Gravity-induced segregation of cohesionless granular mixtures

ELIOT FRIED and BIDHAN C. ROY
Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, IL 61801, USA

Abstract

Working with the context of a theory proposed recently by Fried et al. (2001), we consider a one-dimensional problem involving granular mixture of $K>2$ discrete sizes bounded below by an impermeable base, above by an evolving free surface, and subject to gravity. We demonstrate the existence of a solution in which the medium segregates by particle size. For a mixture of small and large particles $(K=2)$, we use methods of Smoller (1994) to show that the segregated solution is unique. Further, for a mixture of small, medium, and large particles $(K=3)$, we use LeVeque's (1994) CLAWPACK to construct numerical solutions and find that these compare favorably with analytical predictions.

1. Introduction

A granular material is a collection of solid particles together with an interstitial fluid such as air or water. Generally, granular materials consist not of identical particles, but, rather, of various particle types that may differ in size, shape, density, resilience, and roughness. Of interest in this article is segregation by particle size. Although it is relatively easy to achieve homogenous mixing with miscible fluids, it is very difficult to do so in a granular mixture involving particles of different sizes. For example, stirring a container of freeze-dried coffee causes large grains to rise to the surface.

Applications in which size-based segregation occur and are of importance are abundant. While mineral processing technologies exploit the tendency for granular materials to segregate, industrial mixing technologies must counteract this tendency. Though vital to the chemical, pharmaceutical, powder metallurgy, glass, ceramic, paint, food, and construction industries, separation and mixing technologies are presently limited by a reliance upon empirically-based heuristics. It therefore seems reasonable to expect that an enhanced understanding of the mechanisms underlying segregation will lead to advances in a broad spectrum of industrial enterprizes.

Theoretical studies of granular flows have been undertaken using molecular dynamics, statistical physics, and continuum mechanics. The approach based on molecular dynamics involves modelling the granular material as an assembly of rigid bodies, taking into account translational and rotational degrees of freedom and allowing for hysteretic interactions. Euler's equations of motion are formulated and solved numerically. Numerical results obtained by molecular dynamic simulations exhibit mixed agreement with observations. For example, in a simulation of plane Couette flow, Thompson \& Grest (1991) employed a Hookean-type elastic force model with 750 soft particles of equal radii. A plug-like motion of the core and a boundary shear layer of $6-12$ particle diameters in thickness was found, showing good agreement with experimental results of Hanes \& Inman (1985). However, the shear stress did not show a quadratic dependence on the mean shear rate as observed in the experiments of Bagnold (1954). Furthermore, even with the
most advanced computing resources currently available, the inherent memory demands of this method make it infeasible for systems of more than 10^{6} particles. Applications of molecular dynamics to size-based segregation can be found in Dolgunin \& Ukolov 1995; Gallas et al. 1996; Herrmann \& Ludig 1998; Hirshfled \& Rapaport 1997; Hong et al. 2001; Moaker et al. 2000; Ohstuki et al. 1993, Poschel et al. 2000; Ristow 2000; Shinbrot et al. 2001; Shoichi 1998; Smith et al. 2001.

In the limit as the number of particles becomes infinitely large, this method is replaced by a statistical approach in which moments of a Boltzmann-type equation are used. Interactions between the individual bodies are expressed by the collision operator, taking into account energy losses during collisions. The number of moments taken determines the complexity of the theory, which is now continuous for fields that are statistical averages of quantities that exhibit large fluctuations on the microscale. The important results are the evolution equations for the density, the velocity, and the granular temperature (Jenkins \& Savage 1983; Lun et al. 1984; Makse \& Kurchan 2002). Basic to these kinetic models are the assumptions that momentum transfer occurs via collisions and that only binary collisions occur. This implies that the granular phase must be sufficiently dispersed, which for dry granular flows subject to gravity, seems plausible for only very rapid motions. However, many flows of practical interest fall into the intermediate regime where both frictional contacts and particle-particle collisions are significant (Ancey et al. 1996; Johnson et al. 1990). Applications of this statistical approach in the study of segregation problem can be found in Arnarson \& Jenkins (2000), Arnarson \& Willits (1998), Jenkins (1998), Jenkins \& Mancini (1989), among others.

Continuum mechanical models are purely phenomenological descriptions and are restricted to macroscopic length scales that extend over many particle diameters. Closure conditions are based on standard invariance requirements and thermodynamical restrictions and may account for microstructural effects. Insofar as monodisperse granular materials are concerned, continuum-level theories have been exploited to considerable advantage (Hutter \& Rajagopal 1994; Savage 1984; Wang \& Hutter 2001).

Here, we use a recent continuum model developed by Fried et al. (2001) to study gravity-driven segregation and compaction of polydisperse granular material. Based on a kinematical treatment of voids, the basic physical laws allows for segregation via diffusion of different particle types and voids. This theory ignores inertial effects and is thus restricted to situations involving relatively slow flow. For a cohesionless granular material consisting of particles that differ only by size, this theory yields evolution equations for the volume-weighted mixture-velocity \boldsymbol{v}, the pressure p, and $K \geq 1$ particulate volume fractions φ_{k} constrained to obey

$$
\begin{equation*}
0 \leq \varphi_{k} \leq 1 \quad \text { and } \quad \varphi^{\mathrm{p}}=\sum_{k=1}^{K} \varphi_{k} \leq \stackrel{*}{\varphi} \tag{1.1}
\end{equation*}
$$

with φ^{p} the total particulate volume fraction and $\stackrel{*}{\varphi}^{\text {the }}$ volume fraction at random closepacking. Writing \boldsymbol{f} for the external body force per unit mass, these equations consist of the constraint

$$
\begin{equation*}
\operatorname{div} \boldsymbol{v}=0 \tag{1.2}
\end{equation*}
$$

which enforces the requirement that all volume be accounted for (locally) by particles and voids, the force balance

$$
\begin{equation*}
\operatorname{div} \boldsymbol{S}+\sum_{k=1}^{K} m_{k} \varphi_{k} \boldsymbol{f}=\operatorname{grad} p \tag{1.3}
\end{equation*}
$$

with \boldsymbol{S} the extra stress (given constitutively as a function of the volume fractions $\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{K}\right)$ and the strain-rate $\boldsymbol{D}=\frac{1}{2}\left(\operatorname{grad} \boldsymbol{v}+(\operatorname{grad} \boldsymbol{v})^{\top}\right)$, which, by (1.2), must obey $\operatorname{tr} \boldsymbol{D}=0$) and m_{k} the density of a particle of type k, and the particulate volume balances

$$
\begin{equation*}
\frac{\mathrm{D} \varphi_{k}}{\mathrm{D} t}=-\operatorname{div}\left(\varphi_{k} \alpha_{k}\left(\imath_{\boldsymbol{D}}\right) h\left(\varphi^{\mathrm{p}}\right) \boldsymbol{f}\right), \quad k=1,2, \ldots, K \tag{1.4}
\end{equation*}
$$

in which $\alpha_{k}>0$ is the effective mobility of particles of type k, depending on the $\imath_{\boldsymbol{D}}=(|\boldsymbol{D}|, \operatorname{det} \boldsymbol{D})$, and h is the compaction function. The mobilities are stipulated to be positive (even when $\boldsymbol{D}=\mathbf{0}$). Thus, if we assume a direct correspondence between particle size and particle mobility, with smaller particles being less mobile than large particles, no generality is lost by taking

$$
\begin{equation*}
\alpha_{1}\left(\imath_{\boldsymbol{D}}\right)>\alpha_{2}\left(\imath_{\boldsymbol{D}}\right)>\cdots>\alpha_{K}\left(\imath_{\boldsymbol{D}}\right)>0 \tag{1.5}
\end{equation*}
$$

for all \boldsymbol{D}. Further, it is assumed that

$$
\begin{equation*}
h\left(\varphi^{\mathrm{p}}\right)>0 \text { for } 0<\varphi^{\mathrm{p}}<\stackrel{*}{\varphi} \quad \text { and } \quad h\left(\varphi^{\mathrm{p}}\right)=0 \text { for } \varphi^{\mathrm{p}} \geq \stackrel{*}{\varphi} \tag{1.6}
\end{equation*}
$$

Due to the hyperbolicity of (1.4), the evolution equations (1.2)-(1.4) must be supplemented by relations which hold across shock surfaces across which the particulate volume fraction, the strain-rate, and the extra stress suffer jump discontinuities. Considering such a shock and writing $\boldsymbol{n}_{\text {shock }}$ for its unit normal field and $V_{\text {shock }}$ for the associated (scalar normal) velocity relative to the mixture, the relations associated with the particulate volume balances are

$$
\begin{equation*}
\llbracket \varphi_{k} \rrbracket V_{\text {shock }}=\llbracket \varphi_{k} \alpha_{k}\left(\imath_{\boldsymbol{D}}\right) h\left(\varphi^{\mathrm{p}}\right) \rrbracket \boldsymbol{f} \cdot \boldsymbol{n}_{\text {shock }}, \quad k=1,2, \ldots, K \tag{1.7}
\end{equation*}
$$

where, given a field $g, \llbracket g \rrbracket=g^{+}-g^{-}$, with g^{+}the limit of g, on the shock surface, taken from the region into which $\boldsymbol{n}_{\text {shock }}$ points and g^{-}the corresponding limit from the other side of the shock surface.

In addition to the evolution equations and shock relations, the theory delivers boundary conditions at free surfaces and impermeable solid boundaries. Focusing only on the conditions associated with the particulate volume balances, the conditions that hold at a free surface with unit normal $\boldsymbol{n}_{\text {free }}$ directing into the region of pure voids and associated (scalar normal) velocity $V_{\text {free }}$ relative to the mixture are

$$
\begin{equation*}
\alpha_{k}\left(\imath_{\boldsymbol{D}}\right) h\left(\varphi^{\mathrm{p}}\right)=\frac{V_{\mathrm{free}}}{\boldsymbol{f} \cdot \boldsymbol{n}_{\mathrm{free}}} \tag{1.8}
\end{equation*}
$$

for any particle type k present at the surface, while the conditions

$$
\begin{equation*}
\varphi_{k}=0 \quad \text { or } \quad \alpha_{k}\left(\imath_{\boldsymbol{D}}\right) h\left(\varphi^{\mathrm{p}}\right)=0, \quad k=1,2, \ldots, K \tag{1.9}
\end{equation*}
$$

must hold at an impermeable solid boundary.
In what follows, we consider a one-dimensional specialization of the equations listed above. Under this specialization, which we discuss in Section 2, the velocity field is constant and the governing equations reduce to a hyperbolic system. Our analysis is based on a particular packing function, which we introduce in Section 3. A nondimensionalization, which renders the problem in terms of packing fractions as opposed to volume fractions, is performed in Section 4. In Section 5, we pose a problem for a granular mixture bounded above by the free surface and below by an impermeable base. For a system with K particle sizes, we obtain a solution to this problem which, at steady state, involves K different layers-with the presence of particles of a given size in a given layer determined by their size. For the case $K=3$, we use LeVeque's (1994) CLAWPACK to
construct numerical solutions. This robust code requires a user-supplied Riemann solver. Our Riemann solver is based on the flux splitting scheme of Roe (1981), incorporating proper entropy corrections and flux limiters. In Section 6, we use an approach due to Smoller (1994) to establish the uniqueness of the solution presented in Section 5 for the case $K=2$.

2. A class of one-dimensional problems

We suppose that the body force is purely gravitational, viz.,

$$
\begin{equation*}
\boldsymbol{f}=\boldsymbol{g} \tag{2.1}
\end{equation*}
$$

with \boldsymbol{g} the gravitational acceleration. We let x denote the Cartesian coordinate in the direction $\boldsymbol{e}=-\boldsymbol{g} /|\boldsymbol{g}|$ and seek solutions of the evolution equations for which \boldsymbol{v} and p are functions of x and t, with

$$
\begin{equation*}
\boldsymbol{v}=v \boldsymbol{e} \tag{2.2}
\end{equation*}
$$

Then, since $\operatorname{div} \boldsymbol{v}=0, v$ must be constant and we may, without loss in generality, assume that $v \equiv 0$. Thus, $\boldsymbol{D = 0}$ and the extra stress \boldsymbol{S} either vanishes or is indeterminate (Fried et al. (2001)). For the indeterminate case, we take $\boldsymbol{S}=\boldsymbol{S} \boldsymbol{e} \otimes \boldsymbol{e}$. Force balance requires that

$$
\begin{equation*}
\frac{\partial(p-S)}{\partial x}=-\sum_{k=1}^{K} m_{k} \varphi_{k}|\boldsymbol{g}| \tag{2.3}
\end{equation*}
$$

which, given the volume fractions φ_{k}, determines the difference $p-S$ between the pressure and the extra stress. Equation (2.3) holds with $S=0$ when the constitutive relation for \boldsymbol{S} is well-defined at $\boldsymbol{D}=\mathbf{0}$.

