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Abstract: Topological techniques are used to study the motions of systems of
point vortices in the infinite plane, in singly-periodic arrays, and in doubly-periodic
lattices. Restricting to three vortices with zero net circulation, the symmetries are
used to reduce each system to a one-degree-of-freedom Hamiltonian. The phase por-
trait of the reduced system is subdivided into regimes using the separatrix motions,
and a braid representing the topology of all vortex motions in each regime is com-
puted. This braid also describes the isotopy class of the advection homeomorphism
induced by the vortex motion. The Thurston-Nielsen theory is then used to ana-
lyze these isotopy classes, and in certain cases strong implications about the chaotic
dynamics of the advection can be drawn. This points to an important mechanism
by which the topological kinematics of large-scale, two-dimensional fluid motions
generate chaotic advection.

§1 Introduction.

The modeling of incompressible flow at high Reynolds number as a potential flow with
embedded vortices has repeatedly proven useful for both analytical and numerical purposes.
The subject has inspired numerous reviews, each stressing different aspects of the field.
The articles by Aref [Afl], Chorin [C1-3], Leonard [L], Majda [Mj], Moffatt & Tsinober
[MfT2], Pullin & Saffman [PS], Saffman & Baker [SB], Saffman [S], Sarpkaya [Srp]|, Shariff &
Leonard [SL], and Zabusky [Z] provide a representative sample. We are concerned here with
the further simplification of modeling a two-dimensional flow by a finite collection of point
vortices. While this system is admittedly highly idealized, it has found application and, to
some extent, experimental verification, starting with von Karman’s analysis in 1912 of the
instability of the vortex street wake behind a cylinder and Onsager’s 1949 explanation of the
emergence of large coherent vortices in two-dimensional flow through an ‘inverse cascade’ of
energy. (See the literature cited for further details.)

In this paper, we study the topology of point vortex motions and the consequences that
the topological properties have for the motion of the surrounding fluid. We consider point
vortices in the infinite plane, in singly-periodic arrays, and in doubly-periodic lattices. An
array of point vortices is useful in modeling shear layers, wakes and jets. The motivation for
studying vortex lattices comes from the problem of two-dimensional turbulence, a paradigm
of atmospheric and oceanographic flows, and, to a lesser extent, from the study of vortex
patterns formed in superfluid Helium.

Kirchhoff recognized that the evolution of N point vortices could be formulated as an
N-degree-of-freedom Hamiltonian system ([K]). In many ways, point vortices are the fluid
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mechanical analog of point masses evolving under the mutual interaction of Newtonian grav-
ity. In a Newtonian system, changing the origin of the coordinate system does not influence
the motions; this results in conservation of momentum. For point vortices, the analogous
constants of motion are called the linear impulses. Unlike the Newtonian case, however, the
two components of the linear impulse in vortex systems are only independent if the net circu-
lation is zero. In this case (perhaps the one of most physical interest), the two independent
integrals can be used to reduce the Hamiltonian system by two degrees of freedom. Thus
for three-vortex systems with zero net circulation, the process of Jacobi-Poincaré reduction
yields a single-degree-of-freedom Hamiltonian system (see [Af2], [AS] and [SA]). In such
planar systems, the typical orbit is periodic. Since reduction is accomplished by factoring
out the translational invariance, trajectories in the reduced system describe the evolution
of the shape and orientation of the triangle spanned by the three vortices. As a result, for
a periodic motion of the reduced system, the corresponding triangle of vortices resumes its
shape and orientation after one period. The vortex motion is thus periodic in the vortex
frame, but the triangle could be translated in the lab frame. This translation vector is a
dynamic phase of the type that arises when the evolution of a full system is reconstructed
from a periodic trajectory of a reduced system.

The further analysis of the phase portrait of the reduced system uses the nonperiodic
orbits, namely, the saddle points, separatrices and singularities (see Figures 3.1 and 3.2). The
singularities or poles of the reduced Hamiltonian correspond to collisions, or more properly,
to the superposition of pairs of vortices, as collisions do not occur when there is zero total
circulation. The separatrices naturally divide the phase space into regions (called regimes
in this paper) in which one would expect the corresponding fluid motions to share certain
dynamical characteristics. These characteristics are topological and depend on how the
vortices wrap around each other during their evolution. This wrapping is described using
Artin’s braid group, and we show in §4 that all the vortex motions arising from the same
regime are described by the same braid. Thus, the braid description provides a precise
language for distinguishing different regimes of vortex dynamics.

In modeling two-dimensional flow with point vortices, the velocity field in the surrounding
fluid is generated by the concentrated vorticity at the point vortices. The evolution of passive
tracer particles in this velocity field is called advection. For a vortex motion corresponding
to a periodic motion of the reduced system, we pass to the vortex frame to eliminate the
dynamic phase and so obtain a periodic motion. In this frame, the vortices generate a periodic
velocity field, and so we define the advection homeomorphism as the Poincaré map obtained
by advecting for one period in this frame. Thus, iterates of the advection homeomorphism
describe the dynamics of advection in the vortex frame.

The braid of a regime can be connected to the corresponding advection homeomorphisms
using the topological notion of isotopy. A basic theorem says that braids on N strands co-
ordinatize isotopy classes of homeomorphisms on the N-punctured plane ([Bml]). Thus,
because all the motions in a regime have the same braid, they all generate isotopic advec-
tion homeomorphisms. This knowledge is then applied using Thurston-Nielsen theory of
surface homeomorphisms, which contains a classification theorem for isotopy classes of sur-
face homeomorphisms (a brief introduction to this theory is given in §5). In the case of a
pseudoAnosov (pA) isotopy class, the theory gives dynamical behavior that must be present
in every homeomorphism in the isotopy class. This information includes a lower bound for
such quantities and structures as the growth rate of the number of periodic points as the
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period grows, the topological entropy, the growth rate of the length of topologically non-
trivial material lines, and the topology of invariant manifold templates. In particular, any
homeomorphism in a pA class will be chaotic under any of the usual definitions of the word.
In §6 we analyze a zero-circulation, three-vortex-array example with regimes in which the
advection homeomorphisms are in pA classes, thus proving that the advection is chaotic in
these cases. We also argue that pA classes are common in vortex arrays and lattices.

Note that, in the pA case, detailed information about the induced chaotic advection
only requires knowledge of the topology of the point vortex motions. This points to a
global, topological mechanism by which large-scale motions cause fluid stretching, mixing
and chaotic advection. It is not the concentrated vorticity of the point vortices that is
important in this mechanism but rather their role as “stirrers” that displace the fluid, pulling
patches of it into the path of other stirrers, which in turn pull it across the paths of other
stirrers, etc. The methods of analysis of this paper use the Lagrangian motions of the point
vortices to study the Lagrangian motions of fluid particles and thus represent the beginnings
of a theory of “topological kinematics.” While we focus here on the specific case of three-
vortex systems with zero net circulation, it is clear that the same mechanism can act in a
much broader class of fluid motions, and we argue in the Conclusion that pA behavior is
common in two-dimensional fluid dynamics.

The mathematical tools used here are described in a manner suitable for the application
at hand. For a more general and balanced treatment, the reader is urged to consult the
references given in each section. The paper [BAS] provides a good complement to this one,
applying the same theory to a different fluid flow. The methods used here have also been
applied to other systems of physical interest. Any system involving the periodic motions
of points in a surface has a natural description using braids. For example, in [Mt] and
[Mo], the braid description is used to define constraints for a variational problem. In the
Hamiltonian systems they study, the planar positions are configuration variables, and so the
conjugate momenta enter into the dynamics. Thus, there is not a homeomorphism of the
plane induced by the motion of the points. In other situations where planar point motions
do give rise to a natural homeomorphism on the complement of the points, the dynamics
of the homeomorphism can be studied using Thurston-Nielsen theory. One such example
is when the point motion arises as a periodic orbit in a periodically forced oscillator (see
[McT] for a survey). The most general situation starts with an iterated homeomorphism of a
surface, focuses on a given collection of periodic orbits, and then examines the isotopy class
relative to that set. This situation is fairly well studied (see [Bd] for a survey). Also note
that, in [G], pA maps are used to study fast dynamos. In general, topological methods are
finding increasing fluid-mechanical applications (see, for example, [AK], [Ri] and [MfT1]).

62 Equations of motion and Hamiltonians.

We shall be considering the evolution of three types of systems of vortices: finite col-
lections in the infinite plane, singly-periodic arrays, and doubly-periodic lattices. Although
all our vortex systems live in the plane, the terminology “planar system” is used here to
refer to a finite collection with no periodicity, while “array” and “lattice” refer to singly-
and doubly-periodic systems, respectively. Both real and complex notation will be used for
points in the plane with 2z = x + ¢y in all cases. A singly-periodic array of N vortices of
period (or width) L is a collection of vortices in the plane with exactly N vortices in each
vertical strip of width L and with the property that if there is a vortex at position given by
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a complex number z,, then there is also one at z, + nL for all integers n. The definition
of a vortex lattice requires a pair of linearly independent complex numbers wy and wy (the
half-periods) that determine the double-periodicity. A doubly-periodic lattice of N vortices
with lattice structure generated by w; and ws is a collection of point vortices that has exactly
N vortices in each fundamental parallelogram determined by 2w; and 2wy, and, if there is
a vortex at position z,, then there is also one at z, + ni2w; + n92ws for all integers ng
and ny. Eventually we shall describe vortex arrays or lattices by singly- or doubly-periodic
coordinates, or equivalently, as N vortices on a cylinder or torus. However, initially the
arrays or lattices are specified by a collection of N distinguished points. Thus, for example,
(21 + L, 29, z3) represents a different array than (z1, 22, 23). Note also that our definition of
lattice requires that it maintain the same periodicity for all time, so a uniformly rotating
system is not a lattice in our sense.

We shall assume familiarity with the basics of Hamiltonian systems. Some standard
references are [A2], [AM], and [MH].

§2.1 Equations of motion for the vortex systems. The o' point vortex has a constant
circulation given by the real number I', and a position at time ¢ given by the complex number
2o(t). Using an asterisk to denote the complex conjugate, the evolution of the vortex systems
is described by

dz, 1
r — 2.1
o o Z 8 6x (20 — 23) (2.1)
fora=1, ... ,N. Using X = P for the 1nﬁn1te plane, X = A for arrays, and X = L for

lattices, the complex-valued function ¢y in the various cases is

op(2) =
pA(z) =

belz) = () + 62— 12"

(2.2)
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where in the lattice case, ((z) = ((z; w1, w2) is the Weierstrass zeta function, A is the area of

a fundamental parallogram, and § = % — C(will) Note that, in each case, the function ¢ is odd

and has the required periodicity; ¢ (z + nL) = ¢c(z) and ¢ 4(z + 2n1wi + 2nawa) = P 4(2)
(the latter identity uses the Legendre relation for the Weierstrass zeta function).

In the presence of the evolving vortex system, a passive particle with position given by
z(t) advects according to

T = 2T o 20 23)

with the function ¢y the same as above. One may think of the passive particle as a vortex
with zero circulation, and so the advection problem is the analog of the Newtonian (N + 1)-
body problem.

The equations of motion for the plane and array cases are well known. For a derivation
of the equations for vortex lattices, see [O] and [SA]. The function ¢ is usually thought of as
representing the contribution of a single vortex. It has a simple pole at the position of the
vortex and thus contributes a delta function to the curl of the velocity field. Note, however,
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that in the lattice case, the function ¢ 4 is not meromorphic, because for doubly-periodic
meromorphic (i.e. elliptic) functions, the residues of the poles in a fundamental parallelogram
must sum to zero (equivalently, by Green’s Theorem, a doubly-periodic vector field must
have zero net curl in each fundamental parallelogram). Thus the concept of a single doubly-
periodic vortex or of a lattice (as we have defined it) with non-zero net circulation requires
additional consideration. On the other hand, if > T'y, = 0, as will be assumed below, the
right-hand side of (2.3) is an elliptic function of z, and one may speak without contradiction
of the effect of the entire lattice on a passive particle.

62.2 Hamiltonians. Since the position of each vortex is specified by a complex number,
the state of an N-vortex system is given by an element of V. To eliminate singularities,
we remove points representing collisions, and so the phase space of an N-vortex system is
cN — YTy, where Yy is the collision set defined in the various cases as

Tp {(z1, ... ,2n) € TN 1 2 = z; for some i # j}

Ta(2) ={(21, ... ,25) €CN : 2; = z; + nL for some i # j,n € Z}

T, {(z1, ... ,2n) € Nz = 2j + 2nw1 + 2mws for some i # j,n,m € Z}.

