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Abstract. When a body is subject to simple internal constraints, the deformation
gradient must belong to a certain manifold. This is in contrast to the situation
in the unconstrained case, where the deformation gradient is an element of the
open subset of second-order tensors with positive determinant. Commonly, following
Truesdell and Noll [1], modern treatments of constrained theories start with an a
priori additive decomposition of the stress into reactive and active components
with the reactive component assumed to be powerless in all motions that satisfy
the constraints and the active component given by a constitutive equation. Here, we
obtain this same decomposition automatically by making a purely geometrical and
general direct sum decomposition of the space of all second-order tensors in terms
of the normal and tangent spaces of the constraint manifold. As an example, our
approach is used to recover the familiar theory of constrained hyperelasticity.
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1. Introduction

Most contemporary works in constrained theories of continuum me-
chanics follow the approach of Truesdell and Noll [1],1 wherein the
stress is decomposed a priori into reactive and active terms with the
reactive stress assumed to be powerless in all motions consistent with
the constraints and the active stress given by a constitutive equation.
The approach of Truesdell and Noll was motivated by the Ericksen
and Rivlin [2] treatment of constrained hyperelasticity, which is based
on the requirement that the constitutive equations for the stress and
internal energy satisfy balance of energy in all motions consistent with
the constraints. The main feature of the Ericksen–Rivlin hyperelastic

1 See Carlson and Tortorelli [3] for a fuller account of other work in this area.

c© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4810784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 D. E. Carlson, E. Fried & D. A. Tortorelli

development is that the stress is automatically decomposed into the
sum of two terms. One term has zero power in any motion meeting
the constraints and is determined by the constraints to within scalar
multipliers; it is natural to think of this term as being present to
maintain the constraints and to call it the reactive stress. The other
term is, roughly speaking, the gradient of the internal-energy density
with respect to the strain, and it is called the active stress. Carlson
and Tortorelli [3] replaced the Lagrange multiplier formalism of the
Ericksen–Rivlin approach with an elementary geometrical argument—
essentially, the assertion that, if a vector a is orthogonal to every vector
b that is orthogonal to some vector c, then a is parallel to c—used in
the Truesdell–Noll method for determining the form of the reactive
stress.

It is widely accepted that many of the advances in modern contin-
uum mechanics rest in large part on the clear separation of kinemat-
ics, basic laws of balance and growth, and constitutive equations that
characterizes the subject. Where do internal constraints fit into this
hierarchy? While internal constraints do delimit aspects of material
response, they apply to broad classes of materials; for instance, the
constraint of incompressibility applies equally well to both hyperelastic
solids and viscous fluids. Hence, we view internal constraints as being
more fundamental than constitutive equations. It is natural then to
attempt to ascertain the implications of the kinematical nature of in-
ternal constraints. Motivated by this point of view, Anderson, Carlson,
and Fried [4] used a modified version of the geometrical argument of
Carlson and Tortorelli [3] to deal with the constraints of incompress-
ibility and microstructural inextensibility present in their theory of
nematic elastomers. They started with a purely geometrical direct sum
decomposition of the relevant fields based on the normal and tangent
spaces of the constraint manifold to obtain automatically the familiar
decomposition into active and reactive components—without the use
of any balance laws or constitutive assumptions. It is the purpose of
the present paper to return to the simpler context of classical con-
tinuum mechanics for presentation of this improved approach and to
emphasize its generality. We also take this opportunity to treat multiple
constraints.

In Section 2, we consider the case where the deformation gradient is
restricted by n independent constraints. Thus, the deformation gradient
is constrained to belong to a certain manifold in contrast to being
an arbitrary element of the open subset of second-order tensors with
positive determinant as in the unconstrained case. Next, we use the
projection theorem to effect a unique orthogonal decomposition of the
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space of all second-order tensors in terms of the normal and tangent
spaces of the constraint manifold.

