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Working with the context of a theory proposed recently by Fried et al. (2001), we consider
a one-dimensional problem involving granular mixture of K > 2 discrete sizes bounded
below by an impermeable base, above by an evolving free surface, and subject to gravity.
We demonstrate the existence of a solution in which the medium segregates by particle
size. For a mixture of small and large particles (K = 2), we use methods of Smoller
(1994) to show that the segregated solution is unique. Further, for a mixture of small,
medium, and large particles (K = 3), we use LeVeque’s (1994) CLAWPACK to construct
numerical solutions and find that these compare favorably with analytical predictions.

1. Introduction
A granular material is a collection of solid particles together with an interstitial fluid

such as air or water. Generally, granular materials consist not of identical particles,
but, rather, of various particle types that may differ in size, shape, density, resilience,
and roughness. Of interest in this article is segregation by particle size. Although it is
relatively easy to achieve homogenous mixing with miscible fluids, it is very difficult to
do so in a granular mixture involving particles of different sizes. For example, stirring a
container of freeze-dried coffee causes large grains to rise to the surface.

Applications in which size-based segregation occur and are of importance are abundant.
While mineral processing technologies exploit the tendency for granular materials to
segregate, industrial mixing technologies must counteract this tendency. Though vital
to the chemical, pharmaceutical, powder metallurgy, glass, ceramic, paint, food, and
construction industries, separation and mixing technologies are presently limited by a
reliance upon empirically-based heuristics. It therefore seems reasonable to expect that an
enhanced understanding of the mechanisms underlying segregation will lead to advances
in a broad spectrum of industrial enterprizes.

Theoretical studies of granular flows have been undertaken using molecular dynamics,
statistical physics, and continuum mechanics. The approach based on molecular dynam-
ics involves modelling the granular material as an assembly of rigid bodies, taking into
account translational and rotational degrees of freedom and allowing for hysteretic inter-
actions. Euler’s equations of motion are formulated and solved numerically. Numerical
results obtained by molecular dynamic simulations exhibit mixed agreement with obser-
vations. For example, in a simulation of plane Couette flow, Thompson & Grest (1991)
employed a Hookean-type elastic force model with 750 soft particles of equal radii. A
plug-like motion of the core and a boundary shear layer of 6–12 particle diameters in
thickness was found, showing good agreement with experimental results of Hanes & In-
man (1985). However, the shear stress did not show a quadratic dependence on the mean
shear rate as observed in the experiments of Bagnold (1954). Furthermore, even with the
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most advanced computing resources currently available, the inherent memory demands
of this method make it infeasible for systems of more than 106 particles. Applications of
molecular dynamics to size-based segregation can be found in Dolgunin & Ukolov 1995;
Gallas et al. 1996; Herrmann & Ludig 1998; Hirshfled & Rapaport 1997; Hong et al.
2001; Moaker et al. 2000; Ohstuki et al. 1993, Poschel et al. 2000; Ristow 2000; Shinbrot
et al. 2001; Shoichi 1998; Smith et al. 2001.

In the limit as the number of particles becomes infinitely large, this method is replaced
by a statistical approach in which moments of a Boltzmann-type equation are used. In-
teractions between the individual bodies are expressed by the collision operator, taking
into account energy losses during collisions. The number of moments taken determines
the complexity of the theory, which is now continuous for fields that are statistical aver-
ages of quantities that exhibit large fluctuations on the microscale. The important results
are the evolution equations for the density, the velocity, and the granular temperature
(Jenkins & Savage 1983; Lun et al. 1984; Makse & Kurchan 2002). Basic to these ki-
netic models are the assumptions that momentum transfer occurs via collisions and that
only binary collisions occur. This implies that the granular phase must be sufficiently
dispersed, which for dry granular flows subject to gravity, seems plausible for only very
rapid motions. However, many flows of practical interest fall into the intermediate regime
where both frictional contacts and particle-particle collisions are significant (Ancey et al.
1996; Johnson et al. 1990). Applications of this statistical approach in the study of segre-
gation problem can be found in Arnarson & Jenkins (2000), Arnarson & Willits (1998),
Jenkins (1998), Jenkins & Mancini (1989), among others.

Continuum mechanical models are purely phenomenological descriptions and are re-
stricted to macroscopic length scales that extend over many particle diameters. Clo-
sure conditions are based on standard invariance requirements and thermodynamical
restrictions and may account for microstructural effects. Insofar as monodisperse granu-
lar materials are concerned, continuum-level theories have been exploited to considerable
advantage (Hutter & Rajagopal 1994; Savage 1984; Wang & Hutter 2001).

Here, we use a recent continuum model developed by Fried et al. (2001) to study
gravity-driven segregation and compaction of polydisperse granular material. Based on a
kinematical treatment of voids, the basic physical laws allows for segregation via diffusion
of different particle types and voids. This theory ignores inertial effects and is thus
restricted to situations involving relatively slow flow. For a cohesionless granular material
consisting of particles that differ only by size, this theory yields evolution equations for
the volume-weighted mixture-velocity v, the pressure p, and K ≥ 1 particulate volume
fractions ϕk constrained to obey

0 ≤ ϕk ≤ 1 and ϕp =
K∑
k=1

ϕk ≤ ∗ϕ, (1.1)

with ϕp the total particulate volume fraction and ∗ϕ the volume fraction at random close-
packing. Writing f for the external body force per unit mass, these equations consist of
the constraint

divv = 0, (1.2)

which enforces the requirement that all volume be accounted for (locally) by particles
and voids, the force balance

divS +
K∑
k=1

mkϕkf = gradp, (1.3)
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with S the extra stress (given constitutively as a function of the volume fractions
(ϕ1, ϕ2, . . . , ϕK) and the strain-rate D = 1

2 (gradv + (gradv)�), which, by (1.2), must
obey trD = 0) and mk the density of a particle of type k, and the particulate volume
balances

Dϕk
Dt

= −div
(
ϕkαk(ıD)h(ϕp)f

)
, k = 1, 2, . . . ,K, (1.4)

in which αk > 0 is the effective mobility of particles of type k, depending on the
ıD = (|D|,detD), and h is the compaction function. The mobilities are stipulated to be
positive (even whenD = 0). Thus, if we assume a direct correspondence between particle
size and particle mobility, with smaller particles being less mobile than large particles,
no generality is lost by taking

α1(ıD) > α2(ıD) > · · · > αK(ıD) > 0 (1.5)

for all D. Further, it is assumed that

h(ϕp) > 0 for 0 < ϕp <
∗
ϕ and h(ϕp) = 0 for ϕp ≥ ∗ϕ. (1.6)

Due to the hyperbolicity of (1.4), the evolution equations (1.2)–(1.4) must be supple-
mented by relations which hold across shock surfaces across which the particulate volume
fraction, the strain-rate, and the extra stress suffer jump discontinuities. Considering such
a shock and writing nshock for its unit normal field and Vshock for the associated (scalar
normal) velocity relative to the mixture, the relations associated with the particulate
volume balances are

[[ϕk]]Vshock = [[ϕkαk(ıD)h(ϕp)]]f · nshock, k = 1, 2, . . . ,K, (1.7)

where, given a field g, [[g]] = g+− g−, with g+ the limit of g, on the shock surface, taken
from the region into which nshock points and g− the corresponding limit from the other
side of the shock surface.