The x and y positions of each vortex, x, and y,, will be the conjugate variables, and so the
Hamiltonian system has N degrees of freedom, but there is no configuration space in the
usual sense: the Hamiltonian is defined on a 2 N-dimensional symplectic manifold that is not

a cotangent bundle.
In all cases, the real-valued Hamiltonian takes the form

1
H;y(zl, ,ZN):—EZIFQ Fg @X(ZQ—ZB), (2.4)

where the sum is over all o and 3, and the primed summation symbol indicates that the
term o = 3 is excluded. The function @y (essentially the real part of the antiderivative of
¢x) in the various cases is

Pp(z) = log(|2])
®.4(2) = log ( sin (%z) ) (2.5)
622 T 4

¢ (2) = log(lo(2)]) + Re(—-) — 51227

where o(z) is the Weierstrass sigma function with half-periods w; and wy. The equations of
motion (2.1) then have the form

[ = 20 42— (2.6)

The presence of the I',, indicates that, to put the equations into Hamiltonian form, we need
either to change coordinates or to use a slightly nonstandard symplectic form

Z Ly dza A dy,. (2.7)
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It is clear from equations (2.1) that the complex quantity J = Y [yz, iS a constant
of the motion. This integral is associated with the invariance of the Hamiltonian under
simultaneous planar translation of all the vortices. Writing J = @ + ¢P and using the
symplectic form (2.7), the Poisson bracket of P and @ is {P,Q} = > T,.

The advection equation (2.3) may also be put in Hamiltonian form. Assuming that a
motion {zg(t)} of the IV vortices is given, the time-dependent real-valued Hamiltonian is

1 N
Gr(2) = —5- 2 T (z = 25(1))- (2.8)
T i1
In this case we use the standard symplectic form on the plane. The function Gy is more
commonly called the stream function of the advection problem. The right hand side of (2.8)
is the stream function for the velocity field of an unsteady two-dimensional fluid motion
generated by the evolving collection of vortices.

One can also combine the systems (2.4) and (2.8) into a single (N + 1)-degree-of-freedom

system, but we do not pursue this point of view here.

63 Symmetry and reduction.

§3.1 Continuous and discrete symmetries. The Hamiltonian (2.4) is invariant under
simultaneous translation of all the vortices,

Hy(z1+7, ... ,2v+7)=H(21, ... ,2N) (3.1)

for 7 € €. This action of C (or ]RZ) is called the continuous symmetry. In the planar case,
there is also a symmetry associated with rotation of the plane; this symmetry is not shared
by arrays and lattices, and so we do not consider it here.

Vortex arrays and lattices have an additional symmetry arising from their spatial peri-
odicity. For arrays,

HA(21+n1L, ,zN+nNL) :HA(Zl, ,ZN) (32)

for all collections of integers ni,ns, ... ,ny. Thus the Hamiltonian is invariant under an
action of ZV. In the lattice case, the Hamiltonian is invariant under a (z2)" action,

Hp(z1 +n12wy + mi2we, ... 2y +ny2wi + my2we) = He(z1, -. ., 2N)- (3.3)
These will be called the discrete symmetries.

§3.2 Reduction. From this point onward, we restrict attention to the case of three vortices,
N = 3. In addition, the sum of the circulations is assumed to be zero, > I', = 0.

The continuous symmetry expresses the fact that the vortex dynamics is independent of
the choice of origin. More precisely, if all the initial positions of the vortices are translated
by a fixed amount, then the resulting evolution is also translated by this same fixed amount.
This suggests that the relative positions of the vortices z; — 23, 29 — 23, and z; — z3 should
be adopted as coordinates. In addition, since J = Y I'nz, is a constant of motion and
> Ty = 0, we find that once one of these variables is specified, say Z = 21 — 29, the others
are determined as

—J+1'1Z
A I

T —TsZ (3.4)
Zl—Z3ZT.



To compute the equation of motion for Z, substitute (3.4) into the difference of the first two
equations of (2.1) yielding

dz* I3 —J+F1Z> <J+F2Z>>
= — Z _ — ). 3.5
dt 2mi <¢X( )+ ox ( I'3 +ox I's (3:5)
This is a one-degree-of-freedom system with Hamiltonian

I's I's (—J—i-FlZ) I's <J+F2Z>>
= 3 Dp(2) + By (2 3, (21222
2W<X()+r1 v T3 TR, T,

Kx(7) (3.6)
using the standard symplectic form. (Phase portraits in a planar and in an array example are
shown in Figures 3.1 and 3.2, respectively). Note that Ky is almost obtained by substituting
(3.4) into the Hamiltonian (2.4), but there is a somewhat mysterious factor of —I'1I's/T's.

Figure 3.1: Phase portrait of the reduced Hamiltonian system for
three vortices in the infinite plane with circulations 1,1/2 and —3/2.
The upper case letters label regimes that are discussed in §4.3.

This process of using continuous symmetries to reduce the number of degrees of freedom
of a Hamiltonian system is called Jacobi-Poincaré reduction. The mathematical theory of
reduction has been much developed in recent years (see, for example, [M], Appendix 5 in
[A2], or Chapter V.D in [MH]). Reduction for vortices on the sphere is done in [PM] and in
the infinite plane in [AR].

The general process of reduction proceeds by first fixing a value of the integrals connected
with continuous symmetries and then identifying elements in this level set that correspond
under the restricted symmetry. In the case at hand, these two steps correspond to fixing the
value of the integrals P and ) (recall that J = P + i()) and then adopting the coordinate
Z = z1 — z2. Note that each symmetry is used twice, and so reduces the system by two real
dimensions, or by one degree of freedom. To reduce a system using multiple symmetries, one
must confirm their independence by checking that the Poisson bracket of each pair vanishes.
In the case of vortex systems with zero net circulation, 0 = > Ty, = {P,Q}, and so the
integrals are independent and the system can be reduced by two degrees of freedom, from
three to one. The fact that a reduced system is still Hamiltonian is expressed in the Meyer-
Marsden-Weinstein Theorem (see [M]). This theorem also gives the correct symplectic form
for the reduced system, which in the vortex case is




Figure 3.2: Phase portrait of the reduced Hamiltonian system for
three vortices in a singly-periodic array with circulations 1,1/2 and
—3/2. The Roman numerals label regimes that are discussed in §4.5.

with Z = Zy + iZy, which explains the factor —I'1T'y/T'3 remarked on above.

63.3 Discrete symmetries and periodicity of the reduced system. The discrete
symmetries of arrays and lattices give rise to additional considerations in the reduction. For
expositional simplicity, we let the spatial periodicities of all arrays and lattices be equal to
one, i.e., 1 = L = 2w; = 2wy. We also assume that the circulation I'y = 1; this can be done
with no loss of generality, since by (2.1), a rescaling of all circulations by the same amount
only changes the speed (and perhaps the direction) of the vortices but does not change their
trajectories.

If I's = p/q, a rational number in lowest form, then (3.6) shows that, for arrays, the
reduced Hamiltonian K 4 is invariant under translations by p. Thus the reduced system
has a mod-p symmetry and so is defined on a cylinder of circumference p. In the lattice
case, K is invariant under translations by p in both directions, and so the system has a
mod-p symmetry in both directions and is defined on a torus with circumference p in both
directions. Thus, although z; and 29 originally each have a mod-1 symmetry, after reduction,
their difference Z = z; — 23 has a different periodicity.

To see why this is so, first observe that the discrete symmetries can only be incorporated
into the reduction if they preserve the level sets, or equivalently, the value of the integral
J. Specifically, if - T'yzq = Jo, then there is no guarantee that Y T'y(zq + no) = Jo for an
arbitrary triple of integers (n1, n2, n3). However, it is easy to find conditions that insure this,
namely, > Tyn; = 0. The set of all such (n1,n2,n3) is a subgroup of z3, which we denote
K. This subgroup always contains all multiples of (1,1,1) and is larger exactly when I's
is rational. Since translation by integer multiples of (1,1,1) is contained in the continuous
action, we see that the discrete symmetries only come into play when I'5 is rational.
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The subgroup K represents the portion of the discrete symmetries that can enter into
the reduction. Since an element (ni,n2,ng) in K acts by translation in each coordinate, the
reduced coordinate Z = z; — zy is translated to Z + (ny — ng). But note that for elements
of K, (n1 —ng) = I's(n2 — n3) (recall that I'y = 1). Thus, if I's = p/q is rational (in lowest
terms), then since n; — ngy is an integer, na — n3 must be divisible by ¢, and so the action of
K adds p times an integer to the coordinate Z. Since (2q + p,2¢, q) is in K and it acts by
adding exactly p to Z, we see that the induced symmetry on the reduced space is translation
by p, and so the reduced Hamiltonian has a mod-p symmetry. Figure 3.2 shows the orbits
of the reduced system for a vortex array with I'y = 1,I's = 1/2, and I's = —3/2. The left
and right edges of the box can evidently be identified to get a width-3 cylinder.

When I's is irrational, it induces a quasiperiodicity on the reduced system. This is best
understood by viewing reduction from a slightly different angle, using the discrete symmetries
first and then the continuous ones. The focus here is on lattices, and we comment on arrays
at the end. The nomenclature n-torus refers to the topological space T := (SY)™, i.e. , the
n-dimensional manifold that is periodic in all n directions.

By treating each z, as a doubly-periodic variable, we first view the phase space as a
product of three 2-tori minus the collision set. The continuous symmetry of R*> acts by
simultaneous addition on all tori. Identifying points that correspond under this symmetry
amounts to adopting periodic coordinates (U, V') := (21 — 22, 22 — z3). In geometric language,
after we “mod out” by the continuous symmetries, we are left with the product of two 2-tori
(minus collisions), which we call J. The Hamiltonian (2.4) descends to

H(U,V) = 5 (NT26(0) + Tal30(V) + TiTso(U + V).

We must be careful, however, because the integral J does not descend to a real-valued
function on Y. If T'3 is an integer, the integral J may be expressed in these coordinates as
J(U,V) = U —T'3V (recall that 'y = 1) with J having values in a 2-torus with width I'
in both directions. If I's is irrational, no such adaptation may be made. In any case, the
important point here is that, since a level set A of J is invariant under the Hamiltonian
dynamics, its projection A to Y is invariant under the Hamiltonian dynamics induced by H.

Since the product of two 2-tori is a 4-torus, we may treat ) as a subset of T¢. If I's
is irrational, the projected level set A is an 1mmersed 2-plane that winds densely in the
4-torus. The Hamiltonian H on T* restricted to A is the same as the reduced Hamiltonian
given in (3.6). Thus this Hamiltonian induces a quasiperiodic system in the sense of [A1].
The function H has singularities when U = 0, V' =0 or U = -V, each of which represents
a plane in T. The intersections of these planes with the densely wrapped plane A yield the
poles of the reduced Hamiltonian K. Thus the collection of poles is a quasi-crystal, at least
according to one definition of that term ([J], [A1]).

Since the complexification of H has simple poles, the poles of the restricted Hamiltonian
on any A are also simple. Thus it is plausible that the reduced Hamiltonian system can be
treated as advection in the presence of fixed vortices with circulations given by the residues
of the poles. The precise sense in which this is true is given in [SA] and [AN]. Further,
it is shown in [AN] that this collection of fixed vortices is dynamically fixed as well, i.e. ,
if these vortices are allowed to interact with each other, then they will still be stationary.
In other language, the collection of poles of the reduced Hamiltonian gives an equilibrium
configuration of the planar N-vortex problem.
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A similar analysis can be applied to the array case, but now if I's is irrational, then the
quasi-periodicity of the reduced Hamiltonian K 4 is only in the real direction.

63.4 Reconstruction Reconstruction refers to the process of obtaining solutions to the full
equations (2.1) for z1, 22 and 23 using the value of J and the solution Z(t) for reduced
equation (3.5). This is done by “quadrature.” Explicitly, using (3.4) in the differential
equation (2.1) for 2y,

dz 1 —J —-1yZ

T =5 (T2 oz + 15 00 (<525 ) (37)
Thus, once an initial position z1(0) is chosen, z1(t) may be obtained by integrating (3.7),
and then 2o(t) = z1(t) — Z(t), and (3.4) yields z3(t).

Note that, if Z(t) is periodic with period P, (3.7) shows that the vortex positions z,(t)
are, in general, not periodic. Rather, there is a constant b € C with 24(t + P) = z4(t) + b
for all £ and «. The number b is the dynamic phase and it depends only on the periodic orbit
Z(t). In the geometric language of reduction, the level set determined by the integrals is a
bundle over the reduced space. The geometric phase represents the return map to the fiber
(holonomy) in this bundle as one goes around a periodic orbit loop in the reduced space.

To understand the dynamic phase in terms of the geometry of the vortex configuration,
recall that the variable Z = 21 — 29 of the reduced space, with the fixed value of .J, determines
the shape and orientation of the triangle determined by the vortices. Another variable, which
we choose to be 21, determines its position. The reduced Hamiltonian system has just one
degree of freedom, and so the generic bounded orbit is periodic. This means that after some
period P, the shape and orientation of the triangle of vortices will be reestablished, but in
general, the entire configuration could have translated by some amount, this amount being
the dynamic phase b.

64 Regimes and braids.

§4.1 Braids and braid types. Braids are the standard mathematical tool for describing the
topology of periodic motions of points in the plane. This subsection gives a brief introduction
to braids from a point of view useful for the applications that follow. For broader perspective
and additional information, see [Bm1] or [BL].

