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1 Introduction

This review presents a unified treatment of several topics at the intersection of contin-
uum mechanics and materials science; the thrust concerns processes involving evolving
interfaces, focusing on grain-boundaries, solid-vapor interfaces (with emphasis on epi-
taxy), and coherent phase-transitions. Central to our discussion is the interaction of
deformation, atomic transport, and accretion within a dissipative, dynamical framework,
but as our interest is crystalline materials, we restrict our attention to small deforma-
tions.1 To avoid geometrical complications associated with surfaces in R3, we work in
two space-dimensions when discussing interfaces, but in R3 when discussing the theory
in bulk.

1.1 Some important interface conditions

The past half-century has seen much activity among materials scientists and mechanicians
concerning interface problems, a central outcome being the realization that such problems
generally result in an interface equation over and above those that follow from the classical
balances for forces, moments, and mass. This extra interface condition takes a variety of
forms, the most important examples being:

(i) Herring’s equation (1951). This is an equation,

U = −
(
ψ +

∂2ψ

∂ϑ2

)
K, (1.1)

relating the chemical potential U of a solid-vapor interface to its curvature K. Here
ψ(ϑ) > 0 is the free-energy (density) of the interface with ϑ = ϑ(x) the orientation;
that is, the counterclockwise angle to the interface tangent t (Figure 10, page 69).
Invoking an assumption of local equilibrium, Herring defines the chemical potential
as the variational derivative of the total free energy with respect to variations in
the configuration of the interface. Following Herring, Wu (1996), Norris (1998),
and Freund (1998), generalizing earlier work of Asaro and Tiller (1972) and Rice
and Chuang (1981), compute the chemical potential of a solid-vapor interface in the

1Most applications in which deformation, atomic transport, and accretion are present involve small
deformations. An abbreviated account of the formal analysis involved in the approximation of small
deformations within a finite-deformational framework is provided in Appendix C.
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presence of deformation, allowing for interfacial stress. Their result, which allows
for finite deformations, is, when set within a framework of small deformations,
given by

U = Ψ−Tn · (∇u)n− γn ·Tt− (ψ − σ̄ε)K − ∂τ

∂s
. (1.2)

Here Ψ is the bulk free-energy (density); T is the bulk stress; u is the displacement;
n and t are the interface normal and tangent; s denotes arc length;

ε = t · (∇u)t and γ = n · (∇u)t

are the tensile and shear strains within the interface. The result (1.2) is derived
variationally; consequently, it is based on a constitutive equation

ψ = ψ̂(ε, ϑ)

for the interfacial free-energy, with σ̄ and τ defined by

σ̄ =
∂ψ̂(ε, ϑ)

∂ε
, τ =

∂ψ̂(ε, ϑ)
∂ϑ

.

The presence of the shear strain γ in (1.2) is a consequence of our assumption
of small deformations. Specifically, it follows from the fact that the interfacial
stress s = σ̄t is tangent to the interface, but the interfacial strain (∇u)t is not (cf.
Footnote 68, page 91).

(ii) Mullins’s equations (1956, 1957). These are geometric equations,

bV = ψK and V = −
(
Lψ

ρ2

)
∂2K

∂s2
, (1.3)

for the respective motions of an isotropic grain-boundary and an isotropic grain-
vapor interface, neglecting evaporation-condensation. Here V is the (scalar) normal
velocity of the grain-boundary (or interface) S, while ψ, b, ρ, and L are strictly
positive constants, with ψ the interfacial free-energy (density), b a kinetic modulus
(or, reciprocal mobility), ρ the atomic density of the solid, and L the mobility for
Fickean diffusion within S. Mullins’s argument in support of (1.3)1 is physical
in nature and based on work of Smoluchowski (1951), Turnbull (1951), and Beck
(1952). To derive (1.3)2, Mullins appeals to balance of mass supplemented by Fick’s
law and Herring’s equation (1.1) for the chemical potential.

(iii) Kinetic Maxwell equation. This is a condition

[[
Ψ−

N∑
α=1

ραµα −Tn · (∇u)n
]]

= bV. (1.4)

for a propagating coherent phase interface between two phases composed of atomic
species α = 1, 2, . . . , N . Here, µα and ρα are the chemical potentials and atomic
densities in bulk, [[f ]] represents the jump in a field f across the interface, and, as
in (1.3)1, b is a constitutively determined kinetic modulus. The kinetic Maxwell
condition was first obtained by Heidug and Lehner (1985), Truskinovsky (1987),
and Abeyaratne and Knowles (1990), who ignored atomic diffusion but allowed for



6 E. Fried & M. E. Gurtin

both inertia and finite deformations.2 Their derivations are based on determining
the energy dissipation, per unit interfacial area, associated with the propagation
of the interface and then appealing to the second law. When the kinetic modulus
b = 0, (1.4) reduces to the classical Maxwell equation

[[
Ψ−

N∑
α=1

ραµα −Tn · (∇u)n
]]

= 0,

which was first derived variationally by Larché and Cahn (1978).3

(iv) Leo–Sekerka relation (1989). This is a condition for an interface in equilibrium.
Relying on a variational framework set forth by Larché and Cahn (1978) (cf., also,
Alexander and Johnson, 1985; Johnson and Alexander, 1986), Leo and Sekerka con-
sider coherent and incoherent solid-solid interfaces as well as solid-fluid interfaces,
and allow for finite deformations. For an interface between a vapor and an alloy
composed of atomic species α = 1, 2, . . . , N , neglecting vapor pressure and thermal
influences and assuming small deformations, the Leo–Sekerka relation takes the
form

N∑
α=1

(ρα − δαK)µα = Ψ−Tn · (∇u)n− γn ·Tt− (ψ − σ̄ε)K − ∂τ

∂s
. (1.5)

The relation (1.5) is based on a constitutive equation

ψ = ψ̂(ε, ϑ, �δ ), �δ = (δ1, δ2, . . . , δN ),

for the interfacial free-energy, supplemented by the definitions

σ̄ =
∂ψ̂(ε, ϑ, �δ )

∂ε
, τ =

∂ψ̂(ε, ϑ, �δ )
∂ϑ

, µα =
∂ψ̂(ε, ϑ, �δ )

∂δα
.

Here δα are the interfacial atomic-densities of species α.

1.2 The need for a configurational force balance

One cannot deny the applicability of the interface conditions (1.1)–(1.5); nor can one deny
the great physical insight underlying their derivation. But in studying these derivations
one is left trying to ascertain the status of the resulting equations (1.1)–(1.5): are they
balances, or constitutive equations, or neither?4 This and the disparity between the
physical bases underlying their derivation would seem to at least indicate the absence of
a basic unifying principle.

That additional configurational forces5 may be needed to describe phenomena asso-
ciated with the material itself is clear from the seminal work of Eshelby (1951, 1956,
1970, 1975), Peach and Koehler (1950), and Herring (1951) on lattice defects. But these

2Under these circumstances, the kinetic Maxwell condition is (1.4) with µα = 0, α = 1, 2, . . . , N ,
and with T the first Piola–Kirchhoff stress. Although the first derivations ignored atomic diffusion, its
inclusion is straightforward.

3Cf. also Eshelby (1970), Robin (1974), Grinfeld (1981), James (1981), and Gurtin (1983), who neglect
compositional effects.

4Successful theories of continuum mechanics are typically based on a clear separation of balance
laws and constitutive equations; the former describing large classes of materials, the latter describing
particular materials.

5We use the term configurational to differentiate these forces from classical Newtonian forces, which
we refer to as standard.
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studies are based on variational arguments, arguments that, by their very nature, cannot
characterize dissipation. Moreover, the introduction of configurational forces through
such formalisms is, in each case, based an underlying constitutive framework and hence
restricted to a particular class of materials.6

A completely different point of view is taken by Gurtin and Struthers (1990),7 who
— using an argument based on invariance under observer changes — conclude that a
configurational force balance should join the standard (Newtonian) force balance as a
basic law of continuum physics. Here the operative word is “basic”. Basic laws are
by their very nature independent of constitutive assumptions; when placed within a
thermodynamic framework such laws allow one to use the now standard procedures of
continuum thermodynamics to develop suitable constitutive theories.

1.3 A format for the study of evolving interfaces in the presence
of deformation and atomic transport

We here develop a complete theory of evolving interfaces in the presence of deformation
and atomic transport using a format based on:

(a) Standard (Newtonian) balance laws for forces and moments that account for stan-
dard stresses in bulk and within the interface.

(b) An independent balance law for configurational forces that accounts for configura-
tional stresses in bulk and within the interface.8

(c) Atomic balances, one for each atomic species. These balances account for bulk and
surface diffusion.

(d) A mechanical (isothermal) version of the second law in the form of a free-energy
imbalance. This imbalance, which accounts for temporal changes in free-energy,
energy flows due to atomic transport, and power expended by both standard and
configurational forces, may be derived as a consequence of more typical forms of
the first two laws under isothermal conditions.

(e) Thermodynamically consistent constitutive relations for the interface and for the
interaction between the interface and its environment.

We show that each of the interface conditions in (i)–(iv) may be derived within
this framework without assumptions of local equilibrium. One of the more interesting
outcomes of the format we use is an explicit relation for the configurational surface
tension σ in terms of other interfacial fields; viz.,

σ = ψ −
N∑
α=1

δαµα − σ̄ε. (1.6)

This relation, a direct consequence of the free-energy imbalance applied to the interface,
is a basic relation valid for all isothermal interfaces, independent of constitutive assump-
tions and hence of material; it places in perspective the basic difference between the

6A vehicle for the discussion of configurational forces within a dynamical, dissipative framework
derives configurational force balances by manipulating the standard momentum balance, supplemented
by hypereslastic constitutive relations (e.g., Maugin, 1993). But such derived balances, while interesting,
are satisfied automatically whenever the momentum balance is satisfied and are hence superfluous.

7This work is rather obtuse; better references for the underlying ideas are Gurtin (1995, 2000).
8As extended by Dav̀ı and Gurtin (1990), Gurtin (1991), Gurtin and Voorhees (1995), and Fried and

Gurtin (1999, 2003) to account for atomic transport.
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configurational surface tension σ and standard surface stress σ̄ (cf. Footnote 72). There
is much confusion in the literature concerning surface tension σ and its relation to surface
free-energy ψ. By (1.6), we see that these two notions coincide if and only if standard
interfacial stress as well as interfacial atomic densities are negligible.

1.4 The normal configurational force balance for a solid-vapor
interface

To illustrate the format described above, we consider the special case of a solid-vapor
interface discussed in Part E. In this case, neglecting the vapor pressure (and hence
configurational forces exerted by the vapor on the interface), the configurational force
balance for the interface takes the simple form

∂c
∂s

+ g = Cn.

Here c is the configurational surface stress, g is an internal force associated with the at-
tachment kinetics of vapor atoms at the solid surface, and C is the limit, at the interface,
of the configurational stress in the solid. The tangential and normal components of c,

σ = c · t, τ = c · n,

are the configurational surface tension and the configurational shear;9 the theory in bulk
shows C to be the Eshelby tensor

C =
(

Ψ−
N∑
α=1

ραµα
)
1− (∇u)�T (1.7)

(cf. (12.15)). Of most importance is the component

σK +
∂τ

∂s
+ g = n ·Cn, g = g · n,

of the configurational force balance normal to the interface, as this is the component
relevant to the motion of the interface.

For a solid-vapor interface in the presence of deformation and atomic transport, the
normal configurational force balance, when combined with (1.6), (1.7), and the standard
force, moment, and atomic balances, yields the interface condition (Fried and Gurtin,
2003)

N∑
α=1

(ρα − δαK)µα = Ψ−Tn · (∇u)n− γn ·Tt− (ψ − σ̄ε)K − ∂τ

∂s
− g, (1.8)

with σ̄ the standard surface-tension. This balance is basic, as its derivation utilizes only
basic laws; as such it is independent of material. A consequence of the theory is that,
thermodynamically, the force g is conjugate to the normal velocity V of the interface,
and dissipative. Within a constitutive framework, thermodynamics renders this force
often, but not always, of the form g = −bV , with b ≥ 0 a kinetic modulus. The force
g represents the sole dissipative force associated with the exchange of atoms between
the solid and the vapor at the interface, the corresponding energy dissipated, per unit
interfacial area, being −gV .

9Thus, in contrast to more classical discussions, the surface tension actually represents a force tangent
to the interface, with no a priori relationship to surface energy.
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If we take g ≡ 0, then the normal configurational force balance (1.8) reduces to the
Leo–Sekerka relation (1.5). The Leo–Sekerka relation follows rigorously as an Euler–
Lagrange equation associated with the variational problem of minimizing the total free
energy of a solid particle surrounded by a vapor. Thus, for solid-vapor interfaces in
equilibrium, the format adopted here is completely consistent with results derived vari-
ationally.

The Leo–Sekerka relation (or similar relations for other types of phase interfaces)
is typically applied, as is, to dynamical problems, often with an accompanying appeal
to an hypothesis of “local equilibrium”, although the precise meaning of this assump-
tion is never spelled out. Within the more general framework leading to the normal
configurational force balance (1.8), the question as to when the Leo–Sekerka relation is
applicable is equivalent to the question as to when the internal force g is negligible. Our
more general framework provides an answer to this question: for sufficiently small length
scales the internal force g cannot be neglected, because the term emanating from g in
the evolution equations for the interface is of the same order of magnitude as the other
kinetic term in these equations, which results from accretion (cf. §26.3). On the other
hand, for sufficiently large length scales the force g is negligible. Quantification of the
terms “small” and “large” would require a knowledge of the kinetic modulus b.

If we restrict attention to a single atomic species, neglect the adatom density, and take
g = 0, then the normal configurational force balance reduces to the Wu–Norris–Freund
relation (1.2) with U = ρµ. The chemical potential U of Wu, Norris, and Freund is, by
its very definition, a potential associated with the addition of material at the solid-vapor
interface, without regard to the specific composition of that material. As such, U cannot
be used to discuss alloys.

1.5 Scope

We begin with a discussion of the theory in bulk, as this allows for a simple presentation
of basic ideas. Our discussion of substitutional alloys follows Larché and Cahn (1985),10

who introduce a scalar constant, ρsites, that represents the density of substitutional sites,
per unit volume, available for occupation by atoms. The atomic densities ρα for a
substitutional alloy are then required to satisfy the lattice constraint

N∑
α=1

ρα = ρsites,

a constraint that Larché and Cahn show to have important consequences, the most
important being the result that Fickean diffusion in bulk is driven not by the individual
chemical potentials µα, but instead by the relative chemical potentials µαβ = µα − µβ .
Larché and Cahn arrive at this result using a variational argument. Here following the
framework set forth in §1.3, we show that this result of Larché and Cahn is independent
of constitutive equations, as it follows directly from the bulk free-energy imbalance and
the requirement that the bulk atomic-fluxes α satisify the substitutional flux constraint

N∑
α=1

α = 0

(Ågren (1982), Cahn and Larché (1983)).
To arrive at thermodynamically consistent equations, we follow Coleman and Noll

(1963), who use the laws of continuum thermodynamics to suitably restrict constitutive

10Mechanicians seem unaware of this work.
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equations. This process involves differentiating the constitutive relation for the bulk
free-energy with respect to atomic densities. For substitutional alloys any such differen-
tiation must respect the lattice constraint. We overcome this obstacle with the aid of
the Larché–Cahn derivative (Larché and Cahn, 1985), a procedure that results in consti-
tutive relations for the relative chemical potentials. To our knowledge, ours is the first
work to combine the approach of Coleman and Noll with that of Larché and Cahn.

We consider also unconstrained materials, which are materials whose atomic densities
are unencumbered by a lattice constraint. A material whose mobile atoms are interstitial
would be unconstrained, as the high density of interstitial vacancies renders a lattice
constraint unimportant. More generally, some workers (cf. Mullins and Sekerka 1985)
circumvent the discussion of a lattice constraint by assuming the existence of a defect
mechanism that accomodates an excess or deficiency of substitutional atoms; materials
treated under such an assumption are, by fiat, unconstrained.

Our discussion of interfaces is based on the format presented in §1.3. We begin with a
discussion of grain boundaries (Part D). Anisotropy often renders the underlying evolu-
tion equations backward-parabolic and hence unstable, leading to the formation of facets
and wrinklings (§17.6); we show that the use of a curvature-dependent energy (along
with concomitant configurational moments) may be used to regularize the resulting evo-
lution equations (§18). We also discuss grain-vapor interactions with atomic diffusion and
evaporation-condensation, but within a more or less classical setting (§19). With this as
background, we turn to more general grain-vapor interactions, focusing on the derivation
of equations of sufficient complexity to characterize phenomena such as molecular-beam
epitaxy (Part E). We close with a discussion of coherent solid-state phase-transitions
(Part F).

Although worthy of discussion, other phenomena, such as incoherent phase transi-
tions, are not included due to limitations of space.

A Deformation and atomic transport in

bulk

2 Mechanics

We consider a homogeneous crystalline body B that occupies a region of three-dimensional
space. We work within the framework of “small deformations” as described by a displace-
ment field u(x, t) and infinitesimal strain E(x, t) related through the strain-displacement
relation

E = 1
2 (∇u +∇u�). (2.1)

When we wish to emphasize its time-dependent nature, we will refer to u as a motion;
the time-rate u̇ of u, which represents the velocity of material points, will be referred to
as the motion velocity.

For convenience, we neglect inertia as it is generally unimportant in solid-state prob-
lems involving the interaction of composition and stress.

We associate with each motion of B a system of forces represented by a stress (tensor)
T(x, t). Given any part P of B and letting ν denote the outward unit normal to ∂P,
Tν represents the surface traction (force per unit area) exerted on P across ∂P; to
simplify the presentation, we neglect external body forces. The balance laws for forces
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and torques then take the form∫
∂P

Tν da = 0,
∫
∂P

(x− 0)×Tν da = 0, (2.2)

for every part P. These yield the local force and moment balances

divT = 0, T = T�. (2.3)

Given any part P,

W(P) =
∫
∂P

Tν · u̇ da (2.4)

represents the power expended by the tractions on P. Using the moment balance (2.3)2,
which implies that T · ∇u̇ = T · Ė, and the force balance (2.3)1, we find that

W(P) =
∫
P

T · Ė dv. (2.5)

3 Balance law for atoms

Our treatment of solids is, in some respects, more complicated than descriptions usually
encountered in continuum mechanics as the theory, although macroscopic, allows for
microstructure by associating with each x ∈ B a lattice (or network) through which
atoms diffuse.

We consider N species of atoms, labelled α = 1, 2, . . . , N , and let ρα(x, t) denote the
atomic density of species α, which is the density measured in atoms per unit volume.
If P is a part of B, then

∫
P ρα dv represents the number of atoms of α in P. Changes

in the number of α-atoms in P are generally brought about by the diffusion of species
α across the boundary ∂P. This diffusion is characterized by an atomic flux (vector)
α(x, t), measured in atoms per unit area, per unit time, so that −

∫
∂P 

α ·ν da represents
the number of α-atoms entering P across ∂P, per unit time. The balance law for atoms
therefore takes the form

d

dt

∫
P

ρα dv = −
∫
∂P

α · ν da, (3.1)

for all species α and every part P.11

Bringing the time derivative in (3.1) inside the integral and using the divergence
theorem on the integral over ∂P, we find that∫

P

(ρ̇α + divα) dv = 0;

since P is arbitrary, this leads to a (local) balance law for atoms: for any species α,

ρ̇α = −divα. (3.2)

11If we multiply (3.1) by the mass of an α-atom, the resulting equation then represents a mass balance
for α-atoms.
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4 Thermodynamics. The free-energy imbalance

We base the theory on a free-energy imbalance that represents the first two laws of
thermodynamics under isothermal conditions. In this subsection we derive this free-
energy imbalance from versions of the first two laws appropriate for continuum mechanics.

4.1 Chemical potentials. Balance of energy. Entropy imbalance

We write ε(x, t) for the internal energy, per unit volume, so that
∫
P ε dv represents the

internal energy of a part P.12 Changes in the internal energy of P are balanced by energy
carried into P by atomic transport, heat transferred to P, and power expended on P. We
view chemical potentials as primitive quantities that enter the theory through the manner
in which they appear in the basic law expressing balance of energy. This contrasts sharply
with what is done in the materials science literature, where chemical potentials are defined
as derivatives of free energy with respect to composition, or introduced variationally —
via an assumption of equilibrium — as Lagrange multipliers corresponding to a mass
constraint; in either case the chemical potentials require a constitutive structure. To the
contrary, the framework we use considers balance of energy as basic, and in a continuum
theory that involves a flow of atoms through the material it is necessary to account for
energy carried with the flowing atoms.13 To characterize the energy carried into parts
P by atomic transport, we introduce the chemical potentials µα(x, t) of the individual
species α; specifically, the flow of atoms of species α, as represented by α, is presumed
to carry with it a flux of energy described by µαα; thus

−
N∑
α=1

∫
∂P

µαα·ν da (4.1)

represents the net rate at which energy is carried into P by the flow of atoms across ∂P.
The heat transferred to P is characterized by a heat flux (vector) q(x, t), measured per

unit area, that represents heat conduction across ∂P; precisely, −
∫
∂P q · ν da represents

the net heat transfered to P. Thus since the expended power is given by (2.4), balance
of energy has the form

d

dt

∫
P

ε dv =
∫
∂P

Tν · u̇ da−
∫
∂P

q · ν da−
N∑
α=1

∫
∂P

µαα·ν da (4.2)

for all parts P of B.
The second law of thermodynamics is the requirement that the entropy of a part P

change at a rate not less than the entropy flow into P. Parallel to our treatment of
internal energy, we write the entropy of an arbitrary part P as an integral

∫
P η dv with

η(x, t) the entropy, per unit volume. We let

θ(x, t) > 0

12We use ε for internal energy and ε for interfacial tensile strain. While it is difficult to differentiate
between these symbols, it should be clear from the context which is meant. Moreover, our discussion of
internal energy is limited to §4, where there is no mention of interfacial strain.

13Eckart (1940), in his discussion of fluid mixtures, notes that chemical potentials should enter balance
of energy through terms of the form (4.1). (Jaumann (1911) and Lohr (1917) seem also to have this
view, but we are unable to fully comprehend their work.) While Eckart employs constitutive equations,
their use is unnecessary. Related works are Meixner and Reik (1959), Müller (1968), Gurtin and Vargas
(1971), Dav̀ı and Gurtin (1990), and Gurtin (1991).
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denote the absolute temperature and assume that, given any P, the conduction of heat
induces a net transfer of entropy to P of amount

−
∫
∂P

q
θ
· ν da.

The second law is therefore represented by the entropy imbalance14

d

dt

∫
P

η dv ≥ −
∫
∂P

q
θ
· ν da, (4.3)

to be satisfied for all parts P.

4.2 Isothermal conditions. The free-energy imbalance

Assume now that isothermal conditions prevail, so that

θ ≡ constant,

and consider the (Helmholtz) free-energy (density) defined by

Ψ = ε− θη. (4.4)

Multiplying the entropy imbalance (4.3) by θ and subtracting the result from the energy
balance (4.2) then yields the free-energy imbalance

d

dt

∫
P

Ψ dv ≤
∫
∂P

Tν · u̇ da−
N∑
α=1

∫
∂P

µαα·ν da. (4.5)

We henceforth restrict attention to isothermal processes and for that reason base the
theory on the free-energy imbalance (4.5).

If, in the free-energy imbalance, we bring the time derivative inside the integral and
use the divergence theorem on the integral over ∂P together with the expression (2.5)
for the expended power, we find that∫

P

(
Ψ̇−T · Ė +

N∑
α=1

div(µαα)
)

dv ≤ 0,

so that, since P is arbitrary,

Ψ̇−T · Ė +
N∑
α=1

div(µαα) ≤ 0.

Thus expanding the divergence and appealing to the atomic balance (3.1), we are led to
the inequality

Ψ̇−T · Ė−
N∑
α=1

(µαρ̇α − α ·∇µα) ≤ 0. (4.6)

The quantity

δ
def= −

N∑
α=1

(α ·∇µα − µαρ̇α) + T · Ė− Ψ̇ ≥ 0 (4.7)

represents the dissipation per unit volume, since its integral over any part P gives the
right side of (4.5) minus the left. For that reason, we refer to local forms of the free-energy
imbalance as dissipation inequalities.

14Usually referred to as the Clausius–Duhem inequality (cf. Truesdell and Toupin, 1960).
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5 Substitutional alloys

Our discussion to this point does not distinguish between substitutional and interstitial
species. Here, following Larché and Cahn (1985, §2), we use the terms “substitutional”
and “interstitial” in the following sense: “[Lattice] sites that are mostly filled are occupied
by what are called substitutional atoms, while sites that are mostly vacant are occupied
by interstitial atoms.” The high density of interstitial vacancies renders a corresponding
lattice constraint unimportant.15 This section is concerned solely with substitutional
alloys, neglecting the presence of interstitials.

5.1 Lattice constraint. Vacancies

We introduce a scalar constant ρsites that represents the density of substitutional sites,
per unit volume, available for occupation by atoms. We restrict attention to substitu-
tional alloys, so that the atoms are constrained to lie on lattice sites.16 A minor abuse
of terminology allows for vacancies (unoccupied substitutional sites) within the same
framework as the theory without vacancies: when vacancies are to be considered, we
reserve the label v of one substitutional species for vacancies,17 so that ρv(x, t) repre-
sents the vacancy density, v(x, t) the vacancy flux , and µv(x, t) the chemical potential
for vacancies. Then, whether or not vacancies are being considered, the substitutional
densities must be consistent with the lattice constraint

N∑
α=1

ρα = ρsites. (5.1)

A consequence of the lattice constraint is conservation of substitutional atoms,

N∑
α=1

ρ̇α = 0, (5.2)

a condition that, by virtue of the local atomic balance (3.2), is equivalent to the diffusional
constraint

N∑
α=1

divα = 0. (5.3)

15We do not allow for interstitial defects, which are substitutional atoms forced into interstitial po-
sitions, and which are hence incompatible with the lattice constraint. According to DeHoff (1993, p.
411): “At the same temperature it can be expected that the concentration of interstitial defects is very
much smaller (usually by several orders of magnitude) than that of vacancies at equilibrium.” Allowance
for interstitial defects may be important when considering neutron irradiation (DeHoff 1993, p. 411) or
deformation (Shewman 1969, p. 47). Finally, DeHoff (1993, p. 406) notes that: “Even in the extreme,
near the melting point, defect sites occur at only about one site in 10,000 . . . Nonetheless, this small
fraction of defect sites plays a crucial role in materials science.” Some workers (cf. Mullins and Sekerka
1985) circumvent the discussion of a lattice constraint by assuming the existence of a defect mechanism
that accomodates an excess or deficiency of substitutional atoms.

16Our discussion of the lattice constraint follows Larché and Cahn (1985, §2).
17Thus “all atoms” means “all atoms and vacancies,” and so forth.
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a v

Figure 1: Schematic of an atom-vacancy exchange.

5.2 Substitutional flux constraint. Relative chemical potentials

(a) Importance of relative chemical potentials

A restriction stronger than the diffusional constraint (5.3) is the substitutional flux con-
straint

N∑
α=1

α = 0 (5.4)

discussed by Ågren (1982) and Cahn and Larché (1983), who argue that (5.4) is a con-
sequence of the requirement that diffusion, as represented by atomic fluxes, arises, mi-
croscopically, from exchanges of atoms or exchanges of atoms with vacancies (Figure 1).

Flux Hypothesis for Substitutional Alloys We assume henceforth
that the substitutional flux constraint is satisfied.

Essential to the treatment of substitutional alloys are the relative chemical potentials
defined by

µαζ = µα − µζ . (5.5)

Direct consequences of this definition are the identities

µαα = 0, µαβ = −µβα, µαβ = µαζ − µβζ . (5.6)

The next result is fundamental to the discussion of substitutional alloys.

Theorem on Relative Chemical Potentials Given any choice of ref-
erence species ζ, we may, without loss in generality, replace the free-energy
imbalance (4.5) with that obtained by replacing each chemical potential µα

by the corresponding relative chemical potential µαζ :

d

dt

∫
P

Ψ dv ≤
∫
∂P

Tν · u̇ da−
N∑
α=1

∫
∂P

µαζα ·ν da. (5.7)

To establish this result, we first show that the free-energy imbalance (4.5) is invariant
under all transformations of the form

µα(x, t)→ µα(x, t) + λ(x, t) for all species α, (5.8)
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with λ(x, t) independent of α. In view of the substitutional flux constraint, given any
such field λ(x, t),

N∑
α=1

(µα + λ)α =
N∑
α=1

µαα + λ

N∑
α=1

α =
N∑
α=1

µαα, (5.9)

and hence

d

dt

∫
P

Ψ dv ≤
∫
∂P

Tν · u̇ da−
N∑
α=1

∫
∂P

(µα + λ)α ·ν da. (5.10)

Thus the free-energy imbalance is invariant under the transformation (5.8). The specific
choice λ = −µζ in (5.10) yields the desired result (5.7). This completes the proof of the
theorem.

The free-energy imbalance (5.7), when localized, yields the dissipation inequality18

Ψ̇−T · Ė−
N∑
α=1

(µαζ ρ̇α − α ·∇µαζ) ≤ 0, (5.11)

which is to hold for any given choice of ζ. This inequality will be useful in developing a
suitable constititutive theory for substitutional alloys.

(b) Remarks

1. Of the basic laws, it is only the free-energy imbalance that involves chemical poten-
tials. We may therefore conclude from the theorem on relative chemical potentials
that the individual chemical potentials are irrelevant to the theory in bulk. At ex-
ternal or internal boundaries, however, it is often the individual chemical potentials
that are needed, a specific example being a solid-vapor interface (cf. §24.2 as well
as Larché and Cahn (1985)).

2. The free-energy imbalance (5.7) and the dissipation inequality (5.11) may be writ-
ten with the chemical potentials expressed relative to that of any arbitrarily chosen
species ζ, in which case both (5.7) and (5.11) are independent of ρζ and ζ .

3. Larché and Cahn (1973, 1985) were apparently the first to emphasize the im-
portance of the relative chemical potentials when discussing substitutional alloys.
Specifically, Larché and Cahn (1973) consider a variational problem that, within
our framework, consists in minimizing a body’s free energy under a mass con-
straint for each atomic species. Larché and Cahn define the chemical potentials
µα, α = 1, 2, . . . , N , to be the Lagrange multipliers associated with the mass con-
straints; they show that only the relative chemical potentials µα − µβ enter the
corresponding equilibrium conditions.

4. Like the pressure in an incompressible body, the individual chemical potentials are
indeterminate in bulk.

5. One might refer to invariance of the free-energy imbalance under all transformations
of the form

µα(x, t)→ µα(x, t) + λ(x, t) for all species α

18When dealing with relative chemical potentials, we will often encounter expressions such as (5.11),
in which ζ appears as a free-index.
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as invariance of the lattice chemistry. As is clear from the proof of the theorem
on relative chemical potentials, invariance of the lattice chemistry is equivalent to
the conclusions of that theorem. Moreover, as we shall show, invariance of the
lattice chemistry is equivalent to the substitutional flux constraint, so that we could
equally well have taken — as our starting hypothesis — invariance of the lattice
chemistry rather than the flux hypothesis for substitutional alloys.

In view of (5.8)–(5.10), to prove our assertion of equivalence we have only to show
that invariance of the lattice chemistry implies the substitutional flux constraint.
Indeed, if (5.10) holds for all fields λ and all parts P. Then

N∑
α=1

∫
∂P

λ α ·ν da = 0, (5.12)

for otherwise we could choose λ to violate (5.10). Thus

∫
∂P

λ z·ν da = 0, z =
N∑
α=1

α (5.13)

for all fields λ and all parts P. A standard argument in the calculus of variations
then implies that z ≡ 0.

6. Invariance of the lattice chemistry has the following physical interpretation. Roughly
speaking, the chemical potential of a given species at a point x represents the en-
ergy the body would gain, per unit time, were we to add one atom, per unit time,
of that species at x. Because of the lattice constraint, adding an atom A of a given
species involves removing an atom B of that or another species. Thus, increas-
ing the chemical potential of each species by the same amount should not affect
the free-energy imbalance, because the marginal increase in energy associated with
the addition of A would be balanced by the marginal decrease associated with the
removal of B.

5.3 Elimination of the lattice constraint

Because of the lattice constraint (5.1), we may omit the atomic balance for the substitu-
tional species ζ, say, and simply define

ρζ = ρsites −
N∑
α=1
α �=ζ

ρα. (5.14)

Thus and by the substitutional flux constraint (5.4),

ρ̇ζ = −
N∑
α=1
α �=ζ

ρ̇α, ζ = −
N∑
α=1
α �=ζ

α,

so that the atomic balance for species ζ is satisfied automatically provided the atomic
balances for each remaining species α �= ζ are satisfied.

In view of this discussion, we may, without loss in generality, use the following nor-
malization in which a given species ζ is used as reference:

• We consider the atomic density ρζ and the atomic flux ζ defined by the lattice
constraint and the substitutional flux constraint, respectively.
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• We omit the atomic balance law for the species ζ.

• We use as chemical potentials for the species α the relative chemical potentials µαζ .

• We use the free-energy imbalance and dissipation inequality (5.11) with ζ as refer-
ence (since these are independent of ρζ and ζ).

As we shall see, for solid-vapor interfaces with interfacial atomic transport, the ab-
sence of a lattice constraint at the interface renders this normalization of little use (cf.
§24.2).

6 Global theorems

Granted appropriate boundary conditions, the atomic balance

d

dt

∫
B

ρα dv = −
∫
∂B

α · ν da (6.1)

(cf. (2.4)) and the free-energy imbalance

d

dt

∫
B

Ψ dv ≤
∫
∂B

(
Tν · u̇−

N∑
α=1

µαα·ν
)

da (6.2)

(cf. (4.5), (3.1)) applied to the body itself yield important global conservation and decay
relations. Such relations are important for two reasons: they suggest variational prin-
ciples appropriate to a discussion of equilibrium; and they are useful for establishing a
priori estimates and, hence, results concerning the existence and qualitative properties
of solutions to initial-boundary-value problems.

With a view toward establishing such global relations, we introduce the following
definitions. Let A be a subsurface of ∂B. We say that:

(i) A is fixed if

u̇ = 0 on A;

(ii) A is subject to dead loads if there is a constant symmetric (stress) tensor T∗ such
that

Tν = T∗ν on A;

(iii) A is impermeable if, for each atomic species α,

α · ν = 0 on A;

(iv) (for unconstrained materials) A is in chemical equilibrium if, for each atomic species
α, there is a constant chemical potential µα∗ such that

µα = µα∗ on A;

(iv′) (for substitutional alloys) A is in chemical equilibrium if, for some fixed choice of
species ζ and any other species α, there is a constant relative chemical potential
µαζ∗ such that

µαζ = µαζ∗ on A.

(When A separates the solid from a vapor, the boundary values µαζ∗ would be given
by the corresponding difference in vapor potentials: µαζ∗ = µαv − µζv.)
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A direct consequence of (i) and (iii) with A = ∂B, (6.1), and (6.2) is the

Theorem for an Isolated Body If the body is isolated, that is if ∂B
is fixed and impermeable, then the total number of atoms of each species
remains fixed, while the total free-energy is nonincreasing:

d

dt

∫
B

ρα dv = 0, α = 1, 2, . . . , N,

d

dt

∫
B

Ψ dv ≤ 0.

For a nonisolated body under sufficiently simple boundry conditions one can still
prove a global decay relation for a physically meaningful integral.

Global Decay Theorem Assume that a portion A of ∂B is fixed and
the remainder, ∂B \ A, subject to dead loads.

(a) If ∂B is impermeable, then

d

dt

∫
B

ρα dv = 0, α = 1, 2, . . . , N,

d

dt

∫
B

(Ψ−T∗ ·E) dv ≤ 0.

(b) If a portion E of ∂B is impermeable and the remainder, ∂B\E , in chemical
equilibrium, then, if the material is unconstrained,

d

dt

∫
B

(
Ψ−T∗ ·E−

N∑
α=1

µα∗ ρ
α

)
dv ≤ 0,

while

d

dt

∫
B

(
Ψ−T∗ ·E−

N∑
α=1

µαζ∗ ρα
)

dv ≤ 0

if the material is a substitutional alloy.

To prove this theorem, note first that, by hypothesis,∫
∂B

Tν · u̇ da =
∫
∂B

T∗ν · u̇ da =
d

dt

∫
∂B

T∗ν · u da =
d

dt

∫
B

T∗ · ∇u dv =
d

dt

∫
B

T∗ ·E dv;

(6.3)

hence assertion (a) follows from (6.1), (6.2), and the stipulated boundary condition α·ν =
0 on ∂B for all α.

To establish part (b) of the theorem, consider an unconstrained material. Then, by
(iv) applied to A = ∂B \ E and the atomic balance (6.1),

−
N∑
α=1

∫
∂B

µαα · ν da = −
N∑
α=1

µα∗

∫
∂B

α · ν da

=
N∑
α=1

µα∗

{
d

dt

∫
B

ρα dv

}
=

d

dt

{ N∑
α=1

∫
B

µα∗ ρ
α dv

}
. (6.4)
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Similarly, for a substitutional alloy we may use the substitutional flux constraint (5.4)
and (iv′) to conclude that

−
N∑
α=1

∫
∂B

µαα · ν da = −
N∑
α=1

∫
∂B

µαζα · ν da =
N∑
α=1

{
d

dt

∫
B

µαζ∗ ρα dv

}
. (6.5)

Assertion (b) follows from (6.2) and (6.3)–(6.5).

7 Constitutive theory for multiple atomic species in
the absence of a lattice constraint

The force and moment balances, the balance law for atoms, and the free-energy imbalance
are basic laws, common to large classes of materials; we keep such laws distinct from
specific constitutive equations, which differentiate between particular materials. We
view the dissipation inequality as a guide in the development of suitable constitutive
theories. In this regard we do not seek general constitutive equations consistent with the
dissipation inequality, but instead we begin with constitutive equations close to those
upon which more classical theories are based.

7.1 Basic constitutive theory for an elastic material with Fickean
diffusion

Guided by the dissipation inequality (4.6) and by standard theories of elasticity and
diffusion, we assume that the free energy, stress, and chemical potential are prescribed
functions of the strain and the list

�ρ
def= (ρ1, ρ2, . . . , ρN )

of atomic densities,

Ψ = Ψ̂(E, �ρ ),

T = T̂(E, �ρ ),

µα = µ̂α(E, �ρ ),


 (7.1)

and that the atomic flux is given by Fick’s law

α = −
N∑
β=1

Mαβ(E, �ρ )∇µβ , (7.2)

with Mαβ(E, �ρ ) the mobility tensor for species α with respect to species β. Such a
“mixed” description with µα as independent variables in (7.1) and ∇µα as dependent
variables in (7.2) is widely used by materials scientists (Larché and Cahn, 1985, §8.1).19

19We, therefore, do not adhere to the principle of equipresence, as discussed by Truesdell and Toupin
(1960) and Truesdell and Noll (1964), which asserts that “a quantity present as an independent variable
in one constitutive equation should be so present in all, unless . . . its presence contradicts some law of
physics or rule of invariance.” According to Truesdell and Noll (1965, §96), “This principle forbids us to
eliminate any of the ‘causes’ present from interacting with any other as regards a particular ‘effect.’ It
reflects on the scale of gross phenomena the fact that all observed effects result from a common structure
such as the motions of molecules.”. A general treatment consistent with equipresence is provided by
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The functions Ψ̂, T̂, µ̂α, and Mαβ represent constitutive response functions for the
material.