In view of the foregoing, the particulate volume balances (1.4) take the form

$$
\begin{equation*}
\frac{\partial \varphi_{k}}{\partial t}=\alpha_{k} g \frac{\partial\left(\varphi_{k} h\left(\varphi^{\mathrm{p}}\right)\right)}{\partial x}, \quad k=1,2, \ldots, K \tag{2.4}
\end{equation*}
$$

where, for simplicity, we use α_{k} to denote the values of the effective mobilities for $\boldsymbol{D}=\mathbf{0}$.
Regarding the shock relations, we choose $\boldsymbol{n}_{\text {shock }}=\boldsymbol{e}$, so that $\boldsymbol{f} \cdot \boldsymbol{n}_{\text {shock }}=-|\boldsymbol{g}|$. Thus, (1.7) becomes

$$
\begin{equation*}
\llbracket \varphi_{k} \rrbracket V_{\text {shock }}=-\alpha_{k}|\boldsymbol{g}| \llbracket \varphi_{k} h\left(\varphi^{\mathrm{p}}\right) \rrbracket, \quad k=1,2, \ldots, K \tag{2.5}
\end{equation*}
$$

Similarly, the condition (1.8) that hold for any particle of type k at a free surface becomes

$$
\begin{equation*}
\alpha_{k} h\left(\varphi^{\mathrm{p}}\right)=-\frac{V_{\text {free }}}{|\boldsymbol{g}|} \tag{2.6}
\end{equation*}
$$

3. Constitutive specialization of the packing function

For simplicity, we choose the packing function h to be of the particular form

$$
\begin{equation*}
h\left(\varphi^{\mathrm{p}}\right)=\varphi^{*}-\sum_{k=1}^{K} \varphi_{k} \tag{3.1}
\end{equation*}
$$

which obeys the requirements expressed in (1.6).

4. Nondimensionalization

On introducing a characteristic length L and a characteristic time T, we define dimensionless quantities

$$
\begin{equation*}
\tilde{x}=\frac{x}{L}, \quad \tilde{t}=\frac{t}{T}, \quad \tilde{\varphi}_{k}=\frac{\varphi_{k}}{\varphi^{*}}, \quad \tilde{\varphi}^{\mathrm{p}}=\frac{\varphi^{\mathrm{p}}}{\varphi^{*}}, \quad \tilde{V}=\frac{V T}{L}, \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\alpha}_{k}=\frac{\alpha_{k}|\boldsymbol{g}| T \varphi^{*}}{L}, \tag{4.2}
\end{equation*}
$$

where V is used to denote the velocity of a generic shock or a generic free surface. We refer to $\tilde{\varphi}_{k}$ as the packing fraction.

Bearing in mind the constitutive specialization (3.1) and dropping tildes, the hyperbolic system (2.4) becomes

$$
\begin{equation*}
\frac{\partial \varphi_{k}}{\partial t}=\alpha_{k} \frac{\partial}{\partial x}\left(\varphi_{k}\left(1-\varphi^{\mathrm{p}}\right)\right), \quad k=1,2, \ldots, K \tag{4.3}
\end{equation*}
$$

and the shock relations (2.5) become

$$
\begin{equation*}
\llbracket \varphi_{k} \rrbracket V_{\text {shock }}=-\alpha_{k} \llbracket \varphi_{k}\left(1-\varphi^{\mathrm{p}}\right) \rrbracket, \quad k=1,2, \ldots, K \tag{4.4}
\end{equation*}
$$

Further, the boundary condition (2.6) for a particle of type k at a free surface becomes

$$
\begin{equation*}
\alpha_{k}\left(1-\varphi^{\mathrm{p}}\right)=-V_{\text {free }}, \tag{4.5}
\end{equation*}
$$

while the boundary condition (4.6) at an impermeable solid surface becomes

$$
\begin{equation*}
\varphi_{k}=0 \quad \text { or } \quad \alpha_{k}\left(1-\varphi^{\mathrm{p}}\right)=0, \quad k=1,2, \ldots, K \tag{4.6}
\end{equation*}
$$

By virtue of (1.1) and (4.1) $)_{3,4}$, the packing fractions must obey

$$
\begin{equation*}
0 \leq \varphi_{k} \leq 1 \quad \text { and } \quad \varphi^{\mathrm{p}}=\sum_{k=1}^{K} \leq 1 \tag{4.7}
\end{equation*}
$$

5. Solution to a particular problem

We now consider an open container that occupies the interval $0 \leq x \leq 1$, with $x=0$ an impermeable base. We assume that, initially, each particulate packing fraction φ_{k} has a prescribed constant value, viz.,

$$
\begin{equation*}
\varphi_{k}(x, 0)=\stackrel{\circ}{\varphi}_{k}, \quad 0 \leq x \leq 1 \tag{5.1}
\end{equation*}
$$

Further, we require that

$$
\begin{equation*}
0<\stackrel{\varphi}{\varphi}^{\mathrm{p}}=\sum_{k=1}^{K} \stackrel{\circ}{\varphi}_{k}<1 \tag{5.2}
\end{equation*}
$$

so that, initially, the mixture is loosely packed and has a free surface at the top $x=1$ of the container.

Granted the foregoing initial conditions, the boundary conditions (4.6) at the base $x=0$, and the free surface condition (4.5) for any particle type k at the free surface, we seek solutions of the hyperbolic system (4.3) that consist of uniform states separated by shocks across which the jump conditions (4.4) hold.

As a candidate for such a solution, we consider a generalization of the solution obtained

Figure 1. Compaction and segregation, by gravity, of a granular aggregate involving particles of K sizes in a fixed container. At any time t, the solution consists of uniform states separated by shocks
for a mixture of small and large particles $(K=2)$ by Fried et al. (2001). This candidate can be depicted (Fig. 1) as the union of $2 K$ regions, $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{2 K}$, containing particles of various types and in various proportions. For $k=1,2, \ldots, K$, regions \mathcal{R}_{k} and $\mathcal{R}_{2 K-k+1}$ contain particles of types $k, k+1, \ldots, K$. In particular, region \mathcal{R}_{1} corresponds to the initial state, so that the mixture is given by (5.1). While the mixtures in regions $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{K}$ are loosely packed, those in regions $\mathcal{R}_{K}, \mathcal{R}_{K+1}, \ldots, \mathcal{R}_{2 K}$ are closely packed. Region \mathcal{R}_{1} is bounded by a segregation shock $\mathcal{S}_{\text {seg }}^{1}$ emanating from the free surface and a compaction shock $\mathcal{S}_{\text {com }}$ emanating from the base. These shocks meet at time T_{1}, at which point they are both deflected. Subsequent to $T_{1}, \mathcal{S}_{\text {seg }}^{1}$ becomes horizontal while $\mathcal{S}_{\text {com }}$ continues to travel upwards. In the region $\mathcal{R}_{2 K}$ lying between the base, the portion of $\mathcal{S}_{\text {com }}$ adjacent to \mathcal{R}_{1}, and the horizontal portion of $\mathcal{S}_{\text {seg }}^{1}$, the packing fraction $\varphi_{i}^{2 K}$ of particles of type i given by

$$
\begin{equation*}
\varphi_{i}^{2 K}=\stackrel{\circ}{\varphi}_{i}+\frac{\alpha_{i}\left(1-\sum_{l=1}^{K} \stackrel{\circ}{\varphi}_{l}\right) \stackrel{\circ}{\varphi}_{i}}{\sum_{l=1}^{K} \alpha_{l} \stackrel{\circ}{\varphi}_{l}} \tag{5.3}
\end{equation*}
$$

for $i=1,2, \ldots, K$. In addition, until time T_{1}, the velocities of $\mathcal{S}_{\text {seg }}^{1}$ and $\mathcal{S}_{\text {com }}$ are given by

$$
\begin{equation*}
V_{\mathcal{S}_{\mathrm{seg}}^{1}}=\alpha_{1}\left(1-\sum_{l=1}^{K} \stackrel{\circ}{\varphi}_{l}\right) \quad \text { and } \quad V_{\mathcal{S}_{\mathrm{com}}}=-\sum_{l=1}^{K} \alpha_{l} \stackrel{\circ}{\varphi}_{l} \tag{5.4}
\end{equation*}
$$

At time $T_{2}, \mathcal{S}_{\text {com }}$ meets another segregation shock $\mathcal{S}_{\text {seg }}^{2}$ emanating from the free surface. At this time, $\mathcal{S}_{\text {com }}$ and $\mathcal{S}_{\text {seg }}^{2}$ are deflected. Subsequent to $T_{2}, \mathcal{S}_{\text {com }}$ continues to travel upward and $\mathcal{S}_{\text {seg }}^{2}$ becomes horizontal. This process continues until time T_{K-1}, when $\mathcal{S}_{\text {com }}$ is deflected upward and $\mathcal{S}_{\text {seg }}^{K-1}$ becomes horizontal. For $k=2, \ldots, K$, the packing fraction φ_{i}^{k} of particles of type i in region \mathcal{R}_{k} is given by the positive square root of the quadratic
equation

$$
\begin{align*}
\alpha_{i}\left(\varphi_{i}^{k}\right)^{2}-\left(\alpha_{i}\left(1-\sum_{j=k, \neq i}^{K} \varphi_{j}^{k}\right)-\alpha_{k-1}(1\right. & \left.\left.-\sum_{j=k-1}^{K} \varphi_{j}^{k-1}\right)\right) \varphi_{i}^{k} \\
& -\varphi_{i}^{k-1}\left(1-\sum_{j=k-1}^{K} \varphi_{j}^{k-1}\right)\left(\alpha_{k-1}-\alpha_{i}\right)=0 \tag{5.5}
\end{align*}
$$

for $i=1,2, \ldots, K$. In addition, the velocity of $\mathcal{S}_{\text {seg }}^{k}$ until T_{k} and the velocity of $\mathcal{S}_{\text {com }}$ between T_{k-1} and T_{k} are given by

$$
\begin{equation*}
V_{\mathcal{S}_{\mathrm{seg}}^{k}}=\alpha_{k}\left(1-\sum_{l=k}^{K} \varphi_{l}^{k}\right) \quad \text { and } \quad V_{\mathcal{S}_{\mathrm{com}}}=-\sum_{l=k}^{K} \alpha_{l} \varphi_{l}^{k} . \tag{5.6}
\end{equation*}
$$

At time $T_{K}, \mathcal{S}_{\text {com }}$ and $\mathcal{S}_{\text {free }}$ meet and $\mathcal{S}_{\text {free }}$ becomes horizontal. As mentioned above, the region \mathcal{R}_{K+1} contains only the largest particles-those of type K. For $k=2, \ldots, K$, the particulate packing fraction $\varphi_{i}^{2 K-k+1}$ in region $\mathcal{R}_{2 K-k+1}$ is given by

$$
\begin{equation*}
\varphi_{i}^{2 K-k+1}=\varphi_{i}^{k}+\frac{\alpha_{i}\left(1-\sum_{l=k}^{K} \varphi_{l}^{k}\right) \varphi_{i}^{k}}{\sum_{l=1}^{K} \alpha_{l} \varphi_{l}^{k}} \tag{5.7}
\end{equation*}
$$

where $i=k, \ldots, K$.
To verify that the candidate described above is a solution, we have only to show that the following conditions are satisfied:
(i) the solid-boundary condition (cf. $\left.(4.6)_{2}\right)$

$$
\begin{equation*}
\alpha_{l}\left(1-\sum_{i=1}^{K} \varphi_{i}^{2 K}\right)=0, \quad l=1,2, \ldots, K \tag{5.8}
\end{equation*}
$$

for $t>0$;
(ii) for each $k=2,3, \ldots, K$, the jump conditions (cf. (4.4))

$$
\begin{equation*}
\left(\varphi_{l}^{k}-\varphi_{l}^{2 K-k+1}\right) V_{\mathcal{S}_{\mathrm{com}}}=\alpha_{l} \varphi_{l}^{k}\left(1-\sum_{i=k}^{K} \varphi_{i}^{k}\right) \quad \text { on } \quad \mathcal{S}_{\mathrm{com}} \tag{5.9}
\end{equation*}
$$

where $l=k, k+1, \ldots, K$ and $T_{k-1}<t<T_{k}$, and, for $0<t<T_{k}$

$$
\begin{equation*}
\llbracket \varphi_{l}^{k} \rrbracket V_{\mathcal{S}_{\mathrm{seg}}^{k-1}}=\alpha_{l} \llbracket \varphi_{l}^{k}\left(1-\sum_{i=k}^{K} \varphi_{i}^{k}\right) \rrbracket \quad \text { on } \quad \mathcal{S}_{\mathrm{seg}}^{k-1}, \tag{5.10}
\end{equation*}
$$

where $l=k, k+1, \ldots, K$;
(iii) the interface condition (cf. (4.6))

$$
\begin{equation*}
V_{\mathrm{seg}}^{k}=0 \quad \text { on } \quad \mathcal{S}_{\mathrm{seg}}^{k} \tag{5.11}
\end{equation*}
$$

for $t \geq T_{k}$;
(v) the free-surface conditions (cf. (4.5))

$$
\begin{equation*}
V_{\text {free }}=\alpha_{K}\left(1-\varphi_{K}^{K}\right) \quad \text { on } \quad \mathcal{S}_{\text {free }}, \tag{5.12}
\end{equation*}
$$

for $0<t<T_{K}$, and

$$
\begin{equation*}
V_{\text {free }}=0 \quad \text { on } \quad \mathcal{S}_{\text {free }}, \tag{5.13}
\end{equation*}
$$

for $t \geq T_{K}$.