In addition to the evolution equations and shock relations, the theory delivers bound-
ary conditions at free surfaces and impermeable solid boundaries. Focusing only on the
conditions associated with the particulate volume balances, the conditions that hold at a
free surface with unit normal nfree directing into the region of pure voids and associated
(scalar normal) velocity Vfree relative to the mixture are

αk(ıD)h(ϕp) =
Vfree

f · nfree
, (1.8)

for any particle type k present at the surface, while the conditions

ϕk = 0 or αk(ıD)h(ϕp) = 0, k = 1, 2, . . . ,K, (1.9)

must hold at an impermeable solid boundary.
In what follows, we consider a one-dimensional specialization of the equations listed

above. Under this specialization, which we discuss in Section 2, the velocity field is con-
stant and the governing equations reduce to a hyperbolic system. Our analysis is based
on a particular packing function, which we introduce in Section 3. A nondimensional-
ization, which renders the problem in terms of packing fractions as opposed to volume
fractions, is performed in Section 4. In Section 5, we pose a problem for a granular mix-
ture bounded above by the free surface and below by an impermeable base. For a system
with K particle sizes, we obtain a solution to this problem which, at steady state, in-
volves K different layers—with the presence of particles of a given size in a given layer
determined by their size. For the case K = 3, we use LeVeque’s (1994) CLAWPACK to
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construct numerical solutions. This robust code requires a user-supplied Riemann solver.
Our Riemann solver is based on the flux splitting scheme of Roe (1981), incorporating
proper entropy corrections and flux limiters. In Section 6, we use an approach due to
Smoller (1994) to establish the uniqueness of the solution presented in Section 5 for the
case K = 2.

2. A class of one-dimensional problems
We suppose that the body force is purely gravitational, viz.,

f = g, (2.1)

with g the gravitational acceleration. We let x denote the Cartesian coordinate in the
direction e = −g/|g| and seek solutions of the evolution equations for which v and p are
functions of x and t, with

v = ve. (2.2)

Then, since divv = 0, v must be constant and we may, without loss in generality, assume
that v ≡ 0. Thus,D = 0 and the extra stress S either vanishes or is indeterminate (Fried
et al. (2001)). For the indeterminate case, we take S = Se ⊗ e. Force balance requires
that

∂(p− S)
∂x

= −
K∑
k=1

mkϕk|g|, (2.3)

which, given the volume fractions ϕk, determines the difference p−S between the pressure
and the extra stress. Equation (2.3) holds with S = 0 when the constitutive relation for
S is well-defined at D = 0.

In view of the foregoing, the particulate volume balances (1.4) take the form

∂ϕk
∂t

= αkg
∂
(
ϕkh(ϕp)

)
∂x

, k = 1, 2, . . . ,K, (2.4)

where, for simplicity, we use αk to denote the values of the effective mobilities for D = 0.
Regarding the shock relations, we choose nshock = e, so that f · nshock = −|g|. Thus,

(1.7) becomes

[[ϕk]]Vshock = −αk|g|[[ϕkh(ϕp)]], k = 1, 2, . . . ,K. (2.5)

Similarly, the condition (1.8) that hold for any particle of type k at a free surface
becomes

αkh(ϕp) = −Vfree

|g| . (2.6)

3. Constitutive specialization of the packing function
For simplicity, we choose the packing function h to be of the particular form

h(ϕp) = ϕ∗ −
K∑
k=1

ϕk, (3.1)

which obeys the requirements expressed in (1.6).
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4. Nondimensionalization
On introducing a characteristic length L and a characteristic time T , we define dimen-

sionless quantities

x̃ =
x

L
, t̃ =

t

T
, ϕ̃k =

ϕk
ϕ∗

, ϕ̃p =
ϕp

ϕ∗
, Ṽ =

V T

L
, (4.1)

and

α̃k =
αk|g|Tϕ∗

L
, (4.2)

where V is used to denote the velocity of a generic shock or a generic free surface. We
refer to ϕ̃k as the packing fraction.

Bearing in mind the constitutive specialization (3.1) and dropping tildes, the hyperbolic
system (2.4) becomes

∂ϕk
∂t

= αk
∂

∂x

(
ϕk(1− ϕp)

)
, k = 1, 2, . . . ,K, (4.3)

and the shock relations (2.5) become

[[ϕk]]Vshock = −αk[[ϕk(1− ϕp)]], k = 1, 2, . . . ,K. (4.4)

Further, the boundary condition (2.6) for a particle of type k at a free surface becomes

αk(1− ϕp) = −Vfree, (4.5)

while the boundary condition (4.6) at an impermeable solid surface becomes

ϕk = 0 or αk(1− ϕp) = 0, k = 1, 2, . . . ,K. (4.6)

By virtue of (1.1) and (4.1)3,4, the packing fractions must obey

0 ≤ ϕk ≤ 1 and ϕp =
K∑
k=1

≤ 1. (4.7)

5. Solution to a particular problem
We now consider an open container that occupies the interval 0 ≤ x ≤ 1, with x = 0

an impermeable base. We assume that, initially, each particulate packing fraction ϕk has
a prescribed constant value, viz.,

ϕk(x, 0) = ◦
ϕk, 0 ≤ x ≤ 1. (5.1)

Further, we require that

0 <
◦
ϕp =

K∑
k=1

◦
ϕk < 1, (5.2)

so that, initially, the mixture is loosely packed and has a free surface at the top x = 1 of
the container.

Granted the foregoing initial conditions, the boundary conditions (4.6) at the base
x = 0, and the free surface condition (4.5) for any particle type k at the free surface, we
seek solutions of the hyperbolic system (4.3) that consist of uniform states separated by
shocks across which the jump conditions (4.4) hold.