The constitutive equation (7.2) is simple in form but complicated in nature, as each
of the mobilities Mαβ(E, �ρ ) is a second-order tensor reflecting the underlying symmetry
of the material. The mobilities can be arranged in a matrix array


M11 M12 . . . M1N

M21 M22 . . . M2N

...
...

. . .
...

MN1 MN2 . . . MNN


 (7.3)

with tensor entries, but it should be kept in mind that, since each mobility tensor has
9 components, (7.3) represents 9N2 scalar constitutive moduli. We refer to (7.3) as the
mobility matrix.

Following the procedure of Coleman and Noll (1963), we require that the dissipation
inequality (5.11) hold in all “processes” related through the constitutive equations (7.1)
and (7.2); equivalently,

{
∂Ψ̂(E, �ρ )

∂E
− T̂(E, �ρ )

}
· Ė +

N∑
α=1

{
∂Ψ̂(E, �ρ )

∂ρα
− µ̂α(E, �ρ )

}
ρ̇α

−
N∑

α,β=1

∇µα ·Mαβ(E, �ρ )∇µβ ≤ 0, (7.4)

with (∂Ψ̂/∂E)ij = ∂Ψ̂/∂Eij . We can always find fields u and �ρ such that E, Ė, ρα, ρ̇α,
and∇µα (for each α) have arbitrarily prescribed values at some (x, t). Thus, since ρ̇α and
Ė appear linearly in (7.4), their “coefficients” must vanish, for otherwise ρ̇α and Ė may
be chosen to violate (7.4). This leaves the inequality

∑N
α,β=1∇µα ·Mαβ(E, �ρ )∇µβ ≥ 0.

Therefore, as thermodynamic restrictions, the free energy must determine the stress and
the chemical potentials through the “state relations”

T̂(E, �ρ ) =
∂Ψ̂(E, �ρ )

∂E
,

µ̂α(E, �ρ ) =
∂Ψ̂(E, �ρ )

∂ρα
,


 (7.5)

and the mobility matrix (7.3) must be positive semi-definite:20

N∑
α,β=1

aα ·Mαβ(E, �ρ )aβ ≥ 0, (7.6)

for all vector-lists �a = (a1,a2, . . . ,aN ). Reversing this argument we see that the re-
strictions (7.5) and (7.6) are sufficient that all process related through the constitutive

Fried and Gurtin (1999). Our results concur with theirs and, hence, equipresence provided the relation

between the chemical potentials and atomic densities is invertible, a condition satisfied when Ψ̂ is a
strictly convex function of the densities. This assumption is often imposed when discussing single-phase
materials. Phase transitions are more complicated, as there are two standard models: (i) the material is
described by two or more strictly convex free energies, one for each phase, with the phases separated by
a sharp interface; (ii) the material is described by a single “multi-well” free energy and the interface is
diffuse. We here consider only case (i), in which case our treatment would be applicable for each phase.

20At least when the set of (E, �ρ ) at which the matrix with entries ∂µ̂α(E, �ρ )/∂ρβ is invertible is dense
in the space of all (E, �ρ ).
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equations (7.1) and (7.2) obey the dissipation inequality (5.11) (irrespective of whether
or not the condition specified in Footnote 20 is satisfied).

Thus, for a single species,  · ∇µ ≤ 0, asserting that atoms flow down a gradient in
chemical-potential. More generally, note that the dissipation (4.7), which is the negative
of the left side of (7.4), is given by

δ =
N∑

α,β=1

∇µα ·Mαβ(E, �ρ )∇µβ ≥ 0.

7.2 Consequences of the thermodynamic restrictions

Immediate consequences of (7.5) are the Maxwell relations

∂T̂
∂ρα

=
∂µ̂α

∂E
(7.7)

and the Gibbs relation21

Ψ̇ = T · Ė + µαρ̇α. (7.8)

It is convenient to define scalar and tensor moduli

C(E, �ρ ) =
∂T̂(E, �ρ )

∂E
=

∂2Ψ̂(E, �ρ )
∂E2

,

Aα(E, �ρ ) =
∂T̂(E, �ρ )

∂ρα
=

∂µ̂α(E, �ρ )
∂E

=
∂2Ψ̂(E, �ρ )
∂E ∂ρα

.


 (7.9)

We refer to C as the elasticity tensor and to Aα as stress-composition (or chemistry-
strain) tensors for α. The elasticity tensor C is a symmetric linear transformation of
symmetric tensors into symmetric tensors; that is, C associates with each symmetric
tensor U a symmetric tensor H = C[U] (or, more precisely, H = C(E, �ρ )[U]). For
each atomic species α, Aα is a symmetric tensor that represents the marginal increase in
stress due to an incremental increase in the atomic density ρα, holding the other densities
and the strain fixed, or equivalently, the marginal increase in µα due to an incremental
increase in the strain holding the densities fixed. The elasticity tensor has components

Cijkl =
∂2Ψ̂

∂Eij ∂Ekl

and for symmetric tensors H and U, H = C[U] has the component form Hij = CijklUkl,
with components that satisfy

Cijkl = Cklij = Cijlk. (7.10)

Because of these symmetries, there are at most 21 independent elastic moduli.
For E = E(x, t), �ρ = �ρ (x, t), and T = T̂(E(x, t), �ρ (x, t)), the definitions (7.9) of the

elasticity and stress-composition tensors are consistent with the chain-rule calculation

Ṫ = C(E, �ρ )[Ė] +
N∑
α=1

Aα(E, �ρ )ρ̇α. (7.11)

21In the materials literature (cf., e.g., Caroli, Caroli, and Roulet (1984)) the Gibbs relation is generally
a postulate rather than a consequence of the underlying thermodynamical development.



A unified treatment of evolving interfaces 23

Note that, by (7.9)2, Fick’s law becomes

α = −
N∑
β=1

Mαβ(E, �ρ )
( N∑
γ=1

∂2Ψ̂(E, �ρ )
∂ρβ ∂ργ

∇ργ + Aβ(E, �ρ )∇E
)
, (7.12)

where, using Cartesian components,

(Aβ∇E)j
def= Aβkl

∂Ekl
∂xj

, (7.13)

so that

αi = −
N∑
β=1

Mαβ
ij (E, �ρ )

( N∑
γ=1

∂2Ψ̂(E, �ρ )
∂ρβ ∂ργ

∂ργ

∂xj
+ Aβkl(E, �ρ )

∂Ekl
∂xj

)
. (7.14)

Thus both density gradients and strain gradients may drive atomic diffusion.

7.3 Free enthalpy

It is often more convenient to use stress rather than strain as an independent variable. As
is reasonable within the context of small elastic deformations, we assume that T̂(E, �ρ )
is a smoothly invertible function of E with inverse

E = Ẽ(T, �ρ );

we may then define new functions for the free energy and the chemical potential through

Ψ = Ψ̃(T, �ρ ) = Ψ̂(Ẽ(T, �ρ ), �ρ ),

µα = µ̃α(T, �ρ ) = µ̂α(Ẽ(T, �ρ ), �ρ ).

With stress as independent variable, it is most convenient to work with the (Gibbs)
free-enthalpy (density) defined by the Legendre transformation

Φ = Ψ−T ·E (7.15)

and given by the constitutive response function

Φ̃(T, �ρ ) = Ψ̃(T, �ρ )−T · Ẽ(T, �ρ ). (7.16)

(We consistently use a “tilde” to denote a function of (T, �ρ ), retaining the “hat” for a
function of (E, �ρ ).) Then, using the chain-rule and the restrictions (7.5), a straightfor-
ward calculation shows that

Ẽ(T, �ρ ) = −∂Φ̃(T, �ρ )
∂T

,

µ̃α(T, �ρ ) =
∂Φ̃(T, �ρ )

∂ρα
,


 (7.17)

a direct consequence of which is the Maxwell relation

∂Ẽ
∂ρα

= −∂µ̃α

∂T
. (7.18)
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We can also define moduli analogous to those of (7.9):

K(T, �ρ ) =
∂Ẽ(T, �ρ )

∂T
= −∂2Ψ̃(T, �ρ )

∂T2
,

Nα(T, �ρ ) =
∂Ẽ(T, �ρ )

∂ρα
= −∂µ̃α(T, �ρ )

∂T
,


 (7.19)

with K the compliance tensor and to Nα the strain-composition (or chemistry-strain)
tensor for α. The tensor Nα represents the marginal increase in strain due to an incre-
mental increase in the atomic density ρα, holding the other densities and the stress fixed,
or equivalently, the marginal increase in µα due to an incremental increase in the stress
holding the densities fixed.

For T = T(x, t), �ρ = �ρ (x, t), and E = Ẽ(T(x, t), �ρ (x, t)), the definitions (7.19) of the
compliance and chemistry-strain tensors are consistent with the chain-rule calculation

Ė = K(T, �ρ )[Ṫ] +
N∑
α=1

Nα(T, �ρ )ρ̇α. (7.20)

The compliance tensor K obeys

K(T, �ρ ) = C(E, �ρ )−1 for E = Ẽ(T, �ρ ) (7.21)

(i.e., Hij = CijklUkl if and only if Uij = KijklHkl); K therefore has symmetries analogous
to those displayed in (7.10). Differentiating the identity T̂

(
Ẽ(T, �ρ ), �ρ

)
= T with respect

to ρα, we arrive at the important relation

Nα = −K[Aα] (7.22)

in which, for convenience, we have omitted arguments. Thus:

C, Aα (α = 1, 2, . . . N) are independent of strain and composition

if and only if

K, Nα (α = 1, 2, . . . N) are independent of stress and composition.


 (7.23)

Finally, we note that the free energy and the chemical potentials at zero stress,

Ψ0(�ρ ) = Ψ̃(T, �ρ )
∣∣
T=0

,

µα0 (�ρ ) = µ̃α(T, �ρ )
∣∣
T=0

,


 (7.24)

are, by (7.16) and (7.17), related through

µα0 (�ρ ) =
∂Ψ0(�ρ )
∂ρα

. (7.25)

7.4 Mechanically simple materials

We refer to a material as being mechanically simple if:

(i) the elasticity tensor C and stress-composition tensors Aα are independent of strain
and composition (cf. (7.23));

(ii) the mobilities Mαβ are independent of strain.
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Assumption (i) has strong consequences. Since C and Aα are independent of E and
�ρ, we may integrate Aα = ∂T̂/∂ρα, from an arbitrary reference list �ρ0 to �ρ and then use
the relation C = ∂T̂/∂E; the result is an equation for the stress of the form

T = C[E] +
N∑
α=1

Aα(ρα − ρα0 ). (7.26)

Next, to obtain the free energy, we integrate the relation ∂Ψ̂/∂E = T using (7.26); the
result is the relation

Ψ = 1
2E · C[E] +

N∑
α=1

(ρα − ρα0 )Aα ·E + F (�ρ ), (7.27)

which, when differentiated with respect to the density ρα, yields an expression

µα =
∂F (�ρ )
∂ρα

+ Aα ·E (7.28)

for the chemical potential µα.
Next, using (7.22), we may explicitly invert (7.26) to obtain a relation

E = K[T] +
N∑
α=1

(ρα − ρα0 )Nα (7.29)

for E in terms of T and �ρ. Then, by (7.27), (7.26) and (7.29),

Ψ− F (�ρ ) = 1
2E ·

(
C[E] +

N∑
α=1

(ρα − ρα0 )Aα

)
+ 1

2

N∑
α=1

(ρα − ρα0 )Aα ·E

= 1
2

(
K[T] +

N∑
α=1

(ρα − ρα0 )Nα

)
·T + 1

2

N∑
α=1

(ρα − ρα0 )Aα ·E

= 1
2T ·K[T] + 1

2

N∑
α,β=1

(ρα − ρα0 )(ρβ − ρβ0 )Aα ·Nβ (7.30)

and it follows that

Ψ = 1
2T ·K[T] + Ψ0(�ρ ) (7.31)

and, hence, that F (�ρ ) is related to Ψ0(�ρ ), the free energy at zero stress, through

F (�ρ ) = Ψ0(�ρ )− 1
2

N∑
α,β=1

(ρα − ρα0 )(ρβ − ρβ0 )Aα ·Nβ . (7.32)

Next, using (7.29) and (7.31) in (7.16), we find that

Φ = − 1
2T ·K[T]−

N∑
α=1

(ρα − ρα0 )Nα ·T + Ψ0(�ρ ); (7.33)

thus, by (7.17)2 and (7.25), the chemical potentials may be expressed alternatively as

µα = µα0 (�ρ )−Nα ·T. (7.34)
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Turning to Fick’s law (7.12), since the mobility is also independent of strain, we see
that, by (7.28),

α = −
N∑
β=1

Mαβ(�ρ )
( N∑
γ=1

∂2F (�ρ )
∂ρβ ∂ργ

∇ργ + Aβ∇E
)
. (7.35)

Alternatively, appealing to (7.2) and (7.34),

α = −
N∑
β=1

Mαβ(�ρ )
( N∑
γ=1

∂2Ψ0(�ρ )
∂ρβ ∂ργ

∇ργ −Nβ∇T
)
. (7.36)

Thus, spatial variations of either strain or stress may drive atomic diffusion.

7.5 Cubic symmetry

A special but important class of materials consists of those with cubic symmetry. Here,
we consider the ramifications of cubic symmetry for mechanically simple materials.

To display the explicit form of the elasticity tensor it is convenient to tabulate the 21
independent elasticities as

C1111 C1122 C1133 C1123 C1131 C1112

C2222 C2233 C2223 C2231 C2212

C3333 C3323 C3331 C3312

C2323 C2331 C2312

C3131 C3112

C1212

The elasticity tensor for a cubic material (with unit cube generated by the basis vectors
of the underlying Cartesian coordinates) then has the tabular form

C1111 C1122 C1122 0 0 0
C1111 C1122 0 0 0

C1111 0 0 0
C2323 0 0

C2323 0
C2323

(7.37)

showing that there are only 3 independent elasticities. The compliance tensor admits a
similar representation. Moreover, the tensors Mα, Aα, Nα are isotropic:

Mα = mα1, Aα = aα1, Nα = ηα1. (7.38)

Further, because C[1] is a (second-order) tensor, it must be isotropic and hence of the
form

C[1] = 3k1, (7.39)

with k the compressibility. By (7.22), Aα = −C[Nα]; the moduli aα and ηα are therefore
related through the compressibility k via

aα = −3kηα. (7.40)
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In view of (7.38)2,3 and (7.39), the free energy (7.27) and free enthalpy (7.33) specialize
to

Ψ = 1
2E · C[E] +

N∑
α=1

aα(ρα − ρα0 ) trE + F (�ρ ),

Φ = − 1
2T ·K[T]−

N∑
α=1

ηα(ρα − ρα0 ) trT + Ψ0(�ρ ),




(7.41)

where, by (7.32) and (7.40),

F (�ρ ) = Ψ0(�ρ ) + 9
2

N∑
α,β=1

kηαηβ(ρα − ρα0 )(ρβ − ρβ0 ). (7.42)

We therefore have the equivalent sets of relations:

T = C[E] +
N∑
α=1

aα(ρα − ρα0 )1, µα =
∂F (�ρ )
∂ρα

+ aα trE,

E = K[T] +
N∑
α=1

ηα(ρα − ρα0 )1, µα = µα0 (�ρ )− ηα trT,




(7.43)

with µα0 given by (7.25).
Note that we may write the stress as

T = C[E−Ecom], Ecom
def=

N∑
α=1

ηα(ρα − ρα0 )1. (7.44)

We refer to Ecom as the compositional strain and to ηα as the solute-expansion modulus
for species α. Since we would generally expect the body to expand when atoms are
added, we should have

ηα > 0, aα < 0, (7.45)

where the second inequality follows from (7.40), assuming that k > 0. Granted (7.45), if
the body is, instead, constrained to have vanishing strain, then, by (7.43)2, the resulting
compositional stress would be aα(ρα − ρα0 )1 and compressive when atoms are added.

By (7.38)1, the alternative expressions (7.35) and (7.36) of Fick’s law become

α = −
N∑
β=1

mαβ(�ρ )
( N∑
γ=1

∂2F (�ρ )
∂ρβ ∂ργ

∇ργ + aβ∇trE
)
,

α = −
N∑
β=1

mαβ(�ρ )
( N∑
γ=1

∂2Ψ0(�ρ )
∂ρβ ∂ργ

∇ργ − ηβ∇trT
)
.




(7.46)

8 Digression: The Gibbs relation and Gibbs–Duhem
equation at zero stress

Consider the free energy Ψ0(�ρ ) and the chemical potentials µα0 (�ρ ), at zero stress, as
defined in (7.24). Our derivation of the Gibbs–Duhem equation at zero stress utilizes the
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atomic density, atomic volume, and concentrations:

ρ
def=

N∑
α=1

ρα, Ω def=
1
ρ
, cα

def= Ωρα.

The mass density ρm is related to the atomic masses mα of the individual species through
ρm =

∑N
α=1 ραmα = ρ

∑N
α=1 cαmα. Thus, for vm = 1/ρm the specific volume,

vm =
Ω

N∑
α=1

cαmα

. (8.1)

The free energy Ψ0 is measured per unit volume, so that vmΨ0 represents the specific-free
energy. We derive the Gibbs relation by noting that for p the thermodynamic pressure,
−p is the derivative, with respect to vm, of the specific free-energy at fixed composition
�c. Thus, by (8.1), −p is the derivative, with respect to Ω, of ΩΨ0 at fixed composition:

∂

∂Ω

[
ΩΨ0

(c1

Ω
,
c2

Ω
, . . . ,

cN

Ω

)]
= Ψ0(�ρ )−

N∑
α=1

∂Ψ0(�ρ )
∂ρα

cα

Ω

= Ψ0(�ρ )−
N∑
α=1

ραµα0 (�ρ ). (8.2)

On the other hand, if we identify this pressure with the actual pressure, then, since
T ≡ 0, (8.2) must vanish; thus we have the Gibbs relation (Gibbs, 1875, eqt. 12):

Ψ0(�ρ ) =
N∑
α=1

ραµα0 (�ρ ). (8.3)

The relation (8.3) is well defined for all �ρ and provides a method of determining the free
energy from a knowledge of the chemical potentials. But the latter cannot be arbitrary,
but instead must be consistent with the (classical) Gibbs–Duhem equation:22

N∑
α=1

ρα
∂µα0 (�ρ )
∂ρβ

= 0 (8.4)

for all species β. This set of N relations follows upon differentiating (8.3) with respect
to ρβ and appealing to (7.25). The Gibbs–Duhem equation (8.4) represents a condition
that is both necessary and sufficient that (8.3) hold.

A simple set of constitutive relations at zero stress is based on the assumption
that the chemical potentials µα0 (�ρ ) depend on ρ1, ρ2, . . . , ρN through the concentrations
c1, c2, . . . , cN . Granted this, we may use the identity

∂cα

∂ρβ
= Ω(δαβ − cα) (δαβ = Kronecker delta), (8.5)

to write the Gibbs–Duhem equation (8.4) in the form

N∑
α=1

cα
∂µα0
∂cβ

=
N∑
α=1

cα
∂µα0
∂cγ

cγ
def= Λ. (8.6)

22Cf., e.g., Kirkwood and Oppenheim (1961, eqt. (6.61)).
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If, in addition, we assume that µα is a function of cα0 (only), then Λ is independent of
composition and (8.6) yields

cα
∂µα0
∂cα

= Λ, (8.7)

which has the explicit solution

µα0 = Uα + Λ ln cα, (8.8)

so that23

Ψ0(�ρ ) =
N∑
α=1

ρα
(
Uα + Λ ln cα

)
. (8.9)

9 Constitutive theory for a substitutional alloy

The lattice constraint
N∑
α=1

ρα = ρsites

renders the constitutive theory for a substitutional alloy more difficult than that for
an unconstrained material. In many respects the substitutional theory mirrors that for
unconstrained materials; in particular, the theory is based on constitutive equations in
which the density-list

�ρ = (ρ1, ρ2, . . . , ρN )

appears as an independent variable. Difficulties arise because each such list �ρ must be
admissible; that is, must satisfy the lattice constraint and must have 0 ≤ ρα <∞ for all
atomic species α. Thus, since varying one of the densities while holding the others fixed
violates the lattice constraint, standard partial differentiation of the constitutive response
functions with respect to the atomic densities is not well-defined. The next subsection
comes to grips with this problem.

9.1 Larché–Cahn derivatives

Let f(�ρ ) be defined on the set of admissible density lists. As noted above, the standard
partial derivatives ∂f/∂ρα are not defined. To free f of the lattice constraint, choose a
species ζ as reference, use the lattice constraint to express ρζ as a function

ρζ = ρsites −
N∑
α=1
α �=ζ

ρα

of the list
(ρ1, ρ2, . . . , ρζ−1, ρζ+1 . . . ρN )

23Materials scientists typically choose Λ = Rθ, with R the gas constant and θ the absolute temperature,
and rewrite (8.9) in the form

Ψ0(�ρ ) =

N∑
α=1

ρα
(
Uα∗ +Rθ ln(γαcα)

)
︸ ︷︷ ︸

µα0 (�c )

,

where γα is an activity coefficient and Uα∗ is the chemical potential when ρα = 1/γα, and where γα and
Uα∗ generally depend on θ.
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of remaining densities, and consider f as a function f (ζ) of the remaining densities by
defining

f (ζ) (ρ1, ρ2, . . . , ρζ−1, ρζ+1 . . . ρN )︸ ︷︷ ︸
ρζ missing

= f(�ρ )
∣∣
ρζ=ρsites−

N∑
α=1
α �=ζ

ρα
. (9.1)

The domain of f (ζ) is then open, since the arguments of f (ζ) may be varied slightly
without violating the lattice constraint; thus the partial derivatives

∂f (ζ)

∂ρα
and

∂2f (ζ)

∂ρα∂ρβ

are well defined. Note that when α, say, is equal to ζ, the left side of (9.1) is independent
of ρζ , so that, trivially,

∂f (ζ)

∂ρζ
= 0. (9.2)

We refer to f (ζ) as the description of f relative to ζ.
An alternative treatment of differentiation that respects the lattice constraint may be

developed as follows. Choose species α and ζ. If the list �ρ = (ρ1, ρ2, . . . , ρN ) is consistent
with the lattice constraint, then so also is the list

(ρ1, . . . , ρα + ε, . . . , ρζ − ε, . . . , ρN )

obtained by increasing the atomic density of species α by an amount ε and decreasing the
density of ζ by an equal amount (while holding the remaining densities fixed). Bearing
this in mind, we define the Larché–Cahn derivative ∂(ζ)/∂ρα by

∂(ζ)f(�ρ )
∂ρα

=
d

dε
f(ρ1, . . . , ρα + ε, . . . , ρζ − ε, . . . , ρN )

∣∣∣
ε=0

; (9.3)

∂(ζ)f(�ρ )/∂ρα represents the change in f(�ρ ) due to a unit increase in the density of α-
atoms and an equal decrease in the density of ζ-atoms.24 Second Larché–Cahn derivatives
are defined similarly:

∂2(ζ)f(�ρ )
∂ρα∂ρβ

=
d2

dεdλ
f(ρ1, . . . , ρα + ε, . . . , ρβ + λ, . . . , ρζ − ε− λ, . . . , ρN )

∣∣∣
ε=λ=0

. (9.4)

For convenience, we define

∂(ζ)f

∂ρζ
= 0. (9.5)

A direct consequence of (9.3) is then the skew-symmetry relation

∂(ζ)f

∂ρα
= −∂(α)f

∂ρζ
, (9.6)

valid for all species α and ζ. Thus,
∑N
α=1

∑N
ζ=1 ∂(ζ)f/∂ρα = −

∑N
α=1

∑N
ζ=1 ∂(α)f/∂ρζ =

−
∑N
α=1

∑N
ζ=1 ∂(ζ)f/∂ρα and we have

N∑
α,ζ=1

∂(ζ)f

∂ρα
= 0. (9.7)

24Larché and Cahn (1985, eqt. 3.7) use the notation ∂/∂ραζ rather than ∂(ζ)/∂ρα.



A unified treatment of evolving interfaces 31

Using the description f (ζ) of f relative to ζ, the Larché–Cahn derivative may be given
an alternative representation which is convenient in calculations. Increasing an argument
ρα by an amount ε (while holding the other arguments of f (ζ) fixed) corresponds, via the
definition (9.1), to decreasing the argument ρζ in f by ε. Therefore, as a consequence of
(9.3), the Larché–Cahn derivative ∂f (ζ)/∂ρα is simply the derivative of f with respect to
ρα taken with the density ρζ eliminated via the lattice constraint ; thus and by (9.2) and
(9.5),

∂(ζ)f

∂ρα
=

∂f (ζ)

∂ρα
, (9.8)

and similarly for second derivatives,

∂2(ζ)f

∂ρα∂ρβ
=

∂2f (ζ)

∂ρα∂ρβ
. (9.9)

Note that (9.8) and (9.9) are meaningful even though their left sides are functions of the
complete list �ρ = (ρ1, ρ2, . . . , ρζ , . . . ρN ), while their right sides are functions of the list

(ρ1, ρ2, . . . , ρζ−1, ρζ+1 . . . ρN )︸ ︷︷ ︸
ρζ missing

;

indeed, the left sides are defined only for those arguments �ρ consistent with the lattice
constraint, a constraint that renders ρζ known when the other densities are known (cf.
(9.1)).

It may happen that f(�ρ ) may be extended smoothly to an open region of RN .25 In
that case the Larché–Cahn derivative may be computed as the difference

∂(ζ)f

∂ρα
=

∂f

∂ρα
− ∂f

∂ρζ
; (9.10)

e.g., for the function defined on the set of admissible density lists by f(�ρ ) = λαρα with
each of the λ’s constant,

∂(ζ)f

∂ρα
= λα − λζ . (9.11)

Next, choose a species ζ and bear in mind that ∂f (ζ)/∂ρα is a standard partial
derivative. Then, for �ρ(t) an admissible, time-dependent density list and ϕ(t) = f(�ρ(t)),

ϕ̇ =
N∑
α=1

∂f (ζ)(�ρ )
∂ρα

ρ̇α

︸ ︷︷ ︸
chain-rule

=
N∑
α=1

∂(ζ)f(�ρ )
∂ρα

ρ̇α

︸ ︷︷ ︸
by (9.8)

, (9.12)

which is the chain-rule for Larché–Cahn derivatives.

9.2 Constitutive equations

(a) General relations

Given a fixed choice of the reference species ζ and guided by the dissipation inequality
(5.11), viz.,

Ψ̇−T · Ė−
N∑
α=1

(µαζ ρ̇α − α · ∇µαζ) ≤ 0, (9.13)

25For example, when f is the free energy described in Footnote 23, a free energy used by materials
scientists also for substitutional alloys (cf. Larché and Cahn, 1985, §4.2).
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and the requirement that the bulk theory for a substitutional alloy depend only on the
relative chemical potentials (cf. the theorem containing (5.7)), we base the theory on
constitutive equations

Ψ = Ψ̂(E, �ρ ), T = T̂(E, �ρ ), (9.14)

for the free energy and stress, constitutive equations

µαβ = µ̂αβ(E, �ρ ) (9.15)

for the relative chemical potentials, and Fick’s law

α = −
N∑
β=1

Mαβ(E, �ρ )∇µβζ (9.16)

for the atomic fluxes.

(b) Constraints on µ̂αβ

The constitutive relations (9.15), which are prescribed for all relative chemical potentials,
are presumed to be consistent with the identities (5.6); more pragmatically, we need only
assume that the response functions µ̂αζ are prescribed for all α and some fixed choice of
reference species ζ, for then the response functions relative to any other species β may
be defined by

µ̂αβ = µ̂αζ − µ̂βζ , (9.17)

and, granted this, the skew symmetry relation

µ̂αβ = −µ̂βα (9.18)

is satisfied for each pair of species, so that, in particular, µ̂αα = 0 (no sum).

(c) Mobility constraints

We require that the mobility tensors Mαβ(E, �ρ ):

(a) be consistent with the substitutional flux constraint;

(b) render Fick’s law (9.16) independent of the choice of reference species ζ.

To discuss the implications of these constraints, we suppress the arguments E and �ρ,
which are irrelevant to the following discussion. For (b) to hold it is sufficient that

N∑
β=1

Mαβ∇µβζ =
N∑
β=1

Mαβ∇µβγ (9.19)

for all choices of ζ and γ and all α. By (9.17), the relative chemical potentials necessarily
satisfy

µβζ = µβγ − µζγ

for all choices of ζ and γ and all β; therefore, (9.19) will be satisfied provided

N∑
β=1

Mαβ∇µζγ = 0
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for all choices of ζ and γ and for all α, and, hence, provided

N∑
β=1

Mαβ = 0 (9.20)

for all α.
Next, consider requirement (a). The substitutional flux constraint (5.4) applied to

Fick’s law is the requirement that

N∑
α=1

α = −
N∑

α,β=1

Mαβ∇µβζ = −
N∑
β=1

( N∑
α=1

Mαβ

)
∇µβζ = 0,

an equation that will be satisfied for each choice of ζ provided the term in parenthesis
vanishes. Thus, recalling (9.20), we have the mobility constraints of Larché and Cahn
(1985, eqts. (8.2), (8.3)):

N∑
α=1

Mαβ(E, �ρ ) = 0,
N∑
β=1

Mαβ(E, �ρ ) = 0. (9.21)

9.3 Thermodynamic restrictions

Our next step is to determine restrictions on the constitutive equations that ensure
satisfaction of the dissipation inequality (9.13). Because of the lattice constraint, ther-
modynamic arguments involving arbitrary variations of the atomic densities are delicate.
In this regard, the following lemma is useful:

Lemma Given any admissible density list �n, any scalar a, any two atomic
species α �= β, and any time τ , there is a time-dependent, admissible density-
list �ρ(t) such that, at τ ,

�ρ(τ) = �n, ρ̇α(τ) = −ρ̇β(τ) = a, ρ̇γ(τ) = 0 for γ �= α, β. (9.22)

To prove this lemma note first that a simple choice �ρ(t) consistent with the lattice
constraint and with (9.22) is given by

ρα(t) = nα + (t− τ)a, ρβ(t) = nβ − (t− τ)a,

and

ργ(t) = nγ for γ �= α, β. (9.23)

But this choice does not furnish a solution of our problem, since the densities ρα(t) and
ρβ(t) may be negative. This is easily remedied: given any ε > 0, we can always find a
scalar function T (t) such that T (τ) = 0, Ṫ (τ) = 1, and |T (t)| < ε. The density list �ρ(t)
defined by

ρα(t) = nα + T (t)a and ρβ(t) = nβ − T (t)a,

supplemented by (9.23), satisfies (9.22) and will be admissible for all t provided we choose
ε small enough. This completes the proof of the lemma.

Recall that, by (9.2), (9.5), and the sentence containing (9.18),

∂(ζ)Ψ̂
∂ρζ

=
∂Ψ̂(ζ)

∂ρζ
= µ̂ζζ = 0.
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Fix a species ζ and choose an arbitrary process consistent with the constitutive equations.
Then, by (9.12),

Ψ̇ =
∂Ψ̂(E, �ρ )

∂E
· Ė +

N∑
α=1

∂(ζ)Ψ̂(E, �ρ )
∂ρα

ρ̇α. (9.24)

The requirement that the dissipation inequality (9.13) hold in all such processes leads to
the inequality

{
∂Ψ̂(E, �ρ )

∂E
− T̂(E, �ρ )

}
· Ė +

N∑
α=1

{
∂Ψ̂(ζ)(E, �ρ )

∂ρα
− µ̂αζ(E, �ρ )

}
ρ̇α

−
N∑

α,β=1

∇µαζ ·Mαβ(E, �ρ )∇µβζ ≤ 0, (9.25)

for each choice of the free-index ζ. If, for the moment, we restrict attention to spatially
constant processes, then this inequality reduces to{

∂Ψ̂(E, �ρ )
∂E

− T̂(E, �ρ )
}
· Ė +

N∑
α=1

{
∂(ζ)Ψ̂(E, �ρ )

∂ρα
− µ̂αζ(E, �ρ )

}
ρ̇α ≤ 0. (9.26)

This inequality must hold for all E(t) and all admissible density lists �ρ(t). Assuming that
the atomic densities are independent of time leads to the requirement that T̂ = ∂Ψ̂/∂E
and (9.26) reduces to an ineqality involving only the density-rates. As noted in the
density-variation lemma (cf. (9.22)), given any species α �= ζ, we can always find an
admissible density list �ρ(t) such that, at some time τ , the values �ρ(τ) and ρ̇α(τ) = −ρ̇ζ(τ)
are arbitrary, while the remaining rates ρ̇α(τ) vanish. For this choice of �ρ(t), (9.26), at
time τ , becomes {

∂(ζ)Ψ̂(E, �ρ )
∂ρα

− µ̂αζ(E, �ρ )
}
ρ̇α ≤ 0.

Thus, since E, �ρ, and ρ̇α are arbitrary at τ , we must have µ̂αζ = ∂(ζ)Ψ̂/∂ρα for all
admissible �ρ, a result that reduces (9.25) to the inequality

N∑
α,β=1

∇µαζ ·Mαβ∇µβζ ≥ 0,

for each choice of the free-index ζ.
Summarizing, the second law in the form of the dissipation inequality requires that

T̂(E, �ρ ) =
∂Ψ̂(E, �ρ )

∂E
,

µ̂αζ(E, �ρ ) =
∂(ζ)Ψ̂(E, �ρ )

∂ρα
,


 (9.27)

for all atomic species α and ζ, and that the matrix


M11 M12 . . . M1N

M21 M22 . . . M2N

...
...

. . .
...

MN1 MN2 . . . MNN


 . (9.28)
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must be positive semi-definite (cf. Footnote 20).
The dissipation (4.7), which is the negative of the left side of (9.25), is given by

δ =
N∑

α,β=1

∇µα ·Mαβ(E, �ρ )∇µβ .

Immediate consequences of (9.27)1 and (9.27)2 are the Maxwell relations

∂(ζ)T̂
∂ρα

=
∂µ̂αζ

∂E
(9.29)

and the Gibbs relation

Ψ̇ = T · Ė + µαζ ρ̇α, (9.30)

which hold for each choice of the free-index ζ.

9.4 Digression: positive definiteness of the mobility matrix

Thermodynamics (essentially) yields a mobility matrix (9.28) that is positive semi-definite
in the sense that

N∑
α,β=1

aα ·Mαβaβ ≥ 0, (9.31)

for all vector-lists �a = (a1,a2, . . . ,aN ), where for convenience we have suppressed the
argument (E, �ρ). The notion of positive definiteness is a bit more delicate, since the
mobility constraints render the left side of (9.31) zero whenever all entries of �a are the
same. With this in mind, we refer to the mobility matrix as essentially positive definite
if

N∑
α,β=1

aα ·Mαβaβ > 0 (9.32)

whenever at least one entry of �a differs from the others. If the mobility matrix is essen-
tially positive definite, then for any choice of species ζ,

N∑
α,β=1

∇µαζ ·Mαβ∇µαζ > 0 (9.33)

if at least one the relative chemical-potential gradients is nonzero (for then not all such
gradients can be the same, since µζζ ≡ 0. For a binary substitutional alloy the mobility
matrix has the form [

M −M
−M M

]
(9.34)

and is essentially positive definite if and only if the tensor M is positive definite. Indeed,
when the mobility matrix has the form (9.34), the inequality (9.33) becomes

(a1 − a2) ·M(a1 − a2) > 0.

If M is positive definite, then this inequality holds whenever a1 �= a2, and conversely.
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9.5 Free enthalpy. Moduli

Further, assuming an invertible stress-strain relation as discussed in §7.3, the free enthalpy
defined by

Φ̃(T, �ρ ) = Ψ̃(T, �ρ )−T · Ẽ(T, �ρ ) (9.35)

yields the relations

Ẽ(T, �ρ ) = −∂Φ̃(T, �ρ )
∂T

,

µ̃αζ(T, �ρ ) =
∂Φ̃(ζ)(T, �ρ )

∂ρα
,


 (9.36)

and these in turn yield the Maxwell relations

∂(ζ)Ẽ
∂ρα

=
∂µ̃αζ

∂T
(9.37)

as well as direct counterparts of the other results of §7.3.
As before, we define tensor moduli

C(E, �ρ ) =
∂T̂(E, �ρ )

∂E
=

∂2Ψ̂(E, �ρ )
∂E2

,

Aαβ(E, �ρ ) =
∂T̂(β)(E, �ρ )

∂ρα
=

∂µ̂αβ(E, �ρ )
∂E

,

K(T, �ρ ) =
∂Ẽ(T, �ρ )

∂T
= −∂2Ψ̃(T, �ρ )

∂T2
,

Nαβ(T, �ρ ) =
∂Ẽ(β)(T, �ρ )

∂ρα
= −∂µ̃αβ(T, �ρ )

∂T
.




(9.38)

Aαβ and Nαβ , respectively, are the stress- and strain-composition tensors for α relative to
β. Aαβ represents the marginal increase in stress due to both an incremental increase in
ρα and an incremental decrease of the same amount in ρβ , holding the other densities and
the strain fixed. An analogous meaning applies to Nαβ . In view of the skew-symmetry
relations (9.6) and (9.18), the tensors Aαβ and Nαβ also satisfy skew-symmetry relations:

Aαβ = −Aβα, Nαβ = −Nβα, (9.39)

consequences of which are the identities

N∑
α,β=1

Aαβ = 0,
N∑

α,β=1

Nαβ = 0. (9.40)

It is also useful to note that, as in the unconstrained theory,

K = C−1, Nαβ = −K[Aαβ ], (9.41)

and

C, Aαβ (α, β = 1, 2, . . . , N) are independent of strain and composition

if and only if

K, Nαβ (α, β = 1, 2, . . . , N) are independent of stress and composition.


 (9.42)
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Also, as in the unconstrained theory, we note that the free energy and the relative
chemical potentials at zero stress,

Ψ0(�ρ ) = Ψ̃(T, �ρ )
∣∣
T=0

,

µαβ0 (�ρ ) = µ̃αβ(T, �ρ )
∣∣
T=0

,


 (9.43)

are, by (9.35) and (9.36), related through

µαβ0 (�ρ ) =
∂(β)Ψ0(�ρ )

∂ρα
. (9.44)

9.6 Mechanically simple substitutional alloys

Consistent with our discussion of the unconstrained theory in §7.4, we refer to a substi-
tional alloy as being mechanically simple if:

(i) the elasticity tensor C and stress-composition tensors Aαβ are independent of strain
and composition (cf. (9.42));

(ii) the mobilities Mαβ are independent of strain.

In addition, for a substitutional alloy without vacancies, we stipulate that

(iii) there exist functions µα0 (�ρ ) such that:

Ψ0(�ρ ) = ραµα0 (�ρ ),

µαβ0 (�ρ ) = µα0 (�ρ )− µβ0 (�ρ ).

}
(9.45)

We refer to (9.45) as the free-energy conditions at zero stress, to µα0 (�ρ ) as the species-α
chemical potential at zero stress.26

We now show that, interestingly, the free energy and stress of a mechanically simple
material within this constrained theory have a form identical to that of a mechanically
simple material in the theory without a lattice constraint (cf. (7.27), (7.28)1); only the
expression for the chemical potential is different. We now verify this result, which is
based on the constancy of the tensors C and Aαβ .

