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1. Introduction

The purpose of this paper is to dispel a misconception. Specifically, some workers
contend that the configurational force balance is merely a rephrasing of the stan-
dard force balance. This view is exemplified by the following statement, written by
Maugin (2002) in a review of Gurtin’s (2000) book Configurational Forces as Basic
Concepts of Continuum Physics:

One reason may be that Gurtin claims an original approach which con-
sists in postulating separately from the start two balance equations of
linear momentum, one for physical forces, and the other for configura-
tional forces. However, as shown by other authors during the last twenty
years, these two equations are never independent, being two projections
of a single equation on two different manifolds. They simply serve differ-
ent purposes, and they place in evidence different features. In particular,
the equation governing configurational forces captures singularities in a
most efficient way, hence its role in the construction of phenomenologi-
cal criteria of progress of these field singularities (crack tips, dislocation
and disclination lines, discontinuity surfaces).

Underlying this statement is a viewpoint founded on formal manipulations of the
standard force balance (Maugin, 1993). These manipulations allow for continuously
distributed material imhomogeneities but not for defects described by geometric
structures of dimension lower than three (that is, point defects, line defects, or
interfaces). In the absence of any such defects, the configurational force balance is
equivalent to the standard force balance. Otherwise, these balances express distinct
laws.
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2 Eliot Fried

Podio-Guidugli (2002) considers the question of whether configurational forces
are necessary for the description of lower-dimensional defect structures. Central to
his approach is a consideration of the power expended on a migrating referential
control volume. If only standard forces are taken into account, the reasonable re-
quirement that this power be invariant under changes of the tangential, and thus
extrinsic, component of the velocity that describes the motion of the volume has a
consequence that is generally untenable: the standard stress must be a pressure. To
avoid this, it is necessary and sufficient to account for power expenditures above
and beyond those associated with standard forces. This is accomplished with the
introduction of configurational forces.

Configurational forces first arose in the works of Peach and Koehler (1950) and
Eshelby (1951, 1956) on lattice defects and of Herring (1951) on the sintering of
powders. Beginning with appropriate energy functionals, these works derive config-
urational forces variationally by considering rearrangements of the relevant defects.
The distinction between configurational forces and standard forces is evident from
the derivations: whereas standard forces arise from variations in the placement of
material particles, configurational forces arise from variations in the arrangement,
relative to material particles, of nonmaterial defects. These derivations also show
that, when deformation is taken into account, the necessary conditions for equilib-
rium in a defective medium include not only the Euler–Lagrange equations impos-
ing the balance of standard forces at and away from defects but also an additional
Euler–Lagrange equation valid at defects and involving configurational forces. Al-
though the variations leading to these conditions are performed independently, the
ensuing equilibrium conditions are generally coupled.

In addition to giving conditions for the description of equilibrium, the variational
perspective also provides guidance as to how configurational forces should enter the
description of dissipative processes involving defect generation and evolution. In-
deed, the conventional generalization of a variationally-based theory for a defective
medium involves replacing the relevant Euler–Lagrange equation with a gradient-
flow equation requiring that the time-rate of the relevant kinematic descriptor for
the defect be proportional to the associated configurational force, with constant of
proportionality signed to rule out spurious growth of the underlying energy func-
tional. In this setting, the rate term can be viewed as a configurational drag force
that accounts for energy dissipation associated with the motion of defects.

The structure of classical theories of continua allows for a clear distinction to be
made between basic laws and constitutive equations. Whereas the basic laws hold
for large classes of materials, constitutive equations distinguish between different
materials. However, because Euler–Lagrange and gradient-flow equations rest on
the provision of constitutive equations, the physical status of these supplemental
equations is unclear. Do they represent an additional balance, above and beyond
that involving standard forces, or do they simply represent additional constitutive
information?

Commencing with a series of papers (Gurtin, 1988; Angenent and Gurtin, 1989;
Gurtin and Struthers, 1990) concerning phase transitions, Gurtin advocates the
first of these alternative interpretations. These papers take a Gibbsian approach:
phase interfaces are modeled as sharp surfaces across which bulk material proper-
ties may suffer discontinuities; to account for localized interactions between phases,
these surfaces are endowed with excess fields. Briefly, Gurtin’s approach hinges on
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The configurational and standard force balances 3

the treatment of configurational forces as primitive objects that expend power in
conjunction with the motion of defects (relative to the underlying material) and
are subject to a configurational balance distinct from and supplemental to that in-
volving standard forces. This approach has been applied to the description of defect
structures other than interfaces, including cracks (Gurtin and Podio-Guidugli, 1996,
1998; Gurtin and Shvartsman, 1997), edges and junctions (Simha and Bhattacharya,
1998), dislocations (Cermelli and Gurtin, 1999), plasticity (Cermelli, Fried and Sell-
ers, 2001), liquid-crystalline disclinations (Cermelli and Fried, 2002), and epitaxy
(Gurtin and Jabbour, 2002; Fried and Gurtin, 2003). A comprehensive treatment
of configurational forces and their applications is given in Gurtin’s (2000) book.

Within Gurtin’s framework, the distinction between the balances for configu-
rational and standard forces is not, as Maugin maintains, merely an efficiency in
capturing singularities. To illustrate this point, consider a setting involving a sharp
interface S separating two phases, say α and β. For simplicity, neglect deformation,
heat transport, and mass transport. Suppose that the free-energy density of phase
γ = α, β is a constant, say Ψγ . Consider the problem of developing a theory that
accounts for dependence of the interfacial free-energy density on the interfacial ori-
entation and for dissipation associated with the growth of one phase at the expense
of another. As shown by Gurtin (1995, 2000), such a theory involves a single equa-
tion governing the evolution of S. Writing n for the unit orientation of S, directed
from the region occupied by phase-α into the region occupied by phase-β, and VS
for the (scalar) normal velocity of S in the direction of n, this equation is

b̂S(n, VS)VS =
{
ψ̂S(n)P +

∂2ψ̂S(n)
∂n2

}
· L + [[Ψ]], (1.1)