As a candidate for such a solution, we consider a generalization of the solution obtained
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Figure 1. Compaction and segregation, by gravity, of a granular aggregate involving particles
of K sizes in a fixed container. At any time t, the solution consists of uniform states separated
by shocks

for a mixture of small and large particles (K = 2) by Fried et al. (2001). This candidate
can be depicted (Fig. 1) as the union of 2K regions,R1,R2, . . . ,R2K , containing particles
of various types and in various proportions. For k = 1, 2, . . . ,K, regionsRk andR2K−k+1

contain particles of types k, k+1, . . . ,K. In particular, regionR1 corresponds to the initial
state, so that the mixture is given by (5.1). While the mixtures in regionsR1,R2, . . . ,RK
are loosely packed, those in regions RK ,RK+1, . . . ,R2K are closely packed. Region R1 is
bounded by a segregation shock S1

seg emanating from the free surface and a compaction
shock Scom emanating from the base. These shocks meet at time T1, at which point they
are both deflected. Subsequent to T1, S1

seg becomes horizontal while Scom continues to
travel upwards. In the region R2K lying between the base, the portion of Scom adjacent
to R1, and the horizontal portion of S1

seg, the packing fraction ϕ2K
i of particles of type i

given by

ϕ2K
i = ◦

ϕi +
αi(1−

∑K
l=1

◦
ϕl)

◦
ϕi∑K

l=1 αl
◦
ϕl

(5.3)

for i = 1, 2, . . . ,K. In addition, until time T1, the velocities of S1
seg and Scom are given

by

VS1
seg

= α1(1−
K∑
l=1

◦
ϕl) and VScom = −

K∑
l=1

αl
◦
ϕl. (5.4)

At time T2, Scom meets another segregation shock S2
seg emanating from the free surface.

At this time, Scom and S2
seg are deflected. Subsequent to T2, Scom continues to travel

upward and S2
seg becomes horizontal. This process continues until time TK−1, when Scom

is deflected upward and SK−1
seg becomes horizontal. For k = 2, . . . ,K, the packing fraction

ϕki of particles of type i in region Rk is given by the positive square root of the quadratic
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equation

αi
(
ϕki

)2 −
(
αi(1−

K∑
j=k, �=i

ϕkj )− αk−1(1−
K∑

j=k−1

ϕk−1
j )

)
ϕki

− ϕk−1
i

(
1−

K∑
j=k−1

ϕk−1
j

)
(αk−1 − αi) = 0, (5.5)

for i = 1, 2, . . . ,K. In addition, the velocity of Skseg until Tk and the velocity of Scom

between Tk−1 and Tk are given by

VSkseg = αk(1−
K∑
l=k

ϕkl ) and VScom = −
K∑
l=k

αlϕ
k
l . (5.6)

At time TK , Scom and Sfree meet and Sfree becomes horizontal. As mentioned above, the
region RK+1 contains only the largest particles—those of type K. For k = 2, . . . ,K, the
particulate packing fraction ϕ2K−k+1

i in region R2K−k+1 is given by

ϕ2K−k+1
i = ϕki +

αi(1−
∑K
l=k ϕ

k
l )ϕ

k
i∑K

l=1 αlϕ
k
l

(5.7)

where i = k, . . . ,K.
To verify that the candidate described above is a solution, we have only to show that

the following conditions are satisfied:
(i) the solid-boundary condition (cf. (4.6)2)

αl

(
1−

K∑
i=1

ϕ2K
i

)
= 0, l = 1, 2, . . . ,K, (5.8)

for t > 0;
(ii) for each k = 2, 3, . . . ,K, the jump conditions (cf. (4.4))

(ϕkl − ϕ2K−k+1
l )VScom = αlϕ

k
l

(
1−

K∑
i=k

ϕki

)
on Scom, (5.9)

where l = k, k + 1, . . . ,K and Tk−1 < t < Tk, and, for 0 < t < Tk

[[ϕkl ]]VSk−1
seg

= αl[[ϕkl (1−
K∑
i=k

ϕki )]] on Sk−1
seg , (5.10)

where l = k, k + 1, . . . ,K;
(iii) the interface condition (cf. (4.6))

V k
seg = 0 on Skseg, (5.11)

for t ≥ Tk;
(v) the free-surface conditions (cf. (4.5))

Vfree = αK(1− ϕKK) on Sfree, (5.12)

for 0 < t < TK , and

Vfree = 0 on Sfree, (5.13)

for t ≥ TK .
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To establish (5.8), we substitute for ϕ2K
i from (5.3) and sum over the index i. Similarly,

(5.9) follows directly if we substitute for ϕ2K−k+1
l from (5.7) and for VScom from (5.6).

Also, on substituting for VSk−1
seg

from (5.6), it can be shown that the packing fraction ϕkl
satisfying (5.10) is given by (5.5). Hence, (5.10) follows if we can show that the packing
fractions in question are determined uniquely by the quadratic equation (5.5). Since
αk−1 > αk for k = 2, . . . ,K and the packing in the region is not close, it follows that
(5.5) has only one real positive root, ϕkl , and that 0 < ϕkl < 1. Hence, the only positive
root of (5.5) is indeed the packing fraction. For t ≥ Tk, the shock Skseg separates two
compacted zones. From (4.6), it follows directly that αi(1−

∑K
j=k ϕ

2K−k+1
j ) = 0. Hence,

V k
seg = 0 (5.11). Since the shock Sfree separates the region RK (which contains only

particles of type K, with a packing fraction ϕKK) from the free surface (where ϕk = 0,
k = 1, . . . ,K), it follows directly as a consequence of (4.5) that Vfree = αK(1− ϕKK) (for
t < TK). However, since, for t ≥ TK , the shock Sfree now separates the compacted zone
RK+1 (where ϕK+1

K = 1) from the free surface, it follows that 1−ϕK+1
K = 0 and, hence,

by (4.6), we have Vfree = 0.
Consistent with intuitive expectations, the solution exhibits both compaction and seg-

regation. Segregation is by particle size, with the region closest to the free surface con-
sisting only of the largest particles. As an illustration, we consider the particular case of
a mixture containing particles of three sizes, with effective mobilities

α1 = 0.3, α2 = 0.2, and α3 = 0.1, (5.14)

and use CLAWPACK to generate a solution to the problem described above, with

◦
ϕk = 0.2, k = 1, 2, 3. (5.15)

Figs. 2–4 show characteristic plots for each of the particle types and Figs. 5–6 show profiles
of the packing fractions as functions of position at various times. These plots are a result
of the numerical solutions obtained using CLAWPACK. In keeping with the general
results presented above, these plots exhibit compaction shocks and segregation shocks
that separate states in which the particulate packing fractions are uniform. At each time,
the domain consists of four distinct regions. Prior to time t = 4.16 (≡ T1), these regions
are demarcated by the free surface, which moves with velocity Vfree = 0.03, segregation
shocks S1

seg and S2
seg with velocities VS1

seg
= 0.16 and VS2

seg
= 0.09, and a compaction

shock Scom with velocity VScom = −0.12. The region closest to the free surface (R3)
consists only of the largest particles with ϕ3 = 0.672680. In the region between S2

seg and
S1

seg (R2) , ϕ1 = 0, ϕ2 = 0.309717, and ϕ3 = 0.219433. In the region between S1
seg and

S2
com (R1) , the mixture is in its initial state. Initially at the base , the medium is closely

packed with ϕ1 = 0.40, ϕ2 = 0.35, and ϕ3 = 0.25. Between time t = 4.16 (≡ T1) and time
t = 4.77 (≡ T2) , the velocity of Scom is VScom = −0.08. At t = 4.16 (≡ T1) , a horizontal
layer (R6) develops adjacent to the basal region and the packing fractions within this
layer are given by ϕ1 = 0.399996, ϕ2 = 0.333329, and ϕ3 = 0.266674. Subsequent to
t = 4.77 (≡ T2) , the velocity of Scom becomes VScom = −0.06. Time t = 4.77 (≡ T2)
signals the development of a layer (R5) of closely packed large particles, where ϕ1 = 0,
ϕ2 = 0.657399, and ϕ3 = 0.342599. At time t = 10.91 (≡ T3), Scom intersects the free
surface and a steady state is achieved.