Fix the species β and consider the relations

∂T̂(β)

∂ρα
= Aαβ , α = 1, 2, . . . , β − 1, β + 1, . . . , N︸ ︷︷ ︸

β missing

. (9.46)

The derivative on the left may be viewed as the ordinary partial derivative of T̂ with
respect to ρα taken with the density ρβ eliminated via the lattice constraint (cf. the
discussion following (9.8)). We may therefore integrate (9.46) from an arbitrary reference
list �ρ0 to �ρ ; the result is an equation for the stress of the form

T =
N∑
α=1

Aαβ(ρα − ρα0 ) + S(E), (9.47)

26An argument in support of the free-energy conditions at zero stress is given in Appendix A. These
conditions are often used by materials scientists (cf., e.g., Spencer, Voorhees, and Tersoff (2001)). The
condition (9.45)1 is used only in our discussion of an interface between a vapor and a substitutional alloy
without vacancies (§§26.1,26.2).
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with S(E) an arbitrary function of strain. Even though Aββ = 0 (no sum), we may
view (9.47) as a constitutive equation giving the stress as a function of the strain and
all densities, with the interpretation that ρβ , which does not appear on the right side,
has been eliminated via the lattice constraint. The species β was fixed in the foregoing
argument, but we are at liberty to view (9.47) as N equations, each of which delivers the
stress T. If we sum (9.47) over all β and divide the result by N , we find that

T =
1
N

N∑
α,β=1

Aαβ(ρα − ρα0 ) + S(E), (9.48)

and, therefore, for

Aα def=
1
N

N∑
β=1

Aαβ , (9.49)

(9.48) becomes

T =
N∑
α=1

Aα(ρα − ρα0 ) + S(E). (9.50)

Note that, by (9.40) and (9.49),

N∑
α=1

Aα = 0, (9.51)

which would seem natural in lieu of the lattice constraint.
Next, by (9.38)1,

∂S(E)
∂E

= C;

therefore S[E] = C(E) + S0, with S0 a constant tensor. Thus (9.50) becomes

T = C[E] +
N∑
α=1

Aα(ρα − ρα0 ) + S0,

and if we assume that the reference list �ρ0 is chosen so that T = 0 when E = 0 and
�ρ = �ρ0, then S0 = 0 and we arrive at a constitutive relation for the stress:

T = C[E] +
N∑
α=1

Aα(ρα − ρα0 ); (9.52)

(9.52) is identical to (9.46) of the unconstrained theory. Finally, to obtain the free energy
we integrate the relation ∂Ψ̂/∂E = T using (9.52); the result is the relation (7.27) for
the free energy of the unconstrained theory. In (7.27) the function

∑N
α=1(ρ

α− ρα0 )Aα·E
is well defined for all density lists �ρ, irrespective of whether the list is consistent with the
lattice constraint. Thus, by (9.10), its Larché–Cahn derivative ∂(β)/∂ρα applied to this
function gives

(Aα −Aβ)·E.

Thus, in view of the state relation µ̂αβ = ∂(β)Ψ̂/∂ρα, we arrive at the following expression
for the relative chemical potentials:

µαβ =
∂(β)F (�ρ )

∂ρα
+ (Aα −Aβ) ·E. (9.53)
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Summarizing, the constitutive equations for the free energy, the stress, and the chemical
potentials of a mechanically simple, subsitutional alloy must have the specific form

Ψ = 1
2E · C[E] +

N∑
α=1

(ρα − ρα0 )Aα ·E + F (�ρ ),

T = C[E] +
N∑
α=1

Aα(ρα − ρα0 ),

µαβ =
∂(β)F (�ρ )

∂ρα
+ (Aα −Aβ) ·E.




(9.54)

By (9.38)2, the derivative of the right side of (9.54)3 with respect to E should be Aαβ ;
thus

Aαβ = Aα −Aβ .

The remainder of the proof closely follows the argument for the unconstrained theory
ensuing from (7.29). Solving (9.54)2 for E yields

E = K[T]−
N∑
α=1

K[Aα](ρα − ρα0 ) (9.55)

and, by (9.38), the Larché–Cahn derivative of the right side of this equation should be
Nαβ :

Nαβ = −K[Aα −Aβ ]. (9.56)

If we define Nα through the obvious analog of (9.49), we find, upon summing (9.56) over
β, that

Nα = −K[Aα], (9.57)

and hence that

Nαβ = Nα −Nβ . (9.58)

Equation (9.57) is identical to its counterpart in the unconstrained theory. Because of
this, the calculation (7.30) remains valid, so that

Ψ = 1
2T ·K[T] + Ψ0(�ρ ) (9.59)

and F (�ρ ) is related to Ψ0(�ρ ), the free energy at zero stress, through

F (�ρ ) = Ψ0(�ρ )− 1
2

N∑
α,β=1

(ρα − ρα0 )(ρβ − ρβ0 )Aα ·Nβ . (9.60)

Further, by (9.40),

N∑
α=1

Nα = 0. (9.61)

Finally, using (9.55) and (9.59) in (9.35), we find that

Φ = − 1
2T ·K[T]−

N∑
α=1

(ρα − ρα0 )Nα ·T + Ψ0(�ρ ), (9.62)
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and therefore, by (9.36)2,

µαβ = µαβ0 (�ρ )− (Nα −Nβ) ·T. (9.63)

At any given point, the term

−(Nα −Nβ) ·T = −Nαβ ·T (9.64)

represents energy the body would gain, per unit time, were we to replace a β-atom by
an α-atom in the presence of the stress T. An analogous interpretation applies to the
term (Aα −Aβ) ·E.

The results concerning stress as independent variable are summarized as follows:

Ψ = 1
2T ·K[T] + Ψ0(�ρ ),

E = K[T] +
N∑
α=1

(ρα − ρα0 )Nα,

µαβ = µαβ0 (�ρ )− (Nα −Nβ) ·T.




(9.65)

Next, since the mobilities are independent of the strain, it follows that, for any ζ,

α = −
N∑
β=1

Mαβ(�ρ )∇µβζ

= −
N∑
β=1

Mαβ(�ρ )∇
(
∂(ζ)F (�ρ )

∂ρβ
+ (Aβ −Aζ) ·E

)

= −
N∑
β=1

Mαβ(�ρ )
( N∑
γ=1

∂2(ζ)F (�ρ )
∂ρβ ∂ργ

∇ργ + (Aβ −Aζ)∇E
)
. (9.66)

Similarly, we have the alternative expression

α = −
N∑
β=1

Mαβ(�ρ )
( N∑
γ=1

∂2(ζ)Ψ0(�ρ )
∂ρβ∂ργ

∇ργ − (Nβ −Nζ)∇T
)
. (9.67)

In view of the mobility constraint (9.21), we may replace Aβ −Aζ in (9.66) by Aβ and
Nβ −Nζ in (9.67) by Nβ .

9.7 Cubic symmetry

The cubic specializations of the foregoing are straightforward and give results analogous
to those presented in the unconstrained case. Because of their importance, we present
these here. First, the tensors Mαβ , Aαβ , Nαβ , Aα, and Nα are isotropic, so that

Mαβ = mαβ1, Aαβ = aαβ1, Nαβ = ηαβ1, Aα = aα1, Nα = ηα1, (9.68)

with aαβ = aα − aβ and ηαβ = ηα − ηβ . Further, the moduli aα and ηα are related
through the compressibility k via

aα = −3kηα. (9.69)
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and, by (9.51) and (9.61), satisfy

N∑
α=1

aα = 0,
N∑
α=1

ηα = 0.

In addition, the relations (9.54)1 and (9.62) determining the free energy and free
enthalpy specialize to

Ψ = 1
2E · C[E] +

N∑
α=1

aα(ρα − ρα0 ) trE + F (�ρ ),

Φ = − 1
2T ·K[T]−

N∑
α=1

ηα(ρα − ρα0 ) trT + Ψ0(�ρ ),




(9.70)

with Ψ0(�ρ ) given by (7.42). Further, as consequences of (9.54)2,3, (9.65)2,3, and (9.68)4,5
we have the equivalent sets of relations:

T = C[E] +
N∑
α=1

aα(ρα − ρα0 )1, µαβ =
∂(β)F (�ρ )

∂ρα
+ (aα − aβ)trE,

E = K[T] +
N∑
α=1

ηα(ρα − ρα0 )1, µαβ = µαβ0 (�ρ )− (ηα − ηβ)trT,




(9.71)

with µαβ0 given by (7.25). Finally, we have alternative expressions of Fick’s law:

α = −
N∑
β=1

mαβ(�ρ )
( N∑
γ=1

∂2(ζ)F (�ρ )
∂ρβ ∂ργ

∇ργ + aβ ∇trE
)
,

α = −
N∑
β=1

mαβ(�ρ )
( N∑
γ=1

∂2(ζ)Ψ0(�ρ )
∂ρβ∂ργ

∇ργ − ηβ∇trT
)
,




(9.72)

in which the choice of species ζ is arbitrary.

10 Governing equations

The local balance laws for forces and atomic densities,

divT = 0, ρ̇α = −divα, (10.1)

supplemented by the constitutive equations form the governing equations of the theory,
which are coupled partial differential equations for the displacement and the atomic
densities. For the general theory the resulting equations, while not difficult to write,
are complicated and afford little insight. For that reason, we display only the governing
equations applicable to mechanically simple unconstrained materials and mechanically
simple substitutional alloys without vacancies.

Note that, because of the strain displacement relation E = 1
2 (∇u + ∇u�) and the

symmetry Cijkl = Cijlk, we may write the components of C[E] in the form

(
C[E]

)
ij

= Cijkl
∂uk
∂xl

.
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For an unconstrained material the basic equations take the form

Cijkl
∂2uk

∂xl∂xj
+

N∑
α=1

Aαij
∂ρα

∂xj
= 0,

ρ̇α = div
{ N∑
β=1

Mαβ

( N∑
γ=1

∂2F (�ρ )
∂ρβ ∂ργ

∇ργ + Aβ∇E
)}

,




(10.2)

where, for L and P tensor fields, the vector field L∇P has the component form

(L∇P)k = Lij
∂Pij
∂xk

.

The atomic balance (10.2)2 may also be written in terms of stress and, by (7.36), has the
form

ρ̇α = div
{ N∑
β=1

Mαβ

( N∑
γ=1

∂2Ψ0(�ρ )
∂ρβ ∂ργ

∇ργ −Nβ∇T
)}

. (10.3)

In writing these equations we have supressed the dependencies of Mαβ , F , and Ψ0 on �ρ.
For a substitutional alloy, the only change in the basic equations is that

∂2(ζ)F (�ρ )
∂ρβ ∂ργ

should replace
∂2F (�ρ )
∂ρβ ∂ργ

and
∂2(ζ)Ψ0(�ρ )
∂ρβ ∂ργ

should replace
∂2Ψ0(�ρ )
∂ρβ ∂ργ

In using the atomic balances for substitutional materials, one should bear in mind that,
for their validity, the mobility tensors Mαβ must be consistent with the mobility con-
straints (9.21).

B Configurational forces in bulk

In dynamical problems, defect structures, such as phase interfaces and dislocation lines,
may move relative to the material. In variational treatments of related equilibrium prob-
lems, independent kinematical quantities may be independently varied, and each such
variation yields a corresponding Euler–Lagrange balance. In dynamics with general forms
of dissipation there is no encompassing variational principle, but experience has demon-
strated the need for an additional balance associated with the kinematics of the defect.
An additional balance of this sort is the relation that ensues when one formally sets the
variationally derived expression for the driving force on a defect equal to a linear function
of the velocity of that defect.27 Here, guided by variational treatments in which such a
balance is a consequence of the assumption of equilibrium, we follow Gurtin and Struthers
(1990) and Gurtin (1995, 2000) and introduce, as primitive objects, configurational forces
together with an independent configurational force balance. Roughly speaking, configu-
rational forces are related to the integrity of the body’s material structure and expend
power in the transfer of material and in the evolution of defects.

27Classical examples of driving forces are those on: dislocations (Peach and Koehler 1950); triple
junctions (Herring 1951); vacancies, interstitial atoms, and inclusions (Eshelby 1951); interfaces (Eshelby
1956, 1970); crack tips (Eshelby 1956, Atkinson and Eshelby 1968, Rice 1968). Other examples of
additional balances are discussed in §1.1.
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In this part we discuss configurational forces within a context that neglects defect
structures. Within that context such forces are extraneous to the solution of actual
boundary-value problems. But in general situations knowledge of the structure of con-
figurational forces in bulk away from defects is central to the understanding of their
localized behavior at defects.

11 Configurational forces. Power

11.1 Configurational force balance

The configurational force system we envisage has two ingredients: a stress C(x, t) and a
body force f(x, t), both distributed continuously over the body. This system is required
to satisfy the configurational force balance∫

∂P

Cν da +
∫
P

f dv = 0 (11.1)

for all parts P, a requirement equivalent to the local force balance28

divC + f = 0. (11.2)

11.2 Migrating control volumes. Accretion

ν

R

v

V∂Rν

v∂R

Figure 2: The migrating control volume R = R(t); v∂R represents the velocity with
which an external agency adds material to ∂R; the normal component V∂R of v∂R must
coincide with the normal velocity of ∂R.

To characterize the manner in which configurational forces perform work, a means of
capturing the kinematics associated with the transfer of material is needed. Following
Gurtin (1995, 2000), we accomplish this with the aid of control volumes R(t) that migrate
through B and thereby result in the transfer of material to — and the removal of material
from — R(t) at ∂R(t), a process we refer to as accretion. Here it is essential that parts
not be confused with migrating control volumes:

28Configurational force balances may be derived as consequences of invariance of the power under
Galilean changes of referential observer (Gurtin 2000, Podio-Guidugli 2002).
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• a part P is a fixed subregion of B;

• a migrating control volume R(t) migrates through B.

LetR = R(t) be a migrating control volume with V∂R(x, t) the (scalar) normal velocity
of ∂R(t) in the direction of the outward unit normal ν. To describe power expenditures
associated with the migration of R(t), we introduce a field v∂R(x, t) defined over ∂R(t)
for all t, which we view as the velocity with which an external agency adds material at
∂R(t). Compatibility then requires that v∂R have V∂R as its normal component,

v∂R · ν = V∂R, (11.3)

but v∂R is otherwise arbitrary.29 We refer to any such field v∂R as a velocity field for
∂R.

Non-normal velocity fields, while not intrinsic, are important. For example, given
an arbitrary time-dependent parametrization x = r(p1, p2, t) of ∂R, the field defined by
v∂R = ∂r/∂t (holding (p1, p2) fixed) generally represents a non-normal velocity field for
∂R. But while it is important that we allow for the use of non-normal velocity fields, it is
essential that the theory itself not depend on the particular velocity field used to describe
a given migrating control volume. As we shall see (§12.2), this observation has important
consequences.

∂R(τ)

∂R(t)x

z(τ)

trajectory

v∂R(t)

v∂R(τ)

Figure 3: The trajectory z(τ) of a particle that passes through x on ∂R(t) at time t.

Let R = R(t) be a migrating control volume and v∂R a velocity field for ∂R. One
might picture v∂R as a velocity field for particles (not material points) evolving on the
migrating surface ∂R, in which case the trajectory z(τ) of the particle that passes through
position x on ∂R(t) at time t would be the unique solution of

dz(τ)
dτ

= v∂R(z(τ), τ), z(t) = x. (11.4)

Given a field f(x, t), its rate of change following ∂R, as described by v∂R, is the derivative
with respect to time along such trajectories:

◦
f(x, t) =

d

dτ
f(z(τ), τ)

∣∣∣
τ=t

. (11.5)

29Non-normal velocity fields, while not intrinsic, are important. For example, given an arbitrary time-
dependent parametrization x = r(p1, p2, t) of ∂R, the field defined by v∂R = ∂r/∂t (holding (p1, p2)
fixed) generally represents a non-normal velocity field for ∂R.
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In particular, using the chain-rule, we find, for the displacement field u,

◦u(x, t) =
d

dτ
u(z(τ), τ)

∣∣∣
τ=t

= u̇(x, t) +∇u(x, t)v∂R(x, t). (11.6)

We refer to ◦u = u̇ + (∇u)v∂R as the motion velocity following ∂R as described by v∂R.

11.3 Power expended on a migrating control volume R(t)

The notion of power is basic to all of mechanics. In its essence, this notion involves the
pairing, via an inner product, of velocities with associated forces. In such a pairing the
velocity is said to be power conjugate to its associated force. In our development of the
free-energy imbalance in §4, the power expended on an arbitrary part P by tractions
acting on ∂P was expressed by (2.4), viz.

W(P) =
∫
∂P

Tν · u̇ da. (11.7)

Here the integrand Tν · u̇ represents the power expended by the traction Tν over the
motion velocity u̇ of material points on ∂P; so that u̇ is the power conjugate velocity for
Tν.

Consider now a migrating control volumeR(t). The migration ofR(t) is accompanied
by a transfer of material across ∂R(t), and one would expect that this transfer of material
be accompanied by an expenditure of power over and above the standard expenditure
represented by (11.7). A central tenet of our treatment of configurational forces is the
presumption that:30

Configurational forces expend power in consort with transfers of material.

In particular, for the migrating control volume R(t), we view the traction Cν as a force
associated with the transfer of material across ∂R(t); since any given velocity field v∂R
for ∂R(t) represents a velocity field with which material is transferred across ∂R(t), we
take v∂R to be an appropriate power conjugate velocity for Cν. We therefore assume
that the migration of ∂R is accompanied by an expenditure of power equal to∫

∂R(t)

Cν · v∂R da.

Classically, the standard traction Tν on ∂R would be power-conjugate to the motion
velocity u̇, as in (11.7), but ∂R when migrating has no intrinsic material description, as
material is continually being added and removed, and it would seem appropriate to use
as power-conjugate velocity for Tν the motion velocity ◦u following (the migration of)
∂R as described by v∂R; granted this,∫

∂R(t)

Tν · ◦u da (11.8)

represents the associated expenditure of power.
Material is added to R only along its boundary ∂R; there is no transfer of material to

the interior of P, nor is there any change in the material structure. For that reason the

30Cf. Gurtin (1995, 2000)
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configurational body force f performs no work. We therefore write the power expenditure
of the standard and configurational force systems in the form

W(R(t)) =
∫

∂R(t)

(Cν · v∂R + Tν · ◦u) da. (11.9)

Writing the expended power in the form (11.9) might, at first sight, appear artificial,
since the tangential component of the velocity v∂R is not uniquely determined by the
migration of ∂R; this issue is addressed in §12.2, where we determine conditions both
necessary and sufficient for W(R(t)) to be independent of the specific choice of v∂R.

If v∂R ≡ 0, then R(t) is independent of t, so that R(t) ≡ P, with P a part. In this
case, by (11.6), ◦u reduces to u̇ and the expended power assumes its classical form (11.7).

12 Thermodynamical laws for migrating control vol-
umes. The Eshelby relation

We now present extensions of the atomic balance, balance of energy, and the entropy
imbalance appropriate to a treatment of configurational forces.31 Our extensions are
based on the use of migrating control volumes to characterize the manner in which
configurational forces expend power.

12.1 Migrational balance laws

We begin by rewriting the atomic balance (3.1), balance of energy (4.2), and the entropy
imbalance (4.3) for an arbitrary part P of B:

d

dt

∫
P

ρα dv = −
∫
∂P

α · ν da,

d

dt

∫
P

ε dv =
∫
∂P

Tν · u̇ da−
∫
∂P

q · ν da−
N∑
α=1

∫
∂P

µαα·ν da,

d

dt

∫
P

η dv ≥ −
∫
∂P

q
θ
· ν da.




(12.1)

Generalizations, to migrating control volumes R(t), of (12.1)1,3, the atomic balance
and the entropy inequality, are straightforward, but the generalization of the energy
balance (12.1)2 is not at all obvious. Indeed, the standard generalization of this balance,
namely

d

dt

∫
R(t)

ε dv −
∫

∂R(t)

εV∂R da =
∫

∂R(t)

Tν · u̇ da−
∫

∂R(t)

q · ν da −
N∑
α=1

∫
∂R(t)

µαα·ν da,

(12.2)

is inapplicable because it does not account explicitly for the rate at which work is per-
formed by the configurational-force system.

Here, following Gurtin (1995, 2000, §6c), we consider a more general development
based on:

31Due to their absence of temporal derivatives, the standard force and moment balances (2.3) and the
configurational force balance (11.1) remain valid as is for migrating control volumes.
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• an atomic balance for each species α in the (more or less standard) form

d

dt

∫
R(t)

ρα dv = −
∫

∂R(t)

α · ν da +
∫

∂R(t)

ραV∂R da

︸ ︷︷ ︸
accretive flow

of atoms

; (12.3)

• balance of energy in the form

d

dt

∫
R(t)

ε dv =

W(R(t))︷ ︸︸ ︷∫
∂R(t)

(Cν · v∂R + Tν · ◦u) da−
∫

∂R(t)

q · ν da

−
N∑
α=1

∫
∂R(t)

µαα·ν da +
∫

∂R(t)

QV∂R da

︸ ︷︷ ︸
accretive heating

+
N∑
α=1

∫
∂R(t)

µαραV∂R da,

︸ ︷︷ ︸
accretive flow of
chemical energy

(12.4)

with Q a field defined over the body for all time;

• an entropy imbalance in the form

d

dt

∫
R(t)

η dv ≥ −
∫

∂R(t)

q
θ
· ν da +

∫
∂R(t)

QV∂R
θ

da

︸ ︷︷ ︸
accretive flow

of entropy

. (12.5)

12.2 The Eshelby relation as a consequence of invariance

We require that the migrational laws (12.3)–(12.5) be satisfied for any choice of the
migrating control volumeR(t) and — in view of our discussion in the paragraph following
(11.3) — that these laws be independent of the choice of velocity field v∂R(x, t) used to
describe the migration of ∂R(t). Among the migrational laws it is only the energy balance
(12.4) that is influenced by changes in v∂R(x, t), an influence felt through the expended
power W(R(t)) as described by (11.9). Thus we are led to the

Intrinsicality Hypothesis Given any migrating control volume R(t),
the expended power (11.9) is independent of the choice of velocity field v∂R(x, t)
used to describe the migration of ∂R(t).

This hypothesis has strong consequences. Choose a migrating control volume R(t)
and an arbitrary tangential vector field on ∂R. Then, by (11.3),

v∂R = V∂Rν + a (12.6)

is a velocity field for ∂R(t), and the requirement that the expended power be invariant
under changes in v∂R is equivalant to the requirement that this power be independent of
the choice of tangential field a. By (11.6) and (12.6),

◦u = u̇ + V∂R(∇u)ν + (∇u)a;

thus

Cν · v∂R + Tν · ◦u = Tν · u̇ + V∂Rν · (C + (∇u)�T)ν + a · (C + (∇u)�T)ν
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and, letting G = C + (∇u)�T, the expended power (11.9) becomes

W(R(t)) =
∫

∂R(t)

Tν · u̇ da +
∫

∂R(t)

V∂Rν ·Gν da +
∫

∂R(t)

a ·Gν da. (12.7)

Since a appears linearly in (12.7), and not elsewhere in (11.9), the invariance of (11.9)
under changes in a is equivalent to the requirement that∫

∂R(t)

a ·Gν da = 0

for all R(t) and all fields a(x, t) tangential to ∂R(t). Since both R and a are arbitrary,
Gν · a = 0 for all orthogonal vectors ν and a; thus Gν must be parallel to ν for all ν
and every vector must be an eigenvector of G. Thus there is a scalar field π such that
G = π1; hence (Gurtin, 2000, p. 37)

C = π1− (∇u)�T (12.8)

and the expended power has the intrinsic form

W(R(t)) =
∫

∂R(t)

Tν · u̇ da +
∫

∂R(t)

πV∂R da. (12.9)

The field π represents a configurational bulk tension that performs work in conjunction
with the addition of material at the boundary of a migrating control volume. Conversely,
the relation 12.8 renders the theory consistent with the hypothesis of intrinsicality.

Summarizing, we have shown that the intrinsicality hypothesis is equivalent to the
requirement that the configurational stress and expended power have the respective forms
(12.8) and (12.9).

But more can be said if we account for the full set of migrational laws. A standard
transport theorem asserts that, for R(t) a migrating control volume and Θ(x, t) a field
on the body for all time,

d

dt

∫
R(t)

Θ dv =
∫
R(t)

Θ̇ dv +
∫

∂R(t)

ΘV∂R da. (12.10)

Thus we may rewrite (12.5) as∫
R(t)

η̇ dv +
∫

∂R(t)

ηV∂R da ≥ −
∫

∂R(t)

q
θ
· ν da +

∫
∂R(t)

QV∂R
θ

da. (12.11)

On the other hand, we may use (12.9) and (12.10) to write balance of energy (12.4) in
the form∫
R(t)

ε̇ dv +
∫

∂R(t)

εV∂R da =
∫

∂R(t)

Tν · u̇ da +
∫

∂R(t)

πV∂R da−
∫

∂R(t)

q · ν da

−
N∑
α=1

∫
∂R(t)

µαα·ν da +
∫

∂R(t)

(
Q +

N∑
α=1

µαρα
)
V∂R da (12.12)
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Given a time τ , it is possible to find a second migrating control volume R ′(t) with
R ′(τ) = R(τ), but with V ′∂R, the normal velocity of ∂R′ at t = τ , an arbitrary scalar
field on ∂R′; satisfaction of (12.11) and (12.12) for all such V ′∂R implies that

Q = ηϑ, π = ε− ηϑ−
N∑
α=1

µαρα, (12.13)

so that

π = Ψ−
N∑
α=1

µαρα (12.14)

with Ψ = ε− θη the free-energy. Thus (12.8) yields the Eshelby relation

C =
(

Ψ−
N∑
α=1

ραµα
)
1− (∇u)�T. (12.15)

This relation, which applies to both unconstrained materials and substitutional alloys,
plays a fundamental role in our discussion of evolving interfaces.

Note that, by (12.13), the accretive heating QV∂R coincides with the temperature
times ηV∂R, a relation reminisent of the classical thermodynamic relation d(heat) =
(temperature)d(entropy).

12.3 Consistency of the migrational balance laws with classical
forms of these laws

By (12.13), we may rewrite the migrational laws for energy and entropy in the form

d

dt

∫
R(t)

ε dv −
∫

∂R(t)

εV∂R da =
∫

∂R(t)

(Cν · v∂R + Tν · ◦u) da−
∫

∂R(t)

q · ν da

−
N∑
α=1

∫
∂R(t)

µαα·ν da−
∫

∂R(t)

(
Ψ−

N∑
α=1

ραµα
)
V∂R da,

d

dt

∫
R(t)

η dv −
∫

∂R(t)

ηV∂R da ≥ −
∫

∂R(t)

q
θ
· ν da.




(12.16)

The second of these and the atomic balance (12.3) are standard. On the other hand,
balance of energy in the form (12.16)2 is nonstandard, as it explicitly accounts for power
expended by configurational forces, but we may use (12.9) and (12.14) to reduce (12.16)2
to its classical form (12.2). The migrational laws are therefore fully consistent with
classical versions of these laws.

12.4 Isothermal conditions. The free-energy imbalance

Assume now that isothermal conditions prevail, so that

θ ≡ constant.
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Multiplying the entropy imbalance (12.16)3 by θ and subtracting the result from the
energy balance (12.16)2 then yields the (migrational) free-energy imbalance

d

dt

∫
R(t)

Ψ dv ≤
∫

∂R(t)

(Cν · v∂R + Tν · ◦u) da

−
N∑
α=1

∫
∂R(t)

µαα · ν da +
N∑
α=1

∫
∂R(t)

µαραV∂R da

︸ ︷︷ ︸
accretive flow of
chemical energy

. (12.17)

This free-energy imbalance should be compared to its classical counterpart

d

dt

∫
R(t)

Ψ dv −
∫

∂R(t)

ΨV∂R da ≤
∫

∂R(t)

Tν · u̇ da−
N∑
α=1

∫
∂R(t)

µαα · ν da, (12.18)

which accounts for an accretive flow of free energy,∫
∂R(t)

ΨV∂R da, (12.19)

but not for power expended by the configurational force system, nor for an accretive flow
of chemical energy.

Finally, in view of the lattice constraint (5.1), C transforms according to

C→ C− cρsites1

under the transformations µα → µα + c and, consequently, the free-energy imbalance
(12.17) is invariant under such transformations.

12.5 Generic free-energy imbalance for migrating control vol-
umes

The free-energy imbalance (12.17) has the generic form

d

dt
{free energy of R(t)}

≤ {power expended on R(t) by configurational and standard forces}

+ {energy flow into R(t) by atomic diffusion}

+ {accretive flow of chemical energy into R(t)}. (12.20)

With the exception of the next section, the remainder of this work focuses on evolving
interfaces neglecting thermal influences. Our discussion there is based on free-energy
imbalances of the generic structure (12.20) with the role of a migrating control volume
replaced by that of an interfacial pillbox (§16).

13 Role and influence of constitutive equations

Until this point in our discussion of configurational forces, no use has been made of con-
stitutive theory. Hence, the results are completely independent of constitutive equations
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and apply to broad classes of materials, allowing, for example, for plasticity, viscoelas-
ticity, and other more complicated forms of dissipative material response that couple the
mechanical and chemical degrees of freedom. We now consider the implications of assum-
ing that the free energy, stress, and chemical potentials are given by thermocompatible
constitutive equations depending upon the strain and the atomic density.

First note that, since
(
(∇u)�T

)
ij

= Tkj∂uk/∂xi, computing divC using the Eshelby
relation (12.15) gives

∂Cij
∂xj

=
∂

∂xi

(
Ψ−

N∑
α=1

ραµα
)
− Tkj

∂2uk
∂xj∂xi

− ∂Tkj
∂xj

∂uk
∂xi

,

and therefore using the balance divT = 0, the symmetry of T, and the strain-displacement
relation (2.1), we find that the configurational body force f in the balance divC + f = 0
has the decomposition

fi = − ∂Ψ
∂xi

+ Tkj
∂Ekj
∂xi

+
N∑
α=1

µα
∂ρα

∂xi
+

N∑
α=1

ρα
∂µα

∂xi
. (13.1)

By (7.5),

∂Ψ
∂xi

= Tkj
∂Ekj
∂xi

+
N∑
α=1

µα
∂ρα

∂xi
(13.2)

for an unconstrained material and therefore f =
∑N
α=1 ρα∇µα. For a substitutional alloy

the computation is similar, but a bit more complicated; the crucial step is noting that,
by virtue of the lattice constraint (5.1),

∑N
α=1 µα(∂ρα/∂xi) =

∑N
α=1 µαζ(∂ρα/∂xi) for

any reference species ζ, so that, by (9.27),

∂Ψ
∂xi

= Tkj
∂Ekj
∂xi

+
N∑
α=1

µαζ
∂ρα

∂xi
= Tkj

∂Ekj
∂xi

+
N∑
α=1

µα
∂ρα

∂xi
. (13.3)

Thus, for unconstrained materials and for substitutional alloys,

f =
N∑
α=1

ρα∇µα, (13.4)

showing that configurational body forces arise in response to spatial variations in the
chemical potentials. We view f as an internal body force. If we had, from the outset,
included an external body force b in the standard force system, so that divT + b = 0,
then we would get a concomitant external body force −(∇u)�b in the configurational
system (cf. Eshelby, 1956; Maugin, 1993).

A major difference between the standard and configurational force systems is the
presence of internal configurational forces such as f . These forces are connected with the
material structure of the body B; corresponding to each configuration of B there are a
distribution of material and internal configurational forces that act to hold the material
in place in that configuration. Such forces characterize the resistance of the material to
structural changes and are basic when discussing the kinetics of defects.

Finally, as is clear from (12.15) and (13.4), the configurational fields are completely
determined by the fields u, T, Ψ, �µ, and �ρ ; there is no need for additional constitutive
assumptions. As we shall see, this will not be so when we discuss evolving interfaces.
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C Interface kinematics

We consider an interface S(t) separating bulk phases or grains; in the latter case we will
often, but not always, refer to S as a grain boundary. To avoid cumbersome mathematical
formality associated with surfaces,

we restrict attention to two space-dimensions;

the interface is then presumed to be a smooth curve S(t) that evolves smoothly with t.

e1

ϑ St

n

s

Figure 4: The interface S(t). Our convention is such that K > 0 on concave upward
portions of S(t).

14 Definitions and basic results

This section contains mathematical results of a preliminary nature concerning the evo-
lution of curves.32

14.1 Curvature. Normal velocity. Normal time-derivative

We use the following notation for quantities associated with S: t(x, t) and n(x, t), re-
spectively, denote the tangent and normal fields

t = (cosϑ, sinϑ), n = (− sinϑ, cosϑ), (14.1)

with n directed outward from the region occupied by the (−)-phase, and with ϑ the
counterclockwise angle from the (1,0) axis to t (Figure 4). Then (14.1) yield the Frenet
formulas

∂t
∂s

= Kn,
∂n
∂s

= −Kt, (14.2)

with s the arclength and

K =
∂ϑ

∂s
(14.3)

the curvature.
We consistently use the term interfacial field for a scalar, vector, or tensor field ϕ(x, t)

defined on S(t) for all t.
Let x = r(s, t) denote an arc-length parametrization of S(t) with s increasing in the

direction of t. Then

V =
∂r
∂t
· n (14.4)

32These results are taken from Angenent and Gurtin (1989). Cf. also Gurtin (1993, §§1,2), where a
more detailed presentation may be found.



A unified treatment of evolving interfaces 53

and

v = V n (14.5)

denote the scalar and vector normal velocities of S, while

v = −∂r
∂t
· t

is termed the arc velocity. Note that, since

t =
∂r
∂s

and t · ∂t/∂t = 0, we may use (14.2)1 and (14.4) to conclude that

∂v

∂s
= −t · ∂

∂t

∂r
∂s
− ∂r

∂t
· ∂t
∂s

= −∂r
∂t
· (Kn)

= −KV. (14.6)

Given a point x0 on the interface at some time t0, the normal trajectory through x0

at t0 is the smooth curve z(t) defined as the solution of the initial-value problem

dz(t)
dt

= v(z(t), t), z(t0) = x0. (14.7)

The normal trajectory z(t) may also be described uniquely in terms of arc length; indeed
since the mapping x = r(s, t) repesents a one-to-one correspondence between s and x,33

there is a function s = S(t) such that z(t) = r(S(t), t). Then, since the trajectory z(t) is
normal,

t(S(t), t) · dr(S(t), t)
dt

= 0 (14.8)

and hence S(t) is a solution of the initial-value problem

dS(t)
dt

= v(S(t), t), S(t0) = s0, (14.9)

where x0 = r(s0, t).
The normal time-derivative �

ϕ of an interfacial field ϕ(x, t) is the derivative of ϕ
following the normal trajectories of S(t):34

�
ϕ(x0, t0) =

dϕ(z(t), t)
dt

∣∣∣∣
t=t0

. (14.10)

The field ϕ(x, t) may equally well be described as a function ϕ(s, t) of arc length and
time. We refer to ϕ(s, t) as the arc-length description of ϕ. In the arc-length description
the normal time derivative has the equivalent form

�
ϕ(s0, t0) =

dϕ(S(t), t)
dt

∣∣∣∣
t=t0

,

33The curve S(t) is presumed to be nonintersecting.
34The normal-time derivative is a counterpart, for the interface S, of the time-derivative following the

motion of the surface ∂R of a migrating control volume R (cf. §11.2).
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so that, by (14.9),

�
ϕ =

∂ϕ

∂t
+ v

∂ϕ

∂s
, (14.11)

where here and in what follows
∂ϕ

∂t
denotes the partial derivative of ϕ holding s fixed.

Basic to our discussion of constitutive equations is the chain-rule for the normal
time-derivative: given a function

ϕ = ϕ̂(�λ ), �λ = (λ1, λ2, . . . , λN ),

with each λn an interfacial field,

�
ϕ =

N∑
n=1

∂ϕ̂(�λ )
∂λn

�
λn. (14.12)

The verification of (14.12) is based on the definition of the normal time-derivative as
specified in (14.10). Indeed,

�
ϕ(x0, t0) =

dϕ(z(t), t)
dt

∣∣∣∣
t=t0

=
dϕ̂(�λ(z(t), t))

dt

∣∣∣∣
t=t0

=
N∑
n=1

∂ϕ̂(�λ)
∂λn

[
dλn(z(t), t)

dt

]
t=t0

(14.13)

=
N∑
n=1

∂ϕ̂(�λ(x0, t0))
∂λn

�
λn(x0, t0). (14.14)

14.2 Commutator and transport identities

Often in what follows it becomes necessary to interchange the differential operators ∂/∂s
and (. . . )�. We now establish the commutator associated with such an interchange. Let
ϕ be an interfacial field. Then, by (14.11),

∂
�
ϕ

∂s
=

∂

∂s

(
∂ϕ

∂t
+ v

∂ϕ

∂s

)
=

∂2ϕ

∂t∂s
+ v

∂2ϕ

∂s2
+

∂v

∂s

∂ϕ

∂s
,

so that, by (14.6), we have the commutator relation

∂
�
ϕ

∂s
=

(∂ϕ

∂s

)�

−KV
∂ϕ

∂s
. (14.15)

Also important are the transport identities:
�
ϑ =

∂V

∂s
,

�
K =

∂2V

∂s2
+ K2V,

�
t =

�
ϑn,

�n = −
�
ϑt.




(14.16)
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The identities (14.16)3,4, follow from (14.1). Next, applying (14.11) with ϕ = r,

�r =
∂r
∂t

+ vt, (14.17)

so that, by (14.4) and (14.8),

�r = (n · �r)n =
(
n · ∂r

∂t

)
n

= V n. (14.18)

Therefore, by (14.2)2,

n · ∂
�r

∂s
=

∂V

∂s
.

On the other hand, the commutator relation with ϕ = r yields

n · ∂
�r

∂s
= n · �

t =
�
ϑ.

The last two relations imply (14.16)1. Finally, since K = ∂ϑ/∂s, the commutator relation
with ϕ = ϑ yields

∂
�
ϑ

∂s
=

�
K −K2V (14.19)

and (14.16)2 follows from (14.16)1.

14.3 Evolving subcurves C(t) of S(t)

xa
S

C

xb

xb

dxb
dt

= Wbtb + Vbnb

C

nb

tb

Figure 5: The subcurve C of S and the velocity of the endpoint xb. Wb(t) is the tangential
endpoint velocity of xb.

Throughout, C(t) denotes an arbitrary evolving subcurve of S(t). We consistently
use the following notation: xa(t) and xb(t), respectively, denote the initial and terminal
points (in the sense of arc length) of the curve C(t); for any interfacial field ϕ(x, t),

ϕa(t) ≡ ϕ|a(t) = ϕ(xa(t), t), ϕb(t) ≡ ϕ|b(t) = ϕ(xb(t), t). (14.20)
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The endpoints of C(t) may also be marked by their arc-length values Sa(t) and Sb(t),
where

xa(t) = r(Sa(t), t), xb(t) = r(Sb(t), t), (14.21)

so that, using the arc-length description of ϕ,

ϕa(t) = ϕ(Sa(t), t), ϕb(t) = ϕ(Sb(t), t); (14.22)

hence
ϕ
∣∣b
a
≡ ϕb − ϕa =

∫
C

∂ϕ

∂s
ds.