A physical or geometric braid is a collection of non-crossing paths in R? that start at some
finite collection of points E on the plane where the third coordinate is zero and end at the
same set of points (perhaps permuted) on the plane where the third coordinate is one. More
formally, a physical braid on n strands is a collection of maps b = {b1, ... ,b,}, with each
b; : [0,1] — R3 and (1) each b; has the form b;(t) = (a;(t),t) with each a; continuous, (2) for
all t € [0,1], bi(t) # bj(t) for ¢ # j, and (3) the set of initial points is identical to the set
of final points E = {a1(0),a2(0), ... ,an(0)} = {a1(1),a2(1), ... ,an(1)}. The initial and
final points of the braid are collectively called the endpoints.

A mathematical braid on n strands is an element of the braid group B,,. This group is
defined as possessing the n generators o1, 09, ... ,0, with inverses denoted 71,09, ... ,0,
and the relations o;0; = 0j0; for |i — j| > 1 and 0;0;410; = 04100441 for all i ([Bml]). A
braid word refers to a sequence of “letters,” where each letter is one of the o; or its inverse.
The inverse of a generator is indicated by an overbar, ;. Two braid words are said to be
equivalent if they represent the same element in the braid group, i.e. , one can be transformed
into the other using the relations in the group. The identity element in B,, is denoted e.
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The assignment of a mathematical braid to a physical one requires a plane onto which
projections are made. The convention here is to let this plane in R® be y = k for some
large negative k. If we treat the xy plane as the complex numbers, projection of b onto
the chosen plane yields a family of curves (Re(a;(t)),t). An ij-crossing is a point where
Re(a;(t)) = Re(a;(t)) for some ¢t and ¢ # j. The braid word records which strand is in front
at each crossing or, more precisely, which of the b;(t) is closest to the projection plane.

The braid word corresponding to b is read off from the picture of the projection. Assume
for the moment that all crossings are transverse and take place at distinct times. Starting
from the bottom, examine the first crossing. If the i*! strand from the left crosses behind the
(i+1)%, write down the letter o;. If it crosses in front, write 5;. Now continue upward in the
projection, checking each crossing and writing a braid letter. Note that the i*® strand at each
step refers to the i*t strand from the left at that level. The physical strand that is i*® at one
level may become (i+ 1) or (s —1)%* at the next level. It is also worth noting that, contrary
to the conventions of [Bml], the convention here is that letters further to the right in a braid
word encode crossings that are higher up the braid. We adopt this somewhat nonstandard
convention because our physical braids arise from time-parameterized trajectories in the
plane, and it is more natural to visualize these in R® with time going upwards.

We also need to characterize the physical braids that get assigned to the same mathe-
matical braid. Two physical braids b and b’ with the same endpoints are equivalent if one
can be obtained from the other by a deformation that fixes the endpoints and does not cut
the strands, i.e. , there is a continuous family of physical braids b® for s € [0, 1] with b’ = b
and b! = b’. The relations in the braid group are chosen precisely so that two physical
braids are equivalent exactly when they are assigned equivalent braid words, i.e. , the same
mathematical braid. A theorem of Artin’s ([Bml]) says that any equivalence between phys-
ical braids can be described in terms of just the two kinds of deformations described by the
relations in the braid group.

Because equivalent physical braids are assigned equivalent braid words, we can eliminate
the assumption that we had to make to assign a mathematical braid to a physical one. If b
does not have transverse and time-distinct crossings, then deform it to another braid b’ that
does and compute a mathematical braid for b’. Since any other “good” deformation will be
assigned a braid word equivalent to that of b’, this braid word may be used unambiguously
for b.

Thus far, we have restricted attention to the equivalence of physical braids with the same
endpoints. Since the braids here arise from vortex motions with a variety of initial positions,
we need to extend the notion of equivalence. Informally, two braids with perhaps different
endpoints are equivalent if one can be transformed into the other via a plane transformation
applied on each horizontal plane followed by a deformation with fixed endpoints. More
formally, two physical n-braids b and b’ are equivalent if there is a homeomorphism A : R?> —
R? with h(a;(0)) = a%(0) for all i and the physical braid {(h(a;(t)),)} is equivalent with fixed
endpoints to b’. A simple argument shows that physical braids that are equivalent in this
sense are assigned conjugate elements of the braid group, i.e. , the words satisfy w’ = gwg™!,
where ¢ is an element of the braid group that represents the homeomorphism h. Note that
a change of the projection plane may be accomplished by an affine map of the plane, and so
the mathematical braid obtained using the new projection plane is conjugate to the original.

Since the goal here is to use braids to analyse the topology of vortex motions, topolog-
ically equivalent physical braids and physical braids viewed by different observers must be
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assigned the same mathematical object. The remarks of the last paragraph make it clear
that this object cannot be just a mathematical braid, but rather must be a conjugacy class
in the braid group, i.e. , the collection of all elements conjugate to a given one (and thus
conjugate to each other). These conjugacy classes were called braid types in a related context
and that terminology is adopted here (cf. [Bd]). For simplicity of exposition in the sequel,
we will often speak informally of the braid associated to a physical braid, but a more careful
terminology would be braid type.

§4.2 Three vortices in the plane. In assigning braids to the motion of three point vortices
in the infinite plane, we continue to focus on the case of zero net circulation, >>I', = 0. As
in §3, we fix a value of the integral Jy = Q¢ + iFp, perform the reduction, and obtain the
Hamiltonian (3.6) on a copy of the plane R with complex coordinate Z.

Pick an initial condition Zp in R that is contained in a periodic orbit Z(t) := Z(t; Zy)
with period P. Using (3.4), the motion Z(¢) determines the evolution of the differences in
the positions of the three vortices. Thus Z(t) can be used to compute the motion in the
frame of one of the vortices. In the zo-frame, this motion is described by

Z1(t) := z1(t) — 22(t) = Z(¢)
Zy(t) == 29(t) — 22(t) =0
Jo—T'1Z(t
Zg(t) = Zg(t) — Zg(t) = Fi()
3
Thus all the Z,’s are periodic with period P. Note that z, # 23 for a # 3 (i.e. , the absence
of collisions between vortices) is equivalent to Z, # Zg for a # . Again using (3.4), this
happens as long as Z(t) avoids the points p; := Jy/I'1,p2 := —Jy/T'2, and p3 := 0. The
points p, are the poles of the Hamiltonian Kp from (3.6).
The vortex motions generate a physical braid by embedding the motion in R® and treating

the vertical direction as time. This is done by defining

Zo = (Za(t), 1), (4.2)

(4.1)

for o = 1,2, 3. Each path Z, then connects a point on the plane ¢ = 0 to the same point on
the plane ¢ = P, and further, since Z(¢) does not pass through any of the poles, the paths
do not intersect. Thus, the paths yield a physical braid on three strands, which may be
assigned an element of Bs as in the previous subsection.

This assignment is most easily accomplished by taking a more topological point of view.
If we define R = R— {p1, p2, p3}, then the periodic orbit Z(¢) in R represents a closed curve
(or loop) in R°. The procedure used to construct a physical braid from Z(t) can equally
well be used to assign one to any loop in R°. If 7y is a loop in R, i.e., v :[0,1] — R° with
v(0) = (1), let Z1, Z2, Z3 represent the three paths given by (4.1) using Z(t) = v(¢). The
physical braid corresponding to 7 is then generated by (4.2).

The computation of the mathematical braid corresponding to this physical braid just
requires a knowledge of the crossing of its strands. Since our view is from the negative
imaginary axis, the positions of the Z, from left to right are determined by their real parts.
Strands cross exactly when this order changes. This can only happen when Re(Z4(t)) =
Re(Zy(t)), or equivalently, when Re(Z(t)) = Re(pg), where f3 is the index different from o
and o'. Thus the vertical lines through the poles divide R° into vertical strips in which the
order of the 7, from left to right is constant. These vertical lines will be called crossing lines.
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To specify the generator corresponding to the crossing of one of these lines, it is also
necessary to know which strand is in front. This information is determined by the sign of
Im(Z(tc)) — Im(pg) when %, is the crossing time and Z(t.) lies on the crossing line Re(Z) =
Re(pg). This sign can only change on a crossing line when Im(Z(t.)) — Im(pg) = 0, i.e. ,
at the pole. Thus all the crossings on the same side of the pole correspond to the same
strand being in front. We will call a component of a crossing line minus its pole a generator
arc. The final piece of information needed to specify the generator describing a crossing is
the direction in which 7 traverses the generator arc. In summary, then, any two crossings
of a generator arc in the same direction contribute the same generator to the braid. Thus,
to compute braids of loops or actual vortex motions, it suffices to compute the generators
corresponding to each generator arc. A sample computation is given in the next subsection.

There are two issues that need to be clarified before moving on to the example. First,
unlike a mathematical loop, there is no distinguished starting point for a periodic motion
of the vortices. However, changing the initial point on Z(t) only cyclically permutes the
generators in the braid word that represents the motion. This corresponds to conjugating
the word in the braid group, and this ambiguity has already been resolved using the braid
type. The second issue is that the usual generators of the braid group Bj3 only keep track of
which adjacent strands are crossing and not the numbering of the stands. Thus, in assigning
a braid generator to a crossing, we have lost track of which vortex has crossed which; our
braid word only encodes the topological type of the interaction, and not whether, say, vortices
2 and 3 are the pair that are circling each other. However, this information can be recovered
easily by knowing the relative positions of the vortices at the starting point of the braid and
following the strands.

§4.3 A planar example. Figure 4.1 shows the crossing lines for the planar case of Figure
3.1. The pair of numbers at the top of the crossing line indicates which pair of vortices is
crossing. Each generator arc has a number j and an arrow; crossing the arc in the direction of
the arrow contributes the positive generator o; to the braid word. Crossing in the opposite
direction contributes the inverse of this generator, 6;. The braid word corresponding to
a loop 7(t) can be computed by writing, in order, the generators corresponding to y(¢)’s
sequential crossings of generator arcs.

As an example, let us compute the braid word corresponding to periodic orbit Z’(t)
indicated in Figure 4.1 which is in the region that was labeled D in Figure 3.1. Begin
tracking the motion at the starting point labeled Z'(¢y) in the upper left-hand corner. At
this point, the vortices from left to right are 1,3, 2. The first generator arc crossed is above
the pole po, and it contributes a o7 to the braid word. Moving across horizontally, the next
generator arc contributes a o2, and so on. When we return to the initial point, the entire
braid word ojo901010901 has been read off. This braid is shown in Figure 4.2c, with the
strands labeled below. By examining the braid we see that this motion corresponds to the
vortices rotating clockwise around each other and that this motion is topologically the same
as all the vortices rotating once around a circle clockwise. This becomes especially clear
after using the braid relation and rewriting the braid as (o102)3.

Figure 4.2a shows the planar trajectories of three vortices corresponding to the periodic
orbit Z'(t). Recall from §3.2 that there are many vortex motions corresponding to a given
periodic orbit in R, but all these motions differ by a uniform translation, so it suffices to
pick an initial position of one of the vortices, say z2(0) = 0. Figure 4.2b shows the physical
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Figure 4.1: The crossing lines and generator arcs for the system
shown in Figure 3.1.
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Figure 4.2: Vortex motions from regime D of Figure 3.1. (a) Tra-
jectories of the three vortices in the plane. (b) Physical braid of this
motion in the frame of the second vortex. (¢) Mathematical braid of
the motion.

braid corresponding to the vortex motion in the frame of the second vortex as given by (4.1)
and (4.2).

The other regions A, B, and C each contain a pole. The braid that describes each of
these regimes is the square of a generator and corresponds to a pair of vortices rotating
about each other once per period. There is no linking with the third vortex. The pair of
vortices that is involved in the rotation depends on the pole in question, and the direction
of the rotation (i.e. , whether the braid is o2 or 57) depends on the signs of the circulations
of the interacting vortices.

Recall that a separatrix is an orbit that connects two saddle points. Define a regime as
a connected component of R — {poles and separatrices}. It is clear from Figure 4.1 that
every periodic orbit in the same regime yields the same sequence of crossings of generator
arcs, and, thus, the same braid word. Therefore, all the motions within a regime have the
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same topological type of motion. More generally, any pair of loops that can be continuously
deformed into each other (i.e. , are homotopic) in R° are assigned the same braid; homotopic
loops may cross different generator arcs, but any extra crossings consist of a collection of
crossings and then reverse crossings of the same generator arcs. From another point of
view, deforming the loop corresponds to deforming the physical braid. The corresponding
mathematical braid only changes when a pair of strands goes though each other. This can
only happen when the loop passes through a pole, which is not allowed, as all our loop
deformations are in the complement of the poles.