E. Fried E3 B. C. Roy

To establish (5.8), we substitute for $\varphi_{i}^{2 K}$ from (5.3) and sum over the index i. Similarly, (5.9) follows directly if we substitute for $\varphi_{l}^{2 K-k+1}$ from (5.7) and for $V_{\mathcal{S}_{\text {com }}}$ from (5.6). Also, on substituting for $V_{\mathcal{S}_{\text {seg }}^{k-1}}$ from (5.6), it can be shown that the packing fraction φ_{l}^{k} satisfying (5.10) is given by (5.5). Hence, (5.10) follows if we can show that the packing fractions in question are determined uniquely by the quadratic equation (5.5). Since $\alpha_{k-1}>\alpha_{k}$ for $k=2, \ldots, K$ and the packing in the region is not close, it follows that (5.5) has only one real positive root, φ_{l}^{k}, and that $0<\varphi_{l}^{k}<1$. Hence, the only positive root of (5.5) is indeed the packing fraction. For $t \geq T_{k}$, the shock $\mathcal{S}_{\text {seg }}^{k}$ separates two compacted zones. From (4.6), it follows directly that $\alpha_{i}\left(1-\sum_{j=k}^{K} \varphi_{j}^{2 K-k+1}\right)=0$. Hence, $V_{\text {seg }}^{k}=0$ (5.11). Since the shock $\mathcal{S}_{\text {free }}$ separates the region \mathcal{R}_{K} (which contains only particles of type K, with a packing fraction φ_{K}^{K}) from the free surface (where $\varphi_{k}=0$, $k=1, \ldots, K$), it follows directly as a consequence of (4.5) that $V_{\text {free }}=\alpha_{K}\left(1-\varphi_{K}^{K}\right)$ (for $t<T_{K}$). However, since, for $t \geq T_{K}$, the shock $\mathcal{S}_{\text {free }}$ now separates the compacted zone $\mathcal{R}_{K+1}\left(\right.$ where $\left.\varphi_{K}^{K+1}=1\right)$ from the free surface, it follows that $1-\varphi_{K}^{K+1}=0$ and, hence, by (4.6), we have $V_{\text {free }}=0$.

Consistent with intuitive expectations, the solution exhibits both compaction and segregation. Segregation is by particle size, with the region closest to the free surface consisting only of the largest particles. As an illustration, we consider the particular case of a mixture containing particles of three sizes, with effective mobilities

$$
\begin{equation*}
\alpha_{1}=0.3, \quad \alpha_{2}=0.2, \quad \text { and } \quad \alpha_{3}=0.1 \tag{5.14}
\end{equation*}
$$

and use CLAWPACK to generate a solution to the problem described above, with

$$
\begin{equation*}
\stackrel{\grave{\varphi}}{k}^{=}=0.2, \quad k=1,2,3 . \tag{5.15}
\end{equation*}
$$

Figs. 2-4 show characteristic plots for each of the particle types and Figs. 5-6 show profiles of the packing fractions as functions of position at various times. These plots are a result of the numerical solutions obtained using CLAWPACK. In keeping with the general results presented above, these plots exhibit compaction shocks and segregation shocks that separate states in which the particulate packing fractions are uniform. At each time, the domain consists of four distinct regions. Prior to time $t=4.16\left(\equiv T_{1}\right)$, these regions are demarcated by the free surface, which moves with velocity $V_{\text {free }}=0.03$, segregation shocks $\mathcal{S}_{\mathrm{seg}}^{1}$ and $\mathcal{S}_{\mathrm{seg}}^{2}$ with velocities $V_{\mathcal{S}_{\mathrm{seg}}}=0.16$ and $V_{\mathcal{S}_{\text {seg }}^{2}}=0.09$, and a compaction shock $\mathcal{S}_{\text {com }}$ with velocity $V_{\mathcal{S}_{\text {com }}}=-0.12$. The region closest to the free surface $\left(\mathcal{R}_{3}\right)$ consists only of the largest particles with $\varphi_{3}=0.672680$. In the region between $\mathcal{S}_{\text {seg }}^{2}$ and $\mathcal{S}_{\text {seg }}^{1}\left(\mathcal{R}_{2}\right), \varphi_{1}=0, \varphi_{2}=0.309717$, and $\varphi_{3}=0.219433$. In the region between $\mathcal{S}_{\text {seg }}^{1}$ and $\mathcal{S}_{\text {com }}^{2}\left(\mathcal{R}_{1}\right)$, the mixture is in its initial state. Initially at the base, the medium is closely packed with $\varphi_{1}=0.40, \varphi_{2}=0.35$, and $\varphi_{3}=0.25$. Between time $t=4.16\left(\equiv T_{1}\right)$ and time $t=4.77\left(\equiv T_{2}\right)$, the velocity of $\mathcal{S}_{\text {com }}$ is $V_{\mathcal{S}_{\text {com }}}=-0.08$. At $t=4.16\left(\equiv T_{1}\right)$, a horizontal layer $\left(\mathcal{R}_{6}\right)$ develops adjacent to the basal region and the packing fractions within this layer are given by $\varphi_{1}=0.399996, \varphi_{2}=0.333329$, and $\varphi_{3}=0.266674$. Subsequent to $t=4.77\left(\equiv T_{2}\right)$, the velocity of $\mathcal{S}_{\text {com }}$ becomes $V_{\mathcal{S}_{\text {com }}}=-0.06$. Time $t=4.77\left(\equiv T_{2}\right)$ signals the development of a layer $\left(\mathcal{R}_{5}\right)$ of closely packed large particles, where $\varphi_{1}=0$, $\varphi_{2}=0.657399$, and $\varphi_{3}=0.342599$. At time $t=10.91\left(\equiv T_{3}\right), \mathcal{S}_{\text {com }}$ intersects the free surface and a steady state is achieved.

Table 1 compares the analytical and the numerical values of the distribution of all the three types of particles at the steady state in the zones where close packing is achieved. The maximum relative error is less than 2.6×10^{-5}.

Figure 2. Characteristic plot of species type $k=3$. Here, $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(0.3,0.2,0.1)$ and $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)=(0.2,0.2,0.2)$. To make this plot, the spatial and time steps were lowered from 0.001 to 0.01 , resulting in a jagged shock profile

Figure 3. Characteristic plot of species type $k=2$. Here, $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(0.3,0.2,0.1)$ and $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)=(0.2,0.2,0.2)$

Figure 4. Characteristic Plot of species type $k=1$. Here, $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(0.3,0.2,0.1)$ and $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)=(0.2,0.2,0.2)$

Figure 5. The distribution of particles in space at a given time. Here, $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(0.3,0.2,0.1)$ and $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)=(0.2,0.2,0.2)$

Compaction zone	Packing fraction	Analytical value	Numerical value	Relative error
\mathcal{R}_{6}	φ_{1}	0.400000	0.399996	0.000010
	φ_{2}	0.333333	0.333329	0.000012
	φ_{3}	0.266667	0.266674	0.000026
\mathcal{R}_{5}	φ_{2}	0.657400	0.657399	0.000002
	φ_{3}	0.342600	0.342599	0.000002
\mathcal{R}_{4}	φ_{3}	1.000000	0.999998	0.000002

Table 1. Comparison of the analytical (Anal.) and numerical (Num.) values of the distribution of particles of all three types in various Compaction Zones

Figure 6. The distribution of particles in space at a given time. Here, $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(0.3,0.2,0.1)$ and $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)=(0.2,0.2,0.2)$

6. Uniqueness of the segregated solution for a mixture of small and large particles

In general, it would desirable to understand whether solution presented in the Section 5 is unique. Here, as a step toward this goal, we use methods developed by Smoller (1994) to resolve this issue for the case of a mixture of small and large particles.

6.1. Riemann problem

Toward addressing the uniqueness of the segregated solution for a mixture of small and large particles, we consider the system

$$
\left.\begin{array}{rl}
\frac{\partial \varphi_{1}}{\partial t} & =\alpha_{1} \frac{\partial}{\partial x}\left(\varphi_{1}\left(1-\varphi_{1}-\varphi_{2}\right)\right) \tag{6.1}\\
\frac{\partial \varphi_{2}}{\partial t} & =\alpha_{2} \frac{\partial}{\partial x}\left(\varphi_{2}\left(1-\varphi_{1}-\varphi_{2}\right)\right)
\end{array}\right\}
$$

which arises upon specializing (4.3) to the case $k=2$, for (x, t) belonging to $(-\infty, \infty) \times$ $(0, \infty)$ and subject to the initial conditions

$$
\varphi_{k}(x, 0)= \begin{cases}\varphi_{k}^{<} & \text {if } x<0 \tag{6.2}\\ \varphi_{k}^{<} & \text {if } x>0\end{cases}
$$

with φ_{k}^{\lessgtr} constant. For the moment, we interpret (6.1) in the weak sense, so that the discontinuity conditions that must hold across shocks, free surfaces, and solid boundaries are implicitly satisfied. In view of (1.5),

$$
\begin{equation*}
\alpha_{1}>\alpha_{2}>0 . \tag{6.3}
\end{equation*}
$$

Further, in view of $(4.7),\left(\varphi_{1}, \varphi_{2}\right)$ must belong to

$$
\begin{equation*}
\left.\mathcal{A}=\left\{\varphi_{1}, \varphi_{2}\right): 0 \leq \varphi_{1} \leq 1,0 \leq \varphi_{2} \leq 1, \varphi_{1}+\varphi_{2} \leq 1\right\} \tag{6.4}
\end{equation*}
$$

which we refer to as the set of admissible packing fractions.
Generally, we require only that $\left(\varphi_{1}^{\lessgtr}, \varphi_{2}^{\lessgtr}\right)$ belong to \mathcal{A}. This includes special problems corresponding to less than closely packed mixtures of semi-infinite extent that are bounded above by free surfaces $\left(\varphi_{1}^{<}=\varphi_{2}^{<}=0\right.$ and $\left.\varphi_{1}^{>}+\varphi_{2}^{>}<1\right)$ or below by solid bases $\left(\varphi_{1}^{<}+\varphi_{2}^{<}<1\right.$ and $\left.\varphi_{1}^{>}+\varphi_{2}^{>}=1\right)$. However, our primary interest is in problems where φ_{1}^{\lessgtr} and φ_{2}^{\lessgtr} obey $0<\varphi_{1}^{\lessgtr}+\varphi_{2}^{\lessgtr}<1$.

The Jacobian of the system (6.1) is simply

$$
\left[\begin{array}{cc}
\alpha_{1}\left(1-2 \varphi_{1}-\varphi_{2}\right) & -\alpha_{1} \varphi_{1} \tag{6.5}\\
-\alpha_{2} \varphi_{2} & \alpha_{2}\left(1-\varphi_{1}-2 \varphi_{2}\right)
\end{array}\right]
$$

which has eigenvalues

$$
\begin{align*}
\lambda_{ \pm}\left(\varphi_{1}, \varphi_{2}\right)= & \frac{1}{2}\left(\alpha_{1}\left(1-2 \varphi_{1}-\varphi_{2}\right)+\alpha_{2}\left(1-2 \varphi_{2}-\varphi_{1}\right)\right) \\
& \pm \frac{1}{2} \sqrt{\left(\alpha_{1}\left(1-2 \varphi_{1}-\varphi_{2}\right)-\alpha_{2}\left(1-2 \varphi_{2}-\varphi_{1}\right)\right)^{2}+4 \alpha_{1} \alpha_{2} \varphi_{1} \varphi_{2}} \tag{6.6}
\end{align*}
$$

By inspection,

$$
\begin{equation*}
0 \leq \lambda_{-}\left(\varphi_{1}, \varphi_{2}\right)<\lambda_{+}\left(\varphi_{1}, \varphi_{2}\right) \tag{6.7}
\end{equation*}
$$

Hence, (6.1) is hyperbolic and we may conclude that solutions to the Riemann problem (6.1)-(6.2) must be uniform states separated by either (i) discontinuities (which may be compaction or segregation shocks, free surfaces, or solid boundaries) or (ii) rarefactions. Since one of the eigenvalues defined in (6.6) may vanish, (6.1) admits solutions involving static discontinuities.