The functions Wa(t) and Wb(t) defined by

Wa = ta ·
dxa
dt

, Wb = tb ·
dxb
dt

are the tangential endpoint velocities of C(t). Since the normal velocities of the endpoints
must coincide with the normal velocity of S(t),

Va = na ·
dxa
dt

, Vb = nb ·
dxb
dt

;

hence (Figure 5)

dxa
dt

= Wata + Vana,
dxb
dt

= Wbtb + Vbnb. (14.23)

On the other hand, by (14.21),

dxa
dt

=
∂r
∂t

∣∣∣
a

+ ta
dSa
dt

,

so that, by (14.22),

dxa
dt

= �r
∣∣
a

+ ta

(
dSa
dt
− va

)
, (14.24)

and an analogous relation holds for the other endpoint. Thus, since t · �r = 0,

Wa =
dSa
dt
− va, Wb =

dSb
dt
− vb. (14.25)

Given an interfacial field ϕ, the argument leading to (14.24) yields

dϕa
dt

= �
ϕ
∣∣
a

+
∂ϕ

∂s

∣∣∣∣
a

(
dSa
dt
− va

)

and similarly for the other endpoint. Therefore, by (14.25),

dϕa
dt

= �
ϕ
∣∣
a

+
∂ϕ

∂s

∣∣∣
a
Wa,

dϕb
dt

= �
ϕ
∣∣
b
+

∂ϕ

∂s

∣∣∣
b
Wb, (14.26)

and applying these relations with ϕ = ϑ yields, since ∂ϑ/∂s = K,

dϑa
dt

=
�
ϑ
∣∣
a

+ KaWa,
dϑb
dt

=
�
ϑ
∣∣
b
+ KbWb. (14.27)
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14.4 Transport theorem for integrals

Let ϕ be an interfacial field. Then

∫
C(t)

ϕds =

S2(t)∫
S1(t)

ϕ(s, t) ds.

Thus, writing [
ϕS

]b
a

= ϕbSb − ϕaSa (14.28)

and suppressing the argument t where convenient, we may use (14.11) to conclude that

d

dt

∫
C(t)

ϕds =
∫
C

∂ϕ

∂t
ds +

[
ϕṠ

]b
a

=
∫
C

(
�
ϕ− v

∂ϕ

∂s

)
ds +

[
ϕṠ

]b
a
.

Thus if we integrate the term v ∂ϕ/∂s by parts and use (14.6) and (14.25), we arrive at
the following theorem (Angenent and Gurtin, 1989):

Transport Theorem for Integrals For C(t) a smoothly evolving
subcurve of S(t) and ϕ(x, t) a smooth interfacial field,

d

dt

∫
C(t)

ϕds =
∫
C(t)

( �
ϕ− ϕKV ) ds +

[
ϕW

]b
a
, (14.29)

with [
ϕW

]b
a

= ϕbWb − ϕaWa. (14.30)

Notation analogous to (14.30) (for endpoint differences) will be used repeatedly throughout
what follows.

15 Deformation of the interface

We now turn to a discussion of deformation. We consider both solid-solid and solid-vapor
phase transitions; in the former case we restrict attention to coherent interfaces.

15.1 Interfacial limits

We assume that the interface S(t) separates phases labelled (+) and (−), with the normal
n pointing into the (+)-phase. When discussing solid-vapor interfaces, the (+)-phase
always denotes the vapor.

Consider an arbitrary field f(x, t) that is continuous up to S(t) from either side. Let
[[f ]] and 〈〈f〉〉 designate the jump and average of f across the interface, while f± denote
the limiting values of f ; specifically, for x on S(t),

[[f ]](x, t) = f+(x, t)− f−(x, t),

〈〈f〉〉(x, t) = 1
2

(
f+(x, t) + f−(x, t)

)
,

f±(x, t) = lim
ε→0
ε>0

f(x± εn(x, t), t).




(15.1)
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Our discussion of solid-vapor interfaces is limited to situations in which the vapor
may, in essence, be represented by the limiting values of its basic fields at the interface;
bulk values of these fields away from the interface play no role. In this instance, the field
f+ simply represents the value of f in the vapor at the interface.

15.2 Interfacial-strain vector

(a) Solid-vapor interface

We assume that the displacement u(x, t) is smooth up to the interface from the solid
phase, so that the interfacial strain

e =
∂u
∂s

= (∇u)t (15.2)

is well defined on S, as is the temporal derivative
�u = u̇ + (∇u)v. (15.3)

(b) Coherent solid-solid interface

In our discussion of solid-solid phase transitions we restrict attention to interfaces S that
are coherent in the sense that u is continuous across the interface:35

[[u]] = 0. (15.4)

We do not require that the derivatives of u be continuous across the interface, but we
do require that all such derivatives be continuous up to the interface from either side, an
assumption that allows us to compute the interfacial strain

e =
∂u
∂s

(15.5)

using the limiting values of ∇u on each side of the interface:

e = (∇u)+t = (∇u)−t = 〈〈∇u〉〉t. (15.6)

Similarly, for x = rn(p, t) a normal parametrization of S(t),36 we may use (14.10)
and the chain-rule to compute �u as follows:

�u = u̇+ + (∇u)+v = u̇− + (∇u)−v = 〈〈u̇〉〉+ 〈〈∇u〉〉v; (15.7)

this yields the classical compatibility condition

[[u̇]] + V [[∇u]]n = 0. (15.8)

(c) Identities involving the interfacial strain

It is convenient to introduce the interfacial tensile and shear strains, ε and γ, defined by

e = εt + γn. (15.9)

Then

ε = t · ∂u
∂s

, γ = n · ∂u
∂s

, (15.10)

35Cf. Cermelli & Gurtin (1994a, b) for discussions of incoherent interfaces.
36That is, ∂rn/∂t = V n = v, with ∂/∂t the derivative holding p fixed.
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so that, using the Frenet formulas (14.2),

∂ε

∂s
= t · ∂

2u
∂s2

+
(
n · ∂u

∂s

)
K,

∂γ

∂s
= n · ∂

2u
∂s2

−
(
t · ∂u

∂s

)
K. (15.11)

Next, the fields u, �u, and e = ∂u/∂s are, for each of the two types of phase transitions
under consideration, well defined on the interface. We may therefore use the commutator
relation (14.15) to conclude that

∂
�u

∂s
= �e−KV e. (15.12)

Let

e = εt + γn; (15.13)

ε and γ, respectively, represent interfacial tensile and shear strains. Then, by (14.16)3,4,
the interfacial strain-rate (following the motion of the interface) is given by

�e = (�
ε− γ

�
ϑ)t + (�

γ + ε
�
ϑ)n. (15.14)

Thus, interestingly, while the strain ε represents stretching of the interface, the stretch
rate, as defined by t · �e, is given by

t · �e = �
ε− γ

�
ϑ (15.15)

and hence involves the shear strain γ via a term arising from temporal changes in the
orientation of the interface.

Let C(t), with endpoints xa(t) and xb(t), be an arbitrary evolving subcurve of S(t),
and let

ua(t) = u(xa(t), t) and ub(t) = u(xb(t), t)

denote the corresponding endpoint displacements (see Figure 5), so that

dua
dt

and
dub
dt

(15.16)

represent motion velocities following these endpoints. Then, by the vectorial counterpart
of (14.26),

dua
dt

= �u
∣∣
a

+ eaWa,
dub
dt

= �u
∣∣
b
+ ebWb. (15.17)

(
These relations may also be derived using the chain-rule and, say (C4):

dua
dt

= (u̇)a + (∇u)a
dxa
dt

= (u̇)a + (∇u)a(Wata + Vana) = �u
∣∣
a

+ eaWa, etc.
)

16 Interfacial pillboxes

We will discuss interfaces separating grains, solid phases, and solid and vapor phases. For
the purpose of this discussion, assume that the interface S(t) separates phases labelled
(+) and (−), with the normal n pointing into the (+)-phase. Our discussion of configu-
rational forces in bulk was based on the use of control volumes that migrate through the
body. The counterpart of this notion for the interface S = S(t) is an interfacial pillbox,
which we now define.
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SC+

C−

C

xa

xb

(+)-phase

(−)-phase

n

Figure 6: An interfacial pillbox separating (+) and (−) phases.

Consider an arbitrary evolving subcurve C(t) of S(t). Our discusion of basic laws
views C as a interfacial pillbox of infinitesimal thickness containing a portion of S, a view
that allows us to isolate the physical processes in the individual phases that interact with
S. The geometric boundary of C consists of its endpoints xa and xb. But C viewed as
pillbox has a pillbox boundary consisting of (Figure 6):

• a surface C+ with unit normal +n that lies in the (+)-phase;

• a surface C− with unit normal −n that lies in the (−)-phase;

• end faces represented by the endpoints xa and xb of C.

The interaction of C with the bulk phases are then represented by tractions exerted on
— and flows of atoms and energy across — the surfaces C+ and C−; the interaction of
C with the remainder of S is represented by forces on — and flows of atoms and energy
across — the endpoints of C.

D Grain boundaries

We here consider a class of theories central to materials science. These theories involve
only configurational forces; deformation and standard forces are neglected.37

17 Simple theory neglecting deformation and atomic
transport

We here discuss an evolving grain boundary S = S(t) neglecting deformation and atomic
transport.38

37Some workers who utilize the notion of configurational forces do not accept the notion of an inde-
pendent configurational force balance, but consider the standard and configurational force balances to
be “projections of a single equation onto two manifolds”. The theories discussed in this part show that
the configurational balance cannot, in general, be considered as a “projection” of the standard force
balance, since in these theories there are no standard forces; there are only configurational forces.

38The results of this section are due to Angenent and Gurtin (1989); cf. also Gurtin (1993, 2000).
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17.1 Configurational force balance

The configurational force system for the grain boundary consists of an interfacial stress
(vector) c, an internal force density g, distributed continuously over S, and contributions
associated with the interaction of the bulk phases with the grain boundary (Figure 7).
The stress c characterizes forces such as surface tension that act within S; g represents

−

C+n

C−n

−ca

C

g

cb

Figure 7: Configurational forces on an interfacial pillbox C.

internal forces associated with the exchange of atoms between grains at S. Let C =
C(t) be an arbitrary interfacial pillbox. The portion of S external to C then exerts
tractions −ca and cb at xa and xb.39 Further, the bulk material in the (+)-phase exerts
a configurational traction C+n on C+, while that in the (−)-phase exerts a configurational
traction −C−n on C−, so that the net configurational traction exerted at each point of
C by the bulk phases is C+n − C−n = [[C]]n. The configurational force balance for C
therefore takes the form40

c
∣∣b
a

+
∫
C

g ds +
∫
C

[[C]]n ds = 0, c
∣∣b
a

= cb − ca, (17.1)

and has the immediate consequence that

c must be a continuous function of arc length. (17.2)

Further, since cb − ca =
∫
C ∂c/∂s ds, (17.1) yields the local balance

∂c
∂s

+ g + [[C]]n = 0. (17.3)

We define the configurational surface tension σ and shear stress τ through the decom-
position

c = σt + τn. (17.4)

Then, appealing to the Frenet formulas ∂t/∂s = Kn and ∂n/∂s = −Kt,

∂c
∂s

=
(
∂σ

∂s
− τK

)
t +

(
∂τ

∂s
+ σK

)
n, (17.5)

39I.e., e.g., ca(t) = c(xa, t).
40The balance (17.1) is an interfacial counterpart of the bulk configurational force-balance (11.1) for

a part P. The role of the net traction
∫
∂P Cν da in (11.1) is played by c|ba +

∫
C [[C]]n ds, while that of

the net internal force
∫
P f da is played by

∫
C g ds.
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whereby the normal component of (17.3), the normal configurational force balance, is
given by

σK +
∂τ

∂s
+ g + n · [[C]]n = 0, (17.6)

with

g = g · n (17.7)

the normal internal force. On the other hand, we shall find that g · t is indeterminate,
thereby rendering the tangential component of (17.3), namely

∂σ

∂s
− τK + g · t + t · [[C]]n = 0, (17.8)

inconconsequential to the theory (cf. the discussion following (17.31)).
The bulk configurational stress C is determined by the Eshelby relation (12.15),

which, since we neglect deformation and atomic transport, has the form C = Ψ1, with
Ψ the bulk free energy; thus

[[C]] = [[Ψ]]1, (17.9)

which we assume to be constant. The normal and tangential components of the configu-
rational force balance therefore reduce to

σK +
∂τ

∂s
+ g + [[Ψ]] = 0 (17.10)

and

∂σ

∂s
− τK + g · t = 0. (17.11)

17.2 Power

(a) External expenditure of power

The configurational forces on an interfacial pillbox C are assumed to expend power in
conjunction with the migration of the pillbox. The stress c exerts force at the endpoints
xa and xb of C, and we therefore take dxa/dt and dxb/dt as the corresponding power-
conjugate velocities for c. Analogously, the configurational tractions C+n and −C−n
represent forces exerted on C+ and C− and are therefore taken to be power-conjugate to
the normal velocity v = V n of C+ and C−. The (net) power expended on C therefore has
the form [

c · dx
dt

]b
a

+
∫
C

[[C]]n · v ds, (17.12)

with [
c · dx

dt

]b
a

= cb ·
dxb
dt
− ca ·

dxa
dt

.
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(b) Internal expenditure of power. Power balance

By (14.23) and (17.4),

[
c · dx

dt

]b
a

=
[
σW + τV

]b
a
, (17.13)

while, by (14.5) and (17.9), [[C]]n · v = [[Ψ]]V ; hence, the power expended on C has the
form [

c · dx
dt

]b
a

+
∫
C

[[C]]n · v ds =
[
σW + τV

]b
a

+
∫
C

[[Ψ]]V ds. (17.14)

Consider the term
[
τV

]b
a
. Using the identity ∂V/∂s = ϑ� (cf. (14.16)1) and the normal

configurational force balance (17.10), it follows that

[
τV

]b
a

=
∫
C

(
τ

�
ϑ +

∂τ

∂s
V

)
ds =

∫
C

[
τ

�
ϑ− (σK + g + F )V

]
ds. (17.15)

Combining (17.15) with (17.14) then yields the power balance

[
c · dx

dt

]b
a

+
∫
C

[[C]]n · v ds

︸ ︷︷ ︸
power expended on C

=
[
σW

]b
a

+
∫
C

[
τ

�
ϑ− (σK + g)V )

]
ds

︸ ︷︷ ︸
power expended within C

. (17.16)

The individual terms comprising the internal power have the following physical interpre-
tations (Figure 8):41

• The term
[
σW

]b
a

represents power expended internally by the surface tension as
material is added to C at its endpoints.

• The term τ
�
ϑ represents an expenditure of power associated with changes in the

orientation of the grain boundary.

• The term −σKV represents an expenditure of power associated with changes in
interfacial length due to the curvature of the grain boundary.

• The term −gV represents power expended in the exchange of material at the grain
boundary; the negative sign signifies that g expends (positive) power when and
only when it opposes motion of the grain boundary.

17.3 Free-energy imbalance

(a) Global imbalance

Guided by the arguments given in §12.4 in support of the free-energy imbalance (12.17)
for a migrating control volume in bulk, and bearing in mind that the present theory

41Gurtin (2000, pp. 71, 105). A complete catalog of internal power expenditures is possible only with
the introduction of configurational forces within a structure that embodies the notion of power. Because
they bypass such fundamental notions, ad hoc methods such as gradient-flow arguments obscure the
underlying physics.
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−σKV τ
�
ϑ − gV σW

Figure 8: Power expenditures within an evolving grain boundary

does not allow for atomic transport, we posit a free-energy imbalance for each interfacial
pillbox C(t) in the general form

d

dt
{free energy of C(t)} ≤ {power expended on C(t)}. (17.17)

As in our treatment of power expended on a migrating control volume, the right side
does not account for flows of bulk and interfacial free-energy into the pillbox C(t) across
its boundaries due to its migration, but it is meant to include power expended on C(t) by
configurational forces.

Let ψ denote the free energy of the grain boundary, measured per unit length, so that∫
C(t)

ψ(x, t) ds

represents the net free-energy of the interfacial pillbox C(t) at any time t. Thus, bearing
in mind the expression (17.12) for the power expended by the configurational forces, we
write the free-energy imbalance for C in the form

d

dt

∫
C

ψ ds ≤
[
c · dx

dt

]b
a

+
∫
C

[[C]]n · v ds. (17.18)

(b) Growth and decay of an isolated grain

The global free-energy imbalance has interesting consequences. Consider a grain isolated
from all other grains, with S the closed curve that represents the grain boundary. Identify
the grain with the (−)-phase, so that the normal n points into the surrounding matrix
(Figure 9). Then, since [[C]]n · v = [[Ψ]]V and [[Ψ]] is (assumed) constant,∫

S(t)

[[Ψ]]V ds = [[Ψ]]Ȧ(t),

where A(t) is the area enclosed by S(t) (that is, the area of the grain). Therefore

d

dt

{ ∫
S(t)

ψ ds− [[Ψ]]A(t)

}
≤ 0, (17.19)

and the quantity in braces decreases with time. If, for example, the bulk free energy of
the matrix is strictly larger than that of the grain, then [[Ψ]]dA/dt > 0, so that, were
interfacial energy neglegible, the area of the grain would increase with time, thereby
lowering the net free energy of the bulk material. On the other hand, assuming that
ψ > 0, for [[Ψ]]dA/dt ≤ 0 the area of the grain would decrease with time.
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S

n

grain

Figure 9: Depiction of an isolated grain.

If the grain and the surrounding matrix have equal free-energy densities, so that
[[Ψ]] = 0, then the total free-energy of the grain boundary must decrease with time. If,
in addition, the grain-boundary energy ψ > 0 is constant, then

d

dt

{
length of S(t)

}
≤ 0

and the grain boundary must shorten with time.

(c) Indeterminacy of the tangential component of the internal force g

Note that there is no expenditure of power associated with “tangential motion” of the
grain boundary S (which is to be expected, since only the normal motion of S is intrinsic).
Consistent with a “constraint” of this type, we leave as indeterminate the tangential
component g · t of the internal force. This assumption renders the tangential balance
(17.8) irrelevant and allows us to restrict attention to the normal configurational force
balance (17.10). This will be the case throughout what follows; for that reason, we will
often leave the tangential configurational force balance unmentioned (cf. Remark 6 on
page 6).

(d) Equality of surface tension and interfacial free energy

In view of the transport theorem (14.29) and the power balance (17.16), the free-energy
imbalance for C, namely (17.18), becomes

∫
C

(
�
ψ − ψKV ) ds +

(#)︷ ︸︸ ︷[
(ψ − σ)W

]b
a
≤

∫
C

[
τ

�
ϑ− (σK + g)V

]
ds. (17.20)

Since C is arbitrary, so also are the tangential velocities Wa and Wb of the endpoints of
C; since the only term in (17.20) dependent on these velocities is the term (#), it follows
that

σ = ψ. (17.21)
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There are many misconceptions concerning the relation between surface tension and
interfacial free energy. Here surface tension enters the theory via a force balance, whereas
free-energy enters via an energy imbalance; the fact that they coalesce is a consequence
of the theory. As we shall see, in more general theories allowing for interfacial torques,
standard interfacial stress, or atomic transport accounting for atomic densities within the
interface, the relation σ = ψ is no longer valid.

Note that, by (17.21), we may rewrite the normal configurational force balance (17.10)
as

ψK +
∂τ

∂s
+ g + [[Ψ]] = 0. (17.22)

(e) Dissipation inequality

By (17.21), the free-energy inequality (17.20) reduces to∫
C

(
�
ψ − τ

�
ϑ + gV ) ds ≤ 0;

since C is arbitrary, we have the dissipation inequality

�
ψ − τ

�
ϑ + gV ≤ 0. (17.23)

17.4 Constitutive equations

As in our discussion of bulk behavior, we use the dissipation inequality (17.23) as a
guide in the development of constitutive equations for the grain boundary. Moreover, we
require that the local dissipation inequality hold in all “processes” related through the
constitutive equations.

(a) Basic constitutive equations. Restrictions.

It would seem clear from the dissipation inequality (17.23) that, at bottom:

• ψ and τ should depend on ϑ, an assumption common to more classical theories
(cf., e.g., Herring (1951));

• g should depend on V and, since classical theories display linear kinetics (cf., e.g.,
Mullins (1956)), this dependence might be linear; anisotropy would require a de-
pendence of g also on ϑ.

We therefore begin with constitutive equations

ψ = ψ̂(ϑ),

τ = τ̂(ϑ),

g = −b(ϑ)V.


 (17.24)

Here b(ϑ) is a kinetic modulus associated with the attachment kinetics of atoms at the
grain boundary.

By the chain rule (14.12),

�
ψ =

dψ̂(ϑ)
dϑ

�
ϑ, (17.25)
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and since the constitutive relations (17.24) are independent of V , we may conclude, upon
taking V = 0 in the dissipation inequality (17.23), that ψ�−τϑ� ≤ 0. Thus compatibility
with (17.23) requires that {

dψ̂(ϑ)
dϑ

− τ̂(ϑ)
}

�
ϑ ≤ 0 (17.26)

for all choices of the orientation field ϑ. We may therefore restrict attention to spatially
uniform functions ϑ(t), so that ϑ� = ϑ̇. Given any choice of the time t0, we can always
find a choice of ϑ(t) such that ϑ(t0) and ϑ̇(t0) take on arbitrarily prescribed values. Thus,
since ϑ� appears linearly in (17.26), its coefficient must vanish: τ̂ = ∂ψ̂/∂ϑ. The free
energy must therefore determine the configurational shear through the relation

τ =
dψ̂(ϑ)
dϑ

. (17.27)

Finally, by (17.27), the dissipation inequality reduces to gV ≤ 0, which renders

b(ϑ) ≥ 0. (17.28)

(b) Remarks

1. Anisotropy of the interface manifests itself in a nontrivial dependence of ψ̂(ϑ) on ϑ.
An interesting and important consequence of (17.27) is that, for a grain boundary
with anisotropic free energy, the surface shear cannot vanish.42

2. By (17.4), (17.21), and (17.27), we may consider the configurational stress c as a
function c = c(ϑ), with

c(ϑ) = ψ̂(ϑ)t(ϑ) +
dψ̂(ϑ)
dϑ

n(ϑ). (17.29)

3. The normal internal force g is a dissipative force associated with the rearrangement
of atoms at the grain boundary. The term

D def= −gV = b(ϑ)V 2

represents the dissipation per unit length of the interface, as its integral over C
represents the right side of the free-energy imbalance (17.17) (the expended power)
minus its left side (the net rate of change of free-energy); this dissipation is char-
acterized by the kinetic modulus b(ϑ).

4. Were we to begin with constitutive relations of the form

ψ = ψ̂(ϑ, V ),

τ = τ̂(ϑ, V ),

g = ĝ(ϑ, V ),


 (17.30)

thereby satisfying equipresence, the dissipation inequality would render ψ and τ
independent of V and consistent with (17.27), and would yield the reduced dissipa-
tion inequality ĝ(ϑ, V ) ≤ 0; then, as in the discussion leading to (17.24)3, linearity
of g = ĝ(ϑ, V ) in V would require an additional hypothesis.

42Cf. Angenent and Gurtin (1989, eqt. 4.2), although this result is clear from the work of Herring
(1951) in his discussion of the equilibrium theory within a variational framework.
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5. More general constitutive equations are also possible. For example, a constitutive
relation of the form

τ =
dψ̂(ϑ)
dϑ

− C(ϑ)
�
ϑ, C(ϑ) > 0

would be consisitent with the dissipation inequality.

6. Since, by (17.21) and (17.27), σ = ψ and τ = ψ′(ϑ),

∂σ

∂s
= τ

∂ϑ

∂s
= τK,

and we may conclude from the tangential configurational balance (17.8) that

g · t = 0. (17.31)

Thus the tangential component of the internal force g vanishes. This result is a
consequence of the special theory under consideration; as we shall see, for theories
that account for the density of atoms within the interface the tangential force g ·t is
needed to balance spatial inhomogeneities on the interface induced by variations in
chemical potential (cf. (13.4) and the discussion following (17.8)). For the theories
discussed in §18 and §19, which account, respectively, for configurational torques
and the diffusion of a single atomic species, it is also the case that g · t = 0.

17.5 Evolution equation for the grain boundary. Parabolicity
and backward parabolicity

We now return to our discussion of grain boundaries as described by the constitutive
equations

τ =
dψ̂(ϑ)
dϑ

, g = −b(ϑ)V,

assuming that b(ϑ) > 0.
For any function f(ϑ) we write

f ′(ϑ) =
df(ϑ)
dϑ

,

and, when there is no danger of confusion, we write

ψ(ϑ) = ψ̂(ϑ).

Then, since K = ∂ϑ/∂s, (17.27) yields ∂τ/∂s = ψ′′(ϑ)K; thus, by (17.24)3, the normal
configurational force balance reduces to the curvature-flow equation43

b(ϑ)V =
[
ψ(ϑ) + ψ′′(ϑ)

]
K + [[Ψ]]. (17.32)

Note that the larger the dissipation, as characterized by the modulus b(ϑ), the slower
the motion of the interface.

43Proposed by Uwaha (1987, eqt. 2) and independently by Gurtin (1988, eqt. 8.3). Cf. also Angenent
and Gurtin (1989). Evolution according to (17.32) is studied by Angenent (1991), Chen, Giga, and
Goto (1991), Barles, Soner, and Souganides (1993), and Soner (1993). A formulation of (17.32) using a
variational definition of the curvature term is given by Taylor, Cahn, and Handwerker (1992), who give
extensive references. The term ψ(ϑ) + ψ′′(ϑ) appears first in the study of Herring (1951), who shows
that it represents the variational derivative of the net interfacial free-energy with respect to variations
in the position of the interface.
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y

x

ϑ St

y = h(x, t)

Figure 10: Sign conventions when the interface is a graph y = h(x, t).

For an isotropic grain boundary both b and ψ are positive constants. Then, for
[[Ψ]] = 0 and, with an appropriate rescaling of space and time, (17.32) has the simple
(and beautiful) form

V = K,

a parabolic partial differential equation with a large literature.44 This equation, which
was the forerunner of (17.32), was introduced by Burke and Turnbull (1952) and Mullins
(1956) to study the motion of grain boundaries.

Locally the interface may be represented as the graph of a function y = h(x, t),
provided the x and y axes are chosen appropriately. Consider the choice indicated in
Figure 10 (with orientation such that arc length increases with increasing x) and let

q =
∂h

∂x
.

Then, for −π
2 < ϑ < π

2 ,

q = tanϑ, K =
1

(1 + q2)
3
2

∂2h

∂x2
, V =

1√
1 + q2

∂h

∂t
, (17.33)

and, assuming that b(ϑ) > 0 for all such ϑ, we may use these relations to rewrite the
evolution equation (17.32) in the form

∂h

∂t
= A(q)

∂2h

∂x2
+ P (q), (17.34)

with

A(q) =
ψ(ϑ) + ψ′′(ϑ)

b(ϑ) cosϑ (1 + tan2 ϑ)
3
2
,

P (q) =
F

b(ϑ) cosϑ
, q = tanϑ.

For the angle range −π
2 < ϑ < π

2 under consideration, sgnA(q) = sgn [ψ(ϑ) + ψ′′(ϑ)
]
.

Thus the evolution equation ((17.34) and hence) (17.32) is:45

44Cf. Gurtin (2000) for references.
45Angenent and Gurtin (1989).
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(i) parabolic on any angle interval over which ψ(ϑ) + ψ′′(ϑ) > 0;

(ii) backward parabolic (and hence unstable as a partial differential equation) on any
angle interval over which ψ(ϑ) + ψ′′(ϑ) < 0.

Let

φ(ϑ) def= ψ(ϑ) + ψ′′(ϑ). (17.35)

Materials scientists often refer to φ(ϑ) as the interfacial stiffness. When φ(ϑ) > 0 for
all ϑ, (17.32), being parabolic, exhibits behavior that is not much different than that for
V = K, and is well understood.46 What makes (17.32) nonstandard is the possibility
of backward parabolicity for interfacial free-energy densities that satisfy φ(ϑ) < 0 for
certain angle-intervals. Such energy densities are not mathematical curiosities: materials
scientists give strong arguments in support of free-energy densities with φ(ϑ) < 0 for
some angles ϑ.47

17.6 Backward parabolicity. Facets and wrinklings

In analyzing energies with backward-parabolic angle-intervals an important concept is the
Frank diagram F ,48 which is the graph in polar coordinates of the function r = 1/ψ(ϑ):
F is locally strictly convex where φ(ϑ) > 0 and locally strictly concave where φ(ϑ) < 0.
One method of dealing with the backward-parabolic intervals is to allow the interface to
contain corners (jumps in tangent angle) that exclude the backward-parabolic ranges of ϑ.
In the presence of a corner, the evolution equation (17.32) does not by itself characterize
the motion of the interface; there is an additional condition (17.2) requiring that the
configurational stress

c(ϑ) = ψ(ϑ)t(ϑ) +
dψ(ϑ)
dϑ

n(ϑ) be a continuous function of arc length

(cf. (17.29)). Thus for a corner corresponding to an angle jump from ϑ1 to ϑ2 we must
have

c(ϑ1) = c(ϑ2),

a condition that has important consequences. One can show that: (i) the tangent line
to F at ϑ1 must also be a tangent line to F at ϑ2 (that is, ϑ1 and ϑ2 must be angles
of bitangency for F); and (ii) there is exactly one (maximal) angle interval between ϑ1

and ϑ2 on which φ(ϑ) < 0. Thus, by restricting attention to an interface with corners
such that there is one corner for each backward parabolic interval and such that across
each corner the tangent angle jumps between bitangency angles of the Frank diagram, one
arrives at an interface whose evolution is governed by a parabolic equation (Angenent and
Gurtin, 1993). This procedure leads to to a free-boundary problem, since the positions
of the corners vary with time.

The presence of unstable angle-intervals allows for facets (flat sections) and wrinklings,
which are interfacial sections consisting of facets whose tangent angle is ϑ1 alternating
with facets whose tangent angle is ϑ2 (Figure 11). Because K ≡ 0 on each facet, facets
with tangent angle ϑ1 must, by (17.32), have constant normal velocity V ≡ V1 = F/b(ϑ1),
while V ≡ V2 = F/b(ϑ2) for those with angle ϑ2. Then, by compatibility, the wrinkling
must evolve as a rigid body with velocity w defined by w · n(ϑi) = F/b(ϑi), i = 1, 2.49

46Cf. Angenent (1991), Chen, Giga, and Goto (1991), Barles, Soner, and Souganides (1993), and Soner
(1993)

47Cf. Gjostein (1963) and Cahn and Hoffman (1974).
48Frank (1963).
49Cf. Gurtin (1993, §11) for a thorough discussion of wrinklings and related phenomena.
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t1

t2
C

Figure 11: A wrinkled portion C of the grain boundary S. The angles ϑ1 and ϑ2 associated
with the facet-tangents t1 and t2 must be bitangency angles of the Frank diagram.

17.7 Junctions

S1

S2

S3

c1

c2

c3

Figure 12: A triple-junction with a corresponding junction pillbox. Only the interfacial
tractions on the pillbox are shown.

In the two-dimensional theory under consideration, grain boundaries meet at junc-
tions such as the one shown in Figure 12. This figure shows the pillbox used to determine
the configurational force balance for the junction; this figure omits the forces exerted by
the bulk material on the pillbox as well as the internal forces exerted on the grain bound-
aries; we assume that these forces approach zero as the pillbox collapses to the junction.
For the case in which N grain boundaries, labelled n = 1, 2, . . . , N , meet at a junc-
tion, and for which the individual grain boundaries are oriented so that the unit tangent
field of each is directed away from the junction, the configurational force balance for the
junction has the form

N∑
n=1

cn + {net force exerted on the pillbox by the bulk material}

+ {net internal force exerted on the pillbox} = 0, (17.36)

where cn denotes the force exerted on the pillbox by the portion of grain-boundary n
that lies outside the pillbox. Assuming that the two terms written {. . . } tend to zero as
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the pillbox tends to the junction, we arrive at Herring’s junction balance (1951):50

N∑
n=1

cn = 0, (17.37)

or, equivalently,
N∑
n=1

(σntn + τnnn) = 0.

A classical consequence of the junction balance is that, for a triple junction, if the free
energies of the grain boundaries are constant and equal, then the angles between adjacent
boundaries are equal, with 2π

3 the common angle.

17.8 Digression: general theory of interfacial constitutive rela-
tions with essentially linear dissipative response

In our development of constitutive equations for grain-boundaries, we used the dissipa-
tion inequality ψ� − τϑ� + gV ≤ 0 (and experience with classical theories) to motivate
constitutive relations giving ψ and τ as functions of ϑ together with a relation giving g
as a function of ϑ and V . This procedure will be used repeatedly in this article, where
each of the individual theories is based on a dissipation inequality of the form

�
ψ −

N∑
m=1

τn
�
ϑn +

N∑
m=1

gmVm ≤ 0. (17.38)

In these theories we use the terms

�
ψ −

N∑
m=1

τn
�
ϑn,

N∑
m=1

gmVm,

respectively, to motivate constitutive relations giving51

ψ, �τ as functions of �ϑ , �g as a function of (�ϑ, �V ), (17.39)

50In describing the forces on the junction, we neglected the internal configurational force g∗ on the
junction, which if included would appear on the left side of (17.37). If we neglect junction energy, then
the appropriate free-energy imbalance for the junction would lead to the inequality g∗ · v∗ ≤ 0, where
v∗ is the junction velocity. In this manner we would be led to a constitutive equation

g∗ = −Bv∗

with B a positive semi-definite tensorial modulus that may depend on the junction angles of the grain
boundaries as well as the mismatch angles of the grains. In this manner, we would arrive at the balance∑
n cn = Bv∗. Cf. Simha and Bhattacharya (1998); Gurtin (2000, Part H); cf. also Suo (1997, eqt.

(2.17)), whose analysis is restricted to isotropic surface energies and to a junction between two grains
and a vapor, a situation of great interest in discussing grain-boundary grooving (cf. Mullins (1957)).

51This structure cannot include theories involving temporal derivatives (or past histories) of the inde-
pendent constitutive variables, nor can it include theories whose constitutive equations involve variables
not present in the dissipation inequality. But it does include constitutive theories that we believe to be
appropriate for the class of applications under consideration, without encumbering the presentation with
lengthy arguments involving thermodynamical reductions of general constitutive theories. Moreover, as
is clear from Remark C.1 above, the a priori splitting presumed in (17.39), in which ψ and �τ are taken

to be independent of �V , may, in come cases, be unnecessary (e.g., in §18). But in discussions involving

surface diffusion, spatial derivatives of chemical potentials enter the list �V .
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where

�τ = (τ1, τ2, . . . , τN ),

�g = (g1, g2, . . . , gM ),

�ϑ = (ϑ1, ϑ2, . . . , ϑN ),

�V = (V1, V2, . . . , VM ).

and where neither of the fields �ϑ and �V involves temporal derivatives of the other.
In view of the chain-rule (14.12), thermodynamic compatibility requires that, for any

choice of the fields �ϑ and �V ,

N∑
n=1

{
∂ψ̂(�ϑ)
∂ϑn

− τ̂n(�ϑ )
}

�
ϑn +

M∑
m=1

ĝm(�ϑ, �V )Vm ≤ 0. (17.40)

It is always possible to find an interfacial field �ϑ whose values and whose (normal) time-
derivative-values at any given time are arbitrary. Thus, since the inequality (17.40) is
linear in the variables ϑ�

n, we must have τ̂n = ∂ψ̂/∂ϑn (for all n). We therefore have the
following thermodynamic restrictions:

• ψ must determine �τ through the relations

τn =
∂ψ̂(�ϑ )
∂ϑn

; (17.41)

• the constitutive response function for �g must be consistent with the reduced dissi-
pation inequality

M∑
m=1

ĝm(�ϑ, �V )Vm ≤ 0. (17.42)

In the special cases we shall consider,

D def= −
M∑
m=1

ĝm(�ϑ, �V )Vm

represents the dissipation. Of special interest here are constitutive equations giving �g as
a linear function of �V for each fixed value of �ϑ:

gm = −
M∑
j=1

Amj(�ϑ )Vj ; (17.43)

in this case we refer to the constitutive equations as having essentially linear dissipative
response. (The term “essential” refers to the fact that (17.43) is linear in the primary
variable �V , but the dependence on �ϑ is unrestricted). In addition, if

Amj = 0 for m �= j, (17.44)

so that, writing Am = Amm,

g1 = A1(�ϑ )V1,

g2 = A2(�ϑ )V2,

...

gN = AN (�ϑ )VN ,




(17.45)
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we refer to the constitutive equations as having uncoupled essentially linear dissipative
response.

Returning to the uncoupled relations (17.42), the reduced dissipation inequality re-
quires that the coefficients Amj(�ϑ ) form a positive semi-definite matrix. The dissipation
corresponding to the constitutive relations (17.43) has the form

D =
M∑

m,j=1

Amj(�ϑ )VmVj . (17.46)

18 Interfacial couples. Allowance for an energetic de-
pendence on curvature

Within the theory for grain boundaries presented above, facets are modeled as sharp
corners. That crystalline solids may exhibit departures from this idealization was recog-
nized by Herring (1951),52 who argued that, when the radius of curvature of a crystal
surface is sufficiently small, the free energy of that surface should depend not only on
orientation but also on curvature. A theory which allows for such dependence has nu-
merous benefits. The procedure discussed in §17.6 cannot, by itself, characterize the
nucleation of facets and wrinklings, nor can it be used for an initial-value problem in
which the initial interface has angle intervals for which ψ(ϑ) + ψ′′(ϑ) < 0. To analyze
behavior within such angle-intervals, a regularization of the evolution equation (17.32)
is needed. Such a regularization, proposed by Angenent and Gurtin (1989) and devel-
oped by DiCarlo, Gurtin, and Podio-Guidugli (1992),53 entails a curvature-dependent
free energy. Within the present framework, a curvature-dependent free energy requires
(configurational) interfacial couples together with a configurational balance for torques.
A theory including these ingredients provides a physically-based regularization of the evo-
lution equation (17.32), in contrast to the pragmatic alternative of simply adding to such
an equation supplemental terms involving higher-order derivatives.

18.1 Configurational torque balance

We now expand the configurational force system discussed in Section §17.1 to include a
(scalar) interfacial couple-stress M and a (scalar) internal couple m distributed continu-
ously over S (Figure 13). Let C = C(t) be an arbitrary interfacial pillbox S. The portion
of S external to C then exerts torques −Ma − (xa − 0)×ca and Mb(xb − 0)×cb at xa
and xb.54 In addition to the interfacial couple m distributed uniformly over C, there is
the torque (x− 0)×g associated with the internal force g. Further, the bulk material in
the (+)-phase exerts a torque (x− 0)×C+n on C+, while that in the (−)-phase exerts a
torque −(x−0)×C−n on C−, so that the net configurational torque exerted at each point
of C by the bulk phases is (x− 0)×(C+n−C−n) = (x− 0)×[[C]]n. The configurational

52Cf., also, Gjostein (1963) and Cahn and Hoffman (1974).
53Cf. Stewart and Goldenfeld (1992), who define the chemical potential as the variational derivative

of the interfacial energy with respect to changes in the location of the surface and, starting with a
mass balance that includes surface diffusion and evaporation terms, derive an evolution equation which,
after linearization, yields conditions for the onset of instabilities (and the subsequent formation of facets
along the surface). Cf. also Golovin, Davis, and Nepomnyashchy (1998, 1999), who use variational
arguments to obtain an evolution equation for an interface z = h(x, t) (respectively, z = h(x, y, t)) with
a curvature-dependent surface tension, assuming that dh/dx is small (respectively, ∂h/∂x and ∂h/∂y
are small).