Table 1 compares the analytical and the numerical values of the distribution of all the
three types of particles at the steady state in the zones where close packing is achieved.
The maximum relative error is less than 2.6× 10−5.
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Figure 2. Characteristic plot of species type k = 3. Here, (α1, α2, α3) = (0.3, 0.2, 0.1) and
(ϕ1, ϕ2, ϕ3) = (0.2, 0.2, 0.2). To make this plot, the spatial and time steps were lowered from
0.001 to 0.01, resulting in a jagged shock profile
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Compaction Packing Analytical Numerical Relative
zone fraction value value error

ϕ1 0.400000 0.399996 0.000010

R6 ϕ2 0.333333 0.333329 0.000012

ϕ3 0.266667 0.266674 0.000026

R5 ϕ2 0.657400 0.657399 0.000002

ϕ3 0.342600 0.342599 0.000002

R4 ϕ3 1.000000 0.999998 0.000002

Table 1. Comparison of the analytical (Anal. ) and numerical (Num. ) values of the
distribution of particles of all three types in various Compaction Zones
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Figure 6. The distribution of particles in space at a given time. Here,
(α1, α2, α3) = (0.3, 0.2, 0.1) and (ϕ1, ϕ2, ϕ3) = (0.2, 0.2, 0.2)

6. Uniqueness of the segregated solution for a mixture of small and
large particles

In general, it would desirable to understand whether solution presented in the Section 5
is unique. Here, as a step toward this goal, we use methods developed by Smoller (1994)
to resolve this issue for the case of a mixture of small and large particles.

6.1. Riemann problem
Toward addressing the uniqueness of the segregated solution for a mixture of small and
large particles, we consider the system

∂ϕ1

∂t
= α1

∂

∂x

(
ϕ1(1− ϕ1 − ϕ2)

)
,

∂ϕ2

∂t
= α2

∂

∂x

(
ϕ2(1− ϕ1 − ϕ2)

)
,


 (6.1)
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which arises upon specializing (4.3) to the case k = 2, for (x, t) belonging to (−∞,∞)×
(0,∞) and subject to the initial conditions

ϕk(x, 0) =



ϕ<k if x < 0,

ϕ>k if x > 0,
(6.2)

with ϕ≶k constant. For the moment, we interpret (6.1) in the weak sense, so that the
discontinuity conditions that must hold across shocks, free surfaces, and solid boundaries
are implicitly satisfied. In view of (1.5),

α1 > α2 > 0. (6.3)

Further, in view of (4.7), (ϕ1, ϕ2) must belong to

A = {ϕ1, ϕ2) : 0 ≤ ϕ1 ≤ 1, 0 ≤ ϕ2 ≤ 1, ϕ1 + ϕ2 ≤ 1}, (6.4)

which we refer to as the set of admissible packing fractions.
Generally, we require only that (ϕ≶1 , ϕ

≶
2 ) belong to A. This includes special prob-

lems corresponding to less than closely packed mixtures of semi-infinite extent that are
bounded above by free surfaces (ϕ<1 = ϕ<2 = 0 and ϕ>1 +ϕ>2 < 1) or below by solid bases
(ϕ<1 +ϕ<2 < 1 and ϕ>1 +ϕ>2 = 1). However, our primary interest is in problems where ϕ≶1
and ϕ≶2 obey 0 < ϕ≶1 + ϕ≶2 < 1.

The Jacobian of the system (6.1) is simply[
α1(1− 2ϕ1 − ϕ2) −α1ϕ1

−α2ϕ2 α2(1− ϕ1 − 2ϕ2)

]
, (6.5)

which has eigenvalues

λ±(ϕ1, ϕ2) =
1
2

(
α1(1− 2ϕ1 − ϕ2) + α2(1− 2ϕ2 − ϕ1)

)

± 1
2

√(
α1(1− 2ϕ1 − ϕ2)− α2(1− 2ϕ2 − ϕ1)

)2 + 4α1α2ϕ1ϕ2 . (6.6)

By inspection,

0 ≤ λ−(ϕ1, ϕ2) < λ+(ϕ1, ϕ2). (6.7)

Hence, (6.1) is hyperbolic and we may conclude that solutions to the Riemann problem
(6.1)–(6.2) must be uniform states separated by either (i) discontinuities (which may be
compaction or segregation shocks, free surfaces, or solid boundaries) or (ii) rarefactions.
Since one of the eigenvalues defined in (6.6) may vanish, (6.1) admits solutions involving
static discontinuities.

6.1.1. Prelimary results concerning discontinuities

Here, we consider the problem of determining all uniform states (ϕ1, ϕ2) in A that may
be connected to (ϕ<1 , ϕ

<

2 ) by a discontinuity emanating from the origin of the (x, t)-plane
and moving with velocity V . Such a state must satisfy not only the jump conditions

α1ϕ1(1− ϕ1 − ϕ2)− α1ϕ
<

1 (1− ϕ<1 − ϕ<2 ) = V (ϕ1 − ϕ<1 ),

α2ϕ2(1− ϕ1 − ϕ2)− α2ϕ
<

2 (1− ϕ<1 − ϕ<2 ) = V (ϕ2 − ϕ<2 ),

}
(6.8)
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but also the Lax (1957) entropy condition, which in the present context requires that
either

λ−(ϕ1, ϕ2) < V < λ+(ϕ1, ϕ2) and V < λ−(ϕ<1 , ϕ
<

2 ) (6.9)

or

λ−(ϕ<1 , ϕ
<

2 ) < V < λ+(ϕ<1 , ϕ
<

2 ) and λ+(ϕ1, ϕ2) < V. (6.10)

