurs between 1800 < ReD < 2200, in full

agreement with the flow resistance data. There is no evidence of transition below these

values.
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The magnitude of the spatial variations in the current experiments, possibly due to wall

roughness, is described by the measured rms spatial variation of the centerline velocity,

averaged over x, (
√
〈(u(x, y)− 〈u〉x(y))2〉x). The measured rms spatial variation of the

centerline velocity, averaged over x and divided by the measured centerline velocity (〈ucl〉x)
is plotted versus the Reynolds number in Fig. 6 for all PIV test sections. The root mean

square value of the spatial variation is consistent with the 1% noise found in Fig. 5. It is

concluded that the magnitude of spatial variations due to roughness are within the noise

level, if they exist at all. This implies that although microscale effects are plausible, the

differences in microscale and macroscale transition to turbulence in a circular tube are not

nearly as large as originally thought by Mala and Li11 and Peng et al.10 It is concluded that

the effects of surface roughness are negligible in the current study.

3 Summary and Conclusions

The flow of a liquid in microchannels should be represented well by continuum theory unless

the channel dimensions approach the slip length at the wall, estimated to occur for channels

and tubes whose dimensions lay below a few microns. Despite this expectation, significant

departures from continuum macroscale theory have been reported in the literature of mi-

crofluidics, and they have sometimes been attributed to unknown microscale effects that

produce transition to turbulence at anomalously low Reynolds numbers. To resolve this

controversy, experiments have been performed in round glass microtubes with diameters

ranging from 50 to 247 microns, using liquids with different levels of polarity. The experi-

ments consisted of accurate observation, in more than 1500 cases, of flow resistance measure

by pressure drop and flow rate and velocity fluctuations measured by micro-PIV.

The results show conclusively that below a critical Reynolds number for transition to tur-

bulence the flow is described, to within 1% experimental accuracy, by the classical macroscale

result for Poiseuille, f = 64/ReD. More importantly, they show that the transition to turbu-
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lence first begins in virtually the same Reynolds number range as that found for macro-scale

flow: ReD =1,800–2,300. Lastly, within the transition range, the behavior of the each mi-

croscale flow property — pressure drop, mean velocity and RMS velocity — is consistent

with macroscale data. Thus, the behavior of the flow in microtubes, at least down to 50

micron diameter, shows no perceptible differences with macroscale flow. Once demonstrated,

the applicability on the microscale of Osborne Reynolds’ simple criterion for transition to

turbulence may not seem surprising. Evenso, one must be thankful and at least admit to

some admiration for a criterion that continues to describe turbulence in, for example, water

moving at speeds greater than 150 kph through a tube whose diameter is less than that of

a human hair.
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Figure 1: (a) Comparison of Po/2C1 for microchannels with different channel cross-sections.

The theoretical value of Po/2C1 for all geometries is unity. (¥) Rectangular channels —

12,18,26,27; (N) trapezoidal channels — 13,27−29; (•) Circular tubes — 11,30−33.
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Figure 1: (b) Po/16 (= Po/2C1), for liquid flows in circular microtubes. (•) current results;

(∇) 11; (◦) 32; (¦) 30; (¤) 33.
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Figure 2: Experimental setup for single-phase flow resistance study using liquid flow driven

by gas pressure.
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Figure 3: (a) Normalized pressure drop, ∆p∗ versus ReD. The region for which ReD ≥ 1500

is magnified in the inset.
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Figure 3: (b) Friction factor, f , versus ReD.
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versus ReD.
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