54Here the “×” denotes the (scalar) two-dimensional cross-product; in components p×k = p1k2−p2k1.
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−Ma

Mb

m
C

Figure 13: Configurational couples on on an interfacial pillbox C. In the configurational
torque balance these couples are supplemented by torques exerted by the configurational
force system.

torque balance for C therefore takes the form

[
M + (x− 0)×c

]b
a

+
∫
C

mds +
∫
C

[
(x− 0)×(g + [[C]]n)

]
ds = 0. (18.1)

This balance supplements the configurational force balance (17.1).
Consider the term

[
M +(x−0)×c

]b
a
. Since ∂x/∂s = t, and since, by (17.4), t×c = τ ,

[
M + (x− 0)×c

]b
a

=
∫
C

(
∂M

∂s
+ τ + (x− 0)× ∂c

∂s

)
ds.

Thus, by the local consequence (17.3), namely ∂c/∂s + g + [[C]]n = 0, of the configura-
tional force balance (17.1), the torque balance (18.1) reads∫

C

(
∂M

∂s
+ m + τ

)
ds = 0;

since C is arbitrary, this yields the local torque balance

∂M

∂s
+ m + τ = 0. (18.2)

Differentiating each term of (18.2) with respect to s and using the normal configurational
force balance (17.6) to give an expression for ∂τ/∂s, it follows that

∂2M

∂s2
+

∂m

∂s
− σK − g − n · [[C]]n = 0, (18.3)

or equivalently, granted C = Ψ1 as in the theory without couples, that

∂2M

∂s2
+

∂m

∂s
− σK − g − [[Ψ]] = 0, (18.4)

with [[Ψ]] assumed constant. This balance is basic to what follows.

18.2 Power

(a) External expenditure of power

Let C = C(t) be an interfacial pillbox. In addition to the power expended by configu-
rational forces, we must now account for power expended by the couple stress M . This
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stress acts at the endpoints of C and the corresponding torques Ma and Mb should be
power-conjugate to the angle-rates dϑa/dt and dϑb/dt at these endpoints (cf. (14.22)).
Thus [

M
dϑ

dt

]b
a

≡Mb
dϑb
dt
−Ma

dϑa
dt

represents the power expended on C by the couple stress, and the (net) power expended
on C has the form [

c · dx
dt

+ M
dϑ

dt

]b
a

+
∫
C

[[C]]n · v ds. (18.5)

By (14.27), [
M

dϑ

dt

]b
a

=
[
M(

�
ϑ + KW )

]b
a
, (18.6)

so that, using (14.19),

[
M

dϑ

dt

]b
a

=
[
MKW

]b
a

+
∫
C

(
M

∂
�
ϑ

∂s
+

∂M

∂s

�
ϑ

)
ds

=
[
MKW

]b
a

+
∫
C

(
M(

�
K −K2V ) +

∂M

∂s

�
ϑ

)
ds.

On the other hand, (17.16) (which holds here also) and (18.2) yield[
c · dx

dt

]b
a

+
∫
C

[[C]]n · v ds =
[
σW

]b
a

+
∫
C(t)

[
τ

�
ϑ− (σK + g)V

]
ds

=
[
σW

]b
a
−

∫
C

(
(σK + g)V +

(
∂M

∂s
+ m

)
�
ϑ

)
ds.

Adding the last two relations, we arrive at the power balance

[
c · dx

dt
+ M

dϑ

dt

]b
a

+
∫
C

[[C]]n · v ds

=
[
(σ + MK)W

]b
a

+
∫
C

[
M

�
K −m

�
ϑ−

(
(σ + MK)K + g)V

]
ds, (18.7)

which bears comparison to (17.16). Note that here:

• The term
[
(σ + MK)W

]b
a

(rather than
[
σW

]b
a
) represents power expended inter-

nally as material is added to C at its endpoints.

• The term M
�
K represents an expenditure of power associated with changes in the

curvature of the grain boundary.

• The term −m
�
ϑ (rather than τ

�
ϑ ) represents the expenditure of power associated

with changes in the orientation of the grain boundary.
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• The term −(σ + MK)KV (rather than −σKV ) represents the expenditure of
power associated with changes in interfacial area due to the curvature of the grain
boundary.

As before, the tangential component of g expends no power internally, but now,
interestingly, neither does the shear τ , as its role in the power balance is replaced by the
internal torque m. This is consistent with the theory without couples, since, by (18.2),
τ = −m when M = 0. Classically, forces that expend no power internally are presumed
to be indeterminate; for that reason, τ joins g ·t as an indeterminate field, an assumption
that allows us to consider the torque balance (18.2) as a defining relation for τ . Note
that, granted τ is defined by the torque balance, the balance (18.4) is equivalent to the
normal configurational force balance (17.10) of the theory without couples.

18.3 Free-energy imbalance

(a) Global imbalance

As before, we let ψ denote the free energy of the grain boundary; the free-energy imbalance
for C then takes the form

d

dt

∫
C(t)

ψ ds ≤
[
c · dx

dt
+ M

dϑ

dt

]b
a

+
∫
C(t)

[[C]]n · v ds. (18.8)

Note that, since [[C]]n · v = [[Ψ]]V , with [[Ψ]] (assumed) constant, the decay relation
(17.19) and its consequences remain valid within this more general theory.

(b) Dissipation inequality

In view of the transport identity (14.29) and the power balance (18.7), the free-energy
inequality (18.8) becomes

∫
C

(
�
ψ − ψKV ) ds +

(#)︷ ︸︸ ︷[(
ψ − (σ + MK)

)
W

]b
a

≤
∫
C

[
M

�
K −m

�
ϑ−

(
(σ + MK)K + g

)
V

]
ds. (18.9)

Since C is arbitrary, so also are the tangential velocities Wa and Wb of the endpoints of
C; thus, since the only term in (18.9) dependent on these velocities is the term (#), we
have the relation

σ = ψ −MK; (18.10)

thus, in contrast to classical theories, the present theory requires that the correspondence
between surface tension and interfacial free energy be generalized to account for the
influence of the interfacial couple-stress M . Using (18.10), we may rewrite the normal
configurational force balance (17.10) as

(ψ −MK)K +
∂τ

∂s
+ g + [[Ψ]] = 0. (18.11)
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Next, by (18.10), the free-energy inequality (18.9) reduces to∫
C

(
�
ψ + m

�
ϑ−M

�
K + gV ) ds ≤ 0, (18.12)

and this yields the dissipation inequality

�
ψ + m

�
ϑ−M

�
K + gV ≤ 0. (18.13)

18.4 Constitutive equations

Guided by (18.13) and the discussion of §17.4 for the theory without configurational
moments, we consider constitutive equations giving

ψ, m, M as functions of (ϑ,K),

g as a function of (ϑ,K, V ).

}
(18.14)

Then, appealing to the general constitutive theory discussed in §17.8, we find, as a
consequence of thermocompatibility and an assumption of essentially linear dissipative
response, that:

• the free energy determines the internal couple and the interfacial couple-stress
through the relations

m = −∂ψ̂(ϑ,K)
∂ϑ

,

M =
∂ψ̂(ϑ,K)

∂K
.


 (18.15)

• the normal internal force is given by the linear relation

g = −b(ϑ,K)V, (18.16)

with kinetic modulus b(ϑ,K) ≥ 0.

18.5 Evolution equation for the grain boundary

The basic equations of the theory consist of the balance (18.4) with σ = ψ −MK, viz.,

∂2M

∂s2
+

∂m

∂s
− (ψ −MK)K − g − [[Ψ]] = 0, (18.17)

supplemented by the constitutive relations (18.15) and (18.16). In general, the coupling
between orientation and curvature induced by the constitutive relation for the free en-
ergy renders the resulting evolution complicated. But, for small curvatures, a quadratic
dependence on curvature should provide a reasonable approximation and, as we shall see,
such an energy provides a parabolic regularization to the evolution equation (17.32).

We therefore consider the simple constitutive equation

ψ̂(ϑ,K) = ψ0(ϑ) + 1
2λK

2, (18.18)

with λ > 0 constant. The restrictions (18.15) then yield the specific relations

m = −ψ′0(ϑ), M = λK;
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thus, assuming that b = b(ϑ) > 0, (18.16) and (18.17) yield the evolution equation

b(ϑ)V =
[
ψ0(ϑ) + ψ′′0 (ϑ)

]
K − λ

(
∂2K

∂s2
+ 1

2K
3

)
+ [[Ψ]]. (18.19)

For the interface a graph y = h(x, t), we can use (17.33) to rewrite the evolution
equation (18.19) in a form analogous to (17.34). The right side of the resulting equation
then contains a term of the form

−(. . . )
∂4h

∂x4
,

and all other terms as well as the coefficient ( . . . ) depend on partial derivatives of h with
respect to x of order strictly less than four. Moreover, the coefficient ( . . . ) is strictly
positive. Thus the evolution equation (18.19) is equivalent to a fourth-order parabolic
partial differential equation. In that sense, (18.19) with λ small represents a parabolic
regularization of the evolution equation (17.32). This regularization should be useful in
analyzing situations for which the interfacial stiffness is negative and (17.32) is backward
parabolic for certain angle intervals.

In a sense, the regularized equation (18.19) represents a counterpart for interfaces of
the classical Cahn-Hilliard equation (Cahn and Hilliard, 1958, 1959, 1971), as discussed
by DiCarlo, Gurtin, and Podio-Guidugli (1992).55

19 Grain-vapor interfaces with atomic transport

In this section we consider an interface S = S(t) that separates a grain from a vapor
environment. We include atomic transport in bulk, on the interface, and from the vapor,
but neglect deformation of the grain and flow in the vapor.56 For simplicity, we restrict
attention to a single atomic species. We model the vapor as a reservoir whose sole inter-
action with the grain is through the evaporation of atoms from — and the condensation
of atoms on — the grain boundary.

19.1 Configurational force balance

We assume that the configurational stress in the vapor vanishes:57 considering the vapor
to be the (+)-phase, the grain the (−)-phase, it follows that C+ = 0.

Apart from this restriction, the discussion of configurational forces is identical to that
presented for a grain-grain interface. Thus, writing C = C−, the configurational force
balance (17.1) takes the form

c
∣∣b
a

+
∫
C

g ds−
∫
C

Cn ds = 0, (19.1)

55Cf. Watson, Otto, Rubinstein and Davis (2003) and Watson (2003).
56Cf. Spencer, Voorhees, and Davis (1991, 1993), Spencer and Meiron (1994), Guyer and Voorhees

(1996, 1998), and Spencer, Voorhees, and Tersoff (2000), who investigate the morphological stability
of epitaxially strained single-component and alloy thin films in the presence of surface diffusion and
an isotropic surface free-energy. See also Zhang and Bower (1999, 2001), who examine shape changes
of strained islands on lattice-mismatched substrates due to surface diffusion in the presence of both
isotropic and anisotropic surface energies.

57Tacit are the following assumptions: the free energy of the grain is reckoned relative to that of the
vapor; the atomic density of the vapor and the vapor pressure are negligible.
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and this yields the normal configurational force balance

σK +
∂τ

∂s
+ g − n ·Cn = 0, (19.2)

with σ and τ defined by (17.4) and g = g · n, as before.
The bulk configurational force C is determined by the Eshelby relation (12.15), which,

since deformation is neglected here, has the form

C = (Ψ− ρµ)1, (19.3)

with µ, the bulk chemical-potential, assumed continuous up to the grain boundary. The
normal configurational force balance (19.1) therefore takes the form

ρµ = Ψ− σK − ∂τ

∂s
− g (19.4)

and the normal configurational force balance provides a relation for the chemical potential
of the grain boundary. Finally, the tangential component of the configurational force
balance reduces to (17.11).

19.2 Power

Consistent with the requirement that the configurational stress vanishes in the vapor and
the notational convention C = C−, the (net) power expended on a migrating pillbox C
has the form [

c · dx
dt

]b
a

−
∫
C

Cn · v ds. (19.5)

By (17.13), (14.5), and the Eshelby relation (19.3), Cn · v = (Ψ − ρµ)V ; hence, the
power expended on C has the form[

c · dx
dt

]b
a

−
∫
C

Cn · v ds =
[
σW + τV

]b
a
−

∫
C

(Ψ− ρµ)V ds (19.6)

which, by (17.15) and the normal configurational force balance (19.4), yields the power
balance [

c · dx
dt

]b
a

−
∫
C

Cn · v ds =
[
σW

]b
a

+
∫
C

[
τ

�
ϑ− (σK + g)V )

]
ds. (19.7)

19.3 Atomic flows due to diffusion, evaporation-condensation,
and accretion. Atomic balance

In addition to the bulk atomic density ρ and bulk atomic flux , we account for an atomic
supply r from the vapor and for a (scalar) interfacial atomic flux58 h. Without loss of
generality, we write ρ = ρ− and  = − for the interfacial limits of the density and atomic
flux in the grain. While we account for the transport of adatoms along the interface
through the flux h, we assume that the adatom density is negligibly small.

Let C = C(t) be an interfacial pillbox. Then surface diffusion in the portion of S
exterior to C results in fluxes ha and −hb of atoms into C across xa and xb; (since
n points into the vapor) bulk diffusion results in a flow  · n of atoms into C across
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ha

− hb

r

 · n− ρV

C

Figure 14: Atomic fluxes and supplies to an interfacial pillbox C.

C− from the solid; r represents the rate at which atoms are supplied from the vapor
(Figure 14). Hence, the net rate at which atoms are added to C by diffusive transport
and by evaporation-condensation is

−h|ba +
∫
C

( · n + r) ds. (19.8)

Atoms are also carried into C as it migrates. Since we neglect the adatom density,
the only such accretive flow is −ρV across C− into C (Figure 14), so that the net rate at
which atoms are added to C by accretion is

−
∫
C

ρV ds. (19.9)

Thus, the atomic balance for C takes the form

−h
∣∣b
a

+
∫
C

( · n− ρV + r) ds = 0; (19.10)

since C is arbitrary, this yields the local balance

ρV = −∂h

∂s
+  · n + r. (19.11)

19.4 Free-energy imbalance

The general free-energy imbalance (17.17) is now modified to include energy flow into
the pillbox C(t) by atomic transport:

d

dt
{free energy of C(t)} ≤ {power expended on C(t)}

+ {energy flow into C(t) by atomic transport}. (19.12)

To discuss this inequality, we let µv denote the chemical potential of the vapor.
We assume that the chemical potential µ of the solid at the surface is the limiting

value µ = µ− of the bulk chemical potential; µ therefore represents the chemical potential
for surface diffusion. Since we attribute no specific structure to the vapor, µv represents
the chemical potential of the vapor at the grain boundary. In general, we admit the
possibility that µ differs from µv.

58The vectorial flux is represented by ht.
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(a) Energy flows due to diffusion, evaporation-condensation, and accretion

Atomic transport induces energy flows associated with diffusion, evaporation-condensation,
and accretion. The diffusion of atoms within the interface results in energy fluxes −µaha
and µbhb across xa and xb; the diffusion of atoms within the solid results in an energy
flow µ · n across C−; the supply r of atoms from the vapor results in an energy flow
µvr. Hence, the net rate at which energy is added to C by diffusion and evaporation-
condensation is

−
[
µh

]b
a

+
∫
C

(µ · n + µvr) ds. (19.13)

The motion of the interface results in an energy flow −ρµV associated with accretive
transport of atoms from the grain across C−, so that the rate at which energy is added
to C by the accretive transport of atoms is

−
∫
C

ρµV ds. (19.14)

(b) Global imbalance

As before, we let ψ denote the free energy of the grain boundary; in view of (19.13)
and (19.14), the free-energy imbalance for an arbitrary interfacial pillbox then takes the
form59

d

dt

∫
C(t)

ψ ds

︸ ︷︷ ︸
free energy

≤
[
c · dx

dt

]b
a

−
∫
C(t)

Cn · v ds

︸ ︷︷ ︸
power expended

by configurational forces

+
∫
C(t)

(
µ( · n− ρV ) + µvr

)
ds−

[
µh

]b
a

︸ ︷︷ ︸
energy flow by atomic transport

. (19.15)

(c) Dissipation inequality

Next, by (19.7) and the transport theorem (14.29), the free-energy imbalance (19.15)
becomes

∫
C

(
�
ψ − ψKV ) ds +

(#)︷ ︸︸ ︷[
(ψ − σ)W

]b
a

≤
∫
C

(τ
�
ϑ− (σK + g)V ) + µ( · n− ρV ) + µvr) ds−

[
µh

]b
a
. (19.16)

We must therefore have σ = ψ, as before, and hence∫
C

�
ψ ds ≤

∫
C

(τ
�
ϑ− gV + µ( · n− ρV ) + µvr) ds−

[
µh

]b
a
. (19.17)

Next, using the atomic balance (19.11),

[
µh

]b
a

=
∫
C

(
µ
∂h

∂s
+ h

∂µ

∂s

)
ds =

∫
C

(
µ( · n− ρV + r) + h

∂µ

∂s

)
ds.

59Cf. Dav̀ı and Gurtin (1990).
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Thus, (19.17) reduces to∫
C

(
�
ψ − τ

�
ϑ + h

∂µ

∂s
+ (µ− µv)r + gV

)
ds ≤ 0;

since C is arbitrary, we have the dissipation inequality

�
ψ − τ

�
ϑ + h

∂µ

∂s
+ (µ− µv)r + gV ≤ 0. (19.18)

19.5 Constitutive equations

Our discussion of constitutive equations follows the format set out in §17.8. We consider
constitutive equations giving

ψ, τ as functions of ϑ

h, r, g as functions of
(
ϑ,

∂µ

∂s
, µ− µv, V

)
.


 (19.19)

Then, appealing to the discussion of §17.8 we find, as a consequence of thermocompat-
ibility and an assumption of essentially linear dissipative response, that the free energy
determines the shear through the relation

τ = ψ′(ϑ), (19.20)

that the constititutive equations for h, r, and g have the specific form60

h = −L(ϑ)
∂µ

∂s
− Ă(ϑ)(µ− µv)− A(ϑ)V,

r = −K(ϑ)
∂µ

∂s
− k̆(ϑ)(µ− µv)− k(ϑ)V,

g = −B(ϑ)
∂µ

∂s
− b̆(ϑ)(µ− µv)− b(ϑ)V,




(19.21)

and that, for each ϑ, the coefficients that define the linear relations (19.21) form a positive
semi-definite matrix.

It is the purpose of this section to discuss more classical theories in which the linear
relations (19.21) are uncoupled. We therefore assume that

• surface diffusion is given by Fick’s law (Herring, 1951; Mullins, 1957),

h = −L(ϑ)
∂µ

∂s
, (19.22)

with L(ϑ) ≥ 0 a modulus that describes the mobility of the atoms on the interface;

• evaporation-condensation is described by the relation

r = −k(ϑ)(µ− µv), (19.23)

with k(ϑ) ≥ 0 an evaporation modulus;

60Cf. Dav̀ı and Gurtin (1990), who neglect the internal force g and hence do not include dependences
on V .
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• kinetics is defined by the relation

g = −b(ϑ)V, (19.24)

with b(ϑ) ≥ 0.

The dissipation then has the form

D = L(ϑ)
(
∂µ

∂s

)2

︸ ︷︷ ︸
dissipation induced
by surface diffusion

+ k(ϑ)(µ− µv)2 + b(ϑ)V 2︸ ︷︷ ︸
dissipation accompanying the
attachment of vapor atoms

(19.25)

and results in two terms, k(ϑ)(µ − µv)2 and b(ϑ)V 2, associated with the attachment of
vapor atoms to the lattice. One might expect the dynamical term b(ϑ)V 2 to be negligi-
ble for standard evaporation-condensation, and, in fact, theories discussed by materials
scientists typically do not include the kinetic term g = −b(ϑ)V .61

19.6 Basic equations

The basic equations for the interface consist of the normal configurational force-balance
(19.4) (with σ = ψ) and the atomic balance

ρµ = Ψ− ψK − ∂τ

∂s
− g,

ρV = −∂h

∂s
+  · n + r,

supplemented by the constitutive equations ψ = ψ̂(ϑ), (19.20), and (19.22)–(19.23):

ρµ = Ψ−
[
ψ(ϑ) + ψ′′(ϑ)

]
K + b(ϑ)V,

ρV =
∂

∂s

(
L(ϑ)

∂µ

∂s

)
+  · n + k(ϑ)(µv − µ).


 (19.26)

These equations are coupled to the bulk atomic balance

ρ̇ = −div (19.27)

and the bulk constitutive equations

µ = µ̂(ρ) =
dΨ̂(ρ)
dρ

(19.28)

and

 = −M(ρ)∇µ (19.29)

((7.5)2), or equivalently,

 = −D(ρ)∇ρ, D(ρ) =
dµ̂(ρ)
dρ

M(ρ). (19.30)

61Cf. §26.3 for a detailed discussion of this kinetic term.
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19.7 Nearly flat interface at equilibrium

For a flat interface at equilibrium, K = V = 0 and the normal configurational force
balance (19.26) implies that

Ψ− ρµ = 0, (19.31)

which is the familiar assertion that, in equilibrium, the grand canonical potential Ψ− ρµ
of the solid must coincide with that of the vapor, here normalized to be zero (cf. Larché
and Cahn 1985).

Let the constants Ψ0, ρ0, and µ0 denote the values of the bulk free-energy, bulk
atomic-density, and chemical potential when the grain and vapor are in equilibrium,
with the interface flat; then

Ψ0 = Ψ̂(ρ0), µ0 = µ̂(ρ0) =
dΨ̂
dρ

∣∣∣∣
0

,

where the subscript zero denotes evaluation at ρ = ρ0. Then, by (19.31),

Ψ0 − µ0ρ0 = 0.

Thus Ψ− ρµ, considered as a function of ρ, has the following expansion for ρ close to ρ0:

Ψ− ρµ =
dΨ̂
dρ

∣∣∣∣
0

(ρ− ρ0)− µ0(ρ− ρ0)− ρ0
dµ̂

dρ

∣∣∣∣
0

(ρ− ρ0) + o(|ρ− ρ0|)

= −ρ0
dµ̂

dρ

∣∣∣∣
0

(ρ− ρ0) + o(|ρ− ρ0|).

On the other hand,

µ = µ0 +
dµ̂

dρ

∣∣∣∣
0

(ρ− ρ0) + o(|ρ− ρ0|),

so that

Ψ− ρµ = −ρ0(µ− µ0) + o(|ρ− ρ0|). (19.32)

If, in addition, we assume that the vapor is not supersaturated, then its chemical potential
must coincide with the equilibrium potential of the grain:

µv = µ0. (19.33)

Thus, neglecting the term of o(|ρ − ρ0|) in (19.32), we may write the normal config-
urational balance and the interfacial atomic balance, (19.26), with the approximation
ρV = ρ0V , in the form62

ρ0(µ− µ0) = −φ(ϑ)K + b(ϑ)V,

ρ0V =
∂

∂s

(
L(ϑ)

∂µ

∂s

)
+  · n− k(ϑ)(µ− µ0),


 (19.34)

62In statical situations the configurational balance (19.34)1 reduces to the classical relation

ρ0(µ− µ0) = −φ(ϑ)K

due to Herring (1951), whose derivation utilizes virtual variations of the position of the interface (cf. (i)
of §1.1).
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with φ as defined in (17.35). These equations, when combined, form a single equation
for the interface

ρ2
0V =

(
∂

∂s
L(ϑ)

∂

∂s
− k(ϑ)

)
(−φ(ϑ)K + b(ϑ)V ) + ρ0  · n. (19.35)

Similarly, to within a term of o(|ρ− ρ0|), we may rewrite Fick’s law (19.30) as

 = −D0∇ρ, (19.36)

and the bulk atomic balance has the approximate form

ρ̇ = div(D0∇ρ), (19.37)

or, for Dij the components of D0,

ρ̇ = Dij
∂2ρ

∂xi∂xj
.

Note the presence of two terms in the interface system (19.34) involving the velocity
V :

• b(ϑ)V , a dissipative term associated with the attachment kinetics of atoms at the
free surface;

• ρ0V , a nondissipative term associated with the accretive transport of atoms to and
from the bulk material at the interface.

The equations (19.34)–(19.37) govern the motion of the interface assuming small
departures from equilibrium and a non-supersaturated vapor. These equations are com-
plicated; two important special cases are described below.63 For the remainder of this
section we restrict attention to behavior close to equilibrium with vapor not supersatu-
rated, and therefore work with the approximations (19.34) and (19.37).

(a) Interface motion by surface diffusion

The equations simplify considerably when bulk diffusion, evaporation-condensation, and
kinetics are neglected. In this instance we omit the bulk diffusion equation (19.37), take
 · n = 0 at the interface, and take b(ϑ) = k(ϑ) = 0. Then (19.35) reduces to

ρ2
0V = − ∂

∂s

(
L(ϑ)

∂

∂s

(
φ(ϑ)K

))
. (19.38)

If we neglect the dependences of the coefficients on ϑ (that is, if we assume that the
material response of the interface is well-approximated as isotropic), then this equation
has the simple form

V = −A
∂2K

∂s2
, (19.39)

with
A =

Lψ

ρ2
0

,

and represents a fourth-order parabolic equation for the evolution of the interface.
63For an isotropic material, linearized versions of (19.39) and (19.40) (with b = 0) are discussed by

Mullins (1957) in his discussion of thermal grooving. Cf. Dav̀ı and Gurtin (1990), who work within the
present framework.
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(b) Interface motion by evaporation-condensation and kinetics

If we neglect surface and bulk diffusion, and hence take L(ϑ) = 0, drop the bulk diffusion
equation (19.37), and take  · n = 0 at the interface, then (19.34) combine to give

B(ϑ)V =
[
ψ(ϑ) + ψ′′(ϑ)

]
K, (19.40)

with

B(ϑ) = b(ϑ) +
ρ2
0

k(ϑ)
.

Thus the equations reduce to the curvature-flow equation (17.32) (with F = 0), but now
the kinetic term consists of two parts as represented by the constants b(ϑ) and ρ2

0/k(ϑ).
Note that the limit k → 0 yields B →∞ and hence V → 0, which is consistent with the
underlying assumptions and the balances (19.34); in this limit the first of (19.34) yields
ρ0(µ− µ0) = −φ(ϑ)K.

E Strained solid-vapor interfaces.

Epitaxy

We now broadly generalize certain aspects of the discussion of solid-vapor interfaces pre-
sented in §19 to account for deformation, standard interfacial stress, multiple species
of atoms, and adatoms. The inclusion of deformation is of particlar importance in dis-
cussions of epitaxy (Figure 15), as differences in lattice parameters between film and
substrate can induce large stresses in the film.64 Further, as discussed by Shchukin and
Bimberg (1999) and demonstrated in the first-principles calculations of Van de Walle,
Asta, and Voorhees (2002), standard interfacial stress may strongly influence the forma-
tion of surface patterns.65

We begin by characterizing the solid-vapor interaction through prescribed supplies
of vapor atoms to the solid surface, a characterization that would seem appropriate to
molecular beam epitaxy; later sections discuss more general constitutive relations for the
solid-vapor interface.66

20 Configurational and standard forces

When considering the configurational forces that act on an isolated portion P of a body,
it is generally necessary to account not only for forces that describe interactions between
P and the remainder of the body but also for internal forces within P, as such internal
forces are of importance in the generation and evolution of defects. The situation for
standard forces is quite different. There, internal forces are typically of little importance.

64See, for example, the reviews of Stringfellow (1982), Cammarata and Sieradzki (1994), Ibach (1997),
Politi, Grenet, Marty, Ponchet and Villain (2000), and Spaepen (2000). For sufficiently thick films,
stresses may be induced by dislocations and other defects — even in the absence of a lattice mismatch
between film and substrate. See Freund (1993) and Gao and Nix (1999) for studies of defects in films.

65Andreussi and Gurtin (1977) show that a decreasing dependence of standard surface stress on tensile
surface strain leads to the wrinkling of a free surface. See, also, Shenoy and Freund (2002), who demon-
strate the existence of an instability induced solely by surface strain, more precisely, by a compressive-
strain induced nonconvexity in the dependence of surface energy on orientation.

66The results of Part E are small-deformation counterparts of those obtained by Fried and Gurtin
(2003).
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substrate

film

vapor S

Figure 15: Schematic describing epitaxy. Undulations of the film-vapor interface typically
result from instabilities induced, for example, by stresses arising from a mismatch in
lattice parameters between film and substrate.

20.1 Configurational forces

For an interface separating solid and vapor phases, the configurational forces acting on a
pillbox are identical to those arising in our discussion of grain-vapor interfaces. Thus, the
configurational force balance (19.1) and its local consequences remain valid. In particular,
we have the normal configurational force balance

σK +
∂τ

∂s
+ g − n ·Cn = 0. (20.1)

20.2 Standard forces

In addition to the standard stress T distributed over the solid, we allow for a standard
interfacial stress s distributed continuously over the interface. We assume that the
standard stress in the vapor vanishes: considering the solid as the (−)-phase and the
vapor as the (+)-phase, it follows that T+ = 0. Thus we may, without danger of
confusion, write T = T− for the interfacial limit of the stress in the solid.

Let C = C(t) be an arbitrary interfacial pillbox. The portion of S exterior to C then
exerts standard forces −sa and sb at xa and xb,67 while the solid exerts a traction −Tn
on C across C− (Figure 16). The standard torques acting on a pillbox are determined
analogously.

In view of the preceding discussion, the standard force and torque balances for C take
the form

s
∣∣b
a
−

∫
C

Tn ds = 0,

[
(x− 0)× s

]b
a
−

∫
C

(x− 0)×Tn ds = 0,




(20.2)

67I.e., e.g., sa(t) = s(xa(t), t)
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− a

bs

s

−T−n

C

Figure 16: Standard forces on an interfacial pillbox C for a solid-vapor interface. The
tangency of sa and sb follows from balance of torques.

which, since C is arbitrary, yield the interfacial force and torque balances (cf. Footnote
96, page 137

∂s
∂s

= Tn, t× s = 0. (20.3)

The torque balance (20.3)2 renders the stress vector s tangent to the interface; hence
there is a scalar field σ̄ such that

s = σ̄t; (20.4)

σ̄ represents the standard scalar interfacial stress. Since ∂t/∂s = Kn, we can rewrite
the interface condition (20.3)1 as

σ̄Kn +
∂σ̄

∂s
t = Tn, (20.5)

or equivalently, as

σ̄K = n ·Tn,
∂σ̄

∂s
= t ·Tn. (20.6)

The first of (20.6) represents a counterpart, for a solid-vapor interface, of the classical
Laplace–Young relation for a liquid-vapor interface.

21 Power

21.1 External power expenditures

Our discussion of power follows the discussions leading to (11.9) and (17.14). Consider
an arbitrary interfacial pillbox C = C(t). The configurational and standard stresses c and
s act at the endpoints xa(t) and xb(t) of C(t). As in our discussion of grain boundaries
(cf. §17.2), we take dxa/dt and dxb/dt as the power-conjugate velocities for c. For s,
we reason by analogy to our treatment of the power expended by standard tractions on
a migrating control volume and take as power-conjugate velocities the motion velocities
dua/dt and dub/dt following the evolution of the endpoints xa(t) and xb(t) (cf. (15.17)).
The portion C− of the pillbox boundary adjacent to the solid is acted on by the tractions
−Cn and −Tn. As in our discussion of grain-vapor interfaces (cf. §19), we assume that
the configurational traction −Cn is power-conjugate to the normal velocity v. Further,
consistent with our treatment of the power expended by standard tractions on a migrating
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control volume, we use as a power-conjugate velocity for −Tn the motion velocity �u
following S(t) (cf. 11.8). Finally, the configurational force g, being internal, expends no
external power. The (net) external power expended on C(t) therefore has the form (cf.
(19.5)) [

c · dx
dt

+ s · du
dt

]b
a

−
∫
C

(
Cn · v + Tn · �u

)
ds. (21.1)

21.2 Internal power expenditures. Power balance

First of all, using the identity ∂V/∂s =
�
ϑ and the normal configurational force balance

(20.1), it follows that (cf. (17.13) and (17.15))[
c · dx

dt

]b
a

=
[
σW + τV

]b
a

=
[
σW

]b
a

+
∫
C

[
τ

�
ϑ− (σK + g − n ·Cn)V

]
ds; (21.2)

thus, since v = V n,[
c · dx

dt

]b
a

−
∫
C

Cn · v ds =
[
σW

]b
a

+
∫
C

[
τ

�
ϑ− (σK + g)V

]
ds. (21.3)

Further, since s = σ̄t and ε = t · e (cf. 15.13)), we may use (15.17) to obtain[
s · du

dt

]b
a

=
[
s · �u + σ̄εW

]b
a
. (21.4)

Thus, since ∂
�u/∂s = �e−KV e (cf. (15.12))[

s · du
dt

]b
a

=
[
σ̄εW

]b
a

+
∫
C

(
∂s
∂s
· �u + s · (�e−KV e)

)
ds. (21.5)

On the other hand, since s = σ̄t and t · �e = �
ε− γ

�
ϑ (cf. (15.15)),

s · �e = σ̄(�
ε− γ

�
ϑ); (21.6)

therefore [
s · du

dt

]b
a

=
[
σ̄εW

]b
a

+
∫
C

(
∂s
∂s
· �u + σ̄(�

ε− γ
�
ϑ)− σ̄εKV

)
ds (21.7)

and, using the standard force balance (20.3)1,[
s · du

dt

]b
a

−
∫
C

Tn · �u ds =
[
σ̄εW

]b
a

+
∫
C

[
σ̄(�

ε− γ
�
ϑ)− σ̄εKV

]
ds. (21.8)

Combining (29.9) and (21.8) then yields the power balance[
c · dx

dt
+ s · du

dt

]b
a

−
∫
C

(
Cn · v + Tn · �u

)
ds

=
[
(σ + σ̄ε)W

]b
a

+
∫
C

[
σ̄

�
ε + τ̄

�
ϑ−

(
(σ + σ̄ε)K + g

)
V

]
ds, (21.9)
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where we have introduced the reduced configurational shear

τ̄ = τ − σ̄γ. (21.10)

The contributions to the internal power-expenditure, which should be compared with
those (cf. §17.2) for a grain boundary, therefore have the form:

• The term
[
(σ+ σ̄ε)W

]b
a

(rather than
[
σW

]b
a
) represents power expended internally

as material is added to C at its endpoints.

• The term σ̄
�
ε represents an expenditure of power associated with interfacial stretch-

ing.

• The term τ̄
�
ϑ (rather than τ

�
ϑ) represents an expenditure of power associated with

changes in the orientation of the interface.68

• The term −(σ + σ̄ε)KV (rather than −σKV ) represents the expenditure of power
associated with changes in interfacial length due to the curvature of the interface.

The expenditure −gV is as discussed following (17.16).

22 Atomic transport

22.1 Atomic balance

As in our treatment of bulk atomic transport, we consider N species of atoms, labelled
α = 1, 2, . . . , N . In addition to atomic densities ρα and fluxes α distributed over the
solid, we account for interfacial atomic densities δα, (scalar) interfacial atomic fluxes
hα, and a prescribed supply rα of atoms from the vapor to the solid surface. As before,
we write ρα = ρα− and α = α− for the appropriate interfacial limits.

Let C = C(t) be an arbitrary interfacial pillbox. Then surface diffusion in the portion
of S exterior to C results in fluxes hαa and −hαb of α-atoms across xa and xb, bulk diffusion
results in a flow α · n of α-atoms from the solid into C across C−, and there is a flow rα

of α-atoms into C across C+ from the vapor (Figure 17). Hence, the net rate at which
atoms are added to C by diffusive transport and through the vapor supply is

−hα
∣∣b
a

+
∫
C

(α · n + rα) ds. (22.1)

Accretion of the portion of the interface exterior to C results in fluxes −δαaWa and
δαb Wb of α-atoms across xa and xb,69 while accretion of C results in a flow −ραV of

68One might, at first sight, be surprised at the term σ̄γ in the power expenditure τ̄ϑ� = (τ − σ̄γ)ϑ�.
The presence of this term is a consequence of the fact that the interfacial stress s is tangent to the
interface, but the interfacial strain-rate e� is not; because of this dichotomy the standard interfacial
stress power is given by (21.6). In the finite-strain theory the interfacial stress s is tangent to the
deformed interface; i.e., s = σ̄t̄ with t̄ the unit tangent to the deformed interface. If in that theory
we let u denote the displacement relative to the reference configuration and consider ∇ and ∂/∂s as
“material” operators and (. . . )� as the time-derivative following the interface as described materially,
then, defining e = ∂u/∂s, it follows, as before, that e� = (ε� − γϑ�)t + (γ� + εϑ�)n. Thus in the
finite-strain theory the interfacial stress power has the form s ·e� = σ̄(ε�−γϑ�)(t̄ · t)+(γt̄ ·+εϑ�)(t̄ ·n)
and hence reduces to that used in the “small-deformation theory” in the small-strain limit, where t̄→ t
and n̄→ n. This lends further credence to the form of the power expenditures described here.

69I.e., e.g., δαa (t)Wa(t) = δα(xa(t), t)Wa(t).
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rα

α · n− ραV

hαa − δαaWa

− hαb + δαb Wb

C

Figure 17: Transport of α-atoms into an interfacial pillbox C.

α-atoms into C across C− (Figure 17). Hence, the net rate at which atoms are added to
C by accretive transport is

[
δαW

]b
a
−

∫
C

ραV ds. (22.2)

In view of (22.1) and (22.2), the atomic balance for C takes the form

d

dt

∫
C(t)

δα ds = −
[
hα − δαW

]b
a

+
∫
C(t)

(α · n− ραV + rα)ds, (22.3)

for each species α, and by virtue of the integral transport theorem (14.29), we have the
local balance70

�
δα + (ρα − δαK)V = −∂hα

∂s
+ α · n + rα (22.4)

on the interface for each species α.

22.2 Net atomic balance

Defining the net bulk and adatom densities and the atomic volume Ω through

ρ =
N∑
β=1

ρβ , δ =
N∑
β=1

δβ , Ω =
1
ρ
, (22.5)

and the net fluxes and supply through

 =
N∑
β=1

β , h =
N∑
β=1

hβ , r =
N∑
β=1

rβ , (22.6)

we see that (22.4), when summed over all atomic species, yields the net atomic balance

�
δ + (ρ− δK)V = −∂h

∂s
+  · n + r. (22.7)

70Comparison of the interfacial atomic balance (22.4) with its bulk counterpart (3.2) reveals several
formal similarities and differences. The adatom densities and fluxes enter (22.4) in a manner completely
analogous to that in which the bulk atomic densities and fluxes enter (3.2). Aside from the curvature
term and the term accounting for the supply of atoms from the vapor, what most distinguishes (22.4)
from (3.2) is the presence of interaction terms that account for the accretion and the flow of atoms
between the interface and the bulk.
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If adatom densities are neglected, then this net balance reduces to an equation for the
normal velocity:

V = Ω
(
− ∂h

∂s
+  · n + r

)
. (22.8)

For a substitutional alloy the lattice constraint (5.1) and the substitutional flux con-
straint (5.4) imply that ρ = ρsites and  = 0; hence the net atomic balance (22.7) takes
the form

�
δ − δKV + ρsitesV = −∂h

∂s
+ r (22.9)

whose sole coupling with the remaining field equations is through the kinematical terms
V and K and, possibly, through the net flux h via additional constitutive information.
If adatom densities are neglected, then (22.9) reduces to

V = Ω
(
− ∂h

∂s
+ r

)
, (22.10)

with
Ω =

1
ρsites

constant. Thus, when both adatom densities and surface diffusion are neglected, the
evolution of an interface between a substitutional alloy and a vapor is governed solely by
the atomic supply r.