This situation is somewhat analogous to the residue theorem, in which a deformation
of a closed path in the complement of the poles does not change the value of the integral.
However, the situation here is more restrictive: homologous loops yield the same integral but
only homotopic loops give the same braid. In algebraic language, after fixing a base point
for loops, the process described here gives a homomorphism from the fundamental group of
the punctured plane, m1(R°), to the braid group on three strands, Bs.

Although all periodic orbits in the same regime have the same braid, it is important to
note that the period P and dynamic phase b of the periodic orbits in a single regime can
vary greatly. The period goes to zero near a pole and approaches infinity as orbits near a
separatrix. Thus, the time scale of the actual vortex motions in the same regimes can be
very different. In addition, variations in the dynamic phase can make a significant difference
in the motion as observed in the lab frame.

64.4 Three-vortex arrays. This subsection develops the tools needed to assign a braid
to the periodic motion of three vortices in a singly-periodic array. We continue to restrict
attention to the case of zero net circulation >~ I, = 0. Fix a value of the integral Jy = Qo+1F
and perform the reduction as in §3. The result is a Hamiltonian system given by (3.6) on a
copy of the plane R with complex coordinate Z. If ' is the rational number p/q (in lowest
terms), then the system on R has a mod-p symmetry in the real part.

By treating each vortex position 2, as a singly-periodic variable, the vortex motion can
be viewed as taking place on a cylinder S' x R (the circle ST here has perimeter 1 since we
continue to restrict to the case L = 1). Equivalently, in the language of §3, we factor out all
the motions by the discrete symmetry. Again we eliminate the dynamic phase by passing to
the frame of the second vortex, thus making the motion periodic. Accordingly, let

c1(t) == z1(t) — z2(t) = Z(t)
ca(t) == z2(t) — 22(t) =0

es(t) = 25(t) — 20(1) %312(’5)

(4.3)

in which, properly speaking, the subtraction is done in the Lie group S' x R. The triple
(c1(t), ca(t), cs(t)) is called the cylinder motion of the vortices.

A braid describes the motion of a set of points in the plane. To translate the cylinder
motion to the plane, recall that the cylinder is topologically equivalent to the punctured
complex plane C — {0}. This topological equivalence is realized by the conformal map
T(z) = exp(2miz). Under this conformal map, a path around the cylinder is transformed to
a path around the origin in the complex plane. To capture this type of motion in the braid
description, we add the constant path at 0 as the last coordinate of the motion in the plane.
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Thus the plane motion of the vortices is given by

s1(t) :==T(e1(t)) = exp(2miZ(t))

s2(t) :==T(c2(t)) =1

S3(t) = T(Cg(t)) = exp (2772%?)12@)) (44)
s4(t) = 0.

Using the same technique as in the previous subsection, we associate a braid (now on four
strands) to the plane motion of a three-vortex array. Again we visualize the plane motion
in three dimensions using (4.2) with time going upward and view the resulting strands from
the negative imaginary axis. The crossing curves in R describe the positions of an orbit
Z(t) at which s, and sg cross; this happens when their real parts are equal. To express
this in equation form, define four functions on R by ¢1(Z) = T(Z),y2(Z) = 1,¢3(Z) =
T((Jo — T12)/T3), and ¥4(Z) = 0. Then s4(t) = Yo(Z(t)) = T(ca(t)), and the («, )
crossing lines are defined by the equation Re(¢o(Z)) = Re(¢3(Z)). In contrast to the
planar case, these equations no longer yield just straight lines, and, thus, we change the
terminology to crossing curves.

The strand that is in front at a crossing is determined by the sign of Im(sq(t.)) —
Im(sg(t.)) when ~(t.) is on the corresponding crossing curve. This sign changes on the
crossing curve exactly when s, = sg, which corresponds to the poles of the Hamiltonian
(3.6). Note that it is no longer the case that every crossing curve contains a pole. This
means that crossing anywhere on the curve yields the same generator of the braid word, i.e.
, the entire curve is a single generator arc.

§4.5 An array example. We now perform the calculations described in §4.4 on the array
case shown in Figure 3.2. See [SA] for a details on this and other array examples. The
crossing curves corresponding to s; and s3 are defined by Re(¢1(Z)) = Re(y3(Z)), which,
writing Z =z + 1y, is

exp(—2my) cos(2mx) = exp (—QW(%y - i)) cos (271’(%1‘ - %)) :

Both cosine terms can vanish yielding the two vertical lines z = 5/4 and = 11/4. Otherwise

we may solve for
B i o cos 27w .
T cos2m(3z — &) 2)’

which is defined only on the (mod-3) intervals (—3/4,1/4),(1/2,3/4), and (7/4,2). Thus
there are five distinct (1, 3)-crossing curves. The computations for the other pairs are similar,
and the various crossing curves are shown in Figure 4.3a. The numbers that are separated by
a hyphen indicate which pair of s,’s is crossing. Note that, since the vertical lines x = 5/4
and x = 11/4 correspond to 0 = Re(s1) = Re(s3), and we are considering 0 as the position
of s4, these vertical lines correspond to a triple crossing.

The poles are the points 0, 1, and 2, corresponding respectively to s; = s9; the points
%—i— %i and 1873 + %i corresponding to so = s3; and the point —i — %i corresponding to s; = s3.
Figure 4.3b shows the results of computing the generator arcs, with labels that use the same
conventions as in Figure 4.1.
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Figure 4.3: (a) Crossing curves and (b) generator arcs for the sys-
tem in Figure 3.2 (the picture in (b) has been distorted for increased
clarity). The points labeled ¢ and r correspond to initial points of
trajectories as explained in the text.

It is important to note that the details of Figure 4.3 are not intrinsic to the vortex
motions. Changing the projection plane used to compute the braids would change all the
crossing curves. However, the braid that is computed for a loop is intrinsic up to conjugacy.
In algebraic language, after fixing a base point, the equations (4.4) (using Z(t) to represent
a general loop) may be used to define a homomorphism of 7 (R — {poles}) — Ba. This
homomorphism is not intrinsic, but it is intrinsic up to conjugacy in By.

Now define a regime as in the planar case, i.e. , as a connected component of R —
{poles and separatrices}. Each periodic orbit in a regime gives rise to the same mathematical
braid; these are listed in the second column of Table 4.1. Note that the relations in the braid
group have been used to simplify many of the braid words. The braids for regimes I and
IX through XIIT were computed using closed trajectories with initial position near the point
labeled r in Figure 4.3b. The initial position used for regime II was near the point labeled gq.
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Regime Braid TN type Expansion
Constant
I (5102)30%(5201)3 reducible, all f.o.
II 0302 (010203)%090301 0201 (010203) 2090103010201 03 reducible, all f.o.
111 o2 reducible, all f.o.
v a§ reducible, all f.o.
A% a% reducible, all f.o.
VI 5% reducible, all f.o.
VII a§ reducible, all f.o.
VIII o3 reducible, all f.o.
X aga% reducible, all f.o.
X (0302)3 reducible, all f.o.
XI (0’30’2)20”3010’20%020’10’2030’103(5’1(_72)35”1 PA 13.93
XII (030”2)2030”1020”%(0’2030’10’3)2(5152)351 reducible, one pA 13.93
XIII (5152)%63(5251)° pA 9.90

Table 4.1: The mathematical braids and Thurston-Nielsen type of
the regimes for the system shown in Figure 3.2. The expansion con-
stants for pseudo-Anosov (pA) components are given. In the finite
order (f.0.) case, these constants are 1. This means that there is no
intrinsic topological expansion in that case.

As a sample, we compute the mathematical braids corresponding to regimes I and XIII.
The closed orbits in regime I travel across the top of the reduced plane from left to right.
To compute the braid, we choose the point labeled r in Figure 4.3b as the initial point.
Moving to the right from this point we first traverse a vertical line on which there is an
arrow labeled 1. This indicates that the motion of the trajectory has resulted in a crossing
of the two left most strands in the physical braid representing the vortices. Further, since
the trajectory’s motion is opposite to that of the arrow, the strands are crossing with the
left one in front of the right one. Thus the traversal of the first crossing curve contributes
the letter 1 to the braid word of the trajectory. Continuing to the right, the trajectory
traverses a crossing curve on which there is an arrow labeled 2, and the arrow points in the
direction opposite to the traverse. Thus, this motion contributes a 92 to the braid word of
the trajectory. Continuing across the top of Figure 4.3b, we add braid letters o1, then o9,
etc. After encountering the right edge of the phase plane, the identification with the left
edge allows a return to the initial point. The entire braid word for this regime is thus

The closed trajectories for regime XIIT have a motion similar to those of regime I with
the crucial topological difference that they pass below the pole ps, which is located at 1+ 0:.
This implies that, in the complement of the poles, the closed loops corresponding to regimes
I and XIII are not homotopic. Beginning a closed trajectory representing regime XIII near
the point r, the braid word starts with 1020109 like that of regime I, but since the loops for
regime XIII pass below the point p3, their braid words have a 6303 next, and then continue
with the same letters as regime I. The entire braid word for regime XIII is thus

01090109030301020101020102010207 .
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Note that the braid relation 10261 = 6390102 used on the triple of letters right after the
303 allows us to reduce the word to (5152)263(5251)°, as given in Table 4.1.

We now briefly describe some of the motions. In these descriptions we will use the
word “vortex” to refer to the trajectories of the planar motions, si, s2, s3, and s4. Properly
speaking, si, s9, and s3 are the transformed positions of the vortices, and sy is not a vortex
at all, but rather it keeps track of the position of the origin.

Before interpreting the braid, it is useful to recall the various transformations that have
been used. The motion in the singly periodic plane is really of infinite families of vortices.
These families are treated as three individual vortices on a cylinder, and then this motion is
transformed to the punctured plane. Thus, a strand in the braid rotating about the strand
representing vortex 4 (i.e. , the origin) describes motion around the cylinder, which in turn
is a horizontal translation by one period of the corresponding family of vortices in the singly-
periodic plane. In addition, the braid is obtained using the frame of the second vortex, so, in
particular, vortex 2 will never rotate around the origin, and thus the strands corresponding
to vortex 2 and 4 will always be parallel.

The regimes with the simplest braids are those that contain a pole, III through VIII. The
vortex motions are topologically the same as regions A, B, and C in the plane case: a pair
of vortices are circling each other and the other vortex is uninvolved. There is no rotation
around the origin; thus, there is no net rotation around the cylinder.

The vortex motions corresponding to regime X also have no net motion around the
cylinder (see Figure 6.1a). This is indicated by the fact that none of the other strands link
with the far left one, which represents the origin of C. Examining the right-hand sub-braid
on 3 strands, one sees that every vortex rotates about every other one once in the clockwise
direction. The net motion is the same as that in the planar region D, and it amounts to
one full rotation of the vortices as a group. The motions in regime IX are similar, but the
sub-braid is slightly different: vortices 2 and 3 rotate about each other clockwise, and then
vortices 1 and 3 do likewise, but vortices 1 and 2 do not link.

The regimes with the next simplest braids are I and II. The mathematical braid for I is
shown in Figure 4.4d. Vortex 1 rotates three times around the origin counter-clockwise and
vortex 3 rotates twice, also counter-clockwise. This rotation takes place “inside” the fixed
vortex 2. In the singly periodic plane, this corresponds to the vortex 1 family translating
three strips to the right and the vortex 3 family two strips; this translation takes place
below the position of vortex 2. This motion is shown in Figure 4.4a, with one vortex from
each singly periodic family pictured. Figure 4.4b shows the motion in the frame of the
second vortex after it has been transformed to the plane. The physical braid of this motion
constructed using (4.4) and (4.2) is shown in Figure 4.4c. The motion in regime II is similar,
but now the rotation is clockwise, and goes around vortex 2, which simply means that in the
singly-periodic plane the translations of vortex 1 and 3 are above the position of vortex 2.

The motion in regimes XI, XII, and XIII is sufficiently complicated that the braid itself
is the best description of the motion. One feature of interest in regime XII (see Figure 6.1b)
is that the vortex pairs 1 and 3 have the same motion with respect to the other two strands
while they rotate about each other three times. This kind of hierarchy of motion is described
precisely by the notion of reducibility introduced in §5.

64.6 Three-vortex lattices. The method of analysis of this section can also be applied
to vortex lattices. When I's = p/q is rational, the reduced Hamiltonian system (3.6) can
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Figure 4.4: Vortex motion from regime II of Figure 3.2. (a) Tra-
jectories of the three vortices in the singly-periodic plane (only one
representative of each family is shown). (b) The motion in the frame
of the second vortex transformed into the plane. (c) Physical braid of
the transformed motion. (d) Mathematical braid of the transformed
motion.

be viewed as taking place on a torus with width p in both directions. The generic orbit of
this system is a periodic orbit Z(t). This periodic orbit can be used to generate a motion of
the three vortices on the torus that is periodic in the frame of one of the vortices. However,
in contrast to the array case, this cannot be transformed into a motion on the plane, and
so one must record the motion using the braid group of the torus. This group not only has
generators corresponding to the switching of two points as in the usual braid group, but
it also has generators describing motions that circulate around the meridian and longitude
of the torus (see [Bm2]). Thus the braids are more difficult to visualize. However, the
basic features of the analysis in the array and plane case go through without difficulty. In
particular, each regime is assigned just one braid, and so the braid captures the sense in
which all the vortex motions in one regime are topologically the same and distinct from
those of other regimes.