In the absence of thermal contributions, the general thermomechan-
ical principles of energy balance and entropy growth combine to yield a
free-energy inequality, which may be simplified by means of the power-
identity theorem. These considerations are developed in Section 3.

In Section 4, the orthogonal decomposition of Section 2 is applied
to the stress tensor. We find that, for motions consistent with the
constraints, the normal component is automatically powerless and only
the tangential component enters into the free-energy inequality. Con-
sequently, the tangential component is called the active stress, and one
would expect to write a constitutive equation for it. On the other hand,
the normal component, termed the reactive stress, is determined by the
constraints to within scalar multipliers that we take to be constitutively
indeterminate. Thus, our approach to internal constraints has the same
level of generality as that of Truesdell and Noll [1] and provides exactly
the same results. However, our decomposition of the stress, rather than
being a priori, is dictated by the geometry of the constraint manifold.

In Section 5, as an application of the general theory, we make elastic
constitutive assumptions for the free energy and the stress and require
that the free-energy inequality be satisfied for all motions consistent
with the constraints to recover the theory of constrained hyperelastic-
ity; and, in this sense, the present paper replaces the paper of Carlson
and Tortorelli [3]. Finally, in Section 6, we show that when the principle
of material frame-indifference is invoked in constrained hyperelasticity,
the active and reactive stresses individually satisfy local balance of
moment of momentum.

Throughout, we use the notations of modern continuum mechanics;
see, e.g., the text of Gurtin [5].

2. The Geometry of the Constraint Manifold

We use a referential formulation. Accordingly, the body is identified
with the region of space B that it occupies in a fixed reference config-
uration. We write y for the motion of the body and

F = Grady, (2.1)

with detF > 0, for the deformation gradient.
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We consider the case where the motion of the body is restricted by
n simple constraints; i.e., the deformation gradient is required to meet2

γ̂i(F ) = 0, i = 1, . . . , n, (2.2)

where the constraint functions γ̂i : Lin+ → R are suitably smooth
and independent in the sense that the set {Grad γ̂i(F ), i = 1, . . . , n} is
linearly independent at each F belonging to Lin+. In other words, the
deformation gradient must belong to the constraint manifold

Con := {F ∈ Lin+ : γ̂i(F ) = 0, i = 1, . . . , n}. (2.3)

Of great use to us will be the normal space to Con at F ,

Norm(F ) := Lsp{Grad γ̂i(F ), i = 1, . . . , n}, (2.4)

and its orthorgonal complement in Lin,

(Norm(F ))⊥ = {A ∈ Lin : A·B = 0,∀B ∈ Norm(F )}
= {A ∈ Lin : A·Grad γ̂i(F ) = 0, i = 1, . . . , n}
=: Tan(F ), (2.5)

which is the tangent space to Con at F .
Of course, the constraint equations (2.2) must hold for all time, and

time differentiation yields

Grad γ̂i(F )·Ḟ = 0, i = 1, . . . , n, (2.6)

which, in view of (2.5), is equivalent to

Ḟ ∈ Tan(F ). (2.7)

If the body actually occupies the reference configuration at some ref-
erence time, then (2.6) implies (2.2) (see Carlson and Tortorelli [3]);
hence, in this case, (2.7) is equivalent to (2.2).

By the projection theorem, Lin admits the direct sum decomposition

Lin = Norm(F )⊕ Tan(F ); (2.8)

i.e., each A ∈ Lin can be written uniquely as3

A = A⊥ +A‖, A⊥ ∈ Norm(F ), A‖ ∈ Tan(F ). (2.9)

2 At this level of generality, it must be required that n < 9. However, once the
principle of material frame-indifference is imposed (cf. the developments of Section
6), the constraint functions γ̂i are seen to depend on F only through the symmetric
tensor F�F . Consequently, we must, in fact, have n < 6.