where P = 1 − n ⊗ n is the interfacial projector, L = −∇Sn is the interfacial cur-
vature tensor, ψ̂S is the free-energy per unit interfacial area, b̂S is the nonnegative
kinetic modulus, and [[Ψ]] = Ψβ−Ψα. Generally, the dependence of ψ̂S on n renders
certain interfacial orientations more energetically favorable than others. Similarly,
the dependence of b̂S on n allows for growth at different rates along different ori-
entations. Further, the dependence of b̂ on VS allows for nonlinear growth kinetics.
The nonnegativity of b̂S ensures satisfaction of the second law. If ψ̂S(n) = ψS and
b̂S(n, VS) = bS with ψS and bS constant, then (1.1) reduces to

bSVS = ψSKS + [[Ψ]], (1.2)

with KS = trL = −divSn (twice) the mean curvature. When Ψα = Ψβ , which
would be the case for an interface separating two crystal grains, (1.2) reduces to
an equation bSVS = ψSKS , the two-dimensional specialization of which was first
proposed by Mullins (1956) as a model for grain-boundary evolution. The two-
dimensional version of (1.1), with bS independent of VS was proposed by Uhuwa
(1987). The general equation (1.1) was first given by Gurtin (1988). A formulation
of (1.1) using a variational definition of the curvature term is given by Taylor,
Cahn and Handwerker (1992), who provide background and extensive references
concerning this equation.

Within Gurtin’s theory, (1.2) arises from the normal component of the interfacial
configurational force balance

divSC + f + [[C]]n = 0, (1.3)
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4 Eliot Fried

in conjunction with the representations

Cγ = Ψγ1 and C = ψSP− n⊗ c (1.4)

for the bulk and interfacial configurational stresses and constitutive relations

ψS = ψ̂S(n), c = −∂ψ̂S(n)
∂n

, and f · n = −b̂S(n, VS)VS , (1.5)

with b̂S ≥ 0, that determine the interfacial free-energy density ψS , the interfacial
configurational shear c, and the normal component f · n of the internal interfacial
configurational body force density f.

Since this theory neglects deformation, the phases are rigid. Thus, the standard
stresses in bulk and on the interface stresses are indeterminate and standard force
balance is of no importance. It is therefore difficult to conceive of how the interfacial
configurational force balance (1.3) or (its consequence) the interfacial evolution
equation (1.1) could not be expressions of a law distinct from standard force balance.
Nevertheless, the statement quoted at the outset of this paper shows that confusion
remains regarding the status of the configurational force balance.

To eliminate this confusion, we consider an alternative approach to deriving the
interfacial evolution equation (1.1). This alternative involves considering a theory
in which the phases are described by a field ϕ. In this theory, an interface is not a
surface but, rather, a transition layer across which ϕ varies smoothly. The thickness
of such layers is constitutively determined. We consider a version of the phase-
field theory that, due to a special choice of constitutive equations and a special
scaling, allows us to control the thickness of transition layers. We then investigate
the ramifications of shrinking that thickness. The phase-field theory allows for two
approaches to deriving sharp-interface equations. We refer to these approaches as
‘direct’ and ‘indirect.’ While these yield the same analytical results, the insights that
they afford are very different. We illustrate the indirect approach in the simple case
where the desired interfacial evolution equation is (1.2). In the indirect approach,
this equation arises as a solvability condition imposed on the inner expansion of ϕ
by the Fredholm alternative. This makes it impossible to view (1.2) as an expression
of standard force balance but otherwise leaves ambiguous the law underlying (1.2).
The direct approach, which involves the configurational force balance of the phase-
field theory, yields more insight. Because of the smoothness of the phase field,
there is no need to consider configurational forces or their balance. Nevertheless,
a configurational force balance can be derived within the phase-field theory and
considerations based on this balance prove to be useful. In particular, we work
with the component of this balance normal to time-dependent level sets of ϕ. In
the direct aproach, (1.1) arises by expanding and integrating that equation over a
layer while shrinking the thickness of the layer to zero. This shows clearly that the
interfacial evolution equation (1.1) of the sharp-interface theory is an expression of
configurational force balance and, bearing in mind that deformation is neglected,
verifies that this equation is unrelated to the standard force balance. Our analysis
thus demonstrates that:

the configurational and standard force balances are not always state-
ments of a single law.
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The configurational and standard force balances 5

The paper is organized as follows. We begin, in Section 2, with a brief overview
of the phase-field theory. In so doing, we present both the standard variational
derivation, which yields the governing equation for ϕ as a gradient-flow equation, as
well as a less conventional continuum-mechanical derivation due to Fried and Gurtin
(1993). Next, in Section 3, we derive the configurational force balance germane to
the phase-field theory. Here, again, we consider two approaches. In the first of these,
we mimick the formal calculations of Maugin (1993). Specifically, we multiply the
evolution equation for ϕ by ∇ϕ and arrive at the desired result in a few simple
steps. The second approach follows Gurtin’s (1995, 2000) general framework for
configurational forces. In Section 4, we consider time-dependent level sets of ϕ and
obtain the component of the evolution equation for ϕ normal to those sets. In
Section 5, we specialize the constitutive equations of the phase-field theory to yield
an unscaled version of the theory that leads to the simple sharp-interface equation
(1.2). Section 6 is concerned with scaling. In Section 7, we discuss expansions. In
Sections 8, we obtain asymptotic results for the regions occupied by the bulk phases.
In Section 9, we obtain asymptotic results for a generic transition layer. Here, we
first take the indirect approach and then take the direct approach. In Section 10,
we generalize the constitutive assumptions imposed in Section 4 and derive (1.1)
using only the direct approach. Finally, in Section 11, we conclude the paper with
a brief dicsussion.