65 Isotopy classes and the Thurston-Nielsen theory.

This section provides an introduction to isotopies and the Thurston-Nielsen theory in
preparation for the study of the advection homeomorphisms generated by vortex motions.
The material on the Thurston-Nielsen theory is targeted for our applications. We state many
results without proof. The reader is urged to consult [T], [FLP], or [CB] for a more balanced
and complete treatment. For a survey of the dynamical applications of the Thurston-Nielsen
theory, see [Bd].

65.1 Homeomorphisms, isotopy, and braids.
Most of the homeomorphisms occuring in this paper are defined using the advection of
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a passive particle in a time-varying velocity field. Given a perhaps time-dependent vector
field on the plane (u,v), the flow line with position zy at time tg is denoted z(¢; zp, t9). By
convention, the running time ¢ satisfies z(to; z0,%0) = 20, not z(0;z0,%0) = zo (unless, of
course, tg = 0). Fixing a time ¢, the time-t flow map or the time-t advection homeomorphism
is hi(29) := z(t; 20, 0). The collection of hy for all ¢ is called a fluid motion.

If F is a finite set and f is a homeomorphism of R? with f(E) = E, then f is called a rel
E homeomorphism. Given two rel E homeomorphisms f; : R2 — R?, fy is isotopic to fi rel
E if they can be connected by a continuous family of rel £ homeomorphisms fi, ¢ € [0, 1].
Since F' is a finite set, this implies that fi(k) = fo(k) for all t and k& € E. The collection
of homeomorphisms isotopic to f rel E is called its rel E isotopy class. The finite set F in
the sequel will be the initial positions of the collection of point vortices. It is sometimes
convenient to remove the set E from the plane and consider a rel £ homeomorphism as a
homeomorphism of the punctured plane R2 — E. Two rel E homeomorphisms are isotopic
rel F exactly when they are isotopic as homeomorphisms of R? — E.

The simplest case is isotopy to the identity map. Given a fluid motion h, the motion of
the points in E is given by a;(t) := h¢(k;) for each k; € E. If hy is a rel E homeomorphism,
this motion generates a physical braid b with endpoint set E. The homeomorphism hq is
isotopic to the identity rel E if and only if the physical braid b can be deformed into the
trivial physical braid, which consists of just vertical strands at the points of E. This is
certainly the case when the mathematical braid representing b is the identity element in
the braid group, but this is not the only case. Consider the plane motion given in complex
coordinates by g:(2) = zexp(2mit). For a given n, let E be the set of n'" roots of unity,
{exp2mij/n:j =1, ... ,n}. Then it is easy to check that the physical braid b of the motion
of E has a mathematical braid (152 ... 6,—1)" and further that b can be deformed to the
trivial braid by just untwisting. It is known that this mathematical braid and its powers
are the only cases where this happens ([Bm1]). More precisely, if we let B, be B, with the
added relation that (o109 ... 0,-1)" is the identity element, then the braid word of b is
equivalent to the identity element of By, exactly when the corresponding rel £ advection
homeomorphism is isotopic to the identity. Note that the center of By, (i.e., all the elements
which commute with every other element) is exactly all the powers of (o102 ... 0,-1)", SO
one could more succinctly define Bn as B,, modulo its center.

In the general case, isotopy can be described using the identity case. Two rel £ homeo-
morphisms f and g are isotopic if there is a third homeomorphism A such that A is isotopic
to the identity and ¢ = ho f. If f and ¢ are time-1 maps of fluid motions, then they are
isotopic if we can accomplish the same advection as g by first allowing the advection for
f and then following it by a fluid motion that keeps the points of E fixed (infinitesimal
rotations about the points of E are allowed). Using the result in the identity case, two rel
E advection homeomorphisms are isotopic if and only if the corresponding braid words are
equivalent in By,. In different language, the collection of rel E isotopy classes forms a group
under composition; this group is isomorphic to By, where n is the number of elements in F.

We also need to allow different distinguished sets E so that vortex motions with different
initial configurations can be compared. A rel £ homeomorphism f and a rel £’ homeomor-
phism [’ are isotopic up to conjugacy if there is a homeomorphism h such that h(E') = F
and hf'h~! is isotopic to f rel E. Thus f and g are isotopic after a change of coordinates.
The result here is that two advection homeomorphisms are isotopic up to conjugacy if and
only if their mathematical braid words are conjugate in B,,.
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65.2 The Thurston-Nielsen representative. The Thurston-Nielsen theory provides tools
to analyse homeomorphisms using their isotopy classes. The theory constructs, in each
isotopy class, a special homeomorphism which is now called the Thurston-Nielsen (TN)
representative. This TN-homeomorphism is in a precise sense the simplest map in the isotopy
class, simplest in both the topological and dynamical sense. Thus, once we understand
the topology and dynamics of the TN-homeomorphism in an isotopy class, we know the
dynamical and topological complexity that must be present in every homeomorphism in the
class.

The TN-homeomorphisms are of three basic types. The first type consists of dynamically
very simple maps called finite order (fo). These are defined by the property that, for some
m > 0, the map composed with itself m times equals the identity map. The second type of
TN-homeomorphisms are dynamically very complicated and are called pseudo-Anosov (pA)
homeomorphisms. These will be discussed in greater detail in the next subsection, because
the presence of a pA homeomorphism in an isotopy class has strong implications for the
dynamics of an advection homeomorphism. The final type of TN-homeomorphisms are
reducible, which means that there is a collection of simple disjoint loops with the property
that the loops are permuted by the reducible homeomorphism. Cutting along the loops yields
a collection of smaller surfaces, and on each of these surfaces, the reducible homeomorphism
is either finite order or pA.

A given isotopy class can contain a TN-map of only one type, and thus an isotopy class
is called pA, finite-order, or reducible depending on what kind of TN-map it contains. Note
that the conjugate of a TN-map is also a TN-map of the same type. Thus, using the results of
the previous subsection, one may also speak of the TN-type of a braid or a braid type. There
are many theorems that help decide the TN-type of a braid or isotopy class. Rather than
catalog these results here, it will suffice to note that there is a computer implementation of
an algorithm due to Bestvina and Handel ([BH]) (cf. [FM] and [Ls]) which, given the braid
word, decides the TN-type. In the pA case, the algorithm outputs the isotopy invariant
dynamical data described in the next subsection.!

For planar regions, the finite-order braids and rel E isotopy classes are well known. If
we let R, denote rigid rotation of the plane by —27/n, then certainly R}’ = id, and so
R, is finite order. We may consider R, as the time-1 flow map of the motion given in
complex coordinates by hy(z) = —z exp(2mit/n). If E is the set of n' roots of unity, then its
mathematical braid under this motion is 3, := o102 ... op—1. Note that ]} is the identity
element of B, and making this property hold is, in fact, the defining feature of B,,. Thus,
Br is a finite order braid and so is )" for any 0 < m < n — 1. A classic result of Brouwer
(see section 8.2 in [Bd]) says that all finite order homeomorphisms of the plane are conjugate
to rigid rotations. This implies that the 3] are the only finite-order braids on n strands.

For planar regions, the Thurston-Nielsen theory only has content for regions that have
three or more punctures or holes, or equivalently, for isotopy classes rel three or more points.
When FE contains just two points, all TN-homeomorphisms are finite order, since By only
contains the identity element e and the braid o7 with 02 = e. The classic results of Alexander
(see Chapter XV in [D]) say that when E has one or zero elements, there is only one isotopy
class; all orientation-preserving homeomorphisms of the plane are isotopic, as are those of

I There is a C4++ implementation of this algorithm by Toby Hall (with a Windows inter-
face) available for download. Contact the first author for site locations.

22



the once-punctured plane.

§5.3 Pseudo-Anosov maps and isotopy classes. Linear Anosov maps on tori (such as
Arnol’d’s cat map) are one of the best known and understood examples of chaotic dynam-
ics. Pseudo-Anosov maps are a generalization that can exist on other surfaces such as the
punctured disk. They share many of the properties of linear Anosov maps. A pA map ¢ has
uniform expansion and contraction at each point by a factor A. There is a Markov partition
with transition matrix M that allows one to encode the dynamics of the pA map ¢. The
largest eigenvalue of M is the stretching factor A > 1 and the number of fixed points of ¢"
grows like \". The precise way in which these properties are shared by any isotopic map is
described a theorem of Handel ([H]). The notation gy means the map g restricted to the set
Y.

Theorem. If¢: S — S is a pA homeomorphism on a closed surface S and g is isotopic
to ¢, then there exists a closed, g-invariant set Y, and a continuous, onto map o :Y — M?,
so that a o gy = ¢ o . Further, for any periodic point x of ¢, there is a periodic point of
the same period y of g with a(y) = .

Thus, any map ¢ that is isotopic to a pA map has a compact invariant set that is
semiconjugate to the pA map. Since the map « is onto, the dynamics of g are at least as
complicated as those of the pA map ¢. Thus, for example, the exponential growth rate of
the number of fixed points of ¢” is at least A, and the topological entropy of g is greater
than or equal to log(A\). Note that nothing prevents the dynamics of ¢ from being more
complicated than that of ¢; the theory merely provides a lower bound.

A loop in a surface is called topologically nontrivial if it cannot be deformed into a point, a
puncture, or a boundary component. Another basic result about pA maps is that the length
of topologically nontrivial loops grows like A" under iteration. Via the semiconjugacy, this
implies a similar growth under ¢. It is important to note that this does not imply that the
map ¢ has Lyapunov exponents equal to log(\) everywhere. One does obtain from smooth
ergodic theory that ¢ has an ergodic invariant measure with an exponent at least log(\) (cf.
[KH]), but this measure is supported on the set Y, which could be small with respect to the
usual measure on S.

Since the number A\ can be computed by the Bestvina-Handel algorithm, the braid de-
scribing an isotopy class yields quantitative information about any homeomorphism in the
isotopy class. The Bestvina-Handel algorithm also returns a one-dimensional graph called a
train track in addition to a self-transformation of the graph. The edges of the graph form
the Markov partition for the pA map, and the self-transformation of the graph provides
the transition matrix as well as the structure of the invariant foliations. These foliations are
sometimes called the “invariant manifold template” of the pA map. The semiconjugacy then
gives a lower bound or skeleton for the invariant manifold templates of g.

66 Advection and isotopy classes.

§6.1 The Poincaré map. A vortex motion z,(t) can be obtained by solving (2.1) directly,
or as in §3, by using (3.4) and a period-P solution Z(t) of the reduced equations (3.5). The
vortex motion, in turn, generates a velocity field given by the right hand side of (2.3). The
goal of this subsection is to define a Poincaré map whose iterates describe the time evolution
of passive particles advected in this velocity field. There is a standard construction for
periodic velocity fields. It needs to be altered slightly for advection caused by point vortices
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because the vortex trajectories satisfy z,(t + P) = 2z4(t) + b, where b is the dynamic phase
associated with Z(¢). The easiest alteration is to pass to a uniformly translating frame with
velocity b/ P. If F(z,t) denotes the right hand side of (2.3) corresponding to the given vortex
motion, define the advection homeomorphism f as the time-P flow map of the equation

: b b

(=F <§+ Pt,t> -
Thus the advection homeomorphism satisfies f™(zg) = z(nP; 2p,0) — nb, and so f describes
the position of a particle after advecting for one period P and then translating by —b.
Alternatively, this could have been taken as the definition of f, i.e., f(z9) = 2(P;2,0) — b
with z the solution of (2.3). Points that are periodic under f correspond to advected particles
that are translated along with the vortices, but after some integer multiple of P they have
returned to their initial positions relative to the vortices. Although the velocity field is not
defined at the positions of the vortices, the homeomorphism f can be extended (continuously,
not differentially) to make the three initial positions of the vortices, z,(0), fixed points.

In §4.3, the motion of a vortex array in the cylinder was transformed to the plane
minus the origin by the conformal map 7". The advection homeomorphism in this case is
transformed to f = TfT 1. Note that f may be extended to make 0 a fixed point. Thus all
the s4(0) from (4.4) can be considered as fixed points of f.

§6.2 The TN type of regimes. As seen in §4.2 and §4.4, all the periodic orbits in the same
regime in the reduced plane give rise to the same braid. By results in §4.1, this implies that
all the corresponding advection homeomorphisms have the same braid type, which allows us
to speak of the TN type of a regime. If this type is pA, then, as in §5.3, all the advection
homeomorphisms share a certain set of dynamics.