6.1.1. Prelimary results concerning discontinuities

Here, we consider the problem of determining all uniform states $\left(\varphi_{1}, \varphi_{2}\right)$ in \mathcal{A} that may be connected to $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$by a discontinuity emanating from the origin of the (x, t)-plane and moving with velocity V. Such a state must satisfy not only the jump conditions

$$
\left.\begin{array}{l}
\alpha_{1} \varphi_{1}\left(1-\varphi_{1}-\varphi_{2}\right)-\alpha_{1} \varphi_{1}^{<}\left(1-\varphi_{1}^{<}-\varphi_{2}^{<}\right)=V\left(\varphi_{1}-\varphi_{1}^{<}\right) \tag{6.8}\\
\alpha_{2} \varphi_{2}\left(1-\varphi_{1}-\varphi_{2}\right)-\alpha_{2} \varphi_{2}^{<}\left(1-\varphi_{1}^{<}-\varphi_{2}^{<}\right)=V\left(\varphi_{2}-\varphi_{2}^{<}\right),
\end{array}\right\}
$$

but also the Lax (1957) entropy condition, which in the present context requires that either

$$
\begin{equation*}
\lambda_{-}\left(\varphi_{1}, \varphi_{2}\right)<V<\lambda_{+}\left(\varphi_{1}, \varphi_{2}\right) \quad \text { and } \quad V<\lambda_{-}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right) \tag{6.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{-}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)<V<\lambda_{+}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right) \quad \text { and } \quad \lambda_{+}\left(\varphi_{1}, \varphi_{2}\right)<V \tag{6.10}
\end{equation*}
$$

Eliminating V between $(6.8)_{1}$ and $(6.8)_{2}$ yields a quadratic equation

$$
\begin{equation*}
A\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right) \varphi_{2}^{2}+B\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right) \varphi_{2}+C\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=0 \tag{6.11}
\end{equation*}
$$

for φ_{2} in terms of $\varphi_{1}, \varphi_{1}^{<}$, and $\varphi_{2}^{<}$. Here,

$$
\left.\begin{array}{rl}
\left.\begin{array}{rl}
A\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)= & \alpha_{2}\left(\varphi_{1}-\varphi_{1}^{<}\right)-\alpha_{1} \varphi_{1} \\
B\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)= & \alpha_{1} \varphi_{1} \varphi_{2}^{<}+\alpha_{1} \varphi_{1}-\alpha_{1} \varphi_{1}^{<}\left(1-\varphi_{1}^{<}-\varphi_{2}^{<}\right) \\
& \quad-\alpha_{1} \varphi_{1}^{2}+\alpha_{2} \varphi_{1}^{<}-\alpha_{2} \varphi_{1}+\alpha_{2} \varphi_{1}^{2}-\alpha_{2} \varphi_{1} \varphi_{1}^{<} \\
C\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)= & \alpha_{1} \varphi_{1}^{<} \varphi_{2}^{<}\left(1-\varphi_{1}^{<}-\varphi_{2}^{<}\right)-\alpha_{1} \varphi_{1} \varphi_{2}^{<}+\alpha_{1} \varphi_{1}^{2} \varphi_{2}^{<} \\
& \quad-\alpha_{2} \varphi_{1}^{<} \varphi_{2}^{<}\left(1-\varphi_{1}^{<}-\varphi_{2}^{<}\right)+\alpha_{1} \varphi_{1} \varphi_{2}^{<}\left(1-\varphi_{1}^{<}-\varphi_{2}^{<}\right) .
\end{array}\right\}, ~
\end{array}\right\}
$$

The roots

$$
\begin{align*}
& d_{ \pm}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=\frac{-B\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)}{2} \\
& \mp \frac{\sqrt{B^{2}\left(\varphi_{1}, \varphi_{1}^{く}, \varphi_{2}^{<}\right)-4 A\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right) C\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)}}{2 A\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)} \tag{6.13}
\end{align*}
$$

of the quadratic (6.11) describe curves within \mathcal{A}. A straightforward calculation too lengthy to display here shows that the curve

$$
\begin{equation*}
\mathcal{D}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=\left\{\left(\varphi_{1}, \varphi_{2}\right): \varphi_{1}^{<}<\varphi_{1}<1, \varphi_{2}=d_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right\} \tag{6.14}
\end{equation*}
$$

describes all pairs $\left(\varphi_{1}, \varphi_{2}\right)$ consistent with the jump conditions (6.8) and the inequalities (6.9). Similarly, the curve

$$
\begin{equation*}
\mathcal{D}_{+}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=\left\{\left(\varphi_{1}, \varphi_{2}\right): \varphi_{1}^{<}<\varphi_{1}<1, \varphi_{2}=d_{+}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right\} \tag{6.15}
\end{equation*}
$$

describes all pairs $\left(\varphi_{1}, \varphi_{2}\right)$ consistent with the jump conditions (6.8) and the inequalities (6.10). A straightforward argument shows that $\mathcal{D}_{+}\left(\cdot, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$decreases monotonically over its domain. Thus, given $\varphi_{2}=d_{+}\left(\cdot, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$, we may write $\varphi_{1}=\mathcal{D}_{+}^{-1}\left(\varphi_{2}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$. Fig. 7 depicts \mathcal{D}_{+}and \mathcal{D}_{-}for an arbitrary choice of $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$.

6.1.2. Preliminary results concerning rarefactions

Here, we consider the problem of determining all rarefactions $\left(\varphi_{1}, \varphi_{2}\right)$ taking values in \mathcal{A}, with

$$
\begin{equation*}
\varphi_{k}(x, t)=\phi_{k}(\xi), \quad \xi=\frac{x}{t} \tag{6.16}
\end{equation*}
$$

that may be continuously connected to $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$across a line emanating from the origin of the (x, t)-plane. Such a state must satisfy not only the system

$$
\left.\begin{array}{l}
\xi \phi_{1}^{\prime}(\xi)+\alpha_{1}\left(\phi_{1}(\xi)\left(1-\phi_{1}(\xi)-\phi_{2}(\xi)\right)\right)^{\prime}=0 \tag{6.17}\\
\xi \phi_{2}^{\prime}(\xi)+\alpha_{2}\left(\phi_{2}(\xi)\left(1-\phi_{1}(\xi)-\phi_{2}(\xi)\right)\right)^{\prime}=0,
\end{array}\right\}
$$

which arises on inserting (6.16) in (6.1), but also, since the (non-negative) eigenvalues $\lambda_{ \pm}\left(\phi_{1}(\xi), \phi_{2}(\xi)\right)$ must increase with ξ, either

$$
\begin{equation*}
\lambda_{-}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)<\lambda_{-}\left(\phi_{1}, \phi_{2}\right) \tag{6.18}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{+}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)<\lambda_{+}\left(\phi_{1}, \phi_{2}\right) \tag{6.19}
\end{equation*}
$$

On writing (6.17) in the form

$$
\left[\begin{array}{cc}
\alpha_{1}\left(1-2 \phi_{1}(\xi)-\phi_{2}(\xi)\right)+\xi & -\alpha_{1} \phi_{1}(\xi) \tag{6.20}\\
-\alpha_{2} \phi_{2}(\xi) & \alpha_{2}\left(1-\phi_{1}(\xi)-2 \phi_{2}(\xi)\right)+\xi
\end{array}\right]\left[\begin{array}{c}
\phi_{1}^{\prime}(\xi) \\
\phi_{2}^{\prime}(\xi)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and recalling that the eigenvalues of the Jacobian (6.5) are unique, it follows that $\xi=$ $-\lambda_{ \pm}\left(\phi_{1}, \phi_{2}\right)$.

We ignore the case where ϕ_{1} and ϕ_{2} are constant, which yields the trivial solution $\phi_{k}=\varphi_{k}^{<}$and $\phi_{2}=\varphi_{2}^{<}$, and assume that neither ϕ_{1}^{\prime} nor ϕ_{2}^{\prime} vanishes. Then, from (6.20) we obtain a pair,

$$
\begin{equation*}
\frac{\mathrm{d} \phi_{2}}{\mathrm{~d} \phi_{1}}=\frac{\alpha_{1}\left(1-2 \phi_{1}-\phi_{2}\right)-\lambda_{ \pm}\left(\phi_{1}, \phi_{2}\right)}{\alpha_{2} \phi_{1}} \tag{6.21}
\end{equation*}
$$

of first order differential equations which must be solved subject to the inequalities (6.18) and (6.19) and the initial condition

$$
\begin{equation*}
\phi_{2}=\varphi_{2}^{<} \quad \text { when } \quad \phi_{1}=\varphi_{1}^{<} \tag{6.22}
\end{equation*}
$$

As solutions we find

$$
\begin{equation*}
\phi_{2}=r_{ \pm}\left(\phi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right) \tag{6.23}
\end{equation*}
$$

with

$$
\begin{align*}
& r_{ \pm}\left(\phi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=\frac{-B\left(\phi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)}{2} \\
& \pm \frac{\sqrt{B^{2}\left(\phi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)-4 A\left(\phi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right) C\left(\phi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)}}{2 A\left(\phi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)} \tag{6.24}
\end{align*}
$$

and A, B, and C as defined in (6.12). A direct calculation too lengthy to display here shows that the curve

$$
\begin{equation*}
\mathcal{R}_{-}\left(\phi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=\left\{\left(\phi_{1}, \varphi_{2}\right): \varphi_{1}<\varphi_{1}^{<}, \varphi_{2}=r_{-}\left(\phi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right\} \tag{6.25}
\end{equation*}
$$

describes all rarefactions $\left(\phi_{1}, \phi_{2}\right)$ satisfying the constraint (6.18). Similarly, the curve

$$
\begin{equation*}
\mathcal{R}_{+}\left(\phi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=\left\{\left(\phi_{1}, \varphi_{2}\right): \varphi_{1}<\varphi_{1}^{<}, \varphi_{2}=r_{+}\left(\phi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right\} \tag{6.26}
\end{equation*}
$$

describes all rarefactions $\left(\phi_{1}, \phi_{2}\right)$ satisfying the constraint (6.19). A straightforward argument shows that $\mathcal{R}_{-}\left(\cdot, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$decreases monotonically over its domain. Thus, given $\varphi_{2}=r_{-}\left(\cdot, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$, we may write $\varphi_{1}=\mathcal{R}_{-}^{-1}\left(\varphi_{2}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$. Fig. 7 depicts \mathcal{R}_{+}and \mathcal{R}_{-}for an arbitrary choice of $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$.

6.1.3. Solutions of the Riemann problem

Given packing fractions $\varphi_{1}^{<}$and $\varphi_{2}^{<}$consistent with $0<\varphi_{1}^{<}+\varphi_{2}^{<}<1$, the curves

$$
\begin{equation*}
\mathcal{C}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=\mathcal{D}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right) \cup \mathcal{R}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right) \tag{6.27}
\end{equation*}
$$

Figure 7. The phase portrait of states $\left(\varphi_{1}, \varphi_{2}\right)$ connecting to the right of $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$
and

$$
\begin{equation*}
\mathcal{C}_{+}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=\mathcal{D}_{+}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right) \cup \mathcal{R}_{+}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right) \tag{6.28}
\end{equation*}
$$

divide the region \mathcal{A} into four subregions $\mathcal{A}_{1}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right), \mathcal{A}_{2}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right), \mathcal{A}_{3}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$, and $\mathcal{A}_{4}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$ (see Fig. 7) where

$$
\left.\begin{array}{c}
\mathcal{A}_{1}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)=\left\{\left(\varphi_{1}, \varphi_{2}\right) \in \mathcal{A}: \varphi_{1}^{<}<\varphi_{1}\right. \\
\left.\mathcal{D}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right) \leq \varphi_{2} \leq \mathcal{D}_{+}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right\} \\
\mathcal{A}_{2}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)=\left\{\left(\varphi_{1}, \varphi_{2}\right) \in \mathcal{A}: \varphi_{2}^{<}>\varphi_{2}\right. \\
 \tag{6.29}\\
\left.\mathcal{R}_{-}^{-1}\left(\varphi_{2}, \varphi_{1}^{<}, \varphi_{2}^{<}\right) \leq \varphi_{1} \leq \mathcal{D}_{+}^{-1}\left(\varphi_{2}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right\}, \\
\mathcal{A}_{3}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)=\left\{\left(\varphi_{1}, \varphi_{2}\right) \in \mathcal{A}: \varphi_{1}^{<}>\varphi_{1},\right. \\
\\
\left.\mathcal{R}_{+}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right) \leq \varphi_{2} \leq \mathcal{R}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right\} \\
\mathcal{A}_{4}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)=\mathcal{A} \backslash\left(\mathcal{A}_{1}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right) \cup \mathcal{A}_{2}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right) \cup \mathcal{A}_{3}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)\right)
\end{array}\right\}
$$

Hence, if $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$lies in any of the four regions $\mathcal{A}_{i}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)(i=1,2,3,4)$, we can find an admissible state $\left(\varphi_{1}, \varphi_{2}\right)$ lying in $\mathcal{C}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$and also the nature of the solution (i.e. discontinuities or rarefactions) as follows: Consider the family of curves (Fig. 8), $\Im=\left\{\mathcal{C}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right):\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right) \in \mathcal{C}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right\}$. Since the region \mathcal{A} is closed and bounded, the $\left(\varphi_{1}, \varphi_{2}\right)$-plane is covered univalently by the family of curves \Im; that is, through each point $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$, there passes exactly one curve $\mathcal{C}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ belonging to S.