2. Phase-field theory

We present a simple theory for transitions between two phases as described by
a dimensionless scalar-valued phase-field ϕ. Intuitively, at an instant when both
phases are present, we expect ϕ to vary smoothly between distinct values associated
with each of the phases, manifesting large values of L∇ϕ (with L denoting a suitable
characteristic length) in any zone connecting those values. Otherwise, at an instant
when only one phase is present, we expect ϕ to be essentially uniform. Thus, ϕ
can be thought of as a regularized characteristic function for one of the phases
and phase transitions are embodied in the evolution of the phase distribution as
described by ϕ.

(a) Variational approach

The conventional approach to developing an equation governing the evolution of
ϕ is variational. Assuming that the free-energy density, say ψ, is determined consti-
tutively as a function ψ̂ depending on ϕ and, to account for energetic contributions
from the zones connecting the two phases, on ∇ϕ, the total free-energy of the body
B is given by the functional

F(ϕ) =
∫
B

ψ̂(ϕ,∇ϕ) dv. (2.1)

The evolution equation for ϕ then has the form of a gradient-flow equation,

β(ϕ,∇ϕ, ϕ̇)ϕ̇ = −δF(ϕ)
δϕ

, (2.2)
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6 Eliot Fried

with β ≥ 0 a constituively determined kinetic coefficient and δF(ϕ)/δϕ defined via
the first variation of F , viz.,

δF(ϕ)
δϕ

=
∂ψ̂(ϕ,∇ϕ)

∂ϕ
− div

{
∂ψ̂(ϕ,∇ϕ)
∂(∇ϕ)

}
. (2.3)

Tacit to the foregoing is the understanding that, to encompass the existence of two
energetically viable phases, the restriction ψ̂(·,0) of ψ̂ to homogeneous choices of
ϕ should be a double-well potential.

(b) Alternative formulation

An alternative to the variational approach shown above is provided by Fried
and Gurtin (1993). This alternative hinges on distinguishing between kinematical
ingredients, laws of balance and imbalance, and constitutive equations. The phase
field ϕ is the sole kinematical variable of the theory. In recognition that power
expenditures should accompany temporal variations of any kinematical descriptor
and that such expenditures must involve conjugate forces, a a vector-valued mi-
crostress ξ and a scalar-valued internal microforce density π are introduced. The
basic laws of the theory consist of the balance of microforces and the imbalance
of free-energy, which require that for each body-part P, with boundary ∂P and
outward unit normal ν, ∫

∂P

ξ · ν da +
∫
P

π dv = 0, (2.4)

and

˙∫
P

ψ dv ≤
∫
∂P

(ξ · ν)ϕ̇ da. (2.5)

The local equivalents of the global laws are the field equation

divξ + π = 0 (2.6)

and the free-energy inequality

ψ̇ + πϕ̇− ξ · ∇ϕ̇ ≤ 0. (2.7)

Assuming that ψ, ξ, and π are determined constitutively by smooth functions of
ϕ, ∇ϕ, and ϕ̇ and requiring that these functions be consistent with (2.7) in all
processes then gives

ψ = ψ̂(ϕ,∇ϕ), ξ =
∂ψ̂(ϕ,∇ϕ)
∂(∇ϕ)

, and π = −∂ψ̂(ϕ,ϕ
∂ϕ

− β(ϕ,∇ϕ, ϕ̇)ϕ̇, (2.8)

with β ≥ 0. Finally, using (2.8) in the local microforce balance (2.6) yields

β(ϕ,∇ϕ, ϕ̇)ϕ̇ = div
{
∂ψ̂(ϕ,∇ϕ)
∂(∇ϕ)

}
− ∂ψ̂(ϕ,∇ϕ)

∂ϕ
, (2.9)
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which is equivalent to (2.2)–(2.3).
In view of (2.8), the free-energy inequality (2.7) yields an expression

δ = −β(ϕ,∇ϕ, ϕ̇)ϕ̇2 (2.10)

for the rate at which energy is dissipated per unit volume.

3. Configurational forces and their balance

(a) Formal approach

Consider the evolution equation (2.9). Multiplying each term of that equation
by ∇ϕ and performing a few simple manipulations, one is led to the identity

div
{
ψ̂(ϕ,∇ϕ)1−∇ϕ⊗ ∂ψ̂(ϕ,∇ϕ)

∂(∇ϕ)

}
+ β(ϕ,∇ϕ, ϕ̇)ϕ̇∇ϕ = 0. (3.1)

The tensor

ψ̂(ϕ,∇ϕ)1−∇ϕ⊗ ∂ψ̂(ϕ,∇ϕ)
∂(∇ϕ)

(3.2)

appearing in (3.1) is immediately recognizable as the configurational stress tensor
relevant in the present context (Eshelby, 1980). Further, the vector

β(ϕ,∇ϕ, ϕ̇)ϕ̇∇ϕ (3.3)

represents a configurational body force density. Thus, the derived identity (3.1) is
the configurational force balance associated with the evolution equation (2.9). In
the absence of defects, which would be associated with irregularities of ϕ, (3.1) is
equivalent to (2.9) whenever ∇ϕ is nontrivial and, thus, superfluous.

Within the context of the phase-field theory, the configurational force balance
(3.1) is a consequence of microforce balance (2.6) and the thermodynamically de-
rived constitutive equations (2.8). In particular, neither standard forces nor their
balance enter the derivation. Hence, (3.1) is unrelated to standard force balance.