23 Free-energy imbalance

23.1 Energy flows due to atomic transport. Global imbalance

We assume that, if the material is unconstrained, then, for each species α, the chemical
potential µα of the solid at its surface is the limiting value µα− of the bulk chemical
potential. For a substitutional alloy, the individual chemical potentials are not well
defined in bulk; the relative chemical potentials must be used. We assume that, for any
two species α and β, the limiting value µαβ− of the relative chemical potential is equal
to the difference µα − µβ of chemical potentials of the solid at its surface. Thus we have
the chemical interface-conditions:

µα = µα−

µα − µβ = µαβ−
for an unconstrained material,
for a substitutional alloy.

}
(23.1)

Motivated by the desire to describe processes such as molecular beam epitaxy, where
atoms are supplied directly at the film surface and the vapor cannot simply be modeled
as a reservoir, we introduce for each species α an external supply rα of α-atoms, with
concomitant supply µαrα of energy. Therefore, in contrast to the discussion of more
classical evaporation-condensation in §19, we do not find it necessary to endow the vapor
with a chemical potential.71 However, in §28 we will discuss a different class of vapor-
interaction equations in which the vapor is considered as a reservoir for atoms endowed

71The discussion of evaporation-condensation (§19, for a single species) was based on the tacit assump-
tion that there exist an infinitesimally thin transition-layer across which there is flow r of atoms from a
quiescent reservoir at chemical potential µv to the solid at potential µ, a flow proportional to µv − µ.
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with chemical potentials µαv , and for which rα is no longer arbitrarily prescribed, but is,
instead, a constitutive variable.

The energy flow into a migrating pillbox C due to atomic transport includes contribu-
tions associated with diffusion, accretion, and the supply of atoms from the vapor. The
diffusion of α-atoms within the interface results in energy fluxes µαah

α
a and −µαb h

α
b across

xa and xb; the diffusion of α-atoms in the solid results in an energy flow µαα · n across
C−; the supply rα of α-atoms from the vapor results in an energy flow µαrα. The net
rate at which energy is supplied to C by diffusion and evaporation-condensation is hence
given by (cf. (19.13))

−
N∑
α=1

[
µαhα

]b
a

+
N∑
α=1

∫
C

µα(α · n + rα) ds. (23.2)

The motion of the interface results in energy fluxes −µαa δ
α
aWa and µαb δ

α
b Wb associated

with the accretive transport of α-atoms across the endpoints xa and xb of C. In addi-
tion, the motion of the interface results in an energy flow −µαρα−V associated with the
accretive transport of α-atoms from the solid across C−. Hence, the net rate at which
energy is added to C by the accretive transport of atoms is

N∑
α=1

[
µαδαW

]b
a
−

N∑
α=1

∫
C

µαραV ds. (23.3)

Letting ψ denote the free energy of the interface and bearing in mind (21.1), (23.2),
and (23.3), the free-energy imbalance for an arbitrary interfacial pillbox C = C(t) takes
the form

d

dt

∫
C

ψ ds

︸ ︷︷ ︸
free energy

≤
[
c · dx

dt

]b
a

−
∫
C

Cn · v ds

︸ ︷︷ ︸
power expended

by configurational forces

+
[
s · du

dt

]b
a

−
∫
C

Tn · �u ds

︸ ︷︷ ︸
power expended

by standard forces

+
N∑
α=1

[
µα(−hα + δαW )

]b
a

+
N∑
α=1

∫
C

µα(α · n− ραV + rα) ds

︸ ︷︷ ︸
energy flow by atomic transport

. (23.4)

23.2 Dissipation inequality

In view of (21.9), (22.4), and the integral transport theorem (14.29), the free-energy
imbalance (23.4) for C becomes

∫
C

(
�
ψ − ψKV ) ds +

(#)︷ ︸︸ ︷[(
ψ −

N∑
α=1

µαδα − σ̄ε− σ

)
W

]b
a

≤
∫
C

(
σ̄

�
ε + τ̄

�
ϑ−

(
σ +

N∑
α=1

µαδα + σ̄ε

)
KV − gV

)
ds

−
N∑
α=1

[
µαhα

]b
a

+
N∑
α=1

∫
C

µα
(

�
δα +

∂hα

∂s

)
ds. (23.5)
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Since C is arbitrary, so also are the tangential velocities Wa and Wb of the endpoints of
C; thus, since the only term in (23.5) dependent on these velocities is the term (#), we
have the interfacial Eshelby relation72

σ = ψ −
N∑
α=1

δαµα − σ̄ε, (23.6)

which is an analog of the bulk Eshelby relation (12.15).
Since

N∑
α=1

[
µαhα

]b
a

=
N∑
α=1

∫
C

(
µα

∂hα

∂s
+ hα

∂µα

∂s

)
ds, (23.7)

we may use (23.6) to rewrite (23.5) as∫
C

(
�
ψ − σ̄

�
ε− τ̄

�
ϑ−

N∑
α=1

(
µα

�
δα − hα

∂µα

∂s

)
+ gV

)
ds ≤ 0; (23.8)

since C is arbitrary, this yields the interfacial dissipation inequality

�
ψ − σ̄

�
ε− τ̄

�
ϑ−

N∑
α=1

(
µα

�
δα − hα

∂µα

∂s

)
+ gV ≤ 0. (23.9)

When adatom densities are neglected, the “constraint” �δ = �0 renders (23.9) indepen-
dent of the chemical potentials µα; in this case, as in classical theories of continua, the
chemical potentials µα on S should be considered as indeterminate (not constitutively
determinate).

72In the absence of standard interfacial stress, the configurational stress within the interface has the
form c = σt + τn, wit σ = ψ −

∑N
α=1 δ

αµα. This result, which, like the relation σ = ψ arising in our
discussion of grain boundaries (cf. (17.21)), has a purely energetic structure. In this case it is legitimate
to view σ as an interfacial tension. But when standard stress is taken into account this interpretation is
no longer valid. To explain this, consider the three-dimensional theory. There the interface is a surface
S and the interfacial stresses are tensorial. The standard stress T is a symmetric, tangential tensor field
on S: in terms of Cartesian coordinates with subscripts 1 and 2 associated with the tangent plane at a
point x on S, the component matrix of T(x) has the form

 T11 T12 0
T12 T22 0
0 0 0




(cf., e.g., Gurtin and Murdoch (1975) and the review of Shchukin and Bimberg (1999)). On the other
hand, the configurational surface stress is a tensor field with both normal and tangential parts; the
tangential part, which is the part relevant to a discussion of surface tension and which might be compared
to the vector field c of the two-dimensional theory, has the form

Ctan =

(
ψ −

N∑
α=1

δαµα
)

P− (∇Su)�T,

where ∇S is the surface gradient on S, and P, the projector onto S, has component matrix at x of the
form 

 1 0 0
0 1 0
0 0 0


 .

Only in the absence of standard surface stress does Ctan take the form Ctan =
(
ψ −

∑N
α=1 δ

αµα
)
P of a

pure tension; otherwise, Ctan is a generic tangential tensor field. One could, of course, think of ψ−δαµα
as a surface tension, and this is often done (cf. Shchukin and Bimberg, 1999), but what is more cogent

is the form of Ctan, which should be compared with the form C =
(
Ψ−

∑N
α=1 ρ

αµα
)
1− (∇u)�T of the

bulk Eshelby tensor established in §12, a comparison that identifies Ctan as an Eshelby tensor for the
surface S (cf. Gurtin, 1995, 2000).
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24 Normal configurational force balance revisited

24.1 Mechanical potential F
Since we account for deformation and atomic transport, the bulk configurational stress
C is determined by the Eshelby relation (12.15):

C =
(

Ψ−
N∑
α=1

ραµα
)
1− (∇u)�T.

Thus, in view of the interfacial Eshelby relation (23.6), we may write the normal config-
urational force balance (20.1) in a form,

N∑
α=1

(ρα − δαK)µα = Ψ−Tn · (∇u)n− (ψ − σ̄ε)K − ∂τ

∂s
− g, (24.1)

which equates terms representing transport to those that are purely mechanical. Thus,
for

F def= Ψ−Tn · (∇u)n− (ψ − σ̄ε)K − ∂τ

∂s
− g, (24.2)

we may rewrite the normal configurational force balance in the form

N∑
α=1

(ρα − δαK)µα = F ; (24.3)

we refer to F as the mechanical potential.
When g = 0, F represents the variational derivative of the total free energy with

respect to variations of the position of the interface, holding the composition fixed. This
field appears first in the works of Wu (1996), Freund (1998), and Norris (1998), who,
working within a framework that does not explicitly account for atomic species, follow
Herring (1951) (cf. our discussion of (1.1)) in viewing the surface gradient of this potential
as the driving force for surface diffusion.73 That (24.3) is compatible with this point of
view follows upon neglecting adatom densities and restricting attention to a single species.
A useful alternative form for F follows upon noting that, since τ = σ̄γ + τ̄ (cf. (21.10))
and ∂σ̄/∂s = t ·Tn = n ·Tt (cf. (20.6)),

∂τ

∂s
=

∂σ̄

∂s
γ + σ̄

∂γ

∂s
+

∂τ̄

∂s
= γn ·Tt + σ̄

∂γ

∂s
+

∂τ̄

∂s
; (24.4)

hence

F = Ψ−Tn · (∇u)n− γn ·Tt− (ψ − σ̄ε)K − σ̄
∂γ

∂s
− ∂τ̄

∂s
− g. (24.5)

Another form for F and one that we find interesting, but do not use, is

F = Φ + ε trT− ψK − σ̄
∂γ

∂s
− ∂τ̄

∂s
− g, (24.6)

with Φ the free enthalpy (cf. (7.15)). The verification of (24.6) involves the relations
1 = t⊗ t + n⊗ n, e = (∇u)t = εt + γn, and σ̄K = n ·Tn.

73Related studies are those of Asaro and Tiller (1972), Rice and Chuang (1981), and Spencer, Voorhees,
and Davis (1991), who restrict attention to a surface free-energy that is constant. See, also, Freund
and Jonsdottir (1993), Grilhe (1993), Gao (1994), Freund (1995), Spencer and Meiron (1994), Yang
and Srolovitz (1994), Suo and Wang (1997), Wang and Suo (1997), Xia, Bower, Suo and Shih (1997),
Léonard and Desai (1998), Gao and Nix (1999), Shchukin and Bimberg (1999), Danescu (2001), Spencer,
Voorhees, and Tersoff (2001), Xiang and E (2002).
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24.2 Substitutional alloys. Interfacial chemical potentials µα in
terms of the relative chemical-potentials µαβ

For a substitutional alloy the bulk densities ρα are subject to the lattice constraint (5.1).
As a consequence of this constraint, the individual chemical potentials µα in bulk away
from the interface are not well-defined; only the relative chemical potentials µαβ have
meaning. At the interface the limiting values of these relative potentials are related
to the chemical potentials of the solid at the interface through the chemical interface-
conditions (23.1), µα − µβ = µαβ−. Thus, limiting our discussion to the interface and
writing µαβ = µαβ−, we have the interface condition

µα − µβ = µαβ . (24.7)

On the other hand,

there is no lattice constraint for the diffusion of adatoms

and, as is clear from (24.1), it is the individual chemical potentals µα that enter the basic
equations on S. In accord with this, we now show that the individual chemical potentials
on S are uniquely determined — by what is essentially the normal configurational force
balance — when the relative chemical potentials are known in the film.

If we define effective densities

ραef = ρα − δαK, (24.8)

then (24.3) becomes

ραef µ
α = F . (24.9)

It is convenient to define an effective net density ρef, effective concentrations cαef, and an
effective net atomic volume Ωef through

ρef =
N∑
α=1

ραef, cαef =
ραef
ρef

, Ωef =
1
ρef

. (24.10)

Then, choosing an atomic species α arbitrarily, we may use an argument of Larché and
Cahn74 to express µα in terms of the N −1 relative chemical-potentials µαβ and the sum
ρβefµ

βα. Since µβ = µα − µαβ ,

N∑
β=1

ρβefµ
β =

N∑
β=1

ρβef(µ
α − µαβ) = ρefµ

α −
N∑
β=1

ρβefµ
αβ ,

and the normal configurational force balance (24.9) yields an identity,

µα =
N∑
β=1

cβefµ
αβ + ΩefF

=
N∑
β=1

cβefµ
αβ + Ωef

{
Ψ−Tn · (∇u)n− (ψ − σ̄ε)K − ∂τ

∂s
− g

}
, (24.11)

which, for a substitutional alloy, gives the individual chemical potential µα of each species
α in terms of the chemical-potentials µαζ of α relative to all other species ζ. We refer to
(24.11) as the configurational-chemistry relations.

Conversely, if (24.11) holds for all α, then µαβ = µα−µβ and (24.9) is satisfied. Thus
we have the following result:

74Larché and Cahn (1985, Appendix 1).



98 E. Fried & M. E. Gurtin

Equivalency Theorem for Substitutional Alloys The configurational-
chemistry relations,

µα =
N∑
β=1

cβefµ
αβ + ΩefF , α = 1, 2, . . . , N, (24.12)

are satisfied if and only if both the normal configurational force balance,

N∑
α=1

(ρα − δαK)µα = F ,

and the relative chemical-potential relations,

µαβ = µα − µβ , α, β = 1, 2, . . . , N,

are satisfied.

Thus, when discussing substitutional alloys we may equally well use the normal configura-
tional force balance or the onfigurational-chemistry relations, provided that in the former
case we account also for the relative chemical-potential relations. This result is central
to what follows.

25 Constitutive equations for the interface

Since there is no lattice constraint for the diffusion of adatoms along the interface, the
discussion of this section is valid whether or not the associated bulk material is subject
to a lattice constraint.

25.1 General relations

Our discussion of constitutive equations is guided by the interfacial dissipation inequality
(23.9), viz.,

�
ψ − σ̄

�
ε− τ̄

�
ϑ−

N∑
α=1

(
µα

�
δα − hα

∂µα

∂s

)
+ gV ≤ 0,

and follows the format set out in §17.8.
Let

�δ = (δ1, δ2, . . . , δN ), �µ = (µ1, µ2, . . . , µN ).

Granted essentially linear dissipative response, we consider constitutive equations giv-
ing75

ψ, σ̄, τ̄ , �µ as functions of (ε, ϑ, �δ )

in conjunction with constititutive equations for hα and g of the specific form

hα = −
N∑
β=1

Lαβ
∂µβ

∂s
− AαV,

g = −
N∑
α=1

Bα ∂µα

∂s
− bV,




(25.1)

75Since ε = t · (∇u)t is invariant for transformations of the form ∇u �→ ∇u+W, with W an arbitrary
skew-symmetric tensor, the constitutive equations considered here have the requisite invariance under
infinitesimal changes of observer.
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with coefficients possibly dependent on (ε, ϑ, �δ ).76

Then, appealing to the discussion of §17.8, we find that the free energy determines the
standard scalar interfacial stress, the reduced shear, and the chemical potentials through
the relations

σ̄ =
∂ψ̂(ε, ϑ, �δ )

∂ε
,

τ̄ =
∂ψ̂(ε, ϑ, �δ )

∂ϑ
,

µα =
∂ψ̂(ε, ϑ, �δ )

∂δα
,




(25.2)

and that the coefficient matrix of the equations (25.1) must be positive semi-definite.
In view of (21.10), τ = σ̄γ + τ̄ and (25.2)1,2 yield an auxiliary constitutive relation

showing that the configurational shear τ depends also on the interfacial shear-strain γ.
An increased understanding of τ̄ is achieved by introducing

ψ̃(e, ϑ, �δ ) = ψ̂(e · t, ϑ, �ρ ) = ψ̂(ε, ϑ, �ρ ). (25.3)

Specifially, differentiating with respect to ϑ, we obtain

∂ψ̃(e, ϑ, �δ )
∂ϑ

=
∂ψ̂(ε, ϑ, �ρ )

∂ε

∂(e · t)
∂ϑ

+
∂ψ̂(ε, ϑ, �ρ )

∂ϑ
, (25.4)

which, by (25.2)1,2, (14.1), the definition (15.10)2 of γ, and the relation τ = σ̄γ + τ̄ gives

∂ψ̃(e, ϑ, �ρ )
∂ϑ

= τ. (25.5)

Thus, whereas τ̄ accounts for configurational shear arising solely from changes of interfa-
cial orientation, τ accounts also for configurational shear generated by tensile stretching
of the interface.

Within the context of small deformations, it is reasonable to restrict attention to free
energies that are quadratic in the tensile strain ε and, thus, have the form

ψ̂(ε, ϑ, �δ ) = ψ0(ϑ,�δ ) + w(ε, ϑ, �δ ), (25.6)

with strain energy w of the form

w(ε, ϑ, �δ ) = σ̄0(ϑ,�δ )ε + 1
2k(ϑ,�δ )ε2. (25.7)

Here, ψ0(ϑ,�δ ) is the strain-free surface energy, σ̄0(ϑ,�δ ) is the residual surface stress,
and k(ϑ,�δ ) is the surface elasticity. Because atoms on the free surface are not bonded
to the maximum number of nearest neighboring atoms, a residual surface stress is to be
expected (Shchukin and Bimberg, 1999).

The expressions for σ̄, τ̄ , and µα determined by (25.2) under this specialization are
straightforward. However, the final field equations are cumbersome. For this reason, we
work with the generic expression ψ = ψ̂(ε, ϑ, �δ ).

76The experiments of Barvosa-Carter and Aziz (2001) and first-principles calculations of Van de Walle,
Asta, and Voorhees (2002) suggest that strain dependence of the mobilities may be important.



100 E. Fried & M. E. Gurtin

25.2 Uncoupled relations for hα and g

A simplified form of (25.1) would take the classical Fickean form

hα = −
N∑
β=1

Lαβ
∂µβ

∂s
(25.8)

in conjunction with the simple kinetic relation

g = −bV (25.9)

that formed the basis of our discussion of grain boundaries. Here the coefficients Lαβ ,
which represent the mobility of the atoms on the interface, are presumed to form a
positive semi-definite matrix, while b ≥ 0. The dissipation then has the form

D =
N∑

α,β=1

Lαβ(ε, ϑ, �δ )
∂µα

∂s

∂µβ

∂s︸ ︷︷ ︸
dissipation induced by surface diffusion

+ b(ε, ϑ, �δ )V 2︸ ︷︷ ︸
dissipation accompany-

ing the attachment
of vapor atoms

. (25.10)

We henceforth work with the uncoupled relations (25.8) and (25.9). This choice is
made for convenience only; the generalization of the resulting equations to situations
involving the more general coupled relations (25.1) is straightforward. An argument in
support of the uncoupled relations is that (25.8) represents the flow of atoms within
the interface, while (25.9) represents an interaction of the solid surface with the vapor
environment. But we do believe that there might be situations in which there is coupling
between the diffusive adatom-flow described by �h and the solid-vapor interaction as
described by g. Such coupling might be especially important when studying film growth,
since the kinetics of the deposition process and the small length scales involved render
this process of a nature far different than the processes leading, for example, to relations
that describe classical surface diffusion.

26 Governing equations at the interface

26.1 Equations with adatom densities included

While generally considered negligible, adatom densities would seem important in describ-
ing the segregation of atomic species at a solid-vapor interface.77 Moreover, the parabolic
nature of the atomic balances when adatom densities are included might serve to reg-
ularize the overall system of partial differential equations, which is typically unstable.
Regardless of whether adatom densities are included or neglected, our theory accounts
for the presence of adatoms and their diffusion via the interfacial atomic balances.

(a) General relations

The basic interfacial balances are the standard force-balance, the atomic balance, and
the normal configurational force balance; for the case of a substitutional alloy, the con-
figurational balance with the relations for the relative chemical potentials together are

77Spencer, Voorhees, and Tersoff (2001) assert that: “surface segregation can make the surface com-
position differ from the bulk and the overall surface density of components could be nonuniform.” See
also Lu and Suo (2001, 2002), who use a Cahn–Hilliard type theory to study segregation of a planar
two-phase monolayer on a strained substrate.
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equivalent to the configurational-chemistry relations together with the relations for the
relative chemical potentials. The standard force and atomic balances are (cf. §20.2, §22)

Tn = σ̄Kn +
∂σ̄

∂s
t,

�
δα + (ρα − δαK)V = −∂hα

∂s
+ α · n + rα,


 (26.1)

while the normal configurational force balance and the configurational-chemistry relations
for substitutional alloys take the respective forms

N∑
α=1

(ρα − δαK)µα = F , µα =
N∑
β=1

cβefµ
αβ + ΩefF (26.2)

(cf. (24.3), (24.5), (24.12)), with

F = Ψ−Tn · (∇u)n− γn ·Tt− (ψ − σ̄ε)K − σ̄
∂γ

∂s
− ∂τ̄

∂s
− g. (26.3)

As asserted in the equivalency theorem for substitutional alloys (page 98), for such mate-
rials imposing (26.2)2 ensures satisfaction of both (26.2)1 and the relations µαβ = µα−µβ .

The balances are coupled to the constitutive relations

σ̄ =
∂ψ̂(ε, ϑ, �δ )

∂ε
, τ̄ =

∂ψ̂(ε, ϑ, �δ )
∂ϑ

, µα =
∂ψ̂(ε, ϑ, �δ )

∂δα
(26.4)

(cf. §25.2) and

hα = −
N∑
β=1

Lαβ
∂µβ

∂s
, g = −bV. (26.5)

In (26.5) the constitutive moduli Lαβ and g are possibly dependent on (ε, ϑ, �δ ).
By (26.4), writing

ψ(ε, ϑ, �δ ) = ψ̂(ε, ϑ, �δ )

and omitting the arguments (ε, ϑ, �δ ), we find that

(ψ − σ̄ε)K + σ̄
∂γ

∂s
+

∂τ̄

∂s

=
(
ψ +

∂2ψ

∂ϑ2
− ε

∂ψ

∂ε

)
K +

∂2ψ

∂ε∂ϑ

∂ε

∂s
+

∂ψ

∂ε

∂γ

∂s
+

N∑
β=1

∂2ψ

∂δβ∂ϑ

∂δβ

∂s
, (26.6)

Thus, combining the interfacial balances and the constitutive relations, we arrive at the
standard force and atomic balances

Tn =
∂ψ

∂ε
Kn +

(
∂2ψ

∂ε2

∂ε

∂s
+

∂2ψ

∂ε∂ϑ
K +

N∑
β=1

∂2ψ

∂ε∂δβ
∂δβ

∂s

)
t,

�
δα + (ρα − δαK)V =

∂

∂s

( N∑
β=1

Lαβ
∂µβ

∂s

)
+ α · n + rα,




(26.7)
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and find that the mechanical potential F used in describing the normal configurational
force balance and configurational-chemistry relations (26.2) has the form

F = Ψ−Tn · (∇u)n− γn ·Tt

−
(
ψ +

∂2ψ

∂ϑ2
− ε

∂ψ

∂ε

)
K − ∂2ψ

∂ε∂ϑ

∂ε

∂s
− ∂ψ

∂ε

∂γ

∂s
−

N∑
β=1

∂2ψ

∂δβ∂ϑ

∂δβ

∂s
+ bV. (26.8)

Consider the atomic balance (26.7)2. If we define moduli

καβad =
∂2ψ

∂δα∂δβ
, Dαβ

ad =
N∑
γ=1

Lαγκγβad , (26.9)

with Dαβ
ad the surface diffusivity of α relative to β, then the interfacial-diffusion term in

(26.7) has the form

∂

∂s

( N∑
β=1

Lαβ
∂µβ

∂s

)
=

∂

∂s

{ N∑
β=1

Dαβ
ad

∂δβ

∂s
+

N∑
β=1

Lαβ
(

∂2ψ

∂δβ∂ε

∂ε

∂s
+

∂2ψ

∂δβ∂ϑ

∂ϑ

∂s

)}
.

(26.10)

Thus, bearing in mind the term (δα)� in (26.7)2, we note that if the matrix with entries
Dαβ

ad is positive definite, then (26.7)2, as a system of partial differential equations for the
adatoms δα (considering the remaining fields as fixed), is parabolic and as such should
have a regularizing effect on the evolution of the interface.

(b) Chemical potentials at the surface. Chemical compatibility

For an unconstrained material, the chemical potentials µα of the surface, needed in the
normal configurational force balance (26.2)1, may be determined directly through the
limit relation

µα = µα−. (26.11)

On the other hand, these chemical potentials are given by the relations µα = ∂ψ/∂δα

and by the limit relations (26.11) supplemented by the bulk constitutive relations (7.17):

µα =
∂ψ̂(ε, ϑ, �δ )

∂δα
=

∂Φ̃(T, �ρ )
∂ρα

. (26.12)

Similarly, for a substitutional alloy, the relative chemical potentials µαβ on the solid
surface may be determined through the limit relation

µαβ = µαβ−, (26.13)

and, in addition, (9.36) yields

µαβ =
∂ψ̂(ε, ϑ, �δ )

∂δα
− ∂ψ̂(ε, ϑ, �δ )

∂δβ
=

∂Φ̃(β)(T, �ρ )
∂ρα

; (26.14)

Granted a knowledge of these relative chemical potentials, the surface values of the
chemical potentials µα are given by the configurational-chemistry relations (26.2)2, a
procedure that ensures satisfaction of the normal configurational force balance.
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Equations (26.12) and (26.14) might be termed chemical-compatibility relations as
they represent compatibility between the composition of the interface and that of the
bulk material. When (

∂ψ̂(ε, ϑ, �δ )
∂δ1

,
∂ψ̂(ε, ϑ, �δ )

∂δ2
, . . . ,

∂ψ̂(ε, ϑ, �δ )
∂δN

)

is an invertible function of �δ, (26.12) furnishes explicit relations giving the adatom den-
sities as functions of the bulk densities (as well as ε, ϑ, and T).78 A similar assertion
cannot be made for (26.14). Note that, for mechanically simple materials, (26.12) and
(26.14) have the respective forms (cf. (7.34), (9.63), (9.64))

µα =
∂ψ̂(ε, ϑ, �δ )

∂δα
= µα0 (�ρ )−Nα ·T (26.15)

and

µαβ =
∂ψ̂(ε, ϑ, �δ )

∂δα
− ∂ψ̂(ε, ϑ, �δ )

∂δβ
= µα0 (�ρ )− µβ0 (�ρ )−Nαβ ·T. (26.16)

(c) Equations neglecting standard surface stress (s ≡ 0)

In this case ψ = ψ(ϑ,�δ ) and the standard force-balance (26.7)1 has the simple form

Tn = 0, (26.17)

asserting that the solid-vapor interface be (standard) traction-free, and the atomic bal-
ance (26.7)2 becomes

�
δα + (ρα − δαK)V =

∂

∂s

( N∑
β=1

Lαβ
∂µβ

∂s

)
+ α · n + rα. (26.18)

Further, the normal configurational force balance (26.8) for unconstrained materials and
the configurational-chemistry relations for substitutional alloys have the respective forms

N∑
α=1

(ρα − δαK)µα = Ψ−
(
ψ +

∂2ψ

∂ϑ2

)
K −

N∑
β=1

∂2ψ

∂δβ∂ϑ

∂δβ

∂s
+ bV (26.19)

and

µα =
N∑
β=1

cβefµ
αβ + Ωef

{
Ψ−

(
ψ +

∂2ψ

∂ϑ2

)
K −

N∑
β=1

∂2ψ

∂δβ∂ϑ

∂δβ

∂s
+ bV

}
. (26.20)

We now specialize the normal configurational force balance and the configurational-
chemistry relations to mechanically simple materials. For such materials the relation
(7.31) for the free energy and the Gibbs relation (8.3) yield

Ψ = 1
2 T ·K[T] +

N∑
α=1

ραµα0 (�ρ ); (26.21)

78Spencer, Voorhees and Tersoff (2001) do not consider a dependence of interfacial free-energy on
adatom densities, but instead posit constitutive relations of the form δα = λρα, with λ constant. For
a nondeformable, unconstrained material, relations of this form would follow from (26.12), granted

interfacial and bulk free-energies of the form ψ = 1
2
Λ

∑N
α=1(δα)2 and Ψ = 1

2
λΛ

∑N
α=1(ρα)2, with Λ

constant.
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hence the normal configurational force balance (26.19) for an unconstrained, mechanically
simple material takes the form

N∑
β=1

(ρα − δαK)µα =
N∑
α=1

ραµα0 + 1
2T ·K[T]

−
(
ψ +

∂2ψ

∂ϑ2

)
K −

N∑
β=1

∂2ψ

∂δβ∂ϑ

∂δβ

∂s
+ bV. (26.22)

The analogous result for a substitutional alloy is not as simple to derive. To begin
with, we assume there are no vacancies; the relations (9.65)1,3 and (9.58) for the free
energy and chemical potentials and the free-energy conditions at zero-stress, (9.45), then
imply that

Ψ = 1
2T ·K[T] +

N∑
α=1

ραµα0 (�ρ ),

µαβ = µα0 (�ρ )− µβ0 (�ρ )−Nαβ ·T.


 (26.23)

Thus, writing

R = −
(
ψ +

∂2ψ

∂ϑ2

)
K −

N∑
β=1

∂2ψ

∂δβ∂ϑ

∂δβ

∂s
+ bV,

we may use (24.8), (24.10), and (26.20) to show that

ρefµ
α =

N∑
β=1

ρβefµ
αβ + Ψ + R

= ρefµ
α
0 −

N∑
β=1

ρβefµ
β
0 −

N∑
β=1

ρβef N
αβ ·T + 1

2T ·K[T] +
N∑
β=1

ρβµβ0 + R

= ρefµ
α
0 +

N∑
β=1

δβµβ0K −
N∑
β=1

ρβef N
αβ ·T + 1

2T ·K[T] + R.

The configurational-chemistry relations (26.20) for a mechanically simple, substitutional
alloy without vacancies therefore takes the form

µα − µα0 =
N∑
β=1

cβef N
βα ·T + 1

2T ·K[T]

−
(
ψ +

∂2ψ

∂ϑ2
−

N∑
β=1

δβµβ0

)
K −

N∑
β=1

∂2ψ

∂δβ∂ϑ

∂δβ

∂s
+ bV. (26.24)

26.2 Equations when adatom densities are neglected

(a) Balances

The basic interfacial balances are (26.1) and (26.2) with the terms involving adatoms
deleted. The balances for standard forces and atoms therefore take the form

Tn = σ̄Kn +
∂σ̄

∂s
t,

ραV = −∂hα

∂s
+ α · n + rα,


 (26.25)
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while the normal configurational force balance and the configurational-chemistry relations
(for substitutional alloys) take the respective forms

N∑
α=1

ραµα = F , µα =
N∑
β=1

cβµαβ + ΩF , (26.26)

with mechanical potential F , as before, given by (26.3). In writing (26.26) we have used
the fact that, for �δ ≡ 0, the defining relations for Ωef in (24.8) and cβef in (24.10) take the
respective forms

Ωef = Ω =
1

ρsites
, cβef = cβ =

ρβ

ρsites
, (26.27)

with Ω the atomic volume and cβ the concentration of species β.

(b) Constitutive relations. Indeterminacy of the chemical potentials

The treatment of chemical potentials in the absence of an accounting of adatom densities
is somewhat delicate: since µα(δα)� = 0 for each α, the interfacial dissipation inequality
(23.9) reduces to

�
ψ − σ̄

�
ε− τ̄

�
ϑ +

N∑
α=1

hα
∂µα

∂s
+ gV ≤ 0; (26.28)

the absence of a field conjugate to the surface chemical potentials µα renders them
indeterminate on S; that is, not viable as independent variables in the constitutive
relations for the interface. Thus, in view of the dissipation inequality (26.28), arguing as
for (26.4) and (26.5), we are led to the constitutive relations

σ̄ =
∂ψ̂(ε, ϑ)

∂ε
, τ̄ =

∂ψ̂(ε, ϑ)
∂ϑ

, (26.29)

and

hα = −
N∑
β=1

Lαβ
∂µβ

∂s
, g = −bV, (26.30)

with moduli Lαβ and g allowed to depend on (ε, ϑ).
By (26.29), writing ψ(ε, ϑ) = ψ̂(ε, ϑ), we find that

(ψ − σ̄ε)K + σ̄
∂γ

∂s
+

∂τ̄

∂s
=

(
ψ +

∂2ψ

∂ϑ2
− ε

∂ψ

∂ε

)
K +

∂2ψ

∂ε∂ϑ

∂ε

∂s
+

∂ψ

∂ε

∂γ

∂s
. (26.31)

Thus, if we combine the interfacial balances and the constitutive relations, we arrive at
the standard force and atomic balances

Tn =
∂ψ

∂ε
Kn +

(
∂2ψ

∂ε2

∂ε

∂s
+

∂2ψ

∂ε∂ϑ
K

)
t,

ραV =
∂

∂s

( N∑
β=1

Lαβ
∂µβ

∂s

)
+ α · n + rα.




(26.32)
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Further, the normal configurational force balance and the configurational-chemistry re-
lations for substitutional alloys are given by (26.26) with mechanical potential

F = Ψ−Tn · (∇u)n− γn ·Tt

−
(
ψ +

∂2ψ

∂ϑ2
− ε

∂ψ

∂ε

)
K − ∂2ψ

∂ε∂ϑ

∂ε

∂s
− ∂ψ

∂ε

∂γ

∂s
+ bV, (26.33)

which is simply (26.8) with the term involving adatoms dropped.

(b) Equations based on a quadratic strain-energy

A theory that might be useful in accessing the effects of surface stress might be based
on a free energy of the form (cf. (26.4)1)

ψ = ψ0(ϑ) + w(ε, ϑ), (26.34)

with quadratic strain-energy

w(ε) = σ̄0(ϑ)ε + 1
2k(ϑ)ε2. (26.35)

In this case, the scalar surface stress and reduced configurational shear are

σ̄ = σ̄0(ϑ) + k(ϑ)ε, τ̄ = ψ′0(ϑ) + σ̄′0(ϑ)ε + 1
2k
′
0(ϑ)ε2. (26.36)

Further, by (15.10) and (15.11), the normal and tangential components (20.6)1 and
(20.6)2 of the standard force balance reduce to

n ·Tn =
(
σ̄0(ϑ) + k(ϑ)t · ∂u

∂s

)
K (26.37)

and

t ·Tn =
(
σ̄′0(ϑ) + k(ϑ)n · ∂u

∂s
+ k′(ϑ)t · ∂u

∂s

)
K + k(ϑ)t · ∂

2u
∂s2

, (26.38)

while the mechanical potential becomes

F = Ψ−Tn · (∇u)n−
{
ψ0(ϑ) + ψ′′0 (ϑ)−

(
σ̄0(ϑ)− σ̄′′0 (ϑ)

)
t · ∂u

∂s
+ 2σ̄′0(ϑ)n · ∂u

∂s

+ k(ϑ)
(
n · ∂u

∂s

)2

− 1
2

(
3k(ϑ)− k′′(ϑ)

)(
t · ∂u

∂s

)2

+ 2k′(ϑ)
(
t · ∂u

∂s

)(
n · ∂u

∂s

)}
K

−
(
σ̄0(ϑ)n+ σ̄′0(ϑ)t+ k(ϑ)

{(
t · ∂u

∂s

)
n+

(
n · ∂u

∂s

)
t
}

+ k′(ϑ)
(
t · ∂u

∂s

)
t
)
· ∂

2u
∂s2

+ bV.

(26.39)

A simplifying assumption of potential value for assessing the importance of surface
stress might be to take the residual stress and elasticity for the surface to be constant.
Then, (26.37) and (26.38) simplify slightly to

n ·Tn =
(
σ̄0 + kt · ∂u

∂s

)
K (26.40)
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and

t ·Tn =
(
kn · ∂u

∂s

)
K + kt · ∂

2u
∂s2

, (26.41)

while (26.42) reduces to

F = Ψ−Tn · (∇u)n−
(
ψ0(ϑ) + ψ′′0 (ϑ)− 3

2k

(
t · ∂u

∂s

)2

+ k

(
n · ∂u

∂s

)2

− σ̄0t ·
∂u
∂s

)
K

−
(
σ̄0n + k

{(
t · ∂u

∂s

)
n +

(
n · ∂u

∂s

)
t
}
· ∂u
∂s

)
· ∂

2u
∂s2

+ bV. (26.42)

so that even within this drastically simplified theory the standard force balance, the
normal configurational force balance, and, for a substitutional alloy, the configurational-
chemistry relations are quite complicated.

Alternatively, consistent with the view of Shchukin and Bimberg (1999), we might
allow the free energy to be anisotropic but ignore interfacial elasticity, so that

ψ = ψ0(ϑ) + σ̄0(ϑ)ε,

σ̄ = σ̄0(ϑ),

τ̄ = ψ′0(ϑ) + σ̄′0(ϑ)ε.


 (26.43)

Then, the appropriately simplified versions of (26.37) and (26.38) combine to yield

Tn = σ̄0(ϑ)Kn + σ̄′0(ϑ)Kt; (26.44)

thus, writing
∂u
∂n

= (∇u)n,

it follows that

Tn · (∇u)n = σ̄0(ϑ)Kn · ∂u
∂n

+ σ̄′0(ϑ)Kt · ∂u
∂n

(26.45)

and we may replace (26.42) by

F = Ψ−
(
ψ0(ϑ)+ψ′′0 (ϑ)+

(
σ̄0(ϑ)+2σ̄′0(ϑ)

)
n · ∂u

∂n
−

(
σ̄0(ϑ)− σ̄′0(ϑ)− σ̄′′0 (ϑ)

)
t · ∂u

∂s

)
K

−
(
σ̄0(ϑ)n + σ̄′0(ϑ)t

)
· ∂

2u
∂s2

+ bV. (26.46)

Finally, if σ̄0 = constant and k = 0, then (26.44) and (26.46) specializes to yield

Tn = σ̄0Kn, (26.47)

and

F = Ψ−
{
ψ0(ϑ) + ψ′′0 (ϑ) + σ̄0

(
n · ∂u

∂n
− t · ∂u

∂s

)}
K − σ̄0n ·

∂2u
∂s2

+ bV. (26.48)

As discussed in §17.5, the local stability of the evolution equation (17.32) for a grain
boundary is determined by the sign of the coefficient of the curvature — the interfacial
stiffness. In (26.48), the coefficient of the curvature is the sum of the interfacial stiffness
and the term σ̄0(enn−ett), with enn = n·∂u/∂n and ett = t·∂u/∂t. Thus, notwithstand-
ing the term σ̄0n · ∂2u/∂s2, it appears that a tensile normal strain (for which enn > 0)
and a compressive tangential strain (for which −ett > 0) should be stabilizing.
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(c) Equations neglecting standard surface stress

Here the interface remains traction-free and the atomic balance becomes

ραV =
∂

∂s

( N∑
β=1

Lαβ
∂µβ

∂s

)
+ α · n + rα, (26.49)

the normal configurational force balance has the form

N∑
α=1

ραµα = Ψ−
(
ψ +

∂2ψ

∂ϑ2

)
K + bV, (26.50)

and, for a substitutional alloy, the configurational chemistry relations become

µα =
N∑
β=1

cβµαβ + Ω
{

Ψ−
(
ψ +

∂2ψ

∂ϑ2

)
K + bV

}
. (26.51)

Finally, restricting attention to mechanically simple materials, we find that (26.50)
and (26.51), respectively, reduce to

N∑
α=1

ρα(µα − µα0 ) = 1
2T ·K[T]−

(
ψ +

∂2ψ

∂ϑ2

)
K + bV (26.52)

and

µα − µα0 =
N∑
β=1

cβNβα ·T + Ω
{

1
2T ·K[T]−

(
ψ +

∂2ψ

∂ϑ2

)
K + bV

}
. (26.53)

Granted cubic symmetry, so that Nαβ = ηαβ1 (cf. 9.68)), and assuming that b ≡ 0,
(26.53) reduces to the following result of Spencer, Voorhees and Tersoff (2001, eqts.
(2.10), (2.11)):79

µα − µα0 =
N∑
β=1

cβ ηβα trT + Ω
{

1
2T ·K[T]−

(
ψ +

∂2ψ

∂ϑ2

)
K

}
.