- Let $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$lie in $\mathcal{A}_{1}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$. As shown in Fig. 9a, for each $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$, there is a unique point $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right) \in \mathcal{C}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$for which the curve $\mathcal{C}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ belongs to \Im and passes through $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$. However, in $\mathcal{A}_{1}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$,

$$
\mathcal{C}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=\mathcal{D}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)
$$

and

$$
\mathcal{C}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right)=\mathcal{D}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right) .
$$

Hence, $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ is connected to $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$on the right by a discontinuity that satisfies the constraint (6.9). Similarly, $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$is connected to $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ on the right by a discontinuity that satisfies the constraint (6.10). The problem is completely solved once ($\bar{\varphi}_{1}, \bar{\varphi}_{2}$) is determined. To this purpose, we solve $\varphi_{2}^{>}=d_{+}\left(\varphi_{1}^{>}, \bar{\varphi}_{1}, d_{-}\left(\bar{\varphi}_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right)$for $\bar{\varphi}_{1}$. Given $\bar{\varphi}_{1}$, we have $\bar{\varphi}_{2}=d_{-}\left(\bar{\varphi}_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$.

- Let $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$lie in $\mathcal{A}_{2}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$. As shown in Fig. 9b, for each $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$, there is a unique point $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right) \in \mathcal{C}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$for which the curve $\mathcal{C}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ belongs to \Im and passes through $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$. However, in $\mathcal{A}_{2}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$,

$$
\mathcal{C}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=\mathcal{R}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)
$$

and

$$
\mathcal{C}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right)=\mathcal{D}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right)
$$

Hence, $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ is connected to $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$on the right by a rarefaction that satisfies the constraint (6.18). Similarly, $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$is connected to $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ on the right by a discontinuity that satisfies the constraint (6.10). The problem is completely solved once ($\bar{\varphi}_{1}, \bar{\varphi}_{2}$) is determined. To this purpose, we solve $\varphi_{2}^{>}=d_{+}\left(\varphi_{1}^{>}, \bar{\varphi}_{1}, r_{-}\left(\bar{\varphi}_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right)$for $\bar{\varphi}_{1}$. Given $\bar{\varphi}_{1}$, we have $\bar{\varphi}_{2}=r_{-}\left(\bar{\varphi}_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$.

- Let $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$lie in $\mathcal{A}_{3}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$. As shown in Fig. 9c, for each $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$, there is a unique point $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right) \in \mathcal{C}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$for which the curve $\mathcal{C}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ belongs to \Im and passes through $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$. However, in $\mathcal{A}_{3}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$,

$$
\mathcal{C}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=\mathcal{R}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)
$$

and

$$
\mathcal{C}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right)=\mathcal{R}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right)
$$

Hence, $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ is connected to $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$on the right by a rarefaction that satisfies the constraint (6.18). Similarly, $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$is connected to $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ on the right by a rarefaction that satisfies the constraint (6.19). The problem is completely solved once ($\bar{\varphi}_{1}, \bar{\varphi}_{2}$) is determined. To this purpose, we solve $\varphi_{2}^{>}=r_{+}\left(\varphi_{1}^{>}, \bar{\varphi}_{1}, r_{-}\left(\bar{\varphi}_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right)$for $\bar{\varphi}_{1}$. Given $\bar{\varphi}_{1}$, we have $\bar{\varphi}_{2}=r_{-}\left(\bar{\varphi}_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$.

- Let $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$lie in $\mathcal{A}_{4}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$. As shown in Fig. 9d, for each $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$, there is a unique point $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right) \in \mathcal{C}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$for which the curve $\mathcal{C}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ belongs to \Im and passes through $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$. However, in $\mathcal{A}_{4}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$,

$$
\mathcal{C}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)=\mathcal{D}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)
$$

and

$$
\mathcal{C}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right)=\mathcal{R}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right)
$$

Hence, $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ is connected to $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$on the right by a discontinuity that satisfies the constraint (6.9). Similarly, $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$is connected to $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ on the right by a rarefaction that satisfies the constraint (6.19). The problem is completely solved once ($\bar{\varphi}_{1}, \bar{\varphi}_{2}$) is determined. To this purpose, we solve $\varphi_{2}^{>}=r_{+}\left(\varphi_{1}^{>}, \bar{\varphi}_{1}, d_{-}\left(\bar{\varphi}_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right)$for $\bar{\varphi}_{1}$. Once $\bar{\varphi}_{1}$ is determined, we use $\bar{\varphi}_{2}=d_{-}\left(\bar{\varphi}_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)$to find $\bar{\varphi}_{2}$.

Figure 8. Definition of the family of states $\Im=\left\{\mathcal{C}_{+}\left(\varphi_{1}, \bar{\varphi}_{1}, \bar{\varphi}_{2}\right):\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right) \in \mathcal{C}_{-}\left(\varphi_{1}, \varphi_{1}^{<}, \varphi_{2}^{<}\right)\right\}$

Figure 9. Solution of the Riemann problem when $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$lies in (a) $\mathcal{A}_{1}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$, (b) $\mathcal{A}_{2}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$, (c) $\mathcal{A}_{3}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$, and (d) $\mathcal{A}_{4}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$

Figure 10. The states $\left(\varphi_{1}, \varphi_{2}\right)$ connecting to the right of $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)=(0.2,0.5)$. Here, $\left(\alpha_{1}, \alpha_{2}\right)=(0.4,0.1)$

Figure 11. Solution of the Riemann problem when $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)=(0.9,0.0)$ lies in $\mathcal{A}_{1}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$

Figure 12. Solution of the Riemann problem when $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)=(0.8,0.0)$ lies in $\mathcal{A}_{2}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$

Figure 13. Solution of the Riemann problem when $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)=(0.0,0.0)$ lies in $\mathcal{A}_{3}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$

Figure 14. Solution of the Riemann problem when $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)=(0.0,0.9)$ lies in $\mathcal{A}_{4}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$

Figure 15. The effect of varying α_{1} on the states $\left(\varphi_{1}, \varphi_{2}\right)$ connecting to the right of $\left(\varphi_{1}^{<}, \varphi_{2}^{く}\right)=(0.2,0.2)$

The presence of discontinuities or rarefactions depends on the rate in which voids are generated and the mobilities of particles of type 1 and type 2 . In the region $\mathcal{A}_{1}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$, the rates at which particles of type 1 and type 2 diffuse to fill voids exceeds the rate in which voids are generated, resulting in a solution involving discontinuities. However, in $\mathcal{A}_{2}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right), \mathcal{A}_{3}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$or $\mathcal{A}_{4}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$, the rates at which voids are generated exceeds the rates at which particles of either type diffuse. This results in solutions involving rarefactions only (as in $\mathcal{A}_{3}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$) or combinations of rarefactions and discontinuities (as in $\mathcal{A}_{2}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$or $\mathcal{A}_{4}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$).

As an illustration, we present numerical results generated by CLAWPACK for the case $\left(\alpha_{1}, \alpha_{2}\right)=(0.4,0.1)$ and $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)=(0.2,0.5)$. Fig. 10 describes all possible states connecting to the right of $(0.2,0.5)$. The solution of the Riemann problem (6.1) for the cases when $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)$lies in $\mathcal{A}_{1}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right), \mathcal{A}_{2}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right), \mathcal{A}_{3}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$or $\mathcal{A}_{4}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$is shown in Fig. 11, 12, 13, and 14, respectively.

Fig. 15 depict the influence of the dimensionless effective mobility α_{1}, in the case $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)=(0.2,0.2)$. As we increase α_{1}, the area of the region $\mathcal{A}_{1}\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)$, where the solution is described only by discontinuities (or where the rate at which the particles diffuse exceeds the rate at which the volume fraction of the voids increases) diminishes. Thus, as the size of particles of type 1 decreases, solutions involving rarefactions become more likely.

6.2. Application

Here, we use the results concerning the Riemann problem to establish the uniqueness of the solution (in Section 5) in the case of a mixture of small and large particles. In this case, the solution is the union of:

- a uniform state bounded by a free surface $\mathcal{S}_{\text {free }}$ and a segregation shock $\mathcal{S}_{\text {seg }}$ and involving only large particles with packing fraction

$$
\begin{align*}
& \varphi_{2}=-\frac{1}{2}\left(\frac{\alpha_{1}\left(1-\stackrel{\circ}{\varphi}_{1}-\stackrel{\circ}{\varphi}_{2}\right)}{\alpha_{2}}-1\right) \\
&+\frac{1}{2} \sqrt{\left(\frac{\alpha_{1}\left(1-\stackrel{\circ}{\varphi}_{1}-\stackrel{\circ}{\varphi}_{2}\right)}{\alpha_{2}}-1\right)^{2}+4\left(\frac{\alpha_{1}}{\alpha_{2}}-1\right) \stackrel{\circ}{\varphi}_{2}\left(1-\stackrel{\circ}{\varphi}_{1}-\stackrel{\circ}{\varphi}_{2}\right)} \tag{6.30}
\end{align*}
$$

- a mixed uniform state bounded by the segregation shock $\mathcal{S}_{\text {seg }}$ and a compaction shock $\mathcal{S}_{\text {com }}$ and involving small and large particles with packing fractions $\varphi_{1}=\stackrel{\circ}{\varphi}_{1}$ and $\varphi_{2}=\stackrel{\circ}{\varphi}_{2}$;
- a mixed uniform state closely-packed bounded by the container base and the compaction shock $\mathcal{S}_{\text {com }}$ until the time T_{1}, by the container base and $\mathcal{S}_{\text {seg }}$ after T_{1}, and involving small and large particles with packing fractions

$$
\begin{equation*}
\varphi_{1}^{*}=\stackrel{\circ}{\varphi}_{1}+\frac{\left(1-\stackrel{\circ}{\varphi}_{1}-\stackrel{\circ}{\varphi}_{2}\right) \alpha_{1} \stackrel{\circ}{\varphi}_{1}}{\alpha_{1} \stackrel{\circ}{\varphi}_{1}+\alpha_{2} \stackrel{\circ}{\varphi}_{2}}, \quad \varphi_{2}^{*}=\stackrel{\circ}{\varphi}_{2}+\frac{\left(1-\stackrel{\circ}{\varphi}_{1}-\stackrel{\circ}{\varphi}_{2}\right) \alpha_{2} \stackrel{\circ}{\varphi}_{2}}{\alpha_{1} \stackrel{\circ}{\varphi}_{1}+\alpha_{2} \stackrel{\circ}{\varphi}_{2}} \tag{6.31}
\end{equation*}
$$

- a uniform closely-packed state bounded by a compaction shock $\mathcal{S}_{\text {com }}$ and the segregation shock $\mathcal{S}_{\text {seg }}$ until the time T_{2}, by the free surface and $\mathcal{S}_{\text {seg }}$ after T_{2} and involving only large particles with packing fraction $\varphi_{1}=1$.
Prior to the instant $T_{1}=\frac{1}{\alpha_{1}\left(1-\stackrel{\circ}{\varphi}_{2}\right)+\alpha_{2} \stackrel{\circ}{\varphi}_{2}}, V_{\text {seg }}=\alpha_{1}\left(1-\stackrel{\circ}{\varphi}_{1}-\stackrel{\circ}{\varphi}_{2}\right), V_{\text {com }}=-\left(\alpha_{1} \stackrel{\circ}{\varphi}_{1}+\alpha_{2} \stackrel{\circ}{\varphi}_{2}\right)$ and $V_{\text {free }}=\alpha_{1}\left(1-\varphi_{2}\right)$, with φ_{2} given by (6.30). Between the instants T_{1} and $T_{2}=$
$\frac{\frac{\alpha_{1}}{\alpha_{2}}\left(1-\stackrel{\circ}{\varphi}_{1}-\stackrel{\circ}{\varphi}_{2}\right)}{\alpha_{1}\left(1-\stackrel{\varphi}{2}_{2}\right)+\alpha_{2} \stackrel{\odot}{\varphi}_{2}}, V_{\text {com }}=-\alpha_{2} \varphi_{2}$, with φ_{2} given once again by (6.30). Subsequent to T_{2}, $V_{\mathrm{seg}}=0$.