(b) Alternative approach

Like the variational derivation of (2.9), the above derivation of (3.1) is predi-
cated on the provision of constitutive equations. An alternative derivation that is
free from this restriction is due to Gurtin (1995, 2000). This approach treats config-
urational forces as basic entities that are associated with the integrity of a body’s
material structure and expend power in connection with the transfer of material
and the evolution of defects. Specifically, a configurational stress tensor C and a
configurational body force density f are introduced. These are required to satisfy
the configurational force balance∫

∂P

Cν da +
∫
P

f dv = 0 (3.4)
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8 Eliot Fried

for each part P of B, which is equivalent to the local configurtional force balance

divC + f = 0. (3.5)

To characterize the manner in which configurational forces expend power, a means
of capturing the kinematics associated with the transfer of material is needed.
Gurtin (1995, 2000) accomplishes this with the aid of migrating control volumes.
The evolution of a migrating control volume R can be generically described by
a time-dependent field q defined over ∂R and the configurational traction Cν∂R
is assumed to be power conjugate to q. Further, to properly reckon the power
expended by the microtraction ξ·ν∂R onR, it is necessary to consider the convected
time-rate ϕ̇+∇ϕ ·q of ϕ following the motion of ∂R. Thus, the net power expended
on R by external agencies can be expressed as∫

∂R

{(C +∇ϕ⊗ ξ)ν∂R · q + (ξ · ν∂R)ϕ̇} da. (3.6)

Since the intrinsic motion of ∂R involves only the normal component q · ν∂R of
q, the net power should be invariant with respect to the choice of the tangential
component of q. This requirement implies that C +∇ϕ⊗ ξ = α1 and, thus, that∫
∂R

{(C +∇ϕ⊗ ξ)ν∂R · q + (ξ · ν∂R)ϕ̇} da =
∫
∂R

(αq · ν∂R + (ξ · ν∂R)ϕ̇) da. (3.7)

The free-energy imbalance for a migrating control volume R is simply

˙∫
R

ψ dv ≤
∫
∂R

(αq · ν∂R + (ξ · ν∂R)ϕ̇) da, (3.8)

from which it follows that∫
R

ψ̇ dv ≤
∫
∂R

(ξ · ν∂R)ϕ̇ da +
∫
∂R

(α− ψ)q · ν∂R da. (3.9)

Thus, since it is always possible to find another control volume, say R′ which
coincides with R at a given instant but with normal velocity q′ ·ν∂R different from
q · ν∂R, it follows that α = ψ and that the configurational stress tensor must be of
the form

C = ψ1−∇ϕ⊗ ξ. (3.10)

Using (3.10) in the local configurational force balance (3.5) yields

div(ψ1−∇ϕ⊗ ξ) + f = 0. (3.11)

In the absence of lower-dimensional defect structures, this equation determines the
configurational body force density f = −div(ψ1−∇ϕ⊗ξ). The balance (3.11) stands
independent of any particular constitutive assumptions. Only when one invokes
(2.8) does it reduce to (3.1), in which case f = β(ϕ,∇ϕ, ϕ̇)ϕ̇∇ϕ.
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4. Uniformity surfaces. Normal configurational force balance

In the phase-field theory, an interface is a diffuse transition layer and each value
that ϕ takes within such a layer can be thought of as representing a particular state
of the material. For this reason the time-dependent level sets

{x : ϕ(x, t) = constant} (4.1)

are important. We refer to such sets as uniformity surfaces.
Within transition layers, ∇ϕ should be nontrivial. Therein:

n =
∇ϕ

|∇ϕ| (4.2)

and

V = − ϕ̇

|∇ϕ| (4.3)

represent a unit normal field and a corresponding (scalar) normal velocity field for
uniformity surfaces;

P = 1− n⊗ n (4.4)

projects vector fields onto their components tangent to uniformity surfaces; and

L = −(∇n)P and K = trL = −divn (4.5)

are the curvature tensor and (twice) the mean curvature of uniformity surfaces.
From (4.2), |∇ϕ|∇n = P∇∇ϕ and it follows that

L = − 1
|∇ϕ|P(∇∇ϕ)P (4.6)

and

K = − 1
|∇ϕ| (∆ϕ− n · (∇∇ϕ)n). (4.7)

Assuming that ∇ϕ �= 0, we may compute the component of the configurational
force balance (3.11) in the direction n normal to uniformity surfaces. Bearing in
mind (4.2) and (4.6), this yields the identity

div(ψn− |∇ϕ|ξ) + ψK + f · n = 0, (4.8)

that we refer to as the normal configurational force balance for uniformity surfaces.
In combination with the constititive equations (2.8), the auxiliary consequence f =
β(ϕ,∇ϕ, ϕ̇)ϕ̇∇ϕ of (2.8), and (4.3), (4.8) provides an evolution equation,

|∇ϕ|2β(ϕ,∇ϕ, ϕ̇)V = ψ̂(ϕ,∇ϕ)K + div
{
ψ̂(ϕ,∇ϕ)n− |∇ϕ|∂ψ̂(ϕ,∇ϕ)

∂(∇ϕ)

}
, (4.9)

for ϕ—valid, and equivalent to the evolution equation (2.9), provided ∇ϕ �= 0.
Otherwise, if ∇ϕ = 0, we cannot impose (4.9), which was derived based on the
assumption that ∇ϕ �= 0.
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5. Specialization

For simplicity, we suppose that the constitutive relation determining the free-energy
density has the simple form

ψ = f(ϕ) + Ψα(1− g(ϕ)) + Ψβg(ϕ) + 1
2λ|∇ϕ|2, (5.1)

where: f is a double-well potential with equal minima at ϕ = ϕα and ϕ = ϕβ , with
ϕα < ϕβ , viz.,

0 = f(ϕα) = f(ϕβ) < f(ϕ) for all ϕ �= ϕα, ϕβ ; (5.2)

g vanishes for ϕ ≤ ϕα, is equal to unity for ϕ ≥ ϕβ , and increases monotonically
between ϕ = ϕα and ϕ = ϕβ , viz.,

g(ϕ) =

{
0 0 ≤ ϕα

1 ϕ ≥ ϕβ
(5.3)

and

g′(ϕ) > 0 for all ϕ ∈ (ϕα, ϕβ); (5.4)

λ is constant and strictly positive, viz.,

λ > 0; (5.5)

and Ψα and Ψβ are the constant energy densities of the bulk phases α and β. In a
body in which ϕ lies on average between ϕα and ϕβ , the double-well structure of
f lends energetic preference to distributions of ϕ consisting of regions with ϕ = ϕα
and regions with ϕ = ϕβ . The term 1

2λ|∇ϕ|2 penalizes sharp transitions between
such regions and in so doing facilitates the existence of equilibria in which ϕ is
smooth and B contains interfacial layers separating regions with ϕ close to ϕα from
regions with ϕ close to ϕβ . Because this term depends only on the magnitude |∇ϕ|
of ∇ϕ, interfacial layers of all orientations are of equal energetic cost.