Eliminating V between (6.8)1 and (6.8)2 yields a quadratic equation

A(ϕ1, ϕ
<

1 , ϕ
<

2 )ϕ2
2 + B(ϕ1, ϕ

<

1 , ϕ
<

2 )ϕ2 + C(ϕ1, ϕ
<

1 , ϕ
<

2 ) = 0 (6.11)

for ϕ2 in terms of ϕ1, ϕ<1 , and ϕ<2 . Here,

A(ϕ1, ϕ
<

1 , ϕ
<

2 ) = α2(ϕ1 − ϕ<1 )− α1ϕ1,

B(ϕ1, ϕ
<

1 , ϕ
<

2 ) = α1ϕ1ϕ
<

2 + α1ϕ1 − α1ϕ
<

1 (1− ϕ<1 − ϕ<2 )

− α1ϕ
2
1 + α2ϕ

<

1 − α2ϕ1 + α2ϕ
2
1 − α2ϕ1ϕ

<

1 ,

C(ϕ1, ϕ
<

1 , ϕ
<

2 ) = α1ϕ
<

1 ϕ
<

2 (1− ϕ<1 − ϕ<2 )− α1ϕ1ϕ
<

2 + α1ϕ
2
1ϕ

<

2

− α2ϕ
<

1 ϕ
<

2 (1− ϕ<1 − ϕ<2 ) + α1ϕ1ϕ
<

2 (1− ϕ<1 − ϕ<2 ).




(6.12)

The roots

d±(ϕ1, ϕ
<

1 , ϕ
<

2 ) =
−B(ϕ1, ϕ

<

1 , ϕ
<

2 )
2

∓
√

B2(ϕ1, ϕ
<

1 , ϕ
<

2 )− 4A(ϕ1, ϕ
<

1 , ϕ
<

2 )C(ϕ1, ϕ
<

1 , ϕ
<

2 )
2A(ϕ1, ϕ

<

1 , ϕ
<

2 )
(6.13)

of the quadratic (6.11) describe curves within A. A straightforward calculation too
lengthy to display here shows that the curve

D−(ϕ1, ϕ
<

1 , ϕ
<

2 ) = {(ϕ1, ϕ2) : ϕ<1 < ϕ1 < 1, ϕ2 = d−(ϕ1, ϕ
<

1 , ϕ
<

2 )} (6.14)

describes all pairs (ϕ1, ϕ2) consistent with the jump conditions (6.8) and the inequalities
(6.9). Similarly, the curve

D+(ϕ1, ϕ
<

1 , ϕ
<

2 ) = {(ϕ1, ϕ2) : ϕ<1 < ϕ1 < 1, ϕ2 = d+(ϕ1, ϕ
<

1 , ϕ
<

2 )} (6.15)

describes all pairs (ϕ1, ϕ2) consistent with the jump conditions (6.8) and the inequalities
(6.10). A straightforward argument shows that D+(·, ϕ<1 , ϕ<2 ) decreases monotonically
over its domain. Thus, given ϕ2 = d+(·, ϕ<1 , ϕ<2 ), we may write ϕ1 = D−1

+ (ϕ2, ϕ
<

1 , ϕ
<

2 ).
Fig. 7 depicts D+ and D− for an arbitrary choice of (ϕ<1 , ϕ

<

2 ).

6.1.2. Preliminary results concerning rarefactions
Here, we consider the problem of determining all rarefactions (ϕ1, ϕ2) taking values in
A, with

ϕk(x, t) = φk(ξ), ξ =
x

t
, (6.16)

that may be continuously connected to (ϕ<1 , ϕ
<

2 ) across a line emanating from the origin
of the (x, t)-plane. Such a state must satisfy not only the system

ξφ′1(ξ) + α1

(
φ1(ξ)(1− φ1(ξ)− φ2(ξ))

)′ = 0,

ξφ′2(ξ) + α2

(
φ2(ξ)(1− φ1(ξ)− φ2(ξ))

)′ = 0,


 (6.17)
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which arises on inserting (6.16) in (6.1), but also, since the (non-negative) eigenvalues
λ±(φ1(ξ), φ2(ξ)) must increase with ξ, either

λ−(ϕ<1 , ϕ
<

2 ) < λ−(φ1, φ2) (6.18)

or

λ+(ϕ<1 , ϕ
<

2 ) < λ+(φ1, φ2). (6.19)

On writing (6.17) in the form[
α1(1− 2φ1(ξ)− φ2(ξ)) + ξ −α1φ1(ξ)

−α2φ2(ξ) α2(1− φ1(ξ)− 2φ2(ξ)) + ξ

] [
φ′1(ξ)

φ′2(ξ)

]
=

[
0

0

]
, (6.20)

and recalling that the eigenvalues of the Jacobian (6.5) are unique, it follows that ξ =
−λ±(φ1, φ2).

We ignore the case where φ1 and φ2 are constant, which yields the trivial solution
φk = ϕ<k and φ2 = ϕ<2 , and assume that neither φ′1 nor φ′2 vanishes. Then, from (6.20)
we obtain a pair,

dφ2

dφ1
=

α1(1− 2φ1 − φ2)− λ±(φ1, φ2)
α2φ1

, (6.21)

of first order differential equations which must be solved subject to the inequalities (6.18)
and (6.19) and the initial condition

φ2 = ϕ<2 when φ1 = ϕ<1 . (6.22)

As solutions we find

φ2 = r±(φ1, ϕ
<

1 , ϕ
<

2 ) (6.23)

with

r±(φ1, ϕ
<

1 , ϕ
<

2 ) =
−B(φ1, ϕ

<

1 , ϕ
<

2 )
2

±
√

B2(φ1, ϕ
<

1 , ϕ
<

2 )− 4A(φ1, ϕ
<

1 , ϕ
<

2 )C(φ1, ϕ
<

1 , ϕ
<

2 )
2A(φ1, ϕ

<

1 , ϕ
<

2 )
(6.24)

and A, B, and C as defined in (6.12). A direct calculation too lengthy to display here
shows that the curve

R−(φ1, ϕ
<

1 , ϕ
<

2 ) = {(φ1, ϕ2) : ϕ1 < ϕ<1 , ϕ2 = r−(φ1, ϕ
<

1 , ϕ
<

2 )} (6.25)

describes all rarefactions (φ1, φ2) satisfying the constraint (6.18). Similarly, the curve

R+(φ1, ϕ
<

1 , ϕ
<

2 ) = {(φ1, ϕ2) : ϕ1 < ϕ<1 , ϕ2 = r+(φ1, ϕ
<

1 , ϕ
<

2 )} (6.26)

describes all rarefactions (φ1, φ2) satisfying the constraint (6.19). A straightforward ar-
gument shows that R−(·, ϕ<1 , ϕ<2 ) decreases monotonically over its domain. Thus, given
ϕ2 = r−(·, ϕ<1 , ϕ<2 ), we may write ϕ1 = R−1

− (ϕ2, ϕ
<

1 , ϕ
<

2 ). Fig. 7 depicts R+ and R− for
an arbitrary choice of (ϕ<1 , ϕ

<

2 ).