In the case of three vortices in the plane, only two braid types arise as descriptions of
regimes. In one of them, a pair of vortices rotates around one other while the other vortex
is uninvolved. This is a reducible class, with a finite-order component containing the pair of
interacting vortices. The other regime, D, has braid (0102)3, which is the identity element
in Bg, and the advection homeomorphism in this case is isotopic to the identity, where
the isotopy consists of unwrapping the plane via single rotation; this topologically undoes
whatever advection is caused by the vortices. Since only pA classes or components yield
dynamical information from the Thurston-Nielsen theory, the theory does not imply chaotic
advection dynamics in the planar case. This means that any chaotic advection is caused
by something other than the topology of the vortex motions (see the conclusion for further
related discussion).

The Thurston-Nielsen theory does provide dynamical information about advection in-
duced by vortex arrays. The Bestvina-Handel algorithm was used to compute the TN type
of the various regimes from Figure 3.2. Using the braids given in the second column as input,
the computed TN type is shown in the third column of Table 4.1. When a regime is pA (or
has a pA component), the expansion constant is given in the right column.

The regimes that contain poles, III through VIII, correspond to a pair of vortices which
rotates around one other while the other is uninvolved. As in the planar case, the isotopy
classes of the advection homeomorphisms are reducible with a finite-order component that
contains the pair of interacting vortices.

In the braid for regime X shown in Figure 6.1a, the three rightmost strands do not link
with the leftmost string. This shows that the corresponding isotopy class is reducible with
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a reducing circle that contains the three rightmost strands. Inside this reducing circle, the
behavior as a three-braid is oo0109010201 = (0102)3, using the relations in Bs. This braid
is the same as the braid for region D in the planar case, which represents the identity class.
Thus, for regime X, the isotopy classes are reducible with all finite-order components. The
braid for regime IX is reducible in a way similar to that of regime X, but inside the reducing
circle, the class is again reducible, but still with all finite order components.
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Figure 6.1: Mathematical braids of regimes from Figure 3.2: (a)
Regime X; (b) Regime XII; (c) Regime XI. The braid of regime XI
restricted to vortices 2, 3, and 4 is shown in (d), and a schematic
illustration of the plane motion of the vortices is shown in (e).

4132 4132 32 4 2

The braid for regime II is shown in Figure 4.4d. The schematic of the plane motion
in Figure 4.4b makes it clear that the class is reducible; one can enclose the motions in
successive, nested reducing curves. The classes for regime I are similar.

The braid for regime XII is shown in Figure 6.1b. The braid makes it clear that vortices
1 and 3 have essentially the same motion with respect to vortex 2 and the origin (“vortex”
4). They do rotate around each other once, but they may be enclosed in a reducing circle.
To analyze the class outside the reducing circle, we think of squeezing the strands of vortices
1 and 3 into a single strand or equivalently, we delete one of the strands. The result is
the three-braid o3070353 shown in Figure 6.1d. This braid corresponds to a pA class rel 3
points with A\ ~ 13.9.

Regime XI also yields a pA class with A ~ 13.9. Although this class is irreducible, the
strand corresponding to vortex 1 is in fact a fixed point of the pA map in the class defined
by the other three strands. The latter is the same as that for regime XII (see Figure 6.1).
The dynamics in regime XI is considered in detail in the next subsection. The last regime is
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XIII, which is pA with A =~ 9.9.

66.3 An example of the dynamical implications of the Thurston-Nielsen theory.
As an example, we describe some of the results afforded by the Thurston-Nielsen theory for
advection homeomorphisms coming from vortex motions in regime XI. Similar conclusions
apply to other regimes of pA type, with the numerical value of the appropriate stretching
coefficient A substituted for the A &~ 13.9 that holds in regime XI. Begin by fixing a periodic
orbit Z(t) in regime XI and an initial position z1(0) and thus obtain a motion of all the
vortices as in §6.1. The corresponding advection homeomorphism is denoted f. We may
variously consider f as a homeomorphism of the singly-periodic plane, the cylinder, or as
transformed from the cylinder to the plane by the conformal map 7.

Using the theorem of §5.3 and the comments after it, we know that the number of fixed
points of f" grows with n at least like 13.9". These fixed points for f™ correspond in the
lab frame to passive particles that are advected by the vortex velocity field and after n
periods have returned to the same position relative to the vortex array. We also know that,
under advection, topologically nontrivial curves grow in length at least at a rate of 13.9™.
In addition, the topological entropy of f is at least log(13.9). This implies that f has a
hyperbolic invariant measure (in the sense of [KH]) with Lyapunov exponents log(13.9), but
no information is available regarding its support.

As noted at the end of §4.2, although all the advection homeomorphisms arising from
vortex motions in regime XI have these properties, the time scale of the advection described
by the homeomorphism varies greatly among motions in the same regime. In addition,
variations in the dynamic phase make a significant difference in the motion as observed in
the lab frame.

The picture of the trajectories of the vortices transformed into the plane is also instruc-
tive. Figure 6.1c shows the mathematical braid of this regime. Figure 6.1d shows just the
motion of vortices 3 and 2 and the origin (i.e. , “vortex” 4), while Figure 6.1e shows a
schematic of this motion in the frame of vortex 2 after it has been transformed to the plane.
The feature of note is that the trajectory of vortex 3 crosses itself in an essential way. We
cannot remove this self-intersection by deforming the path in the complement of vortex 2
and the origin. This essential self intersection in fact implies that the isotopy class of the
advection homeomorphism generated by vortex 3, vortex 2, and the origin is pA. The self-
intersection forces regions of the fluid to be repeatedly pushed across pieces of themselves as
they are advected. This forces the advection homeomorphism to constantly stretch and fold
in an essential topological fashion. It is well known that stretching and folding is a basic
mechanism for the generation of chaos, and in this case, it is topological in nature and is
present in any map in the isotopy class.

§7 Discussion and conclusions.

The geometric and topological methods in this paper have illuminated many aspects of
the dynamics of three-vortex systems with zero net circulation. Using reduction, the vortex
systems were mapped onto one-degree-of-freedom (dof) Hamiltonian systems. These Hamil-
tonian systems have a natural subdivision into regimes, and all the solutions corresponding to
a single regime yield topologically identical vortex motions as described by braids. Thus, the
braid of a vortex motion provides a precise topological way of distinguishing and describing
the motion in various regimes. Further, the constancy of the braid over a regime indicates
a topological stability of the dynamics over a range of initial conditions. For three vortices
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in the infinite plane, the braid description shows that regimes are characterized essentially
by which pair of vortices rotate around one another. In the vortex array example, there is a
much richer collection of braids, indicating a wide assortment of topological motions of the
vortices.

The braid of a vortex motion not only describes the topology of the motion but also
provides data that characterizes the isotopy class of the advection homeomorphism induced
in the surrounding fluid. In the array example, there are advection homeomorphisms whose
isotopy classes are of pA type. Theorems from the Thurston-Nielsen theory thus imply that
the advection dynamics is chaotic and provide quantitative lower bounds for the chaos for
each such regime. It is important to note that this information comes not from a perturbation
of a regular motion, but rather results from advection dynamics that is chaotic in a global,
topological sense (a detailed discussion of connections to Melnikov theory is contained in
[BAS]). In the pA case, Handel’s theorem yields a set Y present in the fluid on which the
dynamics is chaotic in the strongest sense: there is a coding by a subshift of finite type
and there is an ergodic invariant measure supported on Y which has positive Lyapunov
exponents and positive metric entropy. Furthermore, the theorem shows how this dynamics
is topologically embedded in the fluid.

Such strong conclusions from limited data naturally raise the question of the dependence
of the results on the specifics of the systems analyzed here. In addition, what are the
implications and expectations for more general vortex systems, and what do the results say
about two-dimensional fluid flows in general?

First note that the examples chosen represent the “generic” case within the class of three-
vortex systems with zero net circulation. In the infinite plane, except for a few degenerate
cases, changing the values of the circulations does not change the basic structure of the
reduced systems and corresponding braids (see [Af2]). For arrays and lattices as I's moves
down the Farey tree (fixing 'y = 1), the number of regimes and the complication of their
braids increases dramatically (see [AS] and [SA]). We have examined a number of cases and
have consistently found pA regimes after one has moved sufficiently down the tree.

The next issue is the dependence of the results on having zero net circulation and N = 3
vortices. The Poisson bracket of the two components of the linear impulse, P and @), is equal
to the net circulation of a vortex system. Thus when the net circulation is zero, the integrals
are in involution, and so the vortex system can be reduced by 2 dof (or 4 dimensions).
Since each vortex contributes one dof, for three vortices, we obtain a one-degree-of-freedom
Hamiltonian system. The two dimensionality of this system allows us to define regimes and
their braids. If there is non-zero net circulation or more than three vortices, reduction yields
a Hamiltonian system with more than one dof.! Such systems do not have a nice subdivision
into regimes and usually most orbits (in terms of measure or probability) are not periodic.
Thus a simple-minded application of the methods of this paper fails. However, except in
very exceptional cases, high-degree-of-freedom Hamiltonian systems have an abundance of
periodic orbits, and the expectation is that most orbits (in terms of topology) are periodic.
Each such periodic orbit of the reduced system represents a motion of the collection of
vortices that is periodic up to a dynamic phase. For these periodic motions, the topological

1 In planar vortex systems the angular impulse, ZFa|za|2, is always in involution with
|.J |2. This allows a reduction by two dof for these systems even when the net circulation is
nonzero.
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analysis used here goes through with little change. We expect that in the high-degree-of-
freedom case, there will be an abundance of periodic orbits yielding pA classes and, thus,
topologically chaotic advection.

While periodicity is not the typical behavior (in terms of measure) in high-degree-of-
freedom Hamiltonian systems, recurrence is typical. If the vortex paths corresponding to a
recurrent orbit cross each other in topologically nontrivial ways, it is clear that the same
mechanisms operate on the surrounding fluid, regardless of whether the vortices return ex-
actly to their initial positions or not. Material patches of the fluid are pulled across the paths
of other vortices and stretched, and the process is repeated, yielding exponential stretching.
Unfortunately, the mathematical theory for obtaining rigorous conclusions about isotopy
relative to recurrent but non-periodic orbits is not yet fully developed. One approach is to
take the closure of an orbit (for a homeomorphism of the plane) and study isotopy classes
relative to that compact invariant set ([BdHI] and [HM]). Another approach is to close the
orbit after some long time and then apply the theory. This follows work of Arnol’d ([A3])
and Fried ([F]) and this idea has been used by Gambaudo and Pécou ([GP]) to obtain
a braid-valued cocycle that yields asymptotic lower bounds for the dynamical complexity.
These mathematical questions and their applications to vortex systems are a promising area
for future research. At this point it seems clear that, in general, many vortex systems will
be more complex than the examples studied here and thus will exhibit pA-type behavior in
abundance (cf. [ABSV]).

The first observations on the implications of our methods and results for more general
two-dimensional fluid flows come from the usual interpretations and applications of the point
vortices as approximations to regions of concentrated vorticity. The motion of these regions
is determined primarily by interactions with other vortex patches. Thus, the motion of the
point vortices can be identified with large-scale motions. The braid description gives a precise
meaning to the topology of the large scales and could equally well be applied to the motion
of vortex patches. The notion of reducibility of a braid precisely describes topological hierar-
chies within the large scale motions. After understanding the large-scale self-interactions one
wants to know their influence on the ambient fluid motion. Within the point vortex frame-
work, this influence is modeled by the advection homeomorphisms. The influence of the
large scales on the topology of the fluid motion is thus discerned from the braids, because
they provide the combinatorial data that characterizes the isotopy class of the advection
homeomorphism. The Thurston-Nielsen theory takes this data and returns quantitative and
topological information about the advection dynamics. Thus, the theory provides detailed
dynamical information about the fluid motion from combinatorial, topological data about
the motion of the large scales.

In addition to point vortices and vortex patches, there are other fluid models, such as
moving boundaries and “Stokelets” in Stokes flow, in which the fluid motion is induced
by large-scale motions which are themselves determined only by self-interactions or else by
external driving. These models are usually studied from a primarily Eulerian perspective,
i.e., the velocity field generated in the fluid by the autonomous large scales is the focus
of attention. In contrast, the methods of this paper treat all such objects as stirrers; we
consider only the effect on the fluid arising from their displacement of the fluid. Thus, the
large scales here are viewed strictly from a Lagrangian viewpoint: we focus on their motion
and its effect on fluid trajectories and the motion of material patches in the fluid. We have
seen that if the topology of “stirrer” motions is complicated enough, it always results in
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exponential stretching and the related chaotic dynamics.

It is clear that, in most models, and indeed in a two-dimensional fluid, it is important to
understand both the Eulerian and Lagrangian aspects of the large-scale motions. In certain
cases, their relative importance is easy to ascertain. For example, in the planar systems of
vortices considered here, the advection isotopy classes are all of finite order type and so the
pA stirring mechanism is absent, and thus any chaotic advection has other causes. On the
other hand, in the mixing of a viscous fluid studied in [BAS], when the rods are moved in
a protocol resulting in an advection homeomorphism in a pA isotopy class, one clearly sees
the structure and result of the pA map. Thus, the stirring mechanism clearly dominates.
In contrast, a finite order stirring protocol results in spiral patterns for advected scalars
and apparently lacks chaotic advection. In another example studied in [AB], rods placed
in a viscous fluid are rotated and not translated. This procedure results in trivial isotopy
classes. Nonetheless, there is chaotic advection for certain rotation schemes, and this chaotic
dynamics must arise from something other than a pA stirring mechanism.