Further, we assume that the kinetic modulus β is constant and strictly positive,
viz.,

β(ϕ,∇ϕ, ϕ̇) = B > 0. (5.6)

With this choice, (2.10) specializes to δ = −Bϕ̇2; thus, the rate at which energy is
dissipated by the growth of either phase at the expense of another is quadratic in
ϕ̇ and is insensitive to layer orientation.

In view of the specializations (5.1) and (5.6), the evolution equation (2.9) be-
comes

Bϕ̇ = λ∆ϕ− f ′(ϕ)− [[Ψ]]g′(ϕ), (5.7)

with [[Ψ]] = Ψβ −Ψα, and the normal configurational force balance (4.9) for unifor-
mity surfaces becomes

|∇ϕ|2BV =
{
f(ϕ) + Ψα(1− g(ϕ)) + Ψβg(ϕ) + 1

2λ|∇ϕ|2
}
K

+ div
{
(f(ϕ) + Ψα(1− g(ϕ)) + Ψβg(ϕ)− 1

2λ|∇ϕ|2)n
}
. (5.8)
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We recall that (5.10) is meaningful only if ∇ϕ = 0 and that, (5.10) if it is mean-
ingful, it is equivalent to (5.7). Since{

Ψα(1− g(ϕ)) + Ψβg(ϕ)
}
K + div

{
Ψα(1− g(ϕ)) + Ψβg(ϕ)

}
= [[Ψ]]n · ∇g(ϕ),

(5.9)

(5.8) can be rewritten somewhat more concisely as

|∇ϕ|2BV =
{
f(ϕ) + 1

2λ|∇ϕ|2
}
K + div

{
(f(ϕ)− 1

2λ|∇ϕ|2)n
}

+ [[Ψ]]n · ∇g(ϕ)
(5.10)

and we will use this in lieu of (5.8).

6. Scaling

We introduce characteristic measures

µ = 1
2 (Ψα + Ψβ) and ν = max

ϕ∈(ϕα,ϕβ)
f(ϕ) (6.1)

of free energy per unit volume of the bulk phases and of interfacial transition layers
and assume that these yield a small dimensionless parameter

0 < ε =
µ

ν
� 1. (6.2)

Then, letting L denote a characteristic length and T a characteristic time and label-
ing the dimensional (unscaled) fields with asterisks, we introduce the dimensionless
independent and dependent variables

x =
x∗

L
, t =

t∗

T
, ϕε(x, t) = ϕ∗(x∗, t∗), (6.3)

and constitutive quantities

f(ϕε) =
f∗(ϕ∗)

ν
, Ψα =

Ψ∗α
µ

, Ψβ =
Ψ∗β
µ

, ελ =
λ∗

µL2
, εB =

B∗

µT
, (6.4)

where the dependence of the fields on the parameter ε has been made explicit and
the quantities without asterisks in (6.4) are assumed to be of O(1) in ε.

With this scaling, the dimesnionless free-energy density is given by

ψε =
ψ

µ
= ε−1f(ϕε) + Ψα(1− g(ϕε)) + Ψβg(ϕε) + 1

2ελ|∇ϕε|2 (6.5)

and the governing evolution equation for ϕε becomes

εBϕ̇ε = ελ∆ϕε − ε−1f ′(ϕε)− [[Ψ]]g′(ϕε). (6.6)

Further, the normal configurational force balance (5.10) reads

ε|∇ϕε|2BVε =
{
ε−1f(ϕε) + 1

2ελ|∇ϕε|2
}
Kε

+ div
{{

ε−1f(ϕε)− 1
2ελ|∇ϕε|2

}
nε

}
+ [[Ψ]]nε · ∇g(ϕε), (6.7)

with (cf. (4.2), (4.3), and (4.7))

nε =
∇ϕε
|∇ϕε|

, Vε = − ϕ̇ε
|∇ϕε|

, and Kε = − 1
|∇ϕε|

(∆ϕε − nε · (∇∇ϕε)nε). (6.8)
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7. Expansions

Hereafter, we focus on a fixed part P of B that, over some time interval, consists
of three evolving subregions: Pαε , Sε, and Pβε . At each time t, Sε(t) is a transition
layer comprised of points x in B with ϕα < ϕε(x, t) < ϕβ , while Pαε (t) and Pβε (t)
consist of points x with ϕε(x, t) ≈ ϕα and ϕε(x, t) ≈ ϕβ , respectively. We assume
that the limit

S = lim
ε→0+

Sε (7.1)

exists, with S(t) a smoothly evolving surface and with

P = Pα(t) ∪ S(t) ∪ Pβ(t), (7.2)

with Pγ(t) = limε→0 Pγε (t) for γ = α, β.
We write �(x, t) for the signed distance between a point x in P and the surface

S(t), with �(x, t) < 0 in Pαε (t) and �(x, t) > 0 in Pβε (t). Then

n(x, t) = ∇�(x, t) and VS(x, t) = −�̇(x, t) (7.3)

represent a unit normal-field and corresponding scalar normal-velocity-field for
S(t). We also assume that �(x, t) is smooth within Sε(t) and that given any x
on Sε(t), there is a unique z on S(t) with z = x − �(x, t)n(x, t). The mapping
x �→

(
�(x, t), z(x, t)

)
is then one-to-one on Sε(t); further, n(x, t) and VS(x, t) are

well-defined and independent of �(x, t) at each x in Sε(t): n(x, t) = n(z, t), VS(x, t) =
VS(z, t). Thus, writing ∇S and divS for the surface gradient and surface divergence
on S, the curvature tensor L and the total curvature KS for S,