6.1.3. Solutions of the Riemann problem
Given packing fractions ϕ<1 and ϕ<2 consistent with 0 < ϕ<1 + ϕ<2 < 1, the curves

C−(ϕ1, ϕ
<

1 , ϕ
<

2 ) = D−(ϕ1, ϕ
<

1 , ϕ
<

2 ) ∪R−(ϕ1, ϕ
<

1 , ϕ
<

2 ) (6.27)
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Figure 7. The phase portrait of states (ϕ1, ϕ2) connecting to the right of (ϕ<1 , ϕ
<
2 )

and

C+(ϕ1, ϕ
<

1 , ϕ
<

2 ) = D+(ϕ1, ϕ
<

1 , ϕ
<

2 ) ∪R+(ϕ1, ϕ
<

1 , ϕ
<

2 ) (6.28)

divide the regionA into four subregionsA1(ϕ<1 , ϕ
<

2 ),A2(ϕ<1 , ϕ
<

2 ),A3(ϕ<1 , ϕ
<

2 ), andA4(ϕ<1 , ϕ
<

2 )
(see Fig. 7) where

A1(ϕ<1 , ϕ
<

2 ) = {(ϕ1, ϕ2) ∈ A : ϕ<1 < ϕ1,

D−(ϕ1, ϕ
<

1 , ϕ
<

2 ) ≤ ϕ2 ≤ D+(ϕ1, ϕ
<

1 , ϕ
<

2 )}

A2(ϕ<1 , ϕ
<

2 ) = {(ϕ1, ϕ2) ∈ A : ϕ<2 > ϕ2,

R−1
− (ϕ2, ϕ

<

1 , ϕ
<

2 ) ≤ ϕ1 ≤ D−1
+ (ϕ2, ϕ

<

1 , ϕ
<

2 )},

A3(ϕ<1 , ϕ
<

2 ) = {(ϕ1, ϕ2) ∈ A : ϕ<1 > ϕ1,

R+(ϕ1, ϕ
<

1 , ϕ
<

2 ) ≤ ϕ2 ≤ R−(ϕ1, ϕ
<

1 , ϕ
<

2 )},

A4(ϕ<1 , ϕ
<

2 ) = A \ (A1(ϕ<1 , ϕ
<

2 ) ∪ A2(ϕ<1 , ϕ
<

2 ) ∪ A3(ϕ<1 , ϕ
<

2 )).




(6.29)

Hence, if (ϕ>1 , ϕ
>

2 ) lies in any of the four regions Ai(ϕ<1 , ϕ<2 ) (i = 1, 2, 3, 4), we can find
an admissible state (ϕ1, ϕ2) lying in C−(ϕ1, ϕ

<

1 , ϕ
<

2 ) and also the nature of the solution
(i.e. discontinuities or rarefactions) as follows: Consider the family of curves (Fig. 8),
� =

{
C+(ϕ1, ϕ̄1, ϕ̄2) : (ϕ̄1, ϕ̄2) ∈ C−(ϕ1, ϕ

<

1 , ϕ
<

2 )
}
. Since the region A is closed and

bounded, the (ϕ1, ϕ2)-plane is covered univalently by the family of curves �; that is,
through each point (ϕ>1 , ϕ

>

2 ), there passes exactly one curve C+(ϕ1, ϕ̄1, ϕ̄2) belonging to
�.
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• Let (ϕ>1 , ϕ
>

2 ) lie in A1(ϕ<1 , ϕ
<

2 ). As shown in Fig. 9a, for each (ϕ>1 , ϕ
>

2 ), there is a
unique point (ϕ̄1, ϕ̄2) ∈ C−(ϕ1, ϕ

<

1 , ϕ
<

2 ) for which the curve C+(ϕ1, ϕ̄1, ϕ̄2) belongs to �
and passes through (ϕ>1 , ϕ

>

2 ). However, in A1(ϕ<1 , ϕ
<

2 ),

C−(ϕ1, ϕ
<

1 , ϕ
<

2 ) = D−(ϕ1, ϕ
<

1 , ϕ
<

2 )

and
C+(ϕ1, ϕ̄1, ϕ̄2) = D+(ϕ1, ϕ̄1, ϕ̄2).

Hence, (ϕ̄1, ϕ̄2) is connected to (ϕ<1 , ϕ
<

2 ) on the right by a discontinuity that satisfies the
constraint (6.9). Similarly, (ϕ>1 , ϕ

>

2 ) is connected to (ϕ̄1, ϕ̄2) on the right by a disconti-
nuity that satisfies the constraint (6.10). The problem is completely solved once (ϕ̄1, ϕ̄2)
is determined. To this purpose, we solve ϕ>2 = d+(ϕ>1 , ϕ̄1, d−(ϕ̄1, ϕ

<

1 , ϕ
<

2 )) for ϕ̄1. Given
ϕ̄1, we have ϕ̄2 = d−(ϕ̄1, ϕ

<

1 , ϕ
<

2 ).
• Let (ϕ>1 , ϕ

>

2 ) lie in A2(ϕ<1 , ϕ
<

2 ). As shown in Fig. 9b, for each (ϕ>1 , ϕ
>

2 ), there is a
unique point (ϕ̄1, ϕ̄2) ∈ C−(ϕ1, ϕ

<

1 , ϕ
<

2 ) for which the curve C+(ϕ1, ϕ̄1, ϕ̄2) belongs to �
and passes through (ϕ>1 , ϕ

>

2 ). However, in A2(ϕ<1 , ϕ
<

2 ),

C−(ϕ1, ϕ
<

1 , ϕ
<

2 ) = R−(ϕ1, ϕ
<

1 , ϕ
<

2 )

and
C+(ϕ1, ϕ̄1, ϕ̄2) = D+(ϕ1, ϕ̄1, ϕ̄2).

Hence, (ϕ̄1, ϕ̄2) is connected to (ϕ<1 , ϕ
<

2 ) on the right by a rarefaction that satisfies the
constraint (6.18). Similarly, (ϕ>1 , ϕ

>

2 ) is connected to (ϕ̄1, ϕ̄2) on the right by a disconti-
nuity that satisfies the constraint (6.10). The problem is completely solved once (ϕ̄1, ϕ̄2)
is determined. To this purpose, we solve ϕ>2 = d+(ϕ>1 , ϕ̄1, r−(ϕ̄1, ϕ

<

1 , ϕ
<

2 )) for ϕ̄1. Given
ϕ̄1, we have ϕ̄2 = r−(ϕ̄1, ϕ

<

1 , ϕ
<

2 ).
• Let (ϕ>1 , ϕ

>

2 ) lie in A3(ϕ<1 , ϕ
<

2 ). As shown in Fig. 9c, for each (ϕ>1 , ϕ
>

2 ), there is a
unique point (ϕ̄1, ϕ̄2) ∈ C−(ϕ1, ϕ

<

1 , ϕ
<

2 ) for which the curve C+(ϕ1, ϕ̄1, ϕ̄2) belongs to �
and passes through (ϕ>1 , ϕ

>

2 ). However, in A3(ϕ<1 , ϕ
<

2 ),

C−(ϕ1, ϕ
<

1 , ϕ
<

2 ) = R−(ϕ1, ϕ
<

1 , ϕ
<

2 )

and
C+(ϕ1, ϕ̄1, ϕ̄2) = R+(ϕ1, ϕ̄1, ϕ̄2).