We have seen that in certain cases, the Thurston-Nielsen theory provides a way to pre-
cisely determine the influence of the topological kinematics of the large scales on the dynamics
of the surrounding fluid motions. The importance of the topology of the large-scale motions
in more realistic situations, such as the motion of regions of concentrated vorticity in decay-
ing two-dimensional turbulence, needs to be determined. But in studying the Lagrangian
motions of fluid particles, it is clearly valuable to study the Lagrangian motions of the large
scales, and the methods of this paper provide topological tools for this endeavor.

References

[AM] Abraham, R. and Marsden, J.E., Foundations of Mechanics, Addison-Wesley, 1985.

[AR] Adams, M. and Ratiu, T., The three-point vortex problem: commutative and noncom-
mutative integrability, Contemporary Mathematics, 81, 1988, 245-257.

[Af1] Aref, H., Integrable, chaotic and turbulent vortex motion in two-dimensional flows, Ann.
Rev. Fluid Mech., 15, 1983, 345-389.

[Af2] Aref, H., Three-vortex motion with zero total circulation: Addendum (Addendum to
paper by N. Rott), J. Appl. Math. Phys. (ZAMP), 40, 1989, 495-500.

[AB] Aref, H.; Balachandar, S. Chaotic advection in a Stokes flow. Phys. Fluids 29 (1986),
no. 11, 3515-3521.

[ABSV] Aref, H., Boyland, P., Stremler, M., and Vainchtein, D., Turbulent statistical mechanics
of systems of point vortices, Fundamental problematic issues in turbulence (Monte Verita,
1998), Trends in Mathematics, Birkhduser, Basel, 1999, 151-161.

[AS] Aref, H. and Stremler, M. A., On the motion of three point vortices in a periodic strip,
J. Fluid Mech., 314, 1996, 1-25.

[AN] Aref, H., Newton, P.K., Stremler, M., Tokieda, T., Vainchtein,D., Vortex crystals, Adv.
Appl. Mech., 39, in press.

[A1] Arnol’d, V. I., Remarks on quasicrystallic symmetries, Phys. D, 33, 1988, 21-25.

[A2] Arnol’d, V. 1., Mathematical methods of classical mechanics, Springer-Verlag, 1989.

[AK] Arnol’d, V. I. and Khesin, B., Topological methods in hydrodynamics, Applied Mathe-
matical Sciences, 125, Springer-Verlag, 1998.

[A2] Arnol’d, V. 1., The asymptotic Hopf invariant and its applications, translationed in
Selecta Math. Soviet, 5, 1986, 327-345.

29



[BH]
[Bm1]

[Bm2]
[BL]

[Bd]
[BAS]
[BdHI]
B
1)

[C2]

Bestvina, M. and Handel, M., Train tracks for surface homeomorphisms, Topology, 34,
1995, 109-140.

Birman, J, Braids, Links and Mapping Class Groups, Annals of Mathematics Studies,
Princeton University Press, 1975.

Birman, J., On braid groups, Com. Pure and Appl. Math., 22, 1969, 41-72.

Birman, J. and Libgober, A., ed., Proceedings of the AMS-IMS-STAM Joint Summer
Research Conference on Artin’s Braid Group, Contemp. Math., 78, 1988.

Boyland, P. Topological methods in surface dynamics, Topology and its Applications, 58,
223-298, 1994.

Boyland, P., Aref, H. and Stremler, M., Topological fluid mechanics of stirring, J. Fluid
Mech., 403, 277-304, 2000.

Boyland, P. and Hall, T., Isotopy stable dynamics relative to compact invariant sets,
Proceedings London Math. Soc., 79, 673—693, 1999.

Casson, A. and Bleiler, S., Automorphisms of Surfaces after Nielsen and Thurston, Lon-
don Math. Soc. Stud. Texts, 9, Cambridge University Press, 1988.

Chorin, A. J., Turbulence and vortex stretching on a lattice, Commun. Pure Appl.
Math., 39 (Supplement), 1986, S47-S65.

Chorin, A. J., Scaling laws in the vortex lattice model of turbulence, Commun. Math.
Phys., 114, 1988, 167-176.

Chorin, A. J., Spectrum, dimension, and polymer analogies in fluid turbulence, Phys.
Rev. Lett., 60, 1988, 1947-1949.

Dugundji, J., Topology, Allyn and Bacon, Inc., 1966.

Fathi, A., Lauderbach, F. and Poenaru, V., Travaux de Thurston sur les surfaces, As-
terique, 66-67, 1979.

Franks, J. and Misiurewicz, M., Cycles for disk homeomorphisms and thick trees, Con-
temp. Math., 152, 1993, 69-139.

Fried, D., The geometry of cross sections to flows, Topology, 24, 353-371, 1983.
Gambaudo, J.-M.; Pécou, E. E., Dynamical cocycles with values in the Artin braid
group, FErgodic Theory Dynam. Systems, 19, 1999, 627-641.

Gilbert, A., Towards a realistic fast dynamo: models based on cat maps and pseudo-
Anosov maps, Proc. Roy. Soc. London, Ser. A, 443, 1993, 585-606.

Handel, M., Global shadowing of pseudo-Anosov homeomorphisms, Ergod. Th. € Dy-
nam. Sys., 5, 1985, 373-377.

Handel, M. and Miller, R., End periodic homeomorphisms, handwritten manuscript,
1985.

Janot, C., Quasicrystals: a primer, Oxford University Press, 1992.

Kirchhoff, G. R., Vorlesungen iiber Mathematische Physik, Mechanik, Teubner, 1877.
Katok, A. and Hasselblat, B., Introduction to the modern theory of dynamical systems,
Cambridge University Press, 1995.

Leonard, A., Computing three-dimensional incompressible flows with vortex elements,
Ann. Rev. Fluid Mech., 17, 1985, 523-559.

Los, J., Pseudo-Anosov maps and invariant train tracks in the disc: a finite algorithm,
Proc. London Math. Soc., 66, 400430, 1993.

McRobie, F. A. and Thompson, J. M. T., Braids and knots in driven oscillators, Intern.
J. Bifurcation & Chaos, 3, 1993, 1343-1361.

30



[MfT1]

IMfT2]

Majda, A. J., Vorticity, turbulence, and acoustics in fluid flow, STAM Rev., 33, 1991,
349-388.

J. Marsden Lectures on Mechanics, LMS Lecture Note Series, 174, Cambridge University
Press, 1992.

Meyer, K.R. and Hall, G.R., Introduction to Hamiltonian Dynamical Systems and the
N-Body Problem, Springer-Verlag, 1992.

Moffatt, H. K. and Tsinober, A., eds., Topological fluid mechanics, Proceedings of the TU-
TAM Symposium held in Cambridge, August 13-18, 1989, Cambridge University Press,
Cambridge, 1990.

Moffatt, H. K. and Tsinober, A., Helicity in laminar and turbulent flow, Ann. Rev. Fluid
Mech., 24, 1992, 281-312.

Montgomery, R., The N-body problem, the braid group, and action-minimizing periodic
solutions, Nonlinearity, 11, 1998, 363-376.

| Moore, C., Braids in classical dynamics, Phys. Rev. Lett., 70, 3675-3679, 1993.

O’Neil, K. A., On the Hamiltonian dynamics of vortex lattices, J. Math. Phys., 30,
1989, 1373-1379.

Pekarsky, S. and Marsden, J., Point vortices on a sphere: stability of relative equilibria,
J. Math. Phys., 39, 1998 5894-5907.

Pullin, D. I. and Saffman, P. G., Vortex dynamics in turbulence, Ann. Rev. Fluid Mech.,
30, 1998, 31-51.

Ricca, R. (ed) An Introduction to the Geometry and Topology of Fluid Flows, Kluwer
Academic Publishers, 2001.

Saffman, P. G., Dynamics of vorticity, J. Fluid Mech., 106, 1981, 49-58.

Saffman, P. G. and Baker, G. R., Vortex interactions, Ann. Rev. Fluid Mech., 11, 1979,
95-122.

Sarpkaya, T., Computational methods with vortices - The 1988 Freeman Scholar lecture,
J. Fluids Engin., 111, 1989, 5-52.

Shariff, K. and Leonard, A., Vortex rings, Ann. Rev. Fluid Mech., 24, 1992, 235-279.
Stremler, M. A. and Aref, H., Motion of three point vortices in a periodic parallelogram,
J. Fluid Mech., 392, 1999, 101-128.

Thurston, W., On the geometry and dynamics of diffeomorphisms of surfaces, Bull.
A.M.S., 19, 417-431, 1988.

Zabusky, N. J., Computational synergetics and mathematical innovation, J. Comp.
Phys., 43, 1981, 195-249.

31






No. Authors

928 Thoroddsen, S. T., and
K. Takehara

929 Liu, Z.-C., R.J. Adrian,

and T. J. Hanratty

930 Borodai, S. G., and
R. D. Moser

931 Balachandar, S., and
F. M. Najjar

932 Yoon, H. S,,
K. V. Sharp, D. F. Hill,
R.]. Adrian,
S. Balachandar,
M. Y. Ha, and K. Kar

933 Sakakibara, J.,
Hishida, K., and
W.R. C. Phillips

934 Phillips, W. R. C.

935 Hsui, A. T., and
D. N. Riahi

936 Cermelli, P., E. Fried,
and S. Sellers

937 Adrian, R.].,
C. Meneveau,
R. D. Moser, and

J.J. Riley
938 Bagchi, P., and
S. Balachandar

939 Gioia, G.,

A. DeSimone, M. Ortiz,

and A. M. Cuitifio

940 Chaieb, S., and
G. H. McKinley

941 Thoroddsen, S. T., and
A. Q. Shen

942 Riahi, D. N.

943 Christensen, K. T.,
S. M. Soloff, and
R.]J. Adrian

944 Wang, J., N. R. Sottos,
and R. L. Weaver

945 Riahi, D. N.

946 Gioia, G., Y. Wang,
and A. M. Cuitifio

947 Kessler, M. R., and
S. R. White

List of Recent TAM Reports

Title

The coalescence-cascade of a drop — Physics of Fluids 12, 1257-1265
(2000)

Large-scale modes of turbulent channel flow: Transport and
structure — Journal of Fluid Mechanics 448, 53-80 (2001)

The numerical decomposition of turbulent fluctuations in a
compressible boundary layer — Theoretical and Computational Fluid
Dynamics (submitted)

Optimal two-dimensional models for wake flows — Physics of Fluids,
in press (2000)
Integrated experimental and computational approach to simulation

of flow in a stirred tank — Chemical Engineering Sciences 56, 6635
6649 (2001)

On the vortical structure in a plane impinging jet— Journal of Fluid
Mechanics 434, 273-300 (2001)

Eulerian space-time correlations in turbulent shear flows — Physics
of Fluids 12, 2056-2064 (2000)

Onset of thermal-chemical convection with crystallization within a
binary fluid and its geological implications — Geochemistry,
Geophysics, Geosystems 2, 2000GC000075 (2001)

Configurational stress, yield, and flow in rate-independent
plasticity — Proceedings of the Royal Society of London A 457, 1447-
1467 (2001)

Final report on “Turbulence Measurements for Large-Eddy
Simulation” workshop

Linearly varying ambient flow past a sphere at finite Reynolds
number —Part 1: Wake structure and forces in steady straining flow

Folding energetics in thin-film diaphragms — Proceedings of the Royal
Society of London A 458, 1223-1229 (2002)

Mixing immiscible fluids: Drainage induced cusp formation
Granular jets — Physics of Fluids 13, 4-6 (2001)

Non-axisymmetric chimney convection in a mushy layer under a
high-gravity environment —In Centrifugal Materials Processing
(L. L. Regel and W. R. Wilcox, eds.), 295-302 (2001)

PIV Sleuth: Integrated particle image velocimetry
interrogation/validation software

Laser induced thin film spallation — Experimental Mechanics
(submitted)

Magnetohydrodynamic effects in high gravity convection during
alloy solidification —In Centrifugal Materials Processing (L. L. Regel
and W. R. Wilcox, eds.), 317-324 (2001)

The energetics of heterogeneous deformation in open-cell solid
foams — Proceedings of the Royal Society of London A 457, 1079-1096
(2001)

Self-activated healing of delamination damage in woven
composites — Composites A: Applied Science and Manufacturing 32,
683-699 (2001)

Date
Feb. 2000

Feb. 2000

Mar. 2000

Mar. 2000

Mar. 2000

Apr. 2000

. 2000

Apr. 2000

Apr. 2000

Apr. 2000

Apr. 2000

Apr. 2000

May 2000
May 2000

May 2000

May 2000

May 2000

June 2000

June 2000

June 2000



No. Authors
948 Phillips, W.R. C.