L = −∇Sn and KS = trL = −divSn (7.4)

are also independent of �: L(x, t) = L(z, t), KS(x, t) = KS(z, t).
Within Sε(t), we stretch the coordinate normal to S(t) by letting

r(x, t) = ε−1�(x, t), (7.5)

and, in accord with this, we assume that the thickness hε(t) of Sε(t) tends to zero
with ε, but at slightly slower rate, viz.,

lim
ε→0

hε = 0, lim
ε→0

(ε−1hε) = +∞, lim
ε→0

(ε−1h2
ε) = 0. (7.6)

For the phase field ϕε, we introduce an outer expansion

ϕε(x, t) = ϕout
0 (x, t) + εϕout

1 (x, t) + O(ε2), (7.7)

assumed valid within the regions Pαε and Pβε , and an inner expansion

ϕε(x, t) = ϕin
0

(
r(x, t), z(x, t), t

)
+ εϕin

1

(
r(x, t), z(x, t), t

)
+ O(ε2) (7.8)

assumed valid within the layer; here, ϕout
0 (x, t), ϕout

1 (x, t) and ϕin
0 (r, z, t), ϕin

1 (r, z, t)
are smooth, bounded functions of their arguments. We further assume that these
expansions are twice formally differentiable in their arguments in the sense that
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The configurational and standard force balances 13

∇ϕε = ∇ϕout
0 + ε∇ϕout

1 + O(ε2) for the outer expansion and, on letting ϕ́ε denote
the partial derivative of ϕε with respect to r, ϕ́ε = ϕ́in

0 + εϕ́in
1 +O(ε2) for the inner

expansion, and so forth.
Hence, we do not presume that Sε(t) is disjoint from Pαε (t) and Pβε (t): the

regions Sε(t)∩
(
Pαε (t)∪Pβε (t)

)
of overlap represent sets where the outer and inner

expansions agree. In particular, we have the matching condition

(ϕout
0 )±(x, t) = lim

d(x,t)→0±
ϕout

0 (x, t) = lim
r→±∞

ϕin
0 (r, z, t) = (ϕin

0 )±(r, z, t) (7.9)

relating the O(1) terms of the inner and outer expansions for ϕε within the overlap
region.

In terms of the variables (r, z), the derivative with respect to z holding r fixed
may be identified with the gradient ∇S on S. Let

P = 1− n⊗ n. (7.10)

Then, since z(x, t) = x− �(x, t)n(x, t), it follows that

∇z = P + �Mε, (7.11)

with

Mε = −∇n. (7.12)

To determine the dependence of Mε on ε, note that, since |�| ≤ hε = o(1) and
�́ = ε, differentiating both sides of the relation n(x, t) = n(z(x, t), t) with respect to
x yields

Mε = (1− �L)−1L = L + o(1). (7.13)

Thus, for Φ and v scalar- and vector-valued fields, we find that

∇Φ = ε−1Φ́n + (P + �Mε)∇SΦ = ε−1Φ́n +
(
1 + o(1)

)
∇SΦ,

∇v = ε−1v́ ⊗ n + (∇Sv)(P + �Mε) = ε−1v́ ⊗ n +
(
1 + o(1)

)
∇Sv,


 (7.14)

so that

∇∇Φ = ε−2Φ́́n⊗ n + ε−1
(
1 + o(1)

)(
∇SΦ́⊗ n + n⊗∇SΦ́− Φ́L)

+ (∇S∇SΦ)O(1) + O(1)∇SΦ (7.15)

with the O(1) and o(1) estimates in (7.14) and (7.15) of appropriate tensorial order
and independent of Φ and v.

As a further consequence of the relation z(x, t) = x − �(x, t)n(x, t), it follows
that

ż = VSn + �vε, (7.16)

with

vε = −ṅ. (7.17)
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To determine the dependence of vε on ε, note that ṅ = ∇�̇ = −∇VS . Thus, since
∇VS = (P + �Mε)∇SVS and ◦n = −∇SVS , with ◦n the time-rate of n following the
normal trajectories of S

vε = (P + �Mε)∇SVS = ∇SVS + o(1). (7.18)

Thus, for Φ a scalar field,

Φ̇ = −ε−1VSΦ́ + �∇SΦ · (P + �L)◦n + Φt = −ε−1VSΦ́ + Φt + o(1), (7.19)

where Φt denotes the partial time-rate of Φ holding r and z fixed.

8. Bulk regions

Using the outer expansion (7.7) of ϕε in the scaled evolution equation (6.6) and
neglecting terms of O(1) and smaller in ε, we find that f ′(ϕout

0 ) = 0, so that, since
f is a double-well potential with equal minima at ϕα and ϕβ ,

ϕout
0 =

{
ϕα on Pαε ,
ϕβ on Pβε .

(8.1)

Further

f(ϕε) = o(ε) and f ′(ϕε) = o(1) on Pαε ∪ Pβε , (8.2)

and

ϕ̇ε,∇ϕε,∇ϕ̇ε = O(ε) on Pαε ∪ Pβε . (8.3)

Thus, it follows that

ψε =

{
Ψα + O(ε) on Pαε ,
Ψβ + O(ε) on Pβε .

(8.4)

9. Transition layer

(a) Basic estimates

Applying (7.14)1, (7.14)2, and (7.19) to the inner expansion (7.8) of ϕε, we find
that

∇ϕε = ε−1ϕ́in
0 n +∇Sϕin

0 + ϕ́in
1 n + O(ε),

|∇ϕε| = ε−1ϕ́in
0 + ϕ́in

1 + O(ε),

∇∇ϕε = ε−2ϕ́́ in
0 n⊗ n

+ ε−1(∇S ϕ́in
1 ⊗ n + n⊗∇S ϕ́in

1 − ϕ́in
0 L + ϕ́́ in

1 n⊗ n) + O(1),

∆ϕε = ε−2ϕ́́ in
0 − ε−1(KS ϕ́in

0 − ϕ́́ in
1 ) + O(1),

ϕ̇ε = −ε−1VS ϕ́
in
0 + O(1),




(9.1)

and, applying these estimates to (6.8), that

nε = n + O(ε), Vε = VS + O(ε), and Kε = KS + o(1). (9.2)
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(b) Equipartion of free-energy density and its consequences