Hence, (ϕ̄1, ϕ̄2) is connected to (ϕ<1 , ϕ
<

2 ) on the right by a rarefaction that satisfies the
constraint (6.18). Similarly, (ϕ>1 , ϕ

>

2 ) is connected to (ϕ̄1, ϕ̄2) on the right by a rarefaction
that satisfies the constraint (6.19). The problem is completely solved once (ϕ̄1, ϕ̄2) is
determined. To this purpose, we solve ϕ>2 = r+(ϕ>1 , ϕ̄1, r−(ϕ̄1, ϕ

<

1 , ϕ
<

2 )) for ϕ̄1. Given ϕ̄1,
we have ϕ̄2 = r−(ϕ̄1, ϕ

<

1 , ϕ
<

2 ).
• Let (ϕ>1 , ϕ

>

2 ) lie in A4(ϕ<1 , ϕ
<

2 ). As shown in Fig. 9d , for each (ϕ>1 , ϕ
>

2 ), there is a
unique point (ϕ̄1, ϕ̄2) ∈ C−(ϕ1, ϕ

<

1 , ϕ
<

2 ) for which the curve C+(ϕ1, ϕ̄1, ϕ̄2) belongs to �
and passes through (ϕ>1 , ϕ

>

2 ). However, in A4(ϕ<1 , ϕ
<

2 ),

C−(ϕ1, ϕ
<

1 , ϕ
<

2 ) = D−(ϕ1, ϕ
<

1 , ϕ
<

2 )

and
C+(ϕ1, ϕ̄1, ϕ̄2) = R+(ϕ1, ϕ̄1, ϕ̄2).

Hence, (ϕ̄1, ϕ̄2) is connected to (ϕ<1 , ϕ
<

2 ) on the right by a discontinuity that satisfies the
constraint (6.9). Similarly, (ϕ>1 , ϕ

>

2 ) is connected to (ϕ̄1, ϕ̄2) on the right by a rarefaction
that satisfies the constraint (6.19). The problem is completely solved once (ϕ̄1, ϕ̄2) is
determined. To this purpose, we solve ϕ>2 = r+(ϕ>1 , ϕ̄1, d−(ϕ̄1, ϕ

<

1 , ϕ
<

2 )) for ϕ̄1. Once ϕ̄1

is determined, we use ϕ̄2 = d−(ϕ̄1, ϕ
<

1 , ϕ
<

2 ) to find ϕ̄2.
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1 , ϕ

<
2 ), and (d) A4(ϕ

<
1 , ϕ
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Figure 10. The states (ϕ1, ϕ2) connecting to the right of (ϕ<1 , ϕ
<
2 ) = (0.2, 0.5). Here,

(α1, α2) = (0.4, 0.1)
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Figure 11. Solution of the Riemann problem when (ϕ>1 , ϕ
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Figure 12. Solution of the Riemann problem when (ϕ>1 , ϕ
>
2 ) = (0.8, 0.0) lies in A2(ϕ

<
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<
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Figure 13. Solution of the Riemann problem when (ϕ>1 , ϕ
>
2 ) = (0.0, 0.0) lies in A3(ϕ

<
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Figure 14. Solution of the Riemann problem when (ϕ>1 , ϕ
>
2 ) = (0.0, 0.9) lies in A4(ϕ

<
1 , ϕ

<
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Figure 15. The effect of varying α1 on the states (ϕ1, ϕ2) connecting to the right of
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<
2 ) = (0.2, 0.2)
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The presence of discontinuities or rarefactions depends on the rate in which voids are
generated and the mobilities of particles of type 1 and type 2. In the region A1(ϕ<1 , ϕ

<

2 ),
the rates at which particles of type 1 and type 2 diffuse to fill voids exceeds the rate in
which voids are generated, resulting in a solution involving discontinuities. However, in
A2(ϕ<1 , ϕ

<

2 ), A3(ϕ<1 , ϕ
<

2 ) or A4(ϕ<1 , ϕ
<

2 ), the rates at which voids are generated exceeds
the rates at which particles of either type diffuse. This results in solutions involving
rarefactions only (as in A3(ϕ<1 , ϕ

<

2 )) or combinations of rarefactions and discontinuities
(as in A2(ϕ<1 , ϕ

<

2 ) or A4(ϕ<1 , ϕ
<

2 )).
As an illustration, we present numerical results generated by CLAWPACK for the case

(α1, α2) = (0.4, 0.1) and (ϕ<1 , ϕ
<

2 ) = (0.2, 0.5). Fig. 10 describes all possible states con-
necting to the right of (0.2, 0.5). The solution of the Riemann problem (6.1) for the cases
when (ϕ>1 , ϕ

>

2 ) lies in A1(ϕ<1 , ϕ
<

2 ), A2(ϕ<1 , ϕ
<

2 ), A3(ϕ<1 , ϕ
<

2 ) or A4(ϕ<1 , ϕ
<

2 ) is shown in
Fig. 11, 12, 13, and 14, respectively.

Fig. 15 depict the influence of the dimensionless effective mobility α1, in the case
(ϕ<1 , ϕ

<

2 ) = (0.2, 0.2). As we increase α1, the area of the region A1(ϕ<1 , ϕ
<

2 ), where the
solution is described only by discontinuities (or where the rate at which the particles
diffuse exceeds the rate at which the volume fraction of the voids increases) diminishes.
Thus, as the size of particles of type 1 decreases, solutions involving rarefactions become
more likely.