949 Hsui, A. T., and
D. N. Riahi

950 Phillips, J. W.

951 Vainchtein, D. L., and

H. Aref
952 Chaieb, S., E. Sato-

Matsuo, and T. Tanaka

953 Riahi, D. N., and
A.T. Hsui

954 Riahi, D. N.

955 Fried, E.

956 Phillips, W. R. C.

957 Chaieb, S., and J. Sutin

958 Christensen, K. T., and

R.]J. Adrian

959 Kuznetsov, I. R., and
D. S. Stewart

960 Zhang, S., K. J. Hsia,
and A. J. Pearlstein

961 Sharp, K. V.,
R.]J. Adrian,
J. G. Santiago, and
J. 1. Molho

962 Harris, J. G.

963 Dong, F., A. T. Hsui,
and D. N. Riahi

964 Phillips, W. R. C.

965 Bdzil, J. B.,
D. S. Stewart, and
T. L. Jackson

966 Bagchi, P., and
S. Balachandar

967 Cermelli, P., and
E. Fried

968 Riahi, D. N.

List of Recent TAM Reports (cont’d)

Title

On the pseudomomentum and generalized Stokes drift in a
spectrum of rotational waves — Journal of Fluid Mechanics 430, 209-
229 (2001)

Does the Earth’s nonuniform gravitational field affect its mantle
convection? — Physics of the Earth and Planetary Interiors (submitted)

Abstract Book, 20th International Congress of Theoretical and
Applied Mechanics (27 August - 2 September, 2000, Chicago)

Morphological transition in compressible foam — Physics of Fluids
13, 2152-2160 (2001)

Shrinking-induced instabilities in gels

A theoretical investigation of high Rayleigh number convection in a
nonuniform gravitational field — Acta Mechanica (submitted)

Effects of centrifugal and Coriolis forces on a hydromagnetic
chimney convection in a mushy layer — Journal of Crystal Growth
226, 393-405 (2001)

An elementary molecular-statistical basis for the Mooney and
Rivlin-Saunders theories of rubber-elasticity — Journal of the
Mechanics and Physics of Solids 50, 571-582 (2002)

On an instability to Langmuir circulations and the role of Prandtl
and Richardson numbers — Journal of Fluid Mechanics 442, 335-358
(2001)

Growth of myelin figures made of water soluble surfactant—
Proceedings of the 1st Annual International IEEE-EMBS
Conference on Microtechnologies in Medicine and Biology (October
2000, Lyon, France), 345-348

Statistical evidence of hairpin vortex packets in wall turbulence —
Journal of Fluid Mechanics 431, 433-443 (2001)

Modeling the thermal expansion boundary layer during the
combustion of energetic materials — Combustion and Flame, in press
(2001)

Potential flow model of cavitation-induced interfacial fracture in a
confined ductile layer — Journal of the Mechanics and Physics of Solids,
50, 549-569 (2002)

Liquid flows in microchannels — Chapter 6 of CRC Handbook of
MEMS (M. Gad-el-Hak, ed.) (2001)

Rayleigh wave propagation in curved waveguides —Wave Motion
36, 425-441 (2002)

A stability analysis and some numerical computations for thermal
convection with a variable buoyancy factor — Journal of Theoretical
and Applied Mechanics, in press (2002)

Langmuir circulations beneath growing or decaying surface
waves — Journal of Fluid Mechanics (submitted)

Program burn algorithms based on detonation shock dynamics —
Journal of Computational Physics (submitted)

Linearly varying ambient flow past a sphere at finite Reynolds
number: Part 2—Equation of motion— Journal of Fluid Mechanics
(submitted)

The evolution equation for a disclination in a nematic fluid —
Proceedings of the Royal Society A 458, 1-20 (2002)

Effects of rotation on convection in a porous layer during alloy
solidification — Chapter 12 in Transport Phenomena in Porous Media
(D. B. Ingham and I. Pop, eds.), 316-340 (2002)

Date
July 2000

July 2000
July 2000
July 2000
July 2000
Aug. 2000

Aug. 2000

Sept. 2000

Sept. 2000

Oct. 2000

Oct. 2000

Oct. 2000

Nov. 2000

Nov. 2000

Jan. 2001

Jan. 2001

Jan. 2001

Jan. 2001

Feb. 2001

Apr. 2001

Apr. 2001



No. Authors
969 Damljanovic, V., and
R. L. Weaver

970 Gioia, G., and
A. M. Cuitino

971 Subramanian, S. J., and

P. Sofronis

972 Sofronis, P., and
I. M. Robertson

973 Pushkin, D. O., and
H. Aref
974 Lian, L., and
N. R. Sottos
975 Fried, E., and
R. E. Todres
976 Fried, E., and
V. A. Korchagin

977 Riahi, D. N.

978 Sofronis, P.,
I. M. Robertson,
Y. Liang, D. F. Teter,
and N. Aravas

979 Fried, E., M. E. Gurtin,

and K. Hutter

980 Adrian, R.]J.,
S. Balachandar, and
Z.-C. Liu

981 Adrian, R.]J.

982 Adrian, R. J., and
Z.-C. Liu

983 Fried, E., and
R. E. Todres

984 Stewart, D. S.

985 Kasimov, A. R., and
Stewart, D. S.

986 Brown, E. N.,
N. R. Sottos, and
S. R. White

987 Phillips, W. R. C.

988 Gioia, G., and
F. A. Bombardelli

989 Riahi, D. N.

990 Okhuysen, B. S., and
D. N. Riahi

991 Christensen, K. T., and

R.]J. Adrian

List of Recent TAM Reports (cont’d)

Title

Elastic waves in cylindrical waveguides of arbitrary cross section —
Journal of Sound and Vibration (submitted)

Two-phase densification of cohesive granular aggregates — Physical
Review Letters 88, 204302 (2002) (in extended form and with added
co-authors S. Zheng and T. Uribe)

Calculation of a constitutive potential for isostatic powder
compaction — International Journal of Mechanical Sciences (submitted)

Atomistic scale experimental observations and micromechanical/
continuum models for the effect of hydrogen on the mechanical
behavior of metals — Philosophical Magazine (submitted)

Self-similarity theory of stationary coagulation — Physics of Fluids 14,
694-703 (2002)

Stress effects in ferroelectric thin films — Journal of the Mechanics and
Physics of Solids (submitted)

Prediction of disclinations in nematic elastomers — Proceedings of the
National Academy of Sciences 98, 14773-14777 (2001)

Striping of nematic elastomers — International Journal of Solids and
Structures 39, 3451-3467 (2002)

On nonlinear convection in mushy layers: Part I. Oscillatory modes
of convection— Journal of Fluid Mechanics 467, 331-359 (2002)

Recent advances in the study of hydrogen embrittlement at the
University of Illinois — Invited paper, Hydrogen-Corrosion
Deformation Interactions (Sept. 16-21, 2001, Jackson Lake Lodge,
Wyo.)

A void-based description of compaction and segregation in flowing
granular materials — Proceedings of the Royal Society of London A
(submitted)

Spanwise growth of vortex structure in wall turbulence — Korean
Society of Mechanical Engineers International Journal 15, 1741-1749
(2001)

Information and the study of turbulence and complex flow —
Japanese Society of Mechanical Engineers Journal B, in press (2002)

Observation of vortex packets in direct numerical simulation of
fully turbulent channel flow — Journal of Visualization, in press (2002)

Disclinated states in nematic elastomers — Journal of the Mechanics
and Physics of Solids 50, 2691-2716 (2002)

Towards the miniaturization of explosive technology — Proceedings
of the 23rd International Conference on Shock Waves (2001)

Spinning instability of gaseous detonations — Journal of Fluid
Mechanics (submitted)

Fracture testing of a self-healing polymer composite — Experimental
Mechanics (submitted)

Langmuir circulations — Surface Waves (J. C. R. Hunt and S. Sajjadi,
eds.), in press (2002)

Scaling and similarity in rough channel flows — Physical Review
Letters 88, 014501 (2002)

On stationary and oscillatory modes of flow instabilities in a
rotating porous layer during alloy solidification — Journal of Porous
Media, in press (2002)

Effect of Coriolis force on instabilities of liquid and mushy regions
during alloy solidification — Physics of Fluids (submitted)

Measurement of instantaneous Eulerian acceleration fields by
particle-image accelerometry: Method and accuracy — Experimental
Fluids (submitted)

Date
May 2001

May 2001

June 2001

June 2001

July 2001
Aug. 2001
Aug. 2001
Aug. 2001
Sept. 2001

Sept. 2001

Sept. 2001

Sept. 2001

Oct. 2001
Oct. 2001
Oct. 2001
Oct. 2001
Oct. 2001

Nov. 2001

Nov. 2001
Nov. 2001

Nov. 2001

Dec. 2001

Dec. 2001



No. Authors
992 Liu, M., and K. J. Hsia

993 Panat, R. P,, S. Zhang,
and K. J. Hsia

994 Aref, H.

995 Saif, M. T. A, S. Zhang,
A. Haque, and
K.]J. Hsia

996 Fried, E., and
M. E. Gurtin

997 Aref, H.

998 Christensen, K. T., and
R.]J. Adrian

999 Riahi, D. N.

1000 Kessler, M. R., and
S. R. White

1001 Dolbow, J. E., E. Fried,
and A. Q. Shen

1002 Riahi, D. N.

1003 Carlson, D. E., E. Fried,
and S. Sellers

1004 Fried, E., and
R. E. Todres

1005 Fried, E., and B. C. Roy

1006 Tomkins, C. D., and
R.]J. Adrian

1007 Riahi, D. N.

1008 Aref, H., P. K. Newton,
M. A. Stremler,
T. Tokieda, and
D. L. Vainchtein

1009 Bagchi, P., and
S. Balachandar

1010 Zhang, S., R. Panat,
and K. J. Hsia

1011 Carlson, D. E., E. Fried,
and D. A. Tortorelli

1012 Boyland, P. L.,

M. A. Stremler, and
H. Aref

List of Recent TAM Reports (cont’d)

Title

Interfacial cracks between piezoelectric and elastic materials under
in-plane electric loading — Journal of the Mechanics and Physics of
Solids, in press (2002)

Bond coat surface rumpling in thermal barrier coatings — Acta
Materialia, in press (2002)

A transformation of the point vortex equations — Physics of Fluids 14,
2395-2401 (2002)

Effect of native Al,O, on the elastic response of nanoscale aluminum
films — Acta Materialia 50, 2779-2786 (2002)

A nonequilibrium theory of epitaxial growth that accounts for
surface stress and surface diffusion— Journal of the Mechanics and
Physics of Solids, in press (2002)

The development of chaotic advection — Physics of Fluids 14, 1315-
1325 (2002); see also Virtual Journal of Nanoscale Science and
Technology, 11 March 2002

The velocity and acceleration signatures of small-scale vortices in
turbulent channel flow — Journal of Turbulence, in press (2002)

Flow instabilities in a horizontal dendrite layer rotating about an
inclined axis — Proceedings of the Royal Society of London A
(submitted)

Cure kinetics of ring-opening metathesis polymerization of
dicyclopentadiene — Journal of Polymer Science A 40, 2373-2383
(2002)

Point defects in nematic gels: The case for hedgehogs — Proceedings
of the National Academy of Sciences (submitted)

Nonlinear steady convection in rotating mushy layers — Journal of
Fluid Mechanics (submitted)

The totality of soft-states in a neo-classical nematic elastomer —
Proceedings of the Royal Society A (submitted)

Normal-stress differences and the detection of disclinations in
nematic elastomers — Journal of Polymer Science B: Polymer Physics 40,
2098-2106 (2002)

Gravity-induced segregation of cohesionless granular mixtures —
Lecture Notes in Mechanics, in press (2002)

Spanwise structure and scale growth in turbulent boundary
layers — Journal of Fluid Mechanics (submitted)

On nonlinear convection in mushy layers: Part 2. Mixed oscillatory
and stationary modes of convection — Journal of Fluid Mechanics
(submitted)

Vortex crystals — Advances in Applied Mathematics 39, in press (2002)

Effect of turbulence on the drag and lift of a particle — Physics of
Fluids (submitted)

Influence of surface morphology on the adhesive strength of
aluminum/epoxy interfaces — Journal of Adhesion Science and
Technology (submitted)

On internal constraints in continuum mechanics — Journal of
Elasticity (submitted)

Topological fluid mechanics of point vortex motions — Physica D, in
press (2002)

Date
Dec. 2001

Jan. 2002
Jan. 2002

Jan. 2002

Jan. 2002

Jan. 2002

Jan. 2002

Feb. 2002

Feb. 2002

Feb. 2002
Mar. 2002
Mar. 2002

June 2002

July 2002
Aug. 2002

Sept. 2002

Oct. 2002

Oct. 2002

Oct. 2002

Oct. 2002

Oct. 2002