Concerning this solution, we have the following
Theorem 1. The solution delineated above solves uniquely the problem

$$
\left.\begin{array}{rl}
\frac{\partial \varphi_{1}}{\partial t} & =\alpha_{1} \frac{\partial}{\partial x}\left(\varphi_{1}\left(1-\varphi_{1}-\varphi_{2}\right)\right) \tag{6.32}\\
\frac{\partial \varphi_{2}}{\partial t} & =\alpha_{2} \frac{\partial}{\partial x}\left(\varphi_{2}\left(1-\varphi_{1}-\varphi_{2}\right)\right),
\end{array}\right\}
$$

subject to the initial conditions

$$
\varphi_{k}(x, 0)= \begin{cases}0 & \text { if } x>1 \tag{6.33}\\ \dot{\varphi}_{k} & \text { if } 0<x \leq 1\end{cases}
$$

the jump conditions

$$
\left.\begin{array}{l}
\llbracket \varphi_{1} \rrbracket V_{\text {shock }}=-\alpha_{1} \llbracket \varphi_{1}\left(1-\varphi_{1}-\varphi_{2}\right) \rrbracket, \tag{6.34}\\
\llbracket \varphi_{2} \rrbracket V_{\text {shock }}=-\alpha_{2} \llbracket \varphi_{2}\left(1-\varphi_{1}-\varphi_{2}\right) \rrbracket,
\end{array}\right\}
$$

across any shock (moving with velocity $V_{\text {shock }}$), the condition

$$
\begin{equation*}
\alpha_{k}\left(1-\varphi_{1}-\varphi_{2}\right)=V_{\text {free }}, \quad k=1,2 \tag{6.35}
\end{equation*}
$$

for particles of type k at a free surface (moving with velocity $V_{\text {free }}$), and condition

$$
\begin{equation*}
\varphi_{1}+\varphi_{2}=1 \tag{6.36}
\end{equation*}
$$

at the base.
Proof. We first show that rarefactions may not issue from the points $(x, t)=(1,0)$ and $(x, t)=(0,0)$ corresponding to the initial free surface and to the base. Suppose that, at $t=0$, a rarefaction occurs at $x=1$. Then

$$
\begin{equation*}
\lambda_{ \pm}(0,0)<\lambda_{ \pm}\left(\phi_{1}(\xi), \phi_{2}(\xi)\right), \quad \xi=\frac{x}{t} \tag{6.37}
\end{equation*}
$$

However, from (6.6), $\lambda_{-}(0,0)=\alpha_{2}$ and $\lambda_{-}\left(\phi_{1}, \phi_{2}\right)<\alpha_{2}\left(1-\phi_{1}-2 \phi_{2}\right)$. Thus, by (6.37), $\alpha_{2}<\alpha_{2}\left(1-\phi_{1}-2 \phi_{2}\right)$ or $\phi_{1}+2 \phi_{2}<0$, which cannot occur since ϕ_{1} and ϕ_{2} must be in \mathcal{A}. Thus, the first characteristic does not give rise to a rarefaction. Similarly, from (6.6), $\lambda_{+}(0,0)=\alpha_{1}$ and $\lambda_{+}\left(\phi_{1}, \phi_{2}\right)<\alpha_{1}$. Thus, by (6.37), $\alpha_{1}=\lambda_{2}\left(\phi_{1}, \phi_{2}\right)<\alpha_{1}$, which cannot hold. Hence, by contradiction, no rarefactions may emanate from $(x, t)=(1,0)$. At the base $(x=1)$, the state $\left(\varphi_{1}, \varphi_{2}\right)$ connecting to the right of the state $\left(\stackrel{\circ}{\varphi}_{1}, \stackrel{\circ}{\varphi}_{2}\right)$ satisfies the relation $1-\varphi_{1}-\varphi_{2}=0$. Such a state must lie on the intersection of $\mathcal{D}_{-}\left(\varphi_{1}, \stackrel{\circ}{\varphi}_{1}, \stackrel{\circ}{\varphi}_{2}\right)$ with the line $\varphi_{1}+\varphi_{2}=1$. Hence, the characteristic at $x=1$ satisfies only (6.9) and is not a rarefaction. Thus, by contradiction, no rarefactions may emanate from $(x, t)=(0,0)$.

At the point $(x, t)=\left(X_{1}, T_{1}\right)$, with $X_{1}=\frac{\alpha_{1}\left(1-\dot{\varphi}_{1}-\dot{\varphi}_{2}\right)}{\alpha_{1}\left(1-\dot{\varphi}_{2}\right)+\alpha_{2} \dot{\varphi}_{2}}$, the segregation shock $S_{\text {seg }}$ and the compaction shock $S_{\text {com }}$ meet. To understand the nature of the solution at $t=T_{1}$, we solve for (6.32) subject to the condition $\left(\varphi_{1}\left(x<X_{1}, t=T_{1}\right), \varphi_{2}\left(x<X_{1}, t=T_{1}\right)\right)=$ $\left(0, \varphi_{2}\right)$ and $\left(\varphi_{1}\left(x \geq X_{1}, t=T_{1}\right), \varphi_{2}\left(x \geq X_{1}, t=T_{1}\right)\right)=\left(\varphi_{1}^{*}, \varphi_{2}^{*}\right)$ where φ_{2} is given as in (6.30) and $\left(\varphi_{1}^{*}, \varphi_{2}^{*}\right)$ as in (6.31). If ($\bar{\varphi}_{1}, \bar{\varphi}_{2}$) denotes an admissible state connecting to the right of $\left(0, \varphi_{2}\right)$ by a rarefaction, then (6.24) together with constraints (6.18) and (6.19)
imply that $\varphi_{1}<0$. This falls outside the domain \mathcal{A}. Hence, a rarefaction cannot emanate from $(x, t)=\left(X_{1}, T_{1}\right)$.

At the point $(x, t)=\left(X_{2}, T_{2}\right)$, with $X_{2}=\frac{\alpha_{2}\left(1-\varphi_{2}\right) X_{1}}{\alpha_{1}}$ and φ_{2} given by (6.30), the free surface $S_{\text {free }}$ and the compaction shock $S_{\text {com }}$ meet. To understand the nature of the solution at $t=T_{2}$, we solve for (6.32) subject to the condition $\left(\varphi_{1}\left(x<X_{2}\right.\right.$, $t=$ $\left.\left.T_{2}\right), \varphi_{2}\left(x<X_{2}, t=T_{2}\right)\right)=(0,0)$ and $\left(\varphi_{1}\left(x \geq X_{2}, t=T_{2}\right), \varphi_{2}\left(x \geq X_{2}, t=T_{2}\right)\right)=(0,1)$. Following a proof identical to that used in the case of the point $(x, t)=(1,0)$, we conclude that a rarefaction cannot emanate from $\left(X_{2}, T_{2}\right)$.

Hence the solution cannot involve rarefactions. To complete the proof, we rely on the analysis of the Riemann problem detailed above.

- At the point $(x, t)=(1,0)$, we can regard $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)=(0,0)$ and $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)=\left(\stackrel{\circ}{\varphi}_{1}, \stackrel{\circ}{\varphi}_{2}\right)$. Since the admissible state $\left(\varphi_{1}, \varphi_{2}\right)$ lies in $D_{-}\left(\varphi_{1}, \varphi_{1}^{<}=0, \varphi_{2}^{<}=0\right)$, it follows that this state is connected to $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)=(0,0)$ by a discontinuity (the free surface) that satisfies the constraint (6.9) together with the jump conditions

$$
\left.\begin{array}{l}
\alpha_{1} \varphi_{1}\left(1-\varphi_{1}-\varphi_{2}\right)=V_{\text {free }} \varphi_{1} \tag{6.38}\\
\alpha_{2} \varphi_{2}\left(1-\varphi_{1}-\varphi_{2}\right)=V_{\text {free }} \varphi_{2}
\end{array}\right\}
$$

This implies that $\varphi_{1}=0$ and that $V_{\text {free }}=\alpha_{2}\left(1-\varphi_{2}\right)$. To determine φ_{2}, we note that $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)=\left(\stackrel{\circ}{\varphi}_{1}, \stackrel{\circ}{\varphi}_{2}\right)$ lies in $D_{+}\left(\varphi_{1}^{>}=\stackrel{\circ}{\varphi}_{1}, 0, \varphi_{2}\right)$. Hence, the state $\left(0, \varphi_{2}\right)$ is connected to $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)=\left(\stackrel{\grave{\varphi}}{1}^{,}, \stackrel{\circ}{\varphi}_{2}\right)$ by a discontinuity (the segregation shock) satisfying the constraint (6.10) along with the jump conditions

$$
\left.\begin{array}{c}
\alpha_{1} \varphi_{1}\left(1-\varphi_{1}-\varphi_{2}\right)-\alpha_{1} \dot{\varphi}_{1}\left(1-\dot{\varphi}_{1}-\dot{\varphi}_{2}\right)=V_{\mathrm{seg}}\left(\varphi_{1}-\dot{\varphi}_{1}\right) \tag{6.39}\\
\alpha_{2} \varphi_{2}\left(1-\varphi_{1}-\varphi_{2}\right)-\alpha_{2} \stackrel{\circ}{2}_{2}\left(1-\stackrel{\circ}{\varphi}_{1}-\stackrel{\circ}{\varphi}_{2}\right)=V_{\mathrm{seg}}\left(\varphi_{2}-\stackrel{\circ}{\varphi}_{2}\right)
\end{array}\right\}
$$

The above conditions implies that $V_{\text {seg }}=\alpha_{1}\left(1-\stackrel{\circ}{\varphi}_{1}-\stackrel{\circ}{\varphi}_{2}\right)$ and that φ_{2} given by (6.30). Since $\alpha_{1}>\alpha_{2}$ and $1-\stackrel{\circ}{\varphi}_{1}-\stackrel{\circ}{\varphi}_{2}>0$, it follows that (6.30) has only one positive real root φ_{2} and that $\varphi_{2}<1$. Hence, the root of (6.30) yields a packing fraction.

- At the point $(x, t)=(0,0)$, the state $\left(\varphi_{1}^{*}, \varphi_{2}^{*}\right)$ connecting to the right of $\left(\stackrel{\circ}{\varphi}_{1}, \stackrel{\circ}{\varphi}_{2}\right)$ satisfies the relation $\varphi_{1}^{*}+\varphi_{2}^{*}=1$. However, from (6.6) it follows that $\lambda_{-}\left(\varphi_{1}^{*}, \varphi_{2}^{*}\right)=0$ and $\lambda_{+}\left(\varphi_{1}^{*}, \varphi_{2}^{*}\right)=-\left(\alpha_{1} \varphi_{1}^{*}+\alpha_{2} \varphi_{2}^{*}\right)$. Since one of the eigenvalues is constant, a contact discontinuity (the compaction shock) emanates from the base. From the jump conditions

$$
\left.\begin{array}{c}
\alpha_{1} \stackrel{\circ}{\varphi}_{1}\left(1-\stackrel{\circ}{\varphi}_{1}-\stackrel{\circ}{\varphi}_{2}\right)=-V_{\mathrm{com}}\left(\varphi_{1}^{*}-\stackrel{\circ}{\varphi}_{1}\right) \tag{6.40}\\
\alpha_{2} \stackrel{\circ}{\varphi}_{2}\left(1-\stackrel{\circ}{\varphi}_{1}-\stackrel{\circ}{\varphi}_{2}\right)=-V_{\mathrm{com}}\left(\varphi_{2}^{*}-\stackrel{\circ}{\varphi}_{2}\right),
\end{array}\right\}
$$

and the condition $\varphi_{1}^{*}+\varphi_{2}^{*}=1$, it follows that $V_{\text {com }}=-\left(\alpha_{1} \stackrel{\circ}{\varphi}_{1}+\alpha_{2} \stackrel{\circ}{\varphi}_{2}\right)$ and $\left(\varphi_{1}^{*}, \varphi_{2}^{*}\right)$ is given as in (6.31).