3 Our usage of the subscripts ⊥ and ‖ here is exactly opposite to that used by
Anderson, Carlson, and Fried [4].
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In view of (2.5), (2.7), and (2.9),

A⊥ ·Ḟ = 0, A·Ḟ = A‖ ·Ḟ . (2.10)

3. Free-energy Inequality

We restrict attention to processes in which the temperature is indepen-
dent of position and time; in this case, the principles of energy balance
and entropy growth, or the first and second laws of thermodynamics,
combine to yield a free-energy inequality. On using P to denote an
arbitrary regular part of B with boundary ∂P and unit outward normal
field n, this free-energy inequality requires that

˙∫

P

ρ(ψ + 1
2 |v|2) dv ≤

∫

∂P

Sn·v da+
∫

P

ρb·v dv (3.1)

for each instant and for all parts. Here, ρ is the referential mass density,
v is the velocity field, ψ is the free energy per unit mass in the reference
configuration, S is the first Piola–Kirchhoff stress tensor, b is the body
force per unit mass in the reference configuration, and the superposed
dot indicates time differentiation.

Next, we recall that an easy consequence of the principles of mass
balance and momentum balance is the power-identity theorem, which
asserts that

∫

∂P

Sn·v da+
∫

P

ρb·v dv =
∫

P

S ·Ḟ dv +
˙∫

P

1
2ρ|v|2 dv (3.2)

for each instant and all parts. Equations (3.1) and (3.2) imply that

˙∫

P

ρψ dv ≤
∫

P

S ·Ḟ dv (3.3)

for each instant and all parts. The local equivalent of (3.3) is

ρψ̇ ≤ S ·Ḟ , (3.4)

and it is this inequality on which our subsequent considerations of
hyperelasticity are based.
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4. Active and Reactive Stresses

On employing the decomposition (2.10) in the particular case when
A is identified with the first Piola–Kirchhoff stress S, it follows from
the power-identity theorem (3.2) that only the component S‖ expends
nonzero power over a constrained motion, and we refer to S‖ as the
active component of the stress and write

S‖ = Sa. (4.1)

On the other hand, the component S⊥ is powerless in a constrained
motion, and we refer to S⊥ as the reactive component of the stress and
write

S⊥ = Sr. (4.2)

Finally, since Sr belongs to Norm(F ), it follows from (2.4) that there
exist scalar fields λ1, . . . , λn such that

Sr =
n∑
i=1

λiGrad γ̂i(F ). (4.3)

Thus, we have shown that, when a body is internally constrained by
simple constraints of the form (2.2), the geometry of the constraint
manifold dictates that the stress is automatically decomposed into the
sum of two components: a powerless component Sr that is determined
to within scalar multipliers by (4.3); and a component Sa that does
expend power and consequently appears in the free-energy inequality.
We emphasize that this result is independent of any constitutive consid-
erations other than the “simple” nature of the constraints; in particular,
the body need not be elastic.

A noteworthy feature of our approach is that, in view of (4.1), (4.2),
and (2.9),

Sa ·Sr = 0. (4.4)

This automatic normalization is important, because the presence of
the constitutively indeterminate multipliers in Sr (see (4.3)) means
that the response function for any component of Sa not orthogonal to
Sr could not be measured.
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5. Constrained Hyperelasticity

In the constrained case, it follows from (2.10) and (4.1) that the local
free-energy inequality (3.4) reduces to

ρψ̇ ≤ Sa ·Ḟ . (5.1)

For hyperelasticity, we make the constitutive assumptions that

ψ = ψ̂(F ), ψ̂ : Con→ R, (5.2)

and

Sa = Ŝa(F ), Ŝa : Con→ Tan(F ). (5.3)

Now, with ψ̂ assumed to be smooth,

ψ̇ = Grad ‖ψ̂(F )·Ḟ ; (5.4)

so the local free-energy inequality becomes

(Ŝa(F )− ρGrad ‖ψ̂(F ))·Ḟ ≤ 0. (5.5)