Using the inner expansion of ϕε and the estimates (9.1) in the scaled evolution
equation (6.6) and neglecting terms of O(1) and smaller, we find that ϕin

0 must
satisfy the ordinary differential equation

λϕ́́ in
0 = f ′(ϕin

0 ). (9.3)

Further, in view of the matching condition (7.9) and the result (8.1) concerning
ϕout

0 , ϕin
0 must satisfy

ϕin
0 →

{
ϕα as r → −∞,

ϕβ as r → +∞,
(9.4)

along with

ϕ́in
0 → 0 and ϕ́́ in

0 → 0 as r → ±∞. (9.5)

Since f is a double-well potential with equal minima at ϕα and ϕβ , the boundary-
value problem formed by (9.3) and (9.4) possesses a unique solution ϕin

0 that in-
creases monotonically from the value ϕα at r = −∞ to the value ϕβ at r = +∞.
Further, ϕin

0 must be independent of z.
Granted the boundary conditions (9.4)2,3, the differential equation (9.3)1 pos-

sesses a first integral

1
2λ|ϕ́

in
0 |2 = f(ϕin

0 ), (9.6)

which we interpret as an expression of the equipartition of the free-energy density
(to most significant order in ε), between the double-well potential f and the gradient
energy density 1

2λ|∇ϕε|2, within the layer. Since f and f ′ vanish at ϕ = ϕα and
ϕ = ϕβ , ϕin

0 must decay according to ϕ́in
0 (r, ·) = O(e−c|r|) as |r| → ∞, with c > 0

independent of r. Hence, ϕ́in
0 is, as a function of r, square-integrable on (−∞,+∞).

Thus, by (9.6), (9.3), and (9.4),

+∞∫
−∞

√
λ|ϕ́in

0 (r, ·)|2 dr =

ϕβ∫
ϕα

√
2f(ϕ) dϕ. (9.7)

For convenience, we introduce

ψS =
√
λ

ϕβ∫
ϕα

√
2f(ϕ) dϕ (9.8)

and note that, if rewritten in terms of dimensional quantities, ψS would carry
dimensions of free-energy per unit area. Granted (9.8), it follows from (9.7) that

+∞∫
−∞

λ|ϕ́in
0 (r)|2 dr = ψS . (9.9)
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(c) Interfacial evolution equation. Indirect approach

At O(1), the scaled evolution equation (6.6) yields the linear but inhomogeneous
equation

λϕ́́ in
1 − f ′′(ϕin

0 )ϕin
1 = −ρ, (9.10)

with

ρ = BVS ϕ́
in
0 − λKS ϕ́́

in
0 − [[Ψ]]g′(ϕin

0 ). (9.11)

On differentiating (9.3) with respect to r, it follows that ϕ́in
0 must satisfy the ho-

mogeneous equation λϕ́́́ in
0 − f ′′(ϕin

0 )ϕ́in
0 = 0. Thus, by the Fredholm alternative, ρ

and ϕ́in
0 must be orthogonal:

+∞∫
−∞

ρϕ́in
0 dr = 0. (9.12)

Evaluating the integral on the left side of (9.12), using (9.9), the boundary condi-
tions (9.4), and recalling from (5.3) that g vanishes at ϕ = ϕα and is equal to unity
at ϕ = ϕβ , we find that

bSVS = ψSKS + [[Ψ]], (9.13)

where we have introduced

bS =
B√
λ

ϕβ∫
ϕα

√
2f(ϕ) dϕ =

BψS
λ

. (9.14)

We note that, if rewritten in terms of dimensional quantities, bS would carry di-
mensions of mass per unit time per unit area and would, therefore, represent an
interfacial reciprocal mobility.

Granted an appropriate redimensionalization, the equation (9.13) is precisely
the interfacial evolution equation (1.2) governing the evolution of a sharp phase
interfaces endowed with a constant interfacial free-energy per unit area ψS and
reciprocal mobility bS that separates bulk phases α and β with constant free-energy
densities Ψα and Ψβ .

(d) Interfacial evolution equation. Direct approach

Within the layer, ∇ϕε is generally nontrivial. Thus, it is there permissible to
work with the scaled normal configurational force balance (6.7) for uniformity sur-
faces instead of the scaled evolution equation (6.6). Using the inner expansion of
ϕε and the estimates (9.1) and (9.2) in (6.7) and neglecting terms of O(ε−1) and
smaller, we arrive once again at (9.3) and, bearing in mind (7.9), (8.1), and the
properties of f , all the conclusions of Section 9(b) follow. Next, at O(ε−1), (6.7)
yields, in view of the result (9.6) concerning the partition of free-energy density,

BVS |ϕ́in
0 |2 = λKS |ϕ́in

0 |2 +
´{

f ′(ϕin
0 )ϕin

1 − λϕ́in
0 ϕ́in

1

}
+ [[Ψ]] ´

g(ϕin
0 ). (9.15)

Article submitted to Royal Society



The configurational and standard force balances 17

Integrating the equation (9.15) over r, from r = −∞ to r = +∞, and utilizing the
definitions (9.9) and (9.14), the boundary and far-field conditions (9.4) and (9.5),
and properties of f and g then yields once again the evolution equation (9.13)
obtained in the previous section by the Fredholm alternative. In this sense, (9.13)
can be viewed as a consequence of the normal component of the configurational
force balance for uniformity surfaces, obtained in passing to the limit ε→ 0, a limit
that corresponds to collapsing the transition layer to a surface.

We have remarked earlier that, when ϕε is regular, the configurational force
balance contains no information beyond that already contained in the evolution
equation for ϕε. However, passing to the limit ε → 0 generates surfaces across
which ϕε is discontinuous and ∇ϕε and ϕ̇ε (as well as other associated derivatives)
are undefined. The asymptotic analysis performed here shows that, at such a de-
fect, the normal configurational force balance for uniformity surfaces yields directly
information that is only arises indirectly—as a solvability condition imposed by the
Fredholm alternative—from the evolution equation for ϕε. In this sense, we view
the asymptotically derived interfacial evolution equation as a statement of normal
configurational force balance for the interface.