- At the point $(x, t)=\left(X_{1}, T_{1}\right)$, we can regard $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)=\left(0, \varphi_{2}\right)$ and $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)=$ $\left(\varphi_{1}^{*}, \varphi_{2}^{*}\right)$, where $\varphi_{1}^{*}+\varphi_{2}^{*}=1$. Since the admissible state $\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right)$ lies in $\mathcal{D}_{-}\left(\bar{\varphi}_{1}, 0, \varphi_{2}^{<}=\varphi_{2}\right)$, this state must be connected to $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)=\left(0, \varphi_{2}\right)$ by a discontinuity (a compaction shock) that satisfies the constraint (6.9) along with the jump conditions

$$
\left.\begin{array}{rl}
\alpha_{1} \bar{\varphi}_{1}\left(1-\bar{\varphi}_{1}-\bar{\varphi}_{2}\right) & =V_{\mathrm{com}} \bar{\varphi}_{1} \tag{6.41}\\
\alpha_{2} \bar{\varphi}_{2}\left(1-\bar{\varphi}_{1}-\bar{\varphi}_{2}\right)-\alpha_{2} \varphi_{2}\left(1-\varphi_{2}\right) & =V_{\mathrm{com}}\left(\bar{\varphi}_{2}-\varphi_{2}\right)
\end{array}\right\}
$$

This implies that $\bar{\varphi}_{1}=0$ and that $V_{\text {com }}=-\alpha_{2} \varphi_{2}$. To determine $\bar{\varphi}_{2}$, we note that $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)=\left(\varphi_{1}^{*}, \varphi_{2}^{*}\right)$ lies in $\mathcal{D}_{+}\left(\varphi_{1}^{*}, 0, \bar{\varphi}_{2}\right)$. Hence, the state $\left(0, \varphi_{2}\right)$ is connected to $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)=$ $\left(\varphi_{1}^{*}, \varphi_{2}^{*}\right)$ by a discontinuity (the segregation shock) that satisfies the constraint (6.10)
along with the jump conditions

$$
\left.\begin{array}{rl}
\alpha_{1} \varphi_{1}^{*}\left(1-\varphi_{1}^{*}-\varphi_{2}^{*}\right) & =V_{\mathrm{seg}}\left(-\varphi_{1}^{*}\right), \tag{6.42}\\
\alpha_{2} \bar{\varphi}_{2}\left(1-\bar{\varphi}_{1}-\bar{\varphi}_{2}\right)-\alpha_{2} \varphi_{2}^{*}\left(1-\varphi_{1}^{*}-\varphi_{2}^{*}\right) & =V_{\operatorname{seg}}\left(\bar{\varphi}_{2}-\varphi_{2}^{*}\right)
\end{array}\right\}
$$

The above conditions imply that $V_{\text {seg }}=0$ and $\varphi_{2}=1$.

- At the point $(x, t)=\left(X_{2}, T_{2}\right)$, we can regard $\left(\varphi_{1}^{<}, \varphi_{2}^{<}\right)=(0,0)$ and $\left(\varphi_{1}^{>}, \varphi_{2}^{>}\right)=(0,1)$. Proceeding exactly as in the case of the point $(x, t)=(0,0)$, it follows that the solution can be described by a contact discontinuity (the free surface) separating the free surface from the compacted layer where $\left(\varphi_{1}, \varphi_{2}\right)=(0,1)$.

7. Discussion

Using a model proposed by Fried et al. (2001), we have studied size-based segregation occuring under the action of gravity. For a flow with constant velocity, the model reduces to a system of one-dimensional conservation laws. We have presented a solution for a particular initial-value problem involving a mixture of particles of $K \geq 2$ sizes. This solution shows segregation and compaction by particle size. At steady state, this solution consists of layers of closely packed particles, with the upper-most layer consisting only of particles of the largest size. Numerical solutions for $K=3$ particles were computed using LeVeque's (1994) CLAWPACK. Relying on methods developed by Smoller (1994), we established the uniqueness of the solution for the case $K=2$ of a mixture of small and large particles. The issue of uniqueness in the case $K>2$ remains open.

The problem considered here is idealized in the sense that the flow field is trivial. Furthermore, we have ignored variations of the particulate mobilities with the strain-rate. As discussed by Fried et al. (2001), such variations should rule out particle diffusion in the absence of sufficient agitation. Under flow conditions more general than those considered here, strain-rate dependence of the mobilities would allow for the existence of regions in which particles would simply move with the mixture. Compaction and segregation would thus be confined to regions of sufficiently high agitation.

REFERENCES

Ancey, C., Evesque, P. \& Coussot, P. 1996 Motion of a single bead on a bead row: theoretical investigations. J. Physique 6, 725-751
Arnarson, B. Ö. \& Jenkins J. T. 2000 Particle segregation in the context of species momentum balances. In Traffic and Granular Flow'g9 (ed. D. Helberg, H. J. Herrmann, M. Schreckenberg \& D. E. Wolf), pp. 481-487. Springer.
Arnarson, B. Ö. \& Willits, J. T. 1998 Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys. Fluids. 10, 1324-1328
Bagnold, R. A. 1954 Experiments on a gravity-free dispersion of large solid sphere in a newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 49-63
Dolgunin, V. N. \& Ukolov, A. A. 1995 Segregation modeling of particle rapid flow. Powder Tech. 83, 95-103
Fried, E., Gurtin, M. E. \& Hutter, K. 2001 A void based description of Compaction and Segregation in flowing granular materials. TAM Report No. 979, UIUC.
Gallas, J. A. C., Herrmann, H. J., Poschel, T. \& Sokolowski, S. 1996 Molecular dynamics simulation of size segregation in three dimensions. J. Stat. Phys. 82, 443-450
Hanes, D. M. \& Inman, D. L. 1985 Observations of rapidly flowing granular-fluid materials. J. Fluid Mech. 150, 357-380

Herrmann, H. J. \& Luding, S. 1998 Modeling granular material on the computer. Continuum Mech. Thermodyn. 10, 189-231

Hirshfeld, D. \& Rapaport, D. C. 1997 Molecular dynamics of grain segregation in sheared flow. Phys. Rev. E 56, 2012-2018
Hong, D. C., Quinn, P. V. \& Luding, S. 2001 Reverse Brazil nut problem: Competition between percolation and Condensation. Phys. Rev. Lett. 86, 3423-3426
Hutter, K. \& Rajagopal, K. R. 1994 On flows of Granular Materials. Continuum Mech. and Thermodyn. 6, 81-139
Jenkins, J. T. 1998 Particle segregation in collisional flows of inelastic spheres. In Physics of Dry Granular Media (ed. H. J. Herrmann, J. P. Hovig \& S. Ludig), pp. 645-658. Kluwer.
Jenkins, J. T. \& Mancini, F. 1989 Kinetic theory for mixtures of smooth, nearly elastic spheres. Phys. Fluids A 1, 2050-2057
Jenkins, J. T. \& Savage, S. B. 1983 Theory for the rapid flow of identical, smooth, nearly elastic spherical particles. J. Fluid Mech. 130, 187-202
Johnson, P. C., Nott, P. \& Jackson, R. 1990 Frictional-Collisional equations of motion for particulate flows and their application to chute flows. J. Fluid Mech. 210, 501-535
Lax, P. 1957 Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math. 10, 537-566
LeVEQUE, R. 1994 http://www.amath.washington.edu/~ ${ }^{\text {claw/doc.html }}$
Lun, C. K. K., Savage, S. B., Jeffrey, D. J. \& Chepurniy, N. 1984 Kinetic theory for granular flow: Inelastic particles in couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech. 146, 223-256
Makse, H. A. \& Kurchan, J. 2002 Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment. Nature 415, 614-617
Moaker, M., Shinbrot, T. \& muzzio, F. J. 2000 Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders. Powder Tech. 109, 58-71
Ohtsuki, T., Takemoto, Y. , Hata, T. , Kawai, S. \& Hayashi, A. 1993 Molecular-Dynamics study of cohesionless granular materials- Size segregation by shaking. Int. Jl. Mod. Phys. B, 7, 1865-1872
Poschel, T., Schwager, T. \& Salreena, C. 2000 Onset of fluidization in vertically shaken granular material. Phys. Rev. E, 62, 1361-1367
Ristow, G. H. 2000 Pattern Formation in Granular Materials. Springer.
Roe, P. L. 1981 Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comp. Phys. 43, 357-372
Savage, S. B. 1984 Mechanics of rapid granular flow. Adv. Appl. Mech. 24, 289-366
Shinbrot, T., Zeggio, M. \& Muzzio, F. J. 2001 Computational approaches to granular segregation in tumbling blenders. Powder Tech. 116, 224-231
Shoichi, S. 1998 Molecular-Dynamics simulations of granular axial segregation in a rotating cylinder. Mod. Phys. Lett. B 12, 115-122
Smith, L., Baxter, J., Tuzun, U. \& Heyes, D. M. 2001 Granular dynamics simulations of heap formation: Effects of feed rate on segregation patterns in binary granular heap. J. Eng. Mech., 127, 1000-1006
Smoller, J. 1994 Shock Waves and Reaction-Diffusion Equations, $2^{\text {nd }}$ edition, Springer.
Thompson, P. A. \& Grest, G. S. 1991 Granular flow: Friction and the dilatancy transition Phys. Rev. Lett. 67, 1751-1754.
Toro, E. F. 1997 Riemann Solvers and numerical Methods for Fluid Dynamics, $2^{\text {nd }}$ edition, Springer.
Wang, Y. \& Hutter, K. 2001 Granular material theories revisted. In Hot, Cold and Dirty Fluids: Selected Topics in Geological and Geomorphological Fluid Mechanics (ed. N. J. Balmforth \& A. Provenzale), Springer.

No. Authors
Title

921 Zhang, S., and K. J. Hsia

Modeling the fracture of a sandwich structure due to cavitation in a ductile adhesive layer - Journal of Applied Mechanics 68, 93-100 (2001)

922 Nimmagadda, P. B. R., Leading order asymptotics at sharp fiber corners in creeping-matrix and P. Sofronis composite materials

923 Yoo, S., and D. N. Riahi

924 Adrian, R. J., C. D. Meinhart, and C. D. Tomkins

925 Riahi, D. N., and A. T. Hsui

926 Kwok, W. Y., R. D. Moser, and J. Jiménez

927 Ferry, J. P., and S. Balachandar

928 Thoroddsen, S. T., and The coalescence-cascade of a drop - Physics of Fluids 12, 1257-1265 K. Takehara

929 Liu, Z.-C., R. J. Adrian, Large-scale modes of turbulent channel flow: Transport and and T. J. Hanratty structure - Journal of Fluid Mechanics 448, 53-80 (2001)
930 Borodai, S. G., anc R. D. Moser

931 Balachandar, S., and F. M. Najjar

932 Yoon, H. S., K. V. Sharp, D. F. Hill, R. J. Adrian, S. Balachandar, M. Y. Ha, and K. Kar

933 Sakakibara, J., Hishida, K., and W. R. C. Phillips

934 Phillips, W. R. C.
935 Hsui, A. T., and D. N. Riahi

936 Cermelli, P., E. Fried, and S. Sellers

937 Adrian, R. J., C. Meneveau, R. D. Moser, and J. J. Riley

938 Bagchi, P., and S. Balachandar

939 Gioia, G.,
Effects of a moving wavy boundary on channel flow instabilities Theoretical and Computational Fluid Dynamics (submitted)
Vortex organization in the outer region of the turbulent boundary
layer - Journal of Fluid Mechanics 422, 1-53 (2000)

Finite amplitude thermal convection with variable gravity -
International Journal of Mathematics and Mathematical Sciences 25, 153165 (2001)
A critical evaluation of the resolution properties of B-spline and compact finite difference methods - Journal of Computational Physics (submitted)
A fast Eulerian method for two-phase flow - International Journal of Multiphase Flow, in press (2000)
(2000)

The numerical decomposition of turbulent fluctuations in a compressible boundary layer - Theoretical and Computational Fluid Dynamics (submitted)
Optimal two-dimensional models for wake flows - Physics of Fluids, in press (2000)
Integrated experimental and computational approach to simulation of flow in a stirred tank - Chemical Engineering Sciences 56, 6635-
6649 (2001)

On the vortical structure in a plane impinging jet - Journal of Fluid Mechanics 434, 273-300 (2001)

Eulerian space-time correlations in turbulent shear flows - Physics of Fluids 12, 2056-2064 (2000)
Onset of thermal-chemical convection with crystallization within a
binary fluid and its geological implications - Geochemistry, Geophysics, Geosystems 2, 2000GC000075 (2001)
Configurational stress, yield, and flow in rate-independent
plasticity - Proceedings of the Royal Society of London A 457, 14471467 (2001)
Final report on 'Turbulence Measurements for Large-Eddy
Simulation' workshop