26.3 Addendum: Importance of the kinetic term g = −bV
In each of the cases discussed in the last two subsections, the normal configurational force
balance contains the kinetic term bV resulting from the constitutive equation g = −bV for
g, a dissipative force associated with the attachment of vapor atoms to the solid surface.
The dissipation associated with g,80 measured per unit length of the interfacial curve, is
bV 2; without this term the attachment process is nondissipative.

Interface conditions that play the role of the normal configurational force balance are
typically derived using an assumption of local equilibrium or using a chemical potential
derived as a variational derivative of the total free-energy with respect to variations in the
configuration of the interface; thus the possibility of having a dynamical interface condi-
tion involving V are ruled out from the start by the use of such variational paradigms,
which, by their very nature, cannot involve the normal velocity V .

79Note that our ηβα is Ω times their modulus ηβα.
80Cf. (25.10) and the remark following (23.9).
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To assess the importance of the kinetic term, consider a single atomic species and
neglect bulk diffusion, so that  ≡ 0 and the atomic volume Ω = 1/ρ is constant. Assume
further that the mobility L for surface diffusion and the kinetic modulus b are constant,
so that the atomic balance (26.49) and the normal configurational force balance (26.50)
take the form

V = ΩL
∂2µ

∂s2
+ r, µ = Ω

{
Ψ−

(
ψ +

∂2ψ

∂ϑ2

)
K + bV

}
. (26.54)

The field

µeq = Ω
{

Ψ−
(
ψ +

∂2ψ

∂ϑ2

)
K

}
represents the equilibrium chemical potential (the chemical potential when V = 0); using
this field we may write the normal configurational force balance in the form µ = µeq +
ΩbV . This relation and the atomic balance (26.54)1 yield the evolution equation

V − λ2 ∂2V

∂s2
= ΩL

∂2µeq

∂s2
+ r (26.55)

with

λ = Ω
√
bL (26.56)

a material length-scale; the kinetic term g = −bV is therefore important at length scales of
order λ and smaller.81 Thus, whether or not the kinetic term is important depends on the
magnitude of the product bL; consequently, when the Fickean mobility L is sufficiently
large, the term g = −bV may be important even when the modulus b is small.

27 Interfacial couples. Allowance for an energetic de-
pendence on curvature

The notorious instability of strained solid-vapor interfaces results in a wide variety of
surface patterns and morphologies, an example being the faceted islands (Figure 18) ob-
served by Tersoff, Spencer, Rastelli and von Känel (2003). Such instabilities are reflected
by the underlying evolution equations82 and by the resulting difficulty of performing re-
liable simulations, which motivates the need for physically-based regularized theories.83

Regularizations that account for an energetic dependence on curvature (DiCarlo, Gurtin
and Podio-Guidugli, 1992) but neglect surface stress and adatom densities, are used
Tersoff, Spencer, Rastelli and von Känel (2003) to describe the initial stages of island
formation and by Seigel, Miksis and Voorhees (2003) to study the formation of wrin-
klings on a void surface.84 To arrive at a theory that allows for an energetic dependence

81This conclusion arose from conservations with Peter Voorhees.
82Asaro and Tiller (1972), Grinfeld (1986), and Srolovitz(1989) showed that a planar layer under stress

may be unstable. Subsequent studies of related instabilities include Freund and Jonsdottir (1993), Grilhe
(1993), Gao (1994), Freund (1995), Spencer and Meiron (1994), Yang and Srolovitz (1994), Suo and Wang
(1997), Wang and Suo (1997), Xia, Bower, Suo and Shih (1997), Léonard and Desai (1998), Gao and
Nix (1999), Shchukin and Bimberg (1999), Phan, Kaplan, Gray, Adalsteinsson, Sethian, Barvosa-Carter,
and Aziz (2001), Danescu (2001), Spencer, Voorhees, and Tersoff (2001), and Xiang and E (2002).

83Our perspective here is identical to that in §18. As opposed to a pragmatical approach in which
supplemental terms involving higher-order derivatives are added to stabilize an equation, we seek regu-
larizations that reflect a consideration of relevant physical mechanisms.

84As discussed above, the inclusion of adatoms may provide at least a partial regularization as doing
so can, with appropriate constitutive assumptions, lead to parabolic evolution equations for the adatom
densities. However, constraining the curvature of the interface via an energetic dependence on curvature
should provide a more effective regularization.
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Figure 18: (a) STM image (108 × 108 nm2) of a faceted island obtained by depositing
Si0.6Ge0.4 on Si(001). (b) Cross-section of the region near the top of the island, from an
average of 30 line scans taken from left to right close to the middle of the island. Scale
in nm. (Images courtesy of Tersoff, Spencer, Rastelli and von Känel.)

on curvature, one may follow the steps taken in our extension of the classical theory of
grain boundaries to allow for the study of facets and wrinklings (cf. §18). Specifically,
we may introduce an interfacial couple stress and an interfacial internal couple together
with an configurational torque balance. Taking into account the torques exerted by the
configurational force system, the configurational torque balance for an interfacial pillbox
C is (cf. (18.1))

[
M + (x− 0)×c

]b
a

+
∫
C

mds +
∫
C

[
(x− 0)×(g −Cn)

]
ds = 0. (27.1)

The foregoing considerations leave intact the basic balances considered in our previous
treatment of strained solid-vapor interfaces. Thus, using the configurational force balance
and proceeding as in the derivation of (18.3), we obtain the local statement

∂2M

∂s2
+

∂m

∂s
− σK − g + n ·Cn = 0 (27.2)

of configurational torque balance.
In the presence of interfacial couples, the net power expended on an interfacial pillbox

C must account for the action of the couple stress M at the endpoints of C and this leads



A unified treatment of evolving interfaces 111

to a free-energy imbalance of the form

d

dt

∫
C

ψ ds ≤
[
M

dϑ

dt

]b
a

+
[
c · dx

dt

]b
a

−
∫
C

Cn · v ds +
[
s · du

dt

]b
a

−
∫
C

Tn · �u ds

+
N∑
α=1

[
µα(−hα + δαW )

]b
a

+
N∑
α=1

∫
C

µα(α · n− ραV + rα) ds. (27.3)

Arguing as in §18.3 and §23.2, we find that, when interfacial configurational torques are
taken into consideration, the interfacial Eshelby relation (23.6) must be modified to read

σ = ψ −
N∑
α=1

δαµα − σ̄ε−MK (27.4)

and the interfacial dissipation inequality is of the form

�
ψ − σ̄

�
ε + m̄

�
ϑ−M

�
K −

N∑
α=1

(
µα

�
δα − hα

∂µα

∂s

)
+ gV ≤ 0, (27.5)

with

m̄ = m + σ̄γ, (27.6)

the reduced internal configurational couple.
Using the bulk Eshelby relation (12.15) and the identity

∂m

∂s
=

∂m̄

∂s
− σ̄

∂γ

∂s
− ∂σ̄

∂s
γ =

∂m̄

∂s
− γn ·Tt− σ̄

∂γ

∂s
, (27.7)

which follows from (27.6) and ∂σ̄/∂s = t ·Tn (cf. (20.6)), we find that the balance (27.2)
can be expressed in the form

N∑
α=1

(ρα − δαK)µα = Ψ−Tn · (∇u)n− γn ·Tt

− (ψ − σ̄ε−MK)K − σ̄
∂γ

∂s
+

∂m̄

∂s
+

∂2M

∂s2
− g. (27.8)

For unconstrained materials, (27.8) supersedes the configurational balance (26.2). For
substitutional alloys, (27.8) is replaced by

µα =
N∑
β=1

cβefµ
αβ + Ωef

{
Ψ−Tn · (∇u)n− γn ·Tt

− (ψ − σ̄ε−MK)K − σ̄
∂γ

∂s
+

∂m̄

∂s
+

∂2M

∂s2
− g

}
. (27.9)

which generalize the configurational-chemistry relations (26.3).
Guided by (27.5), we consider constitutive equations giving

ψ, σ̄, m̄, M, �µ as functions of (ε, ϑ,K,�δ )
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in conjunction with constitutive equations for hα and g of the form (25.1) with coefficients
now possibly dependent on (ε, ϑ,K,�δ ). Appealing to the discussion of §17.8, we then find
that the free energy determines the standard interfacial stress, reduced configurational
couple, couple stress, and chemical potentials through the relations

σ̄ =
∂ψ̂(ε, ϑ,K,�δ )

∂ε
,

m̄ = −∂ψ̂(ε, ϑ,K,�δ )
∂ϑ

,

M =
∂ψ̂(ε, ϑ,K,�δ )

∂K
,

µα =
∂ψ̂(ε, ϑ,K,�δ )

∂δα
.




(27.10)

Further, for simplicity, hereafter we work only with the uncoupled relations (26.5) for hα

and g.
When interfacial couples and adatom densities are taken into account, the general

relations are therefore (26.1), (26.11), and (27.8) for an unconstrained material, (26.13)
and (27.9) for a substitutional alloy, along with the constitutive relations (26.5) and
(27.10).

If we neglect adatom densities and, following our treatment of grain boundaries,
assume that the free energy has the form85

ψ(ε, ϑ) + 1
2λK

2, (27.11)

with λ > 0 constant, it then follows from (27.10)1–3 that

σ̄ =
∂ψ̂(ε, ϑ)

∂ε
, m̄ = − ∂ψ̂(ε, ϑ)

∂ϑ
, M = λK. (27.12)

In this case, the basic interfacial balances are

Tn =
∂ψ

∂ε
Kn +

(
∂2ψ

∂ε2

∂ε

∂s
+

∂2ψ

∂ε∂ϑ
K

)
t,

ραV =
∂

∂s

( N∑
β=1

Lαβ
∂µβ

∂s

)
+ α · n + rα,




(27.13)

the normal configurational force balance86

N∑
α=1

ραµα = Ψ−Tn · (∇u)n− γn ·Tt

−
(
ψ +

∂2ψ

∂ϑ2
− ε

∂ψ

∂ε

)
K − ∂2ψ

∂ε∂ϑ

∂ε

∂s
− ∂ψ

∂ε

∂γ

∂s
+ bV + λ

(
∂2K

∂s2
+ 1

2K
3

)
(27.14)

85Cf. DiCarlo, Gurtin, and Podio-Guidugli (1992), Stewart and Goldenfeld (1992), Liu and Metiu
(1993), and Golovin, Davis and Nepomnyashchy (1998, 1999).

86Cf. Gurtin and Jabbour (2002), who consider a single atomic species in three space-dimensions,
neglecting surface stress.
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for unconstrained materials, and the configurational chemistry relations

µα =
N∑
β=1

cβµαβ + Ω
{

Ψ−Tn · (∇u)n− γn ·Tt

−
(
ψ +

∂2ψ

∂ϑ2
− ε

∂ψ

∂ε

)
K − ∂2ψ

∂ε∂ϑ

∂ε

∂s
− ∂ψ

∂ε

∂γ

∂s
+ bV + λ

(
∂2K

∂s2
+ 1

2K
3

)}
(27.15)

for substitutional alloys. When the interface is the graph of a function y = h(x, t), the
term λ∂2K/∂s2 in (27.14) and (27.15) would have the form A∂4h/∂x4, with A > 0
a function of ∂h/∂x, ∂2h/∂x2, and ∂3h/∂x3 (cf. §17.5). Therefore (considering the
remaining fields as fixed), (27.14) and (27.15) would represent elliptic partial differential
equations and as such should have a regularizing effect on the evolution of the interface.

28 Allowance for evaporation-condensation

To model processes in which evaporation-condensation is of importance, we now follow
the approach taken in our treatment of grain-vapor interfaces (cf. §19) and endow the
vapor with a chemical potential µαv for each atomic species α. In addition, we reinterpret
the role of the supplies rα in the theory: we view rα as the rate at which α-atoms of
chemical potential µαv are supplied from the vapor to the solid at the interface. Thus,
while this change in perspective leaves unaltered the atomic balances (22.3), it is nec-
essary to modify the free-energy imbalance (23.4) for a pillbox C to account for the net
rate

∫
C µ

α
v r
α ds at which energy is added to C by evaporation-condensation; granted this

net rate is accounted for, the free-energy imbalance for an interfacial pillbox C = C(t)
reads (cf. (19.15))

d

dt

∫
C

ψ ds ≤
[
c · dx

dt

]b
a

−
∫
C

Cn · v ds +
[
T · du

dt

]b
a

−
∫
C

Tn · �u ds

+
N∑
α=1

[
µα(−hα + δαW )

]b
a

+
N∑
α=1

∫
C

(
µα(α · n− ραV ) + µαv r

α
)
ds. (28.1)

Arguing as in §23.2, we find that our consideration of evaporation-condensation leaves
the interfacial Eshelby relation (23.6) unchanged and results in an interfacial dissipation
inequality of the form (cf. (19.18))

�
ψ − σ̄

�
ε− τ̄

�
ϑ−

N∑
α=1

(
µα

�
δα − hα

∂µα

∂s
− (µα − µαv )rα

)
+ gV ≤ 0. (28.2)

The inequality (28.2) differs from that, (23.9), valid in the absence of evaporation-
condensation only by the presence of the term (µα − µαv )rα. Thus the state relations
(25.2) determining σ̄, τ̄ , and µα remain valid, leaving the residual dissipation inequality

N∑
α=1

(
hα

∂µα

∂s
+ (µα − µαv )rα

)
+ gV ≤ 0. (28.3)

Granted essentially linear dissipative response, (28.3) leads to constitutive equations for
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hα, rα and g of the general form (cf. (19.21))

hα = −
N∑
β=1

Lαβ
∂µβ

∂s
−

N∑
β=1

Āαβ(µβ − µβv )− AαV,

rα = −
N∑
β=1

Kαβ ∂µ
β

∂s
−

N∑
β=1

k̄αβ(µβ − µβv )− kαV,

g = −
N∑
α=1

Bα ∂µα

∂s
−

N∑
α=1

b̄α(µα − µαv )− bV,




(28.4)

where the coefficients that define the linear relations (28.4) may depend on (ε, ϑ, �δ ) and
the relevant coefficient matrix is positive semi-definite.

If the equations (28.4) are uncoupled, so that

hα = −
N∑
β=1

Lαβ
∂µβ

∂s
, rα = −

N∑
β=1

k̄αβ(µβ − µβv ), g = −bV, (28.5)

then the basic equations of the theory remain exactly as described in §§26.1,26.2, but
now the atomic supplies rα are not arbitrarily prescribable, but are instead given by
(28.5)2.

A somewhat more robust version of (28.4) results upon assuming that diffusion along
the surface is described by classical Fickean relations for hα of the form

hα = −
N∑
β=1

Lαβ
∂µβ

∂s
, (28.6)

while the solid-vapor interaction is described by coupled relations for rα and g of the
form (Fried and Gurtin, 2002)

rα = −
N∑
β=1

k̄αβ(µβ − µβv )− kαV,

g = −
N∑
α=1

b̄α(µα − µαv )− bV.




(28.7)

Under this assumption the resulting equations, while complicated, are easily obtained
from (26.1)–(26.3), (26.4), (28.6), and (28.7). For example, if we neglect adatom den-
sities and surface stress, then the resulting equations for a substitutional alloy without
vacancies are Tn = 0,

(ρα + kα)V =
∂

∂s

( N∑
β=1

Lαβ
∂µβ

∂s

)
+ α · n−

N∑
β=1

k̄αβ(µβ − µβv ).

and(
1 +

N∑
β=1

b̄β
)
µα =

N∑
β=1

(cβ + b̄β)µαβ + Ω
{

Ψ−
(
ψ +

∂2ψ

∂ϑ2

)
K −

N∑
α=1

b̄αµαv + bV

}
.

(28.8)
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For the fully coupled theory based on (28.4), the resulting equations follow from
(26.1)–(26.3), (26.4), and (28.4).

F Coherent phase interfaces

We now consider a class of theories for a coherent phase interface. That bulk deformation
and stress have a pronounced effect on the shape of coherent precipitates is well under-
stood.87 In addition, as argued by Cahn (1989), interfacial stress may be of importance.
Hence, in addition to allowing for a multiplicity of atomic species, we account for stress
in the bulk phases and on the interface. However, we neglect interfacial atomic densities.

29 Forces. Power

29.1 Configurational forces

For a coherent interface separating two solid phases, the configurational forces acting on
a pillbox are identical to those arising in our discussion of grain boundaries. Thus, the
configurational force balance (17.6) and its local consequences remain valid. In particular,
we have the normal configurational force balance

σK +
∂τ

∂s
+ n · [[C]]n + g = 0. (29.1)

29.2 Standard forces

Let C = C(t) be an arbitrary interfacial pillbox. In addition to the standard forces −sa
and sb exerted at xa and xb by the portion of S exterior to C, the solid in the (+)-phase
exerts a traction T+n on C+ and the solid in the (−)-phase exerts a traction −T−n on C−;
the net traction exerted at each point of C by the bulk phases is then T+n−T−n = [[T]]n
(Figure 19). The standard torque acting on a pillbox is determined analogously.

T+n

− a

bs

s

−T−n

C

Figure 19: Standard forces on an interfacial pillbox C for a coherent interface S. Balance
of standard torques guarantees the tangency of s.

In view of the preceding discussion, the standard force and torque balances for C take

87Cf. the reviews of Johnson and Voorhees (1992) and Voorhees (1992) and the references therein.
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the form

s
∣∣b
a

+
∫
C

[[T]]n ds = 0,

[
(x− 0)× s

]b
a

+
∫
C

(x− 0)× [[T]]n ds = 0;




(29.2)

since C is arbitrary, these yield the interfacial balances

∂s
∂s

+ [[T]]n = 0, t× s = 0 (29.3)

Thus, as in the case of a solid-vapor interface, the stress vector s is tangent to the
interface; hence

s = σ̄t, (29.4)

with σ̄ the standard scalar interfacial stress. Since ∂t/∂s = Kn, we can rewrite the
interface condition (29.3)1 as

σ̄Kn +
∂σ̄

∂s
t + [[T]]n = 0, (29.5)

or equivalently, as

n · [[T]]n = −σ̄K, t · [[T]]n = −∂σ̄

∂s
. (29.6)

The first of (29.6) represents a counterpart, for a coherent interface, of the classical
Laplace–Young relation for a liquid-vapor interface.

29.3 Power

Consider a migrating pillbox C = C(t). Arguing as for a solid-vapor interface (§21.1),
we view: (i) the endpoint velocities dxa/dt and dxb/dt as the power-conjugate velocities
for c; (ii) the motion velocities dua/dt and dub/dt following xa(t) and xb(t) as the
power-conjugate velocities for s; (iii) the normal velocity v of C as the power-conjugate
velocity for the configurational tractions C+n and −C−n acting on C+ and C−; and (iv)
the motion velocity �u following S(t) as the power-conjugate velocity for the standard
tractions T+n and −T−n acting on C+ and C−. The (net) external power expended on
C(t) is therefore presumed to have the form[

c · dx
dt

+ s · du
dt

]b
a

+
∫
C

(
[[C]]n · v + [[T]]n · �u

)
ds. (29.7)

Using the identity ∂V/∂s =
�
ϑ and the normal configurational force balance (29.1), it

follows that (cf. (17.13) and (17.15))[
c · dx

dt

]b
a

=
[
σW + τV

]b
a

=
[
σW

]b
a

+
∫
C

[
τ

�
ϑ− (σK + g + n · [[C]]n)V

]
ds; (29.8)

thus, since v = V n,[
c · dx

dt

]b
a

+
∫
C

[[C]]n · v ds =
[
σW

]b
a

+
∫
C

[
τ

�
ϑ− (σK + g)V

]
ds. (29.9)
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Further, by (21.7), which continues to hold here, and the standard force balance
(29.3)1,[

s · du
dt

]b
a

+
∫
C

[[T]]n · �u ds =
[
σ̄εW

]b
a

+
∫
C

[
σ̄(�

ε− γ
�
ϑ)− σ̄εKV

]
ds. (29.10)

Combining (29.9) and (21.8) then yields the power balance

[
c · dx

dt
+ s · du

dt

]b
a

+
∫
C

(
[[C]]n · v + [[T]]n · �u

)
ds

=
[
(σ + σ̄ε)W

]b
a

+
∫
C

[
σ̄

�
ε + τ̄

�
ϑ−

(
(σ + σ̄ε)K + g

)
V

]
ds, (29.11)

in which the internal power-expenditures are identical to those arising for a strained
solid-vapor interface and discussed after (21.10).

30 Atomic transport

Let C = C(t) be an arbitrary interfacial pillbox. In addition to the diffusive fluxes
hαa and −hαb of α-atoms across xa and xb, diffusion in the (+)-phase results in a flow
−α+ · n across C+ and diffusion in the (−)-phase results in a flow α− · n across C−,
so that the net diffusional flow of α-atoms to each point of C from the bulk phases is
−α+ · n + α− · n = −[[α]] · n (Figure 20). Hence, the net rate at which α-atoms are

− α+ · n + ρα+V

hαa − δαaWa

− hαb + δαb Wb

C

α− · n− ρα−V

Figure 20: Transport of α-atoms into an interfacial pillbox C.

added to C by diffusive transport is

−hα
∣∣b
a
−

∫
C

[[α]] · n ds. (30.1)

There is no flow of interfacial atoms due to accretion, because we have neglected their
densities. But accretion does result in flows ρα+V and −ρα−V of α-atoms across C+ and
C−, so that the net accretive flow of α-atoms to each point of C is ρα+V −ρα−V = [[ρα]]V
(Figure 20). Hence, the net rate at which α-atoms are added to C by accretive transport
is ∫

C

[[ρα]]V ds. (30.2)
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In view of (30.1) and (30.2), the atomic balance for C takes the form

hα
∣∣b
a

+
∫
C(t)

( [[α]] · n− [[ρα]]V ) ds = 0 (30.3)

for each species α, and this yields the local balance

[[ρα]]V =
∂hα

∂s
+ [[α]] · n. (30.4)

31 Free-energy imbalance

Basic to the theory is the assumption that the chemical potentials µα are continuous
across the interface:

[[µα]] = 0. (31.1)

This requirement, often referred to as an assumption of local chemical equilibrium, al-
lows us to consider the bulk fields µα, when evaluated on S, as appropriate interfacial
chemical-potentials.

Restrict attention to a single atomic species α. As in the case of a solid-vapor interface,
the energy flow into a migrating pillbox C due to atomic transport includes contributions
associated with diffusion and accretion. In addition to the diffusive energy fluxes µαah

α
a

and −µαb h
α
b associated with the flow of α-atoms across xa and xb, the diffusion of α-

atoms in the (+)-phase results in an energy flow −µαα+ · n across C+ while diffusion
of α-atoms in the (−)-phase results in an energy flow µαα− · n across C−, so that the
diffusive energy flow of α-atoms to each point of C from the bulk material is −µα[[α]] ·n.
Hence, the net rate at which energy is added to C by diffusive transport is

−
N∑
α=1

[
µαhα

]b
a
−

N∑
α=1

∫
C

µα[[α]] · n ds. (31.2)

The motion of the interface results in accretive energy flows µαρα+V and −µαρα−V
of α-atoms from the solid across C+ and C−, so that the net accretive energy flow of
α-atoms to each point of C from the bulk material is µα[[ρα]]V . Hence, the net rate at
which energy is added to C by the accretive transport of atoms is

N∑
α=1

∫
C

µα[[ρα]]V ds. (31.3)

Letting ψ denote the free energy of the interface and bearing in mind (21.1), (31.2),
and (31.3), the free-energy imbalance for an arbitrary interfacial pillbox C takes the form

d

dt

∫
C

ψ ds

︸ ︷︷ ︸
free energy

≤
[
c · dx

dt

]b
a

+
∫
C

[[C]]n · v ds

︸ ︷︷ ︸
power expended

by configurational forces

+
[
s · du

dt

]b
a

+
∫
C

[[T]]n · �u ds

︸ ︷︷ ︸
power expended

by standard forces

−
N∑
α=1

[
µαhα

]b
a

+
N∑
α=1

∫
C

µα(−[[α]] · n + [[ρα]]V ) ds

︸ ︷︷ ︸
energy flow by atomic transport

. (31.4)
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31.1 Dissipation inequality for unconstrained materials

In view of (29.11) and (30.3), the free-energy imbalance (31.4) for C becomes

∫
C

(
�
ψ − ψKV ) ds +

(#)︷ ︸︸ ︷[
(ψ − σ̄ε− σ)W

]b
a

≤
∫
C

[
σ̄

�
ε + τ̄

�
ϑ− (σ + σ̄ε)KV − gV

]
ds−

N∑
α=1

[
µαhα

]b
a

+
N∑
α=1

∫
C

µα
∂hα

∂s
ds. (31.5)

Since C is arbitrary, so also are the tangential velocities Wa and Wb of the endpoints of
C; thus, since the only term in (31.5) dependent on these velocities is (#), we have the
superficial Eshelby relation

σ = ψ − σ̄ε, (31.6)

which differs from the Eshelby relation (23.6) for a strained solid-vapor interface only
because of our present neglect of interfacial atomic densities.

By (31.6) and

N∑
α=1

[
µαhα

]b
a

=
N∑
α=1

∫
C

(
µα

∂hα

∂s
+ hα

∂µα

∂s

)
ds, (31.7)

(31.5) becomes

∫
C

(
�
ψ − σ̄

�
ε− τ̄

�
ϑ +

N∑
α=1

hα
∂µα

∂s
+ gV

)
ds ≤ 0; (31.8)

since C is arbitrary, this yields the interfacial dissipation inequality

�
ψ − σ̄

�
ε− τ̄

�
ϑ +

N∑
α=1

hα
∂µα

∂s
+ gV ≤ 0. (31.9)

31.2 Interfacial flux constraint and free-energy imbalance for
substitutional alloys

Our treatment of substitutional alloys in bulk was based on the substitutional flux con-
straint

N∑
α=1

α = 0 (31.10)

discussed by Ågren (1982) and Cahn and Larché (1983), who argue that (31.10) is a
consequence of the requirement that diffusion, as represented by atomic fluxes, arises from
exchanges of atoms or exchanges of atoms with vacancies. A consequence of coherency
is that (cf. (15.6))

[[∇u]]t = 0,

so that, roughly speaking, infinitesimal pieces of the lattices on the two sides of the
interface fit together.88 The argument of Ågren and Cahn and Larché should therefore

88Cf. the discussion of Cermelli and Gurtin (1994a) following their eqt. (3.7).
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apply at the interface, and noting that, by continuity, the substitutional flux constraint
(31.10) is satisfied at the interface, it would seem reasonable to require that

N∑
α=1

hα = 0, (31.11)

and this we shall do. We refer to (31.11) as the substitutional flux constraint for the
interface. By the lattice constraint and the substitutional flux constraint in bulk,

N∑
α=1

[[ρα]] = 0,
N∑
α=1

[[α]] = 0; (31.12)

therefore (30.4) when summed over all species is satisfied identically.
The interfacial flux constraint allows us to establish a counterpart of the theorem on

relative chemical potentials (§5.2), and the proof is not much different. We first show
that the free-energy imbalance (31.4) is invariant under all transformations of the form

µα(x, t)→ µα(x, t) + λ(x, t) for all species α, (31.13)

with λ(x, t) independent of α. Given any such field λ(x, t), (31.11) and (31.12) imply
that

N∑
α=1

(µα + λ)hα =
N∑
α=1

µαhα,

N∑
α=1

(µα + λ)[[ρα]] =
N∑
α=1

µα[[ρα]],
N∑
α=1

(µα + λ)[[α]] =
N∑
α=1

µα[[α]],

and hence, by (31.4),

d

dt

∫
C

ψ ds ≤
[
c · dx

dt

]b
a

+
∫
C

[[C]]n · v ds +
[
s · du

dt

]b
a

+
∫
C

[[T]]n · �u ds

−
N∑
α=1

[
(µα + λ)hα

]b
a

+
N∑
α=1

∫
C

(µα + λ)(−[[α]] · n + [[ρα]]V ) ds; (31.14)

thus, since the field λ is arbitrary, the free-energy imbalance (31.4) is invariant under
all transformations of the form (31.13).89 Choosing a species ζ arbitrarily and taking
λ = −µζ in (31.14), so that µα + λ reduces to the relative chemical potential µαζ , we
arrive at the free-energy imbalance for substitutional alloys:

d

dt

∫
C

ψ ds ≤
[
c · dx

dt

]b
a

+
∫
C

[[C]]n · v ds +
[
s · du

dt

]b
a

+
∫
C

[[T]]n · �u ds

−
N∑
α=1

[
µαζhα

]b
a

+
N∑
α=1

∫
C

µαζ(−[[α]] · n + [[ρα]]V ) ds. (31.15)

89Conversly, granted the (bulk) substitutional flux constraint, invariance of (31.4) under all trans-
formations of the form (31.13) yields the substitutional flux constraint for the interface. The proof is
identical to that of the remark containing (5.13).
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Steps identical to those used to establish the interfacial dissipation inequality (31.9)
for unconstrained materials, but with the chemical potentials µα replaced by the relative
chemical potentials µαζ , yield the interfacial dissipation inequality

�
ψ − σ̄

�
ε− τ̄

�
ϑ +

N∑
α=1

hα
∂µαζ

∂s
+ gV ≤ 0. (31.16)

32 Global theorems

Following Gurtin and Voorhees (1993), we now generalize the global theorems presented
in §6 for a two-phase body that contains a single closed interface S disjoint from ∂B and
across which the conditions (15.4) and (31.1) of coherency and local chemical equilibrium
are met.

Consider first an unconstrained material. As in §6, the global conservation and decay
relations are based upon expressions of the atomic balance and the free-energy imbalance
for the body itself. To obtain these statements, we utilize the control-volume equivalency
theorem of Appendix B to state the atomic balance and free-energy imbalance for a
general migrating control-volume R containing a portion C = S ∩ R of the interface,
giving

d

dt

∫
R

ρα da = −
∫
∂R

(α · ν − ραV∂R) ds−
[
hα

]b
a
, (32.1)

and (cf. (B1))

d

dt

{ ∫
R

Ψ da +
∫
C

ψ ds

}
≤

∫
∂R

(Cν · v∂R + Tν · ◦u) ds +
[
c · dx

dt
+ s · du

dt

]b
a

+
N∑
α=1

∫
∂R

µα(−α · ν + ραV∂R) ds−
N∑
α=1

[
µαhα

]b
a
. (32.2)

Thus, choosing R = B and bearing in mind that S is closed and disjoint from ∂B, we
find that (32.1) and (32.2) specialize to yield

d

dt

∫
B

ρα da = −
N∑
α=1

∫
∂B

α· ν ds (32.3)

and

d

dt

{ ∫
B

Ψ da +
∫
S

ψ ds

}
≤

∫
∂B

Tν · u̇ ds−
∫
∂B

µαα · ν ds. (32.4)

For a substitutional alloy, (32.4) remains valid, but with the chemical potentials µα

replaced by the relative chemical potentials µαζ .
By (32.3) and (32.4) with u̇ = 0 and α · n = 0 on ∂B, we have the

Global Theorem for an Isolated Two-Phase Body Consider a two-
phase body B containing a single closed interface S which is disjoint from ∂B.
If the body is isolated, that is if ∂B is fixed and impermeable, then the total
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number of atoms of each species remains fixed, while the total free-energy is
nonincreasing:

d

dt

∫
B

ρα da = 0, α = 1, 2, . . . , N,

d

dt

{ ∫
B

Ψ da +
∫
S

ψ ds

}
≤ 0.

Global Theorem for a Two-Phase Body Assume that a portion of
∂B is fixed and the remainder is subject to dead loads.

(a) If ∂B is impermeable, then

d

dt

∫
B

ρα da = 0, α = 1, 2, . . . , N,

d

dt

{ ∫
B

(Ψ−T∗ ·E) da +
∫
S

ψ ds

}
≤ 0.

(b) If a portion E of ∂B is impermeable and the remainder, ∂B\E , in chemical
equilibrium, then

d

dt

{ ∫
B

(
Ψ−T∗ ·E−

N∑
α=1

µα∗ ρ
α

)
da +

∫
S

ψ ds

}
≤ 0

if the material is unconstrained, while

d

dt

{ ∫
B

(
Ψ−T∗ ·E−

N∑
α=1

µαζ∗ ρα
)

da +
∫
S

ψ ds

}
≤ 0

if the material is a substitutional alloy.

Assertion (a) of this theorem follows on using (6.3) and the boundary condition
α · n = 0 in (32.3) and (32.4); similarly, assertion (b) follows on using (6.3)–(6.5) in
(32.4).

33 Normal configurational force balance revisited

33.1 General relation

Since we account for deformation and atomic transport, the bulk configurational stress
C is determined by the full Eshelby relation (12.15), namely

C =
(

Ψ−
N∑
α=1

ραµα
)
1− (∇u)�T,

while the interfacial configurational tension σ is determined by the interfacial Eshelby
relation (23.6). Thus, we may write the normal configurational force balance (29.1) in
the form

N∑
α=1

[[ρα]]µα = [[Ψ−Tn · (∇u)n]] + (ψ − σ̄ε)K +
∂τ

∂s
+ g, (33.1)
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which, like the statement (24.1) arising in our treatment of strained solid-vapor interfaces,
equates terms associated with atomic transport to terms that are purely mechanical.
Thus, trivially, for

G def= [[Ψ−Tn · (∇u)n]] + (ψ − σ̄ε)K +
∂τ

∂s
+ g, (33.2)

we may write the normal configurational force balance succinctly as

N∑
α=1

[[ρα]]µα = G. (33.3)

When g = 0, G represents the variational derivative of the total free energy with
respect to variations of the position of the interface. If, in addition to taking g = 0, we
neglect interfacial structure, so that ψ = 0, σ = 0, τ = 0, and σ̄ = 0, then G reduces to the
interfacial driving traction [[Ψ−Tn · (∇u)n]]. The requirement that the driving traction
vanish is the classical Maxwell equation for the equilibrium of a coherent interface.90

33.2 Substitutional alloys

For a substitutional alloy, the lattice constraint (5.1) and the identity µβ = µα − µαβ

reduce (33.1) to

N∑
β=1

[[ρβ ]]µβα = G, (33.4)

which, for each species α, involves the chemical potentials relative to all other species
β. Hence, in contrast to the situation at a strained interface separating a substitutional
alloy from vapor, it is not possible to determine the individual chemical potentials on a
coherent interface in a substitutional alloy.

Because of (33.4), the remaining results are essentially the same for substitutional
alloys as they are for unconstrained materials. For that reason, we limit the ensuing
discussion to unconstrained materials with the proviso that:

for substitutional alloys the chemical potentials µα be interpreted as chemical
potentials µαζ relative to a fixed choice of species ζ.

33.3 Alternative forms for G
G admits a variety of equivalent representations. Here, we obtain counterparts of relations
obtained in §24.1 for a strained solid-vapor interface. The first of these follows on noting
that, by the equation τ = σ̄γ + τ̄ used to define τ̄ (cf. (21.10)) and the tangential
component ∂σ̄/∂s = −t · [[T]]n = −n · [[T]]t of the standard interfacial force balance (cf.
(29.6)),

∂τ

∂s
=

∂σ̄

∂s
γ + σ̄

∂γ

∂s
+

∂τ̄

∂s
= −γn · [[T]]t + σ̄

∂γ

∂s
+

∂τ̄

∂s
, (33.5)

which yields the identity

G = [[Ψ−Tn · (∇u)n− γn ·Tt]] + (ψ − σ̄ε)K + σ̄
∂γ

∂s
+

∂τ̄

∂s
+ g. (33.6)

90Cf. Eshelby (1970), Robin (1974), Larché and Cahn (1978), Grinfeld (1981), James (1981), and
Gurtin, (1983).
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Next, we consider the term [[Ψ − Tn · (∇u)n − γn · Tt]] − εσ̄K on the right side of
(33.6) and note that, by the symmetry of T, the representation 1 = t ⊗ t + n ⊗ n, the
relations e = (∇u)±t = εt + γn, and the normal component σ̄K = −n · [[T]]n of the
standard interfacial force balance (cf. (29.6))

[[Tn · (∇u)n + γn ·Tt]]− εσ̄K = [[T ·E]]− ε tr [[T]]; (33.7)

this allows us to rewrite (33.6) yielding the identity

G = [[Ψ−T ·E]] + ε tr [[T]] + ψK + σ̄
∂γ

∂s
+

∂τ̄

∂s
+ g. (33.8)

In view of the definition Φ = Ψ − T · E (cf. (7.15)) of the free enthalpy, (33.8) is
equivalent to

G = [[Φ]] + ε tr [[T]] + ψK + σ̄
∂γ

∂s
+

∂τ̄

∂s
+ g. (33.9)

Finally, if surface stress is neglected, so that σ̄ = 0, [[T]]n = 0, and τ̄ = τ , then, since
T = T�, 1 = n⊗ n + t⊗ t, and [[∇u]]t = 0,91

[[Tn · (∇u)n]] = 〈〈T〉〉n · [[∇u]]n + [[T]]n · 〈〈∇u〉〉n

= 〈〈T〉〉 · [[∇u]]n⊗ n

= 〈〈T〉〉 · [[∇u]](1− t⊗ t)

= 〈〈T〉〉 · [[∇u]]− 〈〈T〉〉t · [[∇u]]t

= 〈〈T〉〉 · [[E]]; (33.10)

thus, in this case,

G = [[Ψ]]− 〈〈T〉〉 · [[E]]− ψK +
∂τ

∂s
+ g. (33.11)

34 Constitutive equations for the interface

Our approach to the constitutive theory is guided by the interfacial dissipation inequality
(31.16), which is almost identical to the inequality (23.9) that arises in the theory for
strained solid-vapor interfaces. Thus, reasoning as in §25, we arrive at constitutive
equations

σ̄ =
∂ψ̂(ε, ϑ)

∂ε
,

τ̄ =
∂ψ̂(ε, ϑ)

∂ϑ
,


 (34.1)

91Equation (4.15) of Gurtin and Voorhees (1993) erroneously asserts that [[Tn · (∇u)n]] = [[T ·E]] (†),
which differs from (33.10). Because of this, results ensuing from (†), such as their (8.3), are incorrect.
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determining the standard scalar interfacial stress and the reduced shear in conjunction
with constitutive equations92

hα = −Lαβ
∂µβ

∂s
,

g = −bV,


 (34.2)

for the interfacial atomic fluxes and the normal internal force. Here the matrix with
coefficients Lαβ is positive semi-definite, while b ≥ 0; these moduli may be dependent
upon (ε, ϑ).