Our asymptotic derivations of the evolution equation (1.2) are predicated on
(9.8) and (9.14). We interpret (9.8) and (9.14) as constitutive connections between
the theories at hand, connections that guarantee that the phase-field theory corre-
sponds asymptotically to the sharp-interface theory.

10. Generalization

To obtain the general evolution equation (1.1) from the phase-field theory, we first
modify the constitutive equations (5.1) and (5.6) determining the free-energy den-
sity and the kinetic modulus to

ψ = f(ϕ) + Ψα(1− g(ϕ)) + Ψβg(ϕ) + 1
2λ(n)|∇ϕ|2, (10.1)

and

β(ϕ,∇ϕ, ϕ̇) = B(n, V ) > 0, (10.2)

with n and V as defined in (4.2) and (4.3).
Scaling as in Section 5(a), we arrive at the evolution equation

εB(nε, Vε)ϕ̇ε = εdiv
{
|∇ϕε|

(
λ(nε)nε +

1
2
∂λ(nε)
∂nε

)}
− ε−1f ′(ϕε)− [[Ψ]]g′(ϕε).

(10.3)

and the normal configurational force balance for uniformity surfaces

ε|∇ϕε|2B(nε, Vε)Vε =
{
ε−1f(ϕε) + 1

2ελ(nε)|∇ϕε|2
}
Kε

+ div
{{

ε−1f(ϕε)− 1
2ελ(nε)|∇ϕε|2

}
nε − 1

2ε|∇ϕε|2
∂λ(nε)
∂nε

}
+ [[Ψ]]n · ∇g(ϕε),

(10.4)

which generalize (6.6) and (6.7).
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The results for the bulk regions are unchanged from those presented in Section 8.
To study the layer, we follow the approach taken in Section 9(d). Specifically, at
O(ε−2), (10.4) yields

´{
1
2λ(n)|ϕ́in

0 |2 − f(ϕin
0 )

}
= 0. (10.5)

Further, the matching conditions (7.9) and the bulk results (8.1) yield, as before,
the far-field conditions (9.4) and (9.5). Combining (10.5), (9.4), and (9.5), we arrive
at the first integral

1
2λ(n)|ϕ́in

0 |2 = f(ϕin
0 ) (10.6)

and find, in view of the properties of f , once again that, as a function of r, ϕ́in
0

must be square integrable on (−∞,+∞). This leads to a generalization

+∞∫
−∞

√
λ(n)|ϕ́in

0 (r, ·, ·)|2 dr =

ϕβ∫
ϕα

√
2f(ϕ) dϕ. (10.7)

of (9.7).
We next introduce analogs

ψ̂S(n) =
√

λ(n)

ϕβ∫
ϕα

√
2f(ϕ) dϕ (10.8)

and

bS(n, VS) =
B(n, VS)√

λ(n)

ϕβ∫
ϕα

√
2f(ϕ) dϕ =

B(n, VS)ψ̂S(n)
λ(n)

. (10.9)

of the constitutive connections (9.8) and (9.14). Direct consequences of (10.7) and
(10.8) are the identities

+∞∫
−∞

λ(n)|ϕ́in
0 (r, ·, ·)|2 dr = ψ̂S(n),

+∞∫
−∞

∂λ(n)
∂n
|ϕ́in

0 (r, ·, ·)|2 dr = 2
∂ψ̂S(n)

∂n
,




(10.10)

Finally, proceding as in Section 9(d), (10.4) yields at O(ε−1)

|ϕ́in
0 |2B(n, VS)VS = |ϕ́in

0 |2λ(n)KS − divS

{
1
2 |ϕ́

in
0 |2

∂λ(n)
∂n

}

+
´{

f ′(ϕin
0 )ϕin

1 − ϕ́in
0 ϕ́in

1 λ(n)− 1
2 ϕ́

in
0 ∇ϕin

0 ·
∂λ(n)
∂n

}
+ [[Ψ]] ´

g(ϕin
0 ); (10.11)
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integrating (10.11) over r, from r = −∞ to r = +∞, and utilizing the constitutive
connections (10.8) and (10.9), the boundary and far-field conditions (9.4) and (9.5),
and properties of f and g then yields

b̂S(n, VS)VS =
{
ψ̂S(n)P +

∂2ψ̂S(n)
∂n2

}
· L + [[Ψ]], (10.12)

which, granted an appropriate redimensionalization, is precisely the general inter-
facial evolution equation (1.1) of the sharp-interface theory.

11. Discussion

Our conclusions are predicated on the provision of constitutive equations within
the phase-field theory and, moreover, upon stipulated connections (10.8) and (10.9)
between those constitutive equations and the constitutive equations of the sharp-
interface theory. However, because the framework of the phase-field theory is a
dynamical one that allows for dissipation, the results of our analysis are more
broadly applicable than would be any based on variational methods.

By restricting our attention to a setting where the standard force balance is
irrelevant, we leave open the possibility that, once the constraint of rigidity is re-
laxed and the standard stress is no longer indeterminate, the standard force balance
might somehow give rise to the interfacial configurational force balance and, thus,
to a law governing the evolution of the interface. However, such an outcome would
be at odds with the implications of variationally-based descriptions. Indeed, in con-
sidering phase interfaces within the context of the theory of finite elastostatics,
Podio-Guidugli (2001) shows that, while both the bulk configurational force bal-
ance and the tangential component of the interfacial configurational force balance
are implied consequences of standard force balance, the normal component of the
interfacial configurational force balance is independent. Moreover, asymptotic anal-
yses of phase-field theories that account for deformation (Fried and Grach, 1997;
Fried and Gurtin, 1999) show that the supplemental evolution equation of the
sharp-interface theory arises not from the deformational force balance but just as
it does in the simple theory considered here—either ‘indirectly’ from the evolution
equation for the phase field or ‘directly’ from the associated configurational force
balance.
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