Linearly varying ambient flow past a sphere at finite Reynolds number - Part 1: Wake structure and forces in steady straining flow
Folding energetics in thin-film diaphragms-Proceedings of the Royal A. DeSimone, M. Ortiz, Society of London A 458, 1223-1229 (2002) and A. M. Cuitiño
940 Chaïeb, S., and Mixing immiscible fluids: Drainage induced cusp formation G. H. McKinley

941 Thoroddsen, S. T., and Granular jets - Physics of Fluids 13, 4-6 (2001) A. Q. Shen

Apr. 2000

Apr. 2000

Apr. 2000
Apr. 2000
Sept. 1999

Oct. 1999

Nov. 1999

Nov. 1999

Dec. 1999

Feb. 2000

Feb. 2000
Feb. 2000

Feb. 2000

Mar. 2000

Mar. 2000

Mar. 2000

Apr. 2000

Apr. 2000
Apr. 2000

May 2000

May 2000

List of Recent TAM Reports (cont'd)

No. Authors
Title
Date
942 Riahi, D. N.
Non-axisymmetric chimney convection in a mushy layer under a
high-gravity environment - In Centrifugal Materials Processing (L. L. Regel and W. R. Wilcox, eds.), 295-302 (2001)

943 Christensen, K. T.,
PIV Sleuth: Integrated particle image velocimetry interrogation/validation software
R. J. Adrian

944 Wang, J., N. R. Sottos, and R. L. Weaver
945 Riahi, D. N.

946 Gioia, G., Y. Wang,
and A. M. Cuitiño
946 Gioia, G., Y. Wang,
and A. M. Cuitiño
Laser induced thin film spallation-Experimental Mechanics (submitted)
Magnetohydrodynamic effects in high gravity convection during alloy solidification - In Centrifugal Materials Processing (L. L. Regel and W. R. Wilcox, eds.), 317-324 (2001)
The energetics of heterogeneous deformation in open-cell solid foams - Proceedings of the Royal Society of London A 457, 1079-1096 (2001)

947 Kessler, M. R., and S. R. White

Self-activated healing of delamination damage in woven composites - Composites A: Applied Science and Manufacturing 32, 683-699 (2001)
948 Phillips, W. R. C. On the pseudomomentum and generalized Stokes drift in a spectrum of rotational waves - Journal of Fluid Mechanics 430, 209229 (2001)
949 Hsui, A. T., and D. N. Riahi

950 Phillips, J. W.
Does the Earth's nonuniform gravitational field affect its mantle
convection? - Physics of the Earth and Planetary Interiors (submitted)
Abstract Book, 20th International Congress of Theoretical and
Applied Mechanics (27 August - 2 September, 2000, Chicago)
951 Vainchtein, D. L., and H. Aref

952 Chaïeb, S., E. SatoMatsuo, and T. Tanaka
953 Riahi, D. N., and
A. T. Hsui

954 Riahi, D. N.

955 Fried, E.
Morphological transition in compressible foam - Physics of Fluids
13, 2152-2160 (2001)
Shrinking-induced instabilities in gels
May 2000

May 2000

May 2000
June 2000

June 2000

June 2000

July 2000

July 2000
July 2000
July 2000
July 2000
A theoretical investigation of high Rayleigh number convection in a
nonuniform gravitational field - Acta Mechanica (submitted)
Effects of centrifugal and Coriolis forces on a hydromagnetic
chimney convection in a mushy layer - Journal of Crystal Growth 226, 393-405 (2001)
An elementary molecular-statistical basis for the Mooney and Rivlin-Saunders theories of rubber-elasticity - Journal of the Mechanics and Physics of Solids 50, 571-582 (2002)
956 Phillips, W. R. C. On an instability to Langmuir circulations and the role of Prandtl and Richardson numbers - Journal of Fluid Mechanics 442, 335-358 (2001)

957 Chaïeb, S., and J. Sutin Growth of myelin figures made of water soluble surfactant Proceedings of the 1st Annual International IEEE-EMBS Conference on Microtechnologies in Medicine and Biology (October 2000, Lyon, France), 345-348
958 Christensen, K. T., and Statistical evidence of hairpin vortex packets in wall turbulence-
R. J. Adrian

959 Kuznetsov, I. R., and D. S. Stewart

960 Zhang, S., K. J. Hsia, and A. J. Pearlstein

Journal of Fluid Mechanics 431, 433-443 (2001)
Modeling the thermal expansion boundary layer during the combustion of energetic materials - Combustion and Flame, in press (2001)

Potential flow model of cavitation-induced interfacial fracture in a confined ductile layer - Journal of the Mechanics and Physics of Solids, in press (2002)
961 Sharp, K. V.,
Liquid flows in microchannels - Chapter 6 of CRC Handbook of
MEMS (M. Gad-el-Hak, ed.) (2001)

Oct. 2000
Aug. 2000

Aug. 2000

Sept. 2000

Sept. 2000

Oct. 2000

Oct. 2000

Nov. 2000

Nov. 2000
R. J. Adrian, J. G. Santiago, and J. I. Molho

No. Authors
Title
Date

962 Harris, J. G.
963 Dong, F., A. T. Hsui, and D. N. Riahi

964 Phillips, W. R. C.
965 Bdzil, J. B., D. S. Stewart, and T. L. Jackson

966 Bagchi, P., and S. Balachandar

967 Cermelli, P., and E. Fried

968 Riahi, D. N.

Rayleigh wave propagation in curved waveguides - Wave Motion, Jan. 2001 in press (2001)
A stability analysis and some numerical computations for thermal
convection with a variable buoyancy factor-Journal of Theoretical and Applied Mechanics, in press (2002)
Langmuir circulations beneath growing or decaying surface waves - Journal of Fluid Mechanics (submitted)
Program burn algorithms based on detonation shock dynamics Journal of Computational Physics (submitted)

Linearly varying ambient flow past a sphere at finite Reynolds number: Part 2 - Equation of motion - Journal of Fluid Mechanics (submitted)
The evolution equation for a disclination in a nematic fluid Proceedings of the Royal Society A 458, 1-20 (2002)
Effects of rotation on convection in a porous layer during alloy solidification - Chapter in Transport Phenomena in Porous Media (D. B. Ingham and I. Pop, eds.), Oxford: Elsevier Science (2001)

969 Damljanovic, V., and Elastic waves in cylindrical waveguides of arbitrary cross section Journal of Sound and Vibration (submitted)
Two-phase densification of cohesive granular aggregates - Physical Review Letters 88, 204302 (2002) (in extended form and with added co-authors S. Zheng and T. Uribe)
971 Subramanian, S. J., and Calculation of a constitutive potential for isostatic powder P. Sofronis

972 Sofronis, P., and I. M. Robertson

973 Pushkin, D. O., and H. Aref

974 Lian, L., and N. R. Sottos

975 Fried, E., and R. E. Todres

976 Fried, E., and V. A. Korchagin

977 Riahi, D. N.

978 Sofronis, P., I. M. Robertson, Y. Liang, D. F. Teter, and N. Aravas
979 Fried, E., M. E. Gurtin, and K. Hutter

980 Adrian, R. J., S. Balachandar, and Z.-C. Liu

981 Adrian, R. J.
982 Adrian, R. J., and Z.-C. Liu

983 Fried, E., and R. E. Todres

984 Stewart, D. S.
compaction - International Journal of Mechanical Sciences (submitted)
Atomistic scale experimental observations and micromechanical/ continuum models for the effect of hydrogen on the mechanical behavior of metals - Philosophical Magazine (submitted)
Self-similarity theory of stationary coagulation — Physics of Fluids 14, July 2001 694-703 (2002)
Stress effects in ferroelectric thin films - Journal of the Mechanics and Aug. 2001
Physics of Solids (submitted)
Prediction of disclinations in nematic elastomers-Proceedings of the
National Academy of Sciences 98, 14773-14777 (2001)
Striping of nematic elastomers - International Journal of Solids and Structures 39, 3451-3467 (2002)
On nonlinear convection in mushy layers: Part I. Oscillatory modes
of convection - Journal of Fluid Mechanics, in press (2002)
Recent advances in the study of hydrogen embrittlement at the
University of Illinois - Invited paper, Hydrogen-Corrosion
Deformation Interactions (Sept. 16-21, 2001, Jackson Lake Lodge, Wyo.)
A void-based description of compaction and segregation in flowing granular materials-Proceedings of the Royal Society of London A (submitted)
Spanwise growth of vortex structure in wall turbulence - Korean
Society of Mechanical Engineers International Journal 15, 1741-1749 (2001)

Information and the study of turbulence and complex flowJapanese Society of Mechanical Engineers Journal B, in press (2002)
Observation of vortex packets in direct numerical simulation of fully turbulent channel flow - Journal of Visualization, in press (2002)
Disclinated states in nematic elastomers - Journal of the Mechanics
and Physics of Solids, in press (2002)
Towards the miniaturization of explosive technology - Proceedings of the 23rd International Conference on Shock Waves (2001)

Jan. 2001

Jan. 2001
Jan. 2001

Feb. 2001

Apr. 2001

Apr. 2001

May 2001
May 2001

June 2001
June 2001

Aug. 2001
Aug. 2001
Sept. 2001
Sept. 2001

Sept. 2001

Sept. 2001

Oct. 2001

Oct. 2001

Oct. 2001

Oct. 2001

No. Authors
Title
Date

985 Kasimov, A. R., and Stewart, D. S.
986 Brown, E. N., N. R. Sottos, and S. R. White

987 Phillips, W. R. C.
988 Gioia, G., and F. A. Bombardelli

989 Riahi, D. N.

Spinning instability of gaseous detonations - Journal of Fluid
Oct. 2001
Mechanics (submitted)
Fracture testing of a self-healing polymer composite-Experimental
Mechanics (submitted)
Langmuir circulations - Surface Waves (J. C. R. Hunt and S. Sajjadi, eds.), in press (2002)
Scaling and similarity in rough channel flows - Physical Review Letters 88, 014501 (2002)
On stationary and oscillatory modes of flow instabilities in a rotating porous layer during alloy solidification-Journal of Porous Media, in press (2002)
990 Okhuysen, B. S., and Effect of Coriolis force on instabilities of liquid and mushy regions
D. N. Riahi

991 Christensen, K. T., and R. J. Adrian

992 Liu, M., and K. J. Hsia
during alloy solidification - Physics of Fluids (submitted)
Measurement of instantaneous Eulerian acceleration fields by
particle-image accelerometry: Method and accuracy - Experimental Fluids (submitted)
Interfacial cracks between piezoelectric and elastic materials under in-plane electric loading - Journal of the Mechanics and Physics of Solids (submitted)
993 Panat, R. P., S. Zhang, and K. J. Hsia
994 Aref, H.
995 Saif, M. T. A, S. Zhang,
A. Haque, and K. J. Hsia

996 Fried, E., and M. E. Gurtin

997 Aref, H.

Bond coat surface rumpling in thermal barrier coatings - Acta Materialia (submitted)
A transformation of the point vortex equations - Physics of Fluids (submitted)
films - Acta Materialia (submitted)
A nonequilibrium theory of epitaxial growth that accounts for surface stress and surface diffusion - Journal of the Mechanics and Physics of Solids, in press (2002)

1325 (2002); see also Virtual Journal of Nanoscale Science and Technology, 11 March 2002
998 Christensen, K. T., and The velocity and acceleration signatures of small-scale vortices in R. J. Adrian

999 Riahi, D. N. turbulent channel flow - Journal of Turbulence, in press (2002)
Flow instabilities in a horizontal dendrite layer rotating about an inclined axis - Proceedings of the Royal Society of London A (submitted)
1000 Kessler, M. R., and S. R. White

Cure kinetics of ring-opening metathesis polymerization of dicyclopentadiene - Journal of Polymer Science A (submitted)
1001 Dolbow, J. E., E. Fried, and A. Q. Shen
1002 Riahi, D. N. of the National Academy of Sciences (submitted)
Nonlinear steady convection in rotating mushy layers - Journal of Fluid Mechanics (submitted)
1003 Carlson, D. E., E. Fried, The totality of soft-states in a neo-classical nematic elastomer and S. Sellers Proceedings of the Royal Society A (submitted)
1004 Fried, E., and R. E. Todres

Normal-stress differences and the detection of disclinations in nematic elastomers - Journal of Polymer Science B: Polymer Physics, in press (2002)
1005 Fried, E., and B. C. Roy Gravity-induced segregation of cohesionless granular mixtures -
July 2002