In the spirit of Green [6, 7], Ericksen and Rivlin [2], and Coleman and
Noll [8], we require that our constitutive equations be restricted such
that the local free-energy inequality (5.5) is always satisfied. To make
this precise, we say that a constrained hyperelastic process consists of:

i. a motion y consistent with the constraint equations (2.2),

ii. scalar fields λ1 . . . , λn,

iii. a free-energy field ψ given in terms of ψ by constitutive equation
(5.2),

iv. an active stress field Sa given in terms of y by constitutive equation
(5.3),

v. a reactive stress field Sr given in terms of y and λ1 . . . , λn through
(4.3), and

vi. a body force field b determined in terms of the above fields through
local balance of momentum.

Then, we insist that the local free-energy inequality (5.5) be satisfied
for every constrained hyperelastic process. At least locally, it is possible
to choose a constrained hyperelastic process such that, at any given po-
sition and time, F and Ḟ take on arbitrary values in Con and Tan(F ),
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respectively. Since both Sa(F ) and Grad ‖ψ̂(F ) belong to Tan(F ), we
conclude that

Ŝa(F ) = ρGrad ‖ψ̂(F ). (5.6)

In (5.4)–(5.6), Grad ‖ψ̂(F ) represents the tangential gradient of ψ̂
at F . When the response function ψ̂ admits a smooth extension off of
the constraint manifold to an open subset of Lin+, then

Grad ‖ψ̂(F ) = (I−
n∑
i=1

N i⊗N i)Grad ψ̂(F ), (5.7)

where the fourth-order tensor I is the identity operator on Lin, {N i, i =
1, . . . , n} is an orthonormal basis for the linear subspace Norm (F ), and
A⊗B is the fourth-order tensor defined such that (A⊗B)C = (B·C)A
for any second-order tensor C.

6. Material Frame-indifference and Moment-of-momentum
Balance

An interesting feature of hyperelasticity in the unconstrained case is
that the principle of balance of moment-of-momentum need not be
taken as an axiom; rather it appears as a theorem in the theory pri-
marily as a consequence of the principle of material frame-indifference.
In this section, we show that this is the case also in the constrained
theory as developed above.

As noted in the introduction, internal constraints do delimit aspects
of material response. Thus, the kinematical restrictions embodied in
(2.2) are subject to the principle of material frame-indifference:

γ̂i(QF ) = γ̂i(F ), i = 1, . . . , n, ∀(Q,F ) ∈ Orth+ × Lin+. (6.1)

A standard consequence of (6.1) is that for each i

γ̂i(F ) = γ̄i(C), γ̄i : Psym→ R, (6.2)

where

C = F �F (6.3)

is the right Cauchy–Green deformation tensor.
By (6.2) and (6.3),

Grad γ̂i(F ) = 2FGrad γ̄i(C), (6.4)
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and (4.3) becomes

Sr =
n∑
i=1

λiFGrad γ̄i(C) (6.5)

in terms of the reduced constraint functions γ̄i, where the factor of 2
has been absorbed into the constitutively indeterminate multipliers. An
immediate consequence of (6.5) is that

SrF
�= FS�r, (6.6)

which is the local form of balance of moment-of-momentum for the
reactive stress.

Similarly, material frame-indifference requires that the constitutive
equation (5.2) for the free-energy density reduce to

ψ = ψ̄(C). (6.7)

Here, of course, the domain of ψ̄ is the reduced constraint manifold

Con(C) := {C ∈ Psym : γ̄i(C) = 0, i = 1, . . . , n}. (6.8)

In terms of ψ̄, (5.6) becomes

Sa = S̄a(C) = 2ρFGrad ‖ψ̄(C), (6.9)

where Grad ‖ now denotes the tangential gradient with respect to the
manifold Con. Furthermore, it follows from (6.9) that

SaF
�= FS�a, (6.10)

which is the local form of moment-of-momentum balance for the active
stress.
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