35 General equations for the interface

The basic interfacial balances are the standard force-balance, the atomic balance, and
the normal configurational force balance (cf. §29.2, §30)

[[T]]n = −σ̄Kn− ∂σ̄

∂s
t, [[ρα]]V =

∂hα

∂s
+ [[α]] · n,

N∑
α=1

[[ρα]]µα = [[Ψ−Tn · (∇u)n− γt ·Tn]] + (ψ − σ̄ε)K + σ̄
∂γ

∂s
+

∂τ̄

∂s
+ g.


 (35.1)

These interfacial balances are coupled to the interfacial constitutive relations (34.1)
and (34.2). Thus, combining the interfacial balances and the constitutive relations and
using the identity (26.6), which applies here also, we arrive at the standard force and
atomic balances

[[T]]n = −∂ψ

∂ε
Kn−

(
∂2ψ

∂ε2

∂ε

∂s
+

∂2ψ

∂ε∂ϑ
K

)
t,

[[α]] · n =
∂

∂s

( N∑
β=1

Lαβ
∂µβ

∂s

)
+ [[ρα]]V,




(35.2)

and the normal configurational force balance

N∑
α=1

[[ρα]]µα = [[Ψ−Tn · (∇u)n− γn ·Tt]]

+
(
ψ +

∂2ψ

∂ϑ2
− ε

∂ψ

∂ε

)
K +

∂2ψ

∂ε∂ϑ

∂ε

∂s
+

∂ψ

∂ε

∂γ

∂s
− bV. (35.3)

If we neglect surface stress, then ψ = ψ(ϑ) and the standard force-balance (35.2)1
has the simple form

[[T]]n = 0 (35.4)

92For convenience, we neglect coupling from the outset; the corresponding coupled equations would
have the form

hα = −
N∑
β=1

Lαβ
∂µβ

∂s
− .αV, g = −

N∑
α=1

Bα
∂µα

∂s
− bV.
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asserting that the (standard) traction be continuous across the interface, the atomic
balance (35.2)2 reads

[[α]] · n =
∂

∂s

( N∑
β=1

Lαβ
∂µβ

∂s

)
+ [[ρα]]V, (35.5)

and the normal configurational force balance (35.3) becomes

N∑
α=1

[[ρα]]µα = [[Ψ]]− 〈〈T〉〉 · [[E]] +
(
ψ +

∂2ψ

∂ϑ2

)
K − bV. (35.6)

The internal force g = −bV , a dissipative force associated with the rearrangement of
atoms at the interface, and, thus, is of a physical nature akin to that encountered in our
discussion of grain boundaries. Such a force is generally not included in discussions of
migrating coherent interfaces, typically because the possibility of having such a force is
precluded from the outset by an appeal to local equilibrium. The other sources of kinetics
for such problems are bulk and interfacial diffusion; because the time-scales associative
with such processes are typically very long, the force g = −bV could possibly be relevant.
We know of no investigations as to the relative importance of these disparate measures
of kinetics.

Appendices

A Justification of the free-energy conditions (9.45) at
zero stress. Gibbs relation

Consider a substitutional alloy without vacancies and, as before, let Ψ0(�ρ ) denote the
free energy at zero stress. In addition, consider a second material identical to the sub-
stitutional alloy in question except that vacancies with density ρv are present, and let
Ψ̌0(�ρ, ρv) denote the corresponding free energy at zero stress. We now show that:

• if Ψ̌0(�ρ, ρv)→ Ψ0(�ρ ) as ρv → 0, and

• if, as ρv → 0, the corresponding chemical potentials µ̌αv
0 (�ρ, ρv) relative to vacancies

have limiting values,

then, writing µα0 (�ρ ) for the limiting values of µ̌αv
0 (�ρ, ρv) as ρv approaches zero, the free-

energy conditions at zero stress are satisfied.
We consider µα0 (�ρ ) to be the species-α chemical-potential for Ψ0(�ρ ); µα0 (�ρ ) should

be interpreted as a chemical potential, relative to vacancies, in the limit of vanishing
vacancies.

Note that µα0 is defined solely as a limiting value. This limiting value cannot be
equal to ∂Ψ0/∂ρ

α, which, in light of of the lattice constraint, is not meaningful. On the
other hand, by (9.45), the difference µα0 (�ρ )− µβ0 (�ρ ) represents, for Ψ0(�ρ ), the chemical
potential of α relative to β.

To establish the foregoing assertions, we assume that

(i) Ψ̌0(�ρ, ρv) is continuous with continuous Larché–Cahn derivatives on the set

Dvac
def=

{
(�ρ, ρv) :

N∑
α=1

ρα = ρsites + ρv, ρα> 0 (α = 1, 2, . . . , N), ρv ≥ 0
}
(A1)
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(so that the smoothness described above is up to ρv = 0);

(ii) Ψ0(�ρ ) is the zero-vacancy limit of Ψ̌0(�ρ, ρv),

Ψ0(�ρ ) = Ψ̌0(�ρ, 0). (A2)

By (i) and (ii), Ψ0(�ρ ) is continuous with continouous Larché–Cahn derivatives on the
constraint set

Dcon
def=

{
�ρ :

N∑
α=1

ρα = ρsites, ρα> 0 (α = 1, 2, . . . , N)
}
. (A3)

Further, by (9.44) applied to Ψ̌0,

µ̌αv
0 (�ρ, ρv) =

∂(v)Ψ̌0(�ρ, ρv)
∂ρα

,

µ̌αβ0 (�ρ, ρv) =
∂(β)Ψ̌0(�ρ, ρv)

∂ρα
.




(A4)

Moreover, (5.6)3 yields

µ̌αβ0 (�ρ, ρv) = µ̌αv
0 (�ρ, ρv)− µ̌βv

0 (�ρ, ρv). (A5)

By (i), the Larché–Cahn derivatives of Ψ̌0 exist and are continuous up to ρv = 0 . The
limit ρv → 0 therefore yields

∂(β)Ψ̌0(�ρ, ρv)
∂ρα

−→ ∂(β)Ψ̌0(�ρ, 0)
∂ρα

=
∂(β)Ψ0(�ρ )

∂ρα
(A6)

and

∂(v)Ψ̌0(�ρ, ρv)
∂ρα

−→ ∂(v)Ψ̌0(�ρ, 0)
∂ρα

def= µα0 (�ρ ). (A7)

Thus, by (A4)–(A7),

µ̌αβ0 (�ρ, ρv) −→ µα0 (�ρ )− µβ0 (�ρ ), (A8)

and by (A4)2 and (A6),

µ̌αβ0 (�ρ, ρv) =
∂(β)Ψ̌0(�ρ )

∂ρα
−→ ∂(β)Ψ0(�ρ )

∂ρα
= µαβ(�ρ );

therefore, appealing to (9.44),

µαβ0 (�ρ ) =
∂(β)Ψ0(�ρ )

∂ρα
= µα0 (�ρ )− µβ0 (�ρ ), (A9)

which is (9.45)2.
We are now in a position to establish the Gibbs relation (9.45)1. Let Ψ(v)

0 (�ρ ) denote
Ψ̌0(�ρ, ρv) with ρv eliminated via the lattice constraint:

Ψ(v)
0 (�ρ ) = Ψ̌0(�ρ, ρv)

∣∣∣
ρv=ρsites−

N∑
α=1

ρα
.
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The domain of Ψ(v)
0 (�ρ ) is the set

D(v) def=
{

�ρ :
N∑
α=1

ρα≤ ρsites, ρα> 0 (α = 1, 2, . . . , N)
}
. (A10)

and the boundary of D(v) contains the constraint set Dcon. By (9.8),

∂Ψ(v)
0 (�ρ )
∂ρα

=
∂(v)Ψ̌0(�ρ, ρv)

∂ρα

∣∣∣∣∣
ρv=ρsites−

N∑
α=1

ρα

and, in view of (i), Ψ(v)
0 (�ρ ) is continuously differentiable on D(v), up to Dcon. Define

µ(v)α(�ρ ) =
∂Ψ(v)

0 (�ρ )
∂ρα

. (A11)

Then, by (A2) and (A7), since Dcon corresponds to ρv = 0,

Ψ0(�ρ ) = Ψ(v)
0 (�ρ ) and µα0 (�ρ ) = µ(v)α(�ρ ) for all �ρ ∈ Dcon. (A12)

Finally, since Ψ(v)
0 (�ρ ) and µ(v)α(�ρ ) are consistent with (A11) and are unencumbered

by the lattice constraint in the interior of Dcon, we may argue as in §8 to show that
Ψ(v)

0 (�ρ ) = ραµ(v)α(�ρ ). Thus, by (A12), passing to the limit ρv = 0, we have the Gibbs
relation (9.45)1.

B Equivalent formulations of the basic laws. Control-
volume equivalency theorem

In our development of the equations governing the bulk material, we formulated the basic
laws — the configurational force, standard force, and atomic balances, and the imbalance
for free energy — first for fixed parts P of the body and then, to account for the role
of configurational forces, for migrating control volumes R(t). On the other hand, our
discussion of interfaces is based almost exclusively on the use of interfacial pillboxes.
Alternatively we could base this discussion on the use of migrating control volumes that
contain a portion of the interface. The purpose of this section is to show that the two
methods of formulating basic laws are equivalent. With this in mind, let R(t) denote a
migrating control volume (in the sense of §11.2). We then refer to R(t):

• as a migrating bulk control-volume if R(t) lies solely in the bulk material;

• as a migrating interfacial control-volume if R(t) contains a portion of the interface
in its interior;

• as a general migrating control-volume if R(t) is either a migrating bulk control-
volume or a migrating interfacial control-volume.

Control-Volume Equivalency Theorem For each of the basic laws L
under consideration, L is satisfied for all general migrating control-volumes
if and only if:

(i) L is satisfied for all migrating bulk control-volumes:

(ii) L is satisfied for all interfacial pillboxes.
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Since the family of all general migrating control-volumes includes the family of mi-
grating bulk control-volumes, to establish the theorem it suffices to show that, granted
L is satisfied for all migrating bulk control-volumes, L is satisfied for all migrating inter-
facial control-volumes if and only if L is satisfied for all interfacial pillboxes. The basic
laws under consideration are the balance laws for configurational forces, standard forces,
and atoms, and the imbalance for free energy. Here we shall establish equivalence for

L = {free-energy imbalance},

but not for the three balance laws, as their proof is similar and not as difficult.
Thus consider a migrating interfacial control-volume R(t), and let C(t), with xa(t)

and xb(t) the endpoints of C(t), denote the portion of the interface in R(t). For such a
control volume the appropriate generalization of the free-energy imbalance (12.17) has
the form

d

dt

{ ∫
R(t)

Ψ da +
∫
C(t)

ψ ds

}
︸ ︷︷ ︸

net free energy of R

≤
∫

∂R(t)

(Cν · v∂R + Tν · ◦u) ds +
[
c · dx

dt
+ s · du

dt

]b
a︸ ︷︷ ︸

power expended on R across ∂R and
across the end points xa and xb of C

+
N∑
α=1

∫
∂R(t)

µα(−α · ν + ρV∂R) ds +
N∑
α=1

[
µα

(
− hα + δαW

)]b
a

︸ ︷︷ ︸
energy flow into R by atomic transport across ∂R

and across the endpoints xa and xb of C

. (B1)

On the other hand, the free-energy imbalance for a interfacial pillbox C(t) has the form

d

dt

∫
C(t)

ψ ds

︸ ︷︷ ︸
free energy

of C

≤
∫
C(t)

([[C]]n · v + [[T]]n · �u) ds +
[
c · dx

dt
+ s · du

dt

]b
a︸ ︷︷ ︸

power expended on C by the bulk material across C+ and C−
and by the remainder of the interface across xa and xb

+
N∑
α=1

∫
C(t)

µα
(
− [[α]] · n + [[ρα]]V

)
ds +

N∑
α=1

[
µα

(
− hα + δαW

)]b
a

︸ ︷︷ ︸
energy flow into C by atomic transport from the bulk material across
C+ and C− and from the remainder of the interface across xa and xb

. (B2)

In the imbalances (B1) and (B2) the bulk fields are as defined in Part A. The remaining
fields consist of an interfacial free-energy ψ, vector fields c and s that represent configu-
rational and standard stress within the interface, and scalar fields h and δ that represent
the atomic flux and atomic density within the interface. The interface is assumed to be
coherent and the (bulk) chemical potential µ, assumed continuous across the interface,
represents the chemical potential of S. For convenience, we restrict attention to a single
species of atoms. The formulation of (B2) is discussed at length in Part E, and one may
use that discussion and the bulk imbalance (12.17) to infer the imbalance (B1). But
to follow our proof of equivalency it is not necessary that one understand in detail the
formulation of (B1) and (B2).
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Specifically, we will show that, granted (cf. (12.17))

d

dt

∫
R(t)

Ψ da ≤
∫

∂R(t)

(Cν · v∂R + Tν · ◦u) ds−
N∑
α=1

∫
∂R(t)

µα
(
α · ν − ραV∂R

)
ds

for all migrating bulk control-volumes R(t), (B3)

the imbalance (B1) is satisfied for all migrating interfacial control-volumes if and only if
the imbalance (B2) is satisfied for all interfacial pillboxes. To establish this assertion, let

S

xa

xb
n

C

ν∂R+ = ν∂R

ν + = −n∂
C = ∂R+ ∩ S

R+

R+

−R

R

Figure 21: An interfacial control volume R and the bulk control volume R+. C is the
portion of the interface that lies inside R.

R(t) be an interfacial control volume and let R+(t) and R−(t) denote the bulk control
volumes represented by the portions of R(t) that lie in the (+) and (−) phases, so that
the portion of ∂R+(t) that coincides with C(t) is viewed as lying in the (+)-phase at the
interface, and similarly for ∂R−(t). Dropping the argument t when convenient, let ν∂R±
denote the outward unit normal on ∂R± (Figure 21). Then, by (B3) with R = R±,

d

dt

∫
R±

Ψ da ≤
∫

∂R±

(Cν · v∂R± + Tν · ◦u) ds−
N∑
α=1

∫
∂P±

µα
(
α · ν − ραV∂R±

)
ds, (B4)

Moreover, on C,

ν∂R+ = −n, V∂R+ = −V, v∂R+ = v = V n,

ν∂R− = n, V∂R− = V, v∂R− = v = V n,

}
(B5)

and

◦u = �u on both ∂R+∩ C and ∂R−∩ C. (B6)
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Therefore, adding the two equations represented by (B4),

d

dt

∫
R

Ψ da ≤
∫
∂R

(Cν · v∂R + Tν · ◦u) ds +
∫
∂R

µα(−α · ν + ραV∂R) ds

−
∫
C(t)

(
[[C]]n · v + [[T]]n · �u

)
ds−

N∑
α=1

∫
C(t)

µα
(
− [[α]] · n + [[ρα]]V

)
ds. (B7)

Assume that the free-energy imbalance (B2) for a interfacial pillbox is satisfied. Then
adding (B2) and (B7) we arrive at the free-energy imbalance (B1) for a migrating inter-
facial control-volume.

R

C(t)

(t)∂

ζ

ζ

Figure 22: The migrating interfacial control volume Rζ .

To prove the converse assertion, assume that (B1) holds for all migrating interfacial
control-volumes. Choose an arbitrary evolving subcurve C(t) and let Rζ(t) denote the
migrating interfacial control-volume defined by (Figure 22)

Rζ(t) =
{
x : x = z± ζm(z, t), z ∈ C(t), 0 ≤ ζ $ 1

}
,

so that Rζ → C as ζ → 0. In this limit, using limiting relations for the upper and lower
faces of the approximate pillbox Rζ analogous to the identities (B5)–(B6), we find that

d

dt

∫
Rζ

Ψ da→ 0,

∫
∂Rζ

(Cν · v∂Rζ + Tν · ◦u) ds→
∫
C

([[C]]n · v + [[T]]n · �u) ds,

N∑
α=1

∫
∂Rζ

µα(−α · ν + ραV∂Rζ ) ds→
N∑
α=1

∫
C

µα
(
− [[α]] · n + [[ρα]]V

)
ds.

Thus passing to the limit ζ → 0 in (B1) (with R = Rζ), we are led to the free-energy
imbalance (B2) for the interfacial pillbox C.

This completes the proof of the portion of the Control-Volume Equivalency Theorem
relevant to free-energy imbalances.

C Status of the theory as an approximation of the
finite-deformation theory

The theory developed in the body of this study is restricted to small deformations. Here,
we give an abbreviated account of the finite-deformation theory and of the formal analysis
involved in the approximation of small deformations within that theory.
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C.1 Theory for finite deformations

(a) Kinematics

We now use the symbol x to denote an arbitrary material point as labelled in a fixed
reference configuration. The interface S = S(t) and all pillboxes C = C(t) are assumed
to lie in the reference configuration.

In a theory of finite deformations the deformation y is related to the displacement
through the relation

y(x, t) = x + u(x, t);

y(x, t) represents the point of space occupied by the material point x at time t. By (C4),
the interfacial deformation-derivative

f def=
∂y
∂s

(C1)

is related to the interfacial surface-strain e = ∂u/∂s through

f = t + e. (C2)

Consistent with the small-deformation theory, we refer to

ε = t · e, γ = n · e (= n · f) (C3)

as the interfacial tensile and shear strains. The field

λ = | f |

represents the interfacial stretch; clearly,

λ2 = 1 + 2ε + |e|2. (C4)

The vector field

t̄ = λ−1f (C5)

represents a (unit) tangent to the deformed interface. Trivially, f = λt̄; hence (C2) and
the identity t̄ · t̄� = 0 imply that λ� = t̄ · f �. Thus, since t� = ϑ�n (14.16), the stretch
rate satisfies

�
λ = t̄ · �e +

�
ϑ t̄ · n. (C6)

(b) Standard and configurational forces. Power

The treatment of configurational forces follows §19.1 and, as before, leads to the normal
configurational force balance (20.1), viz.

σK +
∂τ

∂s
+ g − n ·Cn = 0. (C7)

The standard force and torque balances for a pillbox C take the form

s
∣∣b
a
−

∫
C

Tn ds = 0,

[
(y − 0)× s

]b
a
−

∫
C

(y − 0)×Tn ds = 0;




(C8)
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comparing these balances to their small-deformation conterparts (20.2), we see that the
force balance is unchanged, but the torque balance reflects the fact that we are working
in the finite-deformation theory. The integral balances (C8) are equivalent to the local
balances93

∂s
∂s

= Tn, t̄× s = 0. (C9)

The second of (C9) renders s tangent to the deformed interface; hence there is a scalar
field σ̄, the (scalar) standard surface stress, such that

s = σ̄t̄. (C10)

Our discussion of power follows §21.1. The net external power expended on a pillbox
C(t) has the form [

c · dx
dt

+ s · du
dt

]b
a

−
∫
C

(
Cn · v + Tn · �u

)
ds.

The configurational portion of this expenditure is given by (29.9). To determine the
contribution of the standard forces, we use (15.17) and the identity ∂

�u/∂s = �e −KV e
(15.12) to obtain[

s · du
dt

]b
a

=
[
s · �u + (s · e)W

]b
a

=
[
(s · e)W

]b
a

+
∫
C

(
∂s
∂s
· �u + s · �e− (s · e)KV

)
ds

(cf. (21.1)), and, using the standard force balance (C9)1,[
s · du

dt

]b
a

−
∫
C

Tn · �u ds =
[
(s · e)W

]b
a

+
∫
C

(
s · �e− (s · e)KV

)
ds. (C11)

Combining (29.9) and (C11) yields the power balance[
c · dx

dt
+ s · du

dt

]b
a

−
∫
C

(
Cn · v + Tn · �u

)
ds

=
[
(σ + s · e)W

]b
a

+
∫
C

[
s · �e + τ

�
ϑ−

(
(σ + s · e

)
K + g

)
V

]
ds. (C12)

(c) Free-energy imbalance

Our discussion of atomic transport is as in §22 and leads to the atomic balance (22.4).
The free-energy imbalance for an arbitrary interfacial pillbox C = C(t) takes the form

d

dt

∫
C

ψ ds ≤
[
c · dx

dt

]b
a

−
∫
C

Cn · v ds +
[
s · du

dt

]b
a

−
∫
C

Tn · �u ds

+
N∑
α=1

[
µα(−hα + δαW )

]b
a

+
N∑
α=1

∫
C

µα(α · n− ραV + rα) ds

93Cf. Gurtin and Murdoch (1974), who derive three-dimensional force and moment balances in a
finite-strain setting. See also Fried and Gurtin (2003).
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(cf. (23.4)), and, in view of (C12), (22.4), and the integral transport theorem (14.29),
yields the inequality

∫
C

(
�
ψ − ψKV ) ds +

(#)︷ ︸︸ ︷[(
ψ − s · e−

N∑
α=1

µαδα − σ

)
W

]b
a

≤
∫
C

(
s · �e + τ

�
ϑ−

(
σ + s · e +

N∑
α=1

µαδα
)
KV − gV

)
ds

−
N∑
α=1

[
µαhα

]b
a

+
N∑
α=1

∫
C

µα
(

�
δα +

∂hα

∂s

)
ds. (C13)

Since C is arbitrary, so also are the tangential velocities Wa and Wb of the endpoints of
C; thus, since the only term in (C13) dependent on these velocities is the term (#), we
have the interfacial Eshelby relation

σ = ψ − s · e−
N∑
α=1

δαµα, (C14)

which should be compared with its counterpart (23.6) of the small-deformation theory.
Since

N∑
α=1

[
µαhα

]b
a

=
N∑
α=1

∫
C

(
µα

∂hα

∂s
+ hα

∂µα

∂s

)
ds,

we may use (C14) to rewrite (C13) as

∫
C

(
�
ψ − s · �e− τ

�
ϑ−

N∑
α=1

(
µα

�
δα − hα

∂µα

∂s

)
+ gV

)
ds ≤ 0;

since C is arbitrary, this yields the interfacial dissipation inequality

�
ψ − s · �e− τ

�
ϑ−

N∑
α=1

(
µα

�
δα − hα

∂µα

∂s

)
+ gV ≤ 0. (C15)

(d) Normal configurational force balance revisited

As before, we have the bulk Eshelby relation (12.15), but now the interfacial Eshelby
relation has the form (C14); we may therefore write the normal configurational force bal-
ance and (for a substitutional alloy) the chemistry-composition relations in the respective
forms (24.3) and (24.12), viz.

N∑
α=1

(ρα − δαK)µα = F , µα =
N∑
β=1

cβefµ
αβ + ΩefF , (C16)

but with the mechanical force now given by (cf. (24.2))

F = Ψ−Tn · (∇u)n− (ψ − s · e)K − ∂τ

∂s
− g. (C17)
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(e) Constitutive equations without regard to torque balance

Our discussion of constitutive equations closely follows §??. Guided by the interfacial
dissipation inequality (C20), we consider constitutive equations giving

ψ, s, τ, �µ as functions of (e, ϑ, �δ ) (C18)

in conjunction with constititutive equations for hα and g of the form (25.1), with coeffi-
cients possibly dependent on (e, ϑ, �δ ), rather than (ε, ϑ, �δ ). (The discussion of constiti-
tutive equations for hα and g, follows §25.)

Appealing to the discussion of §17.8, we find that

s =
∂ψ̃(e, ϑ, �δ )

∂e
,

τ =
∂ψ̃(e, ϑ, �δ )

∂ϑ
,

µα =
∂ψ̃(e, ϑ, �δ )

∂δα
.




(C19)

The difference between (C19) and the constitutive relations (25.2) of the small-deformation
theory is reflected by the use of s, τ , and e as constitutive variables in place of σ̄, τ̄ , and
ε.

Remark The theory as developed thus far is valid whether or not the local
torque balance t̄× s = 0 is satisfied.

This observation is central to what follows. As we shall see, the theory we develop as
a small-deformation approximation of the finite-deformation theory satisfies the torque
balance only approximately, but otherwise falls within the thermomechanical structure
of the finite-deformation theory. We refer to the finite-deformation theory based on
the constitutive equations discussed above, but with the torque balance omitted, as the
finite-deformation theory without torque balance.

(f) Constitutive equations consistent with torque balance

To establish consequences of the torque balance, we return to the dissipation inequality
(C20), which, by virtue of (C6) and (C10), we may rewrite as

�
ψ − σ̄

�
λ− τ̄

�
ϑ−

N∑
α=1

(
µα

�
δα − hα

∂µα

∂s

)
+ gV ≤ 0, (C20)

where
τ̄ = τ − ( t̄ · n)σ̄

is the reduced shear.
Consider once again constitutive relations in the form (C18). By (C2) and (C5), a

dependence on (e, ϑ, �δ ) is equivalent to a dependence on (λ, t̄, ϑ, �δ ); thus, since s = σ̄t̄ is
a consequence of the torque balance (cf. (C10)), (C18) is equivalent to relations giving

ψ, σ̄, τ̄ , �µ as functions of (λ, t̄, ϑ, �δ ). (C21)

Therefore, arguing as before, we conclude, as a consequence of the dissipation inequality,
that the free energy must be independent of the deformed tangent t̄,

ψ = ψ̂(λ, ϑ, �δ ), (C22)
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and must generate σ̄, τ̄ , and �µ through the relations (Fried and Gurtin, 2003)

σ̄ =
∂ψ̂(λ, ϑ, �δ )

∂λ
,

τ̄ =
∂ψ̂(λ, ϑ, �δ )

∂ϑ
,

µα =
∂ψ̂(λ, ϑ, �δ )

∂δα
.




(C23)

The finite-deformation theory is discussed at great length by Fried and Gurtin (2003)
and the reader is referred there for a thorough discussion of the basic equations as well
as of the partial differential equations resulting from various simplifying assumptions.94

C.2 Theory for small deformations as an approximation of the
finite-deformation theory

The chief differences between the small-deformation theory developed in the body of
this study and the theory discussed in this section involves the constitutive interactions
between stress, strain, and orientation. So as to not obscure these differences we sim-
plify the theory by neglecting adatoms. The inclusion of adatoms involves only minor
modifications.

94The finite-deformation theory as described by Fried and Gurtin (2003) is based on a configurational
stress of the form

Č = Ψ−
N∑
α=1

ραµα − F�T,

with F = 1 + ∇u the deformation gradient, but here — because F is not suitable for a discussion of
small deformations — the configurational stress has the form

C = Ψ−
N∑
α=1

ραµα − (∇u)�T.

However, the bulk theory itself is independent of which of the two configurational stress tensors one uses;
to prove this one notes that Č = C−T and hence∫

∂R(t)

(Čν · v∂R + Tν · ◦y) da =

∫
∂R(t)

(Cν · v∂R + Tν · ◦u) da

(cf. (11.9)), whereby the superficial power is invariant with respect to whether the theory is based on
deformation or on displacement (Gurtin (2000, §13). Similarly, Fried and Gurtin (2003) show that the
the appropriate form of the interfacial Eshelby relation in the deformation-gradient based formulation is

σ̌ = ψ −
N∑
α=1

δαµα − s · f ,

while we here find that

σ = ψ −
N∑
α=1

δαµα − s · e,

so that σ̌ = σ−t ·s. Assuming that the internal configurational force g is the same for both formulations,
the configurational shear transforms according to τ̌ = τ − n · s, so that č = c− s and again the theory
itself is independent of which of the two expressions for the interfacial configurational tension is used,
the relevant step here being to show that[

č · dx
dt

+ s · dy
dt

]b
a

=

[
(c− s) · dx

dt
+ s ·

(
dx

dt
+

du

dt

)]b
a

=

[
c · dx

dt
+ s · du

dt

]b
a

.
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(a) Small-strain estimates

We are interested in a theory appropriate to situations in which e is small; thus, using
the symbol o(e) to denote terms that, in a precise sense, are smaller than e in the limit
e→ 0,95 we have the estimate

λ = 1 + ε + o(e). (C24)

By (C2) and (C24),

t̄ = t + γn + o(e). (C25)

The estimates (C24) and (C25) are central to our discussion of small deformations.

(b) Constitutive relations appropriate to small deformations

In developing an approximate theory appropriate to small deformations, the relevant
constitutive relation is that for the stress; since s = σ̄t̄, the first of (C23) yields the
relation

s = σ̄(λ)t̄, (C26)

where, for convenience, we have suppressed the argument ϑ and have written

σ̄(λ) =
∂ψ̂(λ)
∂λ

.

Granted smoothness, we may use (C24) to conclude that

σ̄(λ) = σ̄0 +
∂σ̄

∂λ

∣∣∣∣
0

ε + o(e),

where the subscript 0 denotes evaluation at λ = 1. Thus, by (C25) and (C26), we have
the estimate

s =
(
σ̄0 +

∂σ̄

∂λ

∣∣∣∣
0

ε + o(e)
)(

t + e− εt + o(e)
)
, (C27)

and, introducing the surface elasticity

k =
∂σ̄

∂λ

∣∣∣∣
0

and appealing to (C3), we have the equivalent estimates96

s = σ̄0t + (k − σ̄0)εt + σ̄0e + o(e),

= (σ̄0 + kε)t + σ̄0γn + o(e). (C28)

Consider now the second of these estimates with terms of o(e) neglected:

s = (σ̄0 + kε)t + σ̄0γn. (C29)

95A function f(z) is o(zn) if |z|−nf(z)→ 0 as z→ 0; f(z) is O(zn) if |z|−nf(z) is bounded as z→ 0.
96These represent a two-dimensional version of (L) of the Addenda to Gurtin and Murdoch (1975).
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(Without the underlined term the stress s is consistent with the torque balance t×s = 0
(29.3)2 of the theory as presented in the main body of the paper.) Writing

w = σ̄0ε + 1
2kε

2 + 1
2 σ̄0γ

2,

= σ̄0(e · t) + 1
2k(e · t)2 + 1

2 σ̄0(e · n)2,

}
(C30)

we see that s = ∂w/∂e and hence that w = w(e) represents an interfacial strain energy.
Thus far the orientation ϑ has been irrelevant to our discussion. We now include

orientational dependences and therefore write σ̄0 = σ̄0(ϑ) and k = k(ϑ). Then, if ψ̃(e, ϑ)
represents the resulting free energy, we must have

ψ̃(e, ϑ) = ψ0(ϑ) + w(e, ϑ), s =
∂ψ̃(e, ϑ)

∂e
, (C31)

with

w(e, ϑ) = σ̄0(ϑ)(e · t) + 1
2k(ϑ)(e · t)2 + 1

2 σ̄0(ϑ)(e · n)2, (C32)

bearing in mind that
t = t(ϑ), n = n(ϑ).

For consistency with both (25.5) and (C19)2, we define the configurational shear through

τ =
∂ψ̃(e, ϑ)

∂ϑ
. (C33)

We supplement these constitutive relations by Fick’s law (25.8) and the kinetic relation
(25.9), allowing for anisotropy, viz

hα = −
N∑
β=1

Lαβ(ϑ)
∂µβ

∂s
, g = −b(ϑ)V. (C34)

To ensure ensure satisfaction of the dissipation inequality (C20), we assume that b(ϑ) ≥ 0
and that the matrix with entries Lαβ(ϑ) is positive semi-definite. The constitutive theory
as defined by (C31)–(C34) is then a special case of the constitutive relations (C19) of the
finite-deformation theory without torque balance.

(c) Basic equations of the theory

Bearing in mind that we are neglecting adatom densities, the balances for standard forces
and atoms, namely (C9) and (22.4), take the form

Tn =
∂s
∂s

,

ραV = −∂hα

∂s
+ α · n + rα,


 (C35)

while the normal configurational force balance and the configurational-chemistry relations
(for substitutional alloys) take the respective forms

N∑
α=1

ραµα = F , µα =
N∑
β=1

cβµαβ + ΩF (C36)



A unified treatment of evolving interfaces 139

(cf. (26.26)), with mechanical potential F given by (C17).
Since the constitutive relations (C31)–(C34) render the theory consistent with the

dissipation inequality (C20), the balances (C35) and (C36) supplemented by (C31)–(C34)
represents an exact system of equations within the framework of the finite-deformation
theory without torque balance. The single basic relation not satisfied is the torque
balance; as we shall see, this balance is satisfied to within and error of o(e).

The constitutive relations (C31)–(C33) have the specific form

ψ = ψ0(ϑ) + σ̄0(ϑ)ε + 1
2k(ϑ)ε2 + 1

2 σ̄0(ϑ)γ2,

s = (σ̄0(ϑ) + k(ϑ)ε)t + σ̄0(ϑ)γn,

τ = ψ′0(ϑ) + σ̄′0(ϑ)ε + 1
2k
′(ϑ)ε2 + σ̄0(ϑ)γ + k(ϑ)εγ + 1

2 σ̄
′
0(ϑ)γ2 − σ̄0(ϑ)εγ,


 (C37)

where the underlined terms in (C37) represent those terms emanating from the underlined
term in (C29).

With the exception of the atomic balance, which with (C34)2 has the form

ραV =
∂

∂s

( N∑
β=1

Lαβ(ϑ)
∂µβ

∂s

)
+ α · n + rα

(cf. (26.32)2), the partial differential equations resulting from this general theory are
excessively complicated and nothing is to be gained by writing them explicitly.

(d) Basic equations with isotropic strain energy

The ensuing calculations make repeated use of the kinematical relations (15.10) and
(15.11).

Isotropy of the strain energy renders both σ̄ and k constant ; consequently, the normal
and tangential components of the standard force balance have the respective forms

n ·Tn =
(
σ̄0 + (k − σ̄0)t ·

∂u
∂s

)
K + σ̄0n ·

∂2u
∂s2

,

t ·Tn =
(

(k − σ̄0)n ·
∂u
∂s

)
K + kt · ∂

2u
∂s2

,


 (C38)

and the mechanical potential becomes

F = Ψ−Tn · (∇u)n−
{
ψ0(ϑ) + ψ′′0 (ϑ)− 3

2k

(
t · ∂u

∂s

)2

+ k

(
n · ∂u

∂s

)2

− σ̄0t ·
∂u
∂s

+ σ̄0

[(
t · ∂u

∂s

)2

− 3
2

(
n · ∂u

∂s

)2 ]}
K

−
{
σ̄0n + (k − σ̄0)

[(
t · ∂u

∂s

)
n +

(
n · ∂u

∂s

)
t
]}
· ∂

2u
∂s2

+ b(ϑ)V. (C39)

In the theory developed in the main body of this paper, the underlined terms in (C37)
are absent. These terms lead to the presence of additional terms

−σ̄0

(
t · ∂u

∂s

)
K + σ̄0n ·

∂2u
∂s2

and − σ̄0

(
n · ∂u

∂s

)
K
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in (C38)1 and (C38)2, respectively, and to the additional terms

σ̄0

[(
t · ∂u

∂s

)2

− 3
2

(
t · ∂u

∂n

)2 ]
K and σ̄0

[(
t · ∂u

∂s

)
n +

(
n · ∂u

∂s

)
t
]
· ∂

2u
∂s2

in (C39).
These equations simplify further when the interface has negligible elasticity in the

sense that
k = 0,

for then the standard force balance has the form

n ·Tn = σ̄0

{(
1− t · ∂u

∂s

)
K + n · ∂

2u
∂s2

}

t ·Tn = −σ̄0n ·
∂u
∂s

K


 (C40)

and the mechanical potential reduces to

F = Ψ−
{
ψ0(ϑ) + ψ′′0 (ϑ) + σ̄0

(
n · ∂u

∂n
− t · ∂u

∂s

)
− σ̄0

(
n · ∂u

∂n

)(
t · ∂u

∂s

)

− σ̄0

(
n · ∂u

∂s

)(
t · ∂u

∂n

)
+ σ̄0

[(
t · ∂u

∂s

)2

− 3
2

(
n · ∂u

∂s

)2 ]}
K

− σ̄0

{(
1 + n · ∂u

∂n
− t · ∂u

∂s

)
n−

(
n · ∂u

∂s

)
t
}
· ∂

2u
∂s2

+ b(ϑ)V. (C41)

(e) Comparison of small-deformation theories

The general finite-deformation theory discussed in §C.1 satisfies the torque balance

[
(y − 0)× s

]b
a
−

∫
C

(y − 0)×Tn ds = 0 (C42)

(cf. (C8)2), which has the local form

t̄× s = 0, (C43)

but the theory developed in this section (§C.2) — which we refer to as the first-order
strain theory — satisfies this torque balance only approximately. Specifically, the first-
order strain theory is based on the stress-strain relation

s = (σ̄0 + kε)t + σ̄0γn, (C44)

so that, by (C2), (C3), and (C5),

|t̄× s| = λ−1
∣∣(t + εt + γn)×

(
(σ̄0 + kε)t + σ0γn)

)∣∣ = λ−1|εγ(σ̄0 − k)|,

giving the estimate

|t̄× s| = O(e2). (C45)

Thus, while the local torque balance (C43) is not satisfied exactly, it is satisfied to within
an error of O(e2).
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Consider, next, the theory developed in the main body of the paper, but with the
specific free-energy defined by (26.34) and (26.35), a theory that we refer to as the exact
infinitesimal strain theory. This theory is based on the torque balance

[
(x− 0)× s

]b
a
−

∫
C

(x− 0)×Tn ds = 0 (C46)

(cf. (20.2)), whose localization, t × s = 0, yields s = σ̄t (20.4). Thus, in view of (20.4)
and the constitutive relations (26.34), (26.35), and (25.2),

s = (σ̄0 + kε)t; (C47)

hence the argument leading to (C45) yields

|t̄× s| = λ−1|γ(σ̄0 + kε)|

and results in the estimate

|t̄× s| = O(e). (C48)

The first-order strain theory therefore provides a better approximation to the torque bal-
ance (C43) of the finite-deformation theory than does the exact infinitesimal strain theory.

On the other hand, the exact infinitesimal strain theory is compatible with the theory
in bulk as developed in Part A, but the first-order strain theory is not. Indeed, the torque
balance (C46) of the exact infinitesimal strain theory is compatible with the bulk torque
balance ∫

∂P

(x− 0)×Tν da = 0 (C49)

(cf. (2.2)2), and hence the two balances may be combined to form a torque balance for
a control volume that contains both bulk and interfacial material. But the stress s of
the first-order strain theory does not satisfy the torque balance (C46), since |t × s| =
|σ̄0γ|. Further, the exact infinitesimal strain theory and the theory in bulk are consistent
with the form of material frame-indifference appropriate to small deformations; namely
invariance under transformations of the form ∇u %→ ∇u+W, with W an arbitrary skew
tensor. But the first-order strain theory does not have this invariance, since γ %→ γ+n·Wt
under transformations of the form ∇u %→ ∇u + W. In fact, in the first-order theory, an
infinitesimal rigid rotation induces stress.

Pragmatically, one might expect that the exact infinitesimal strain theory might be
suitable to situations in which σ̄0 is of the same order as kε (and ε is small), for then
the term σ̄0γ in the first-order strain theory should be negligible. On the other hand,
for σ̄0 large we would expect the first-order strain theory to be more appropriate. In
considering this issue one should bear in mind that, for σ̄0 large and k negligibly small,
the tangential part of the standard force balance has the form

t ·Tn = −σ̄0

(
n · ∂u

∂s

)
K

(cf. (C40)2) in the first-order strain theory, as compared to

t ·Tn = 0

(cf. (26.47)) in the exact infinitesimal strain theory.
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