6.2. Application

Here, we use the results concerning the Riemann problem to establish the uniqueness of
the solution (in Section 5) in the case of a mixture of small and large particles. In this
case, the solution is the union of:
• a uniform state bounded by a free surface Sfree and a segregation shock Sseg and

involving only large particles with packing fraction

ϕ2 = −1
2
(
α1(1− ◦

ϕ1 −
◦
ϕ2)

α2
− 1)

+
1
2

√
(
α1(1− ◦

ϕ1 −
◦
ϕ2)

α2
− 1)2 + 4(

α1

α2
− 1) ◦ϕ2(1−

◦
ϕ1 −

◦
ϕ2); (6.30)

• a mixed uniform state bounded by the segregation shock Sseg and a compaction
shock Scom and involving small and large particles with packing fractions ϕ1 = ◦

ϕ1 and
ϕ2 = ◦

ϕ2;
• a mixed uniform state closely-packed bounded by the container base and the com-

paction shock Scom until the time T1, by the container base and Sseg after T1, and
involving small and large particles with packing fractions

ϕ∗1 = ◦
ϕ1 +

(1− ◦
ϕ1 −

◦
ϕ2)α1

◦
ϕ1

α1
◦
ϕ1 + α2

◦
ϕ2

, ϕ∗2 = ◦
ϕ2 +

(1− ◦
ϕ1 −

◦
ϕ2)α2

◦
ϕ2

α1
◦
ϕ1 + α2

◦
ϕ2

; (6.31)

• a uniform closely-packed state bounded by a compaction shock Scom and the segre-
gation shock Sseg until the time T2, by the free surface and Sseg after T2 and involving
only large particles with packing fraction ϕ1 = 1.
Prior to the instant T1 = 1

α1(1−◦ϕ2)+α2
◦
ϕ2

, Vseg = α1(1− ◦ϕ1−
◦
ϕ2), Vcom = −(α1

◦
ϕ1 +α2

◦
ϕ2)

and Vfree = α1(1 − ϕ2), with ϕ2 given by (6.30). Between the instants T1 and T2 =
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α1
α2

(1−◦ϕ1−
◦
ϕ2)

α1(1−◦ϕ2)+α2
◦
ϕ2

, Vcom = −α2ϕ2, with ϕ2 given once again by (6.30). Subsequent to T2,
Vseg = 0.

Concerning this solution, we have the following

Theorem 1. The solution delineated above solves uniquely the problem

∂ϕ1

∂t
= α1

∂

∂x

(
ϕ1(1− ϕ1 − ϕ2)

)
,

∂ϕ2

∂t
= α2

∂

∂x

(
ϕ2(1− ϕ1 − ϕ2)

)
,


 (6.32)

subject to the initial conditions

ϕk(x, 0) =




0 if x > 1,

◦
ϕk if 0 < x ≤ 1,

(6.33)

the jump conditions

[[ϕ1]]Vshock = −α1[[ϕ1(1− ϕ1 − ϕ2)]],

[[ϕ2]]Vshock = −α2[[ϕ2(1− ϕ1 − ϕ2)]],

}
(6.34)

across any shock (moving with velocity Vshock), the condition

αk(1− ϕ1 − ϕ2) = Vfree, k = 1, 2 (6.35)

for particles of type k at a free surface (moving with velocity Vfree), and condition

ϕ1 + ϕ2 = 1 (6.36)

at the base.

Proof. We first show that rarefactions may not issue from the points (x, t) = (1, 0)
and (x, t) = (0, 0) corresponding to the initial free surface and to the base. Suppose that,
at t = 0, a rarefaction occurs at x = 1. Then

λ±(0, 0) < λ±(φ1(ξ), φ2(ξ)), ξ =
x

t
. (6.37)

However, from (6.6), λ−(0, 0) = α2 and λ−(φ1, φ2) < α2(1− φ1 − 2φ2). Thus, by (6.37),
α2 < α2(1− φ1 − 2φ2) or φ1 + 2φ2 < 0, which cannot occur since φ1 and φ2 must be in
A. Thus, the first characteristic does not give rise to a rarefaction. Similarly, from (6.6),
λ+(0, 0) = α1 and λ+(φ1, φ2) < α1. Thus, by (6.37), α1 = λ2(φ1, φ2) < α1, which cannot
hold. Hence, by contradiction, no rarefactions may emanate from (x, t) = (1, 0). At the
base (x = 1), the state (ϕ1, ϕ2) connecting to the right of the state ( ◦ϕ1,

◦
ϕ2) satisfies the

relation 1−ϕ1−ϕ2 = 0. Such a state must lie on the intersection of D−(ϕ1,
◦
ϕ1,

◦
ϕ2) with

the line ϕ1 + ϕ2 = 1. Hence, the characteristic at x = 1 satisfies only (6.9) and is not a
rarefaction. Thus, by contradiction, no rarefactions may emanate from (x, t) = (0, 0).

At the point (x, t) = (X1, T1), with X1 = α1(1−◦ϕ1−
◦
ϕ2)

α1(1−◦ϕ2)+α2
◦
ϕ2

, the segregation shock Sseg

and the compaction shock Scom meet. To understand the nature of the solution at t = T1,
we solve for (6.32) subject to the condition (ϕ1(x < X1, t = T1), ϕ2(x < X1, t = T1)) =
(0, ϕ2) and (ϕ1(x ≥ X1, t = T1), ϕ2(x ≥ X1, t = T1)) = (ϕ∗1, ϕ

∗
2) where ϕ2 is given as in

(6.30) and (ϕ∗1, ϕ
∗
2) as in (6.31). If (ϕ̄1, ϕ̄2) denotes an admissible state connecting to the

right of (0, ϕ2) by a rarefaction, then (6.24) together with constraints (6.18) and (6.19)
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imply that ϕ1 < 0. This falls outside the domain A. Hence, a rarefaction cannot emanate
from (x, t) = (X1, T1).

At the point (x, t) = (X2, T2), with X2 = α2(1−ϕ2)X1
α1

and ϕ2 given by (6.30), the
free surface Sfree and the compaction shock Scom meet. To understand the nature of
the solution at t = T2, we solve for (6.32) subject to the condition (ϕ1(x < X2, t =
T2), ϕ2(x < X2, t = T2)) = (0, 0) and (ϕ1(x ≥ X2, t = T2), ϕ2(x ≥ X2, t = T2)) = (0, 1).
Following a proof identical to that used in the case of the point (x, t) = (1, 0), we conclude
that a rarefaction cannot emanate from (X2, T2).

Hence the solution cannot involve rarefactions. To complete the proof, we rely on the
analysis of the Riemann problem detailed above.
• At the point (x, t) = (1, 0), we can regard (ϕ<1 , ϕ

<

2 ) = (0, 0) and (ϕ>1 , ϕ
>

2 ) = ( ◦ϕ1,
◦
ϕ2).

Since the admissible state (ϕ1, ϕ2) lies in D−(ϕ1, ϕ
<

1 = 0, ϕ<2 = 0), it follows that this
state is connected to (ϕ<1 , ϕ

<

2 ) = (0, 0) by a discontinuity (the free surface) that satisfies
the constraint (6.9) together with the jump conditions

α1ϕ1(1− ϕ1 − ϕ2) = Vfreeϕ1,

α2ϕ2(1− ϕ1 − ϕ2) = Vfreeϕ2.

}
(6.38)

This implies that ϕ1 = 0 and that Vfree = α2(1 − ϕ2). To determine ϕ2, we note that
(ϕ>1 , ϕ

>

2 ) = ( ◦ϕ1,
◦
ϕ2) lies in D+(ϕ>1 = ◦

ϕ1, 0, ϕ2). Hence, the state (0, ϕ2) is connected to
(ϕ>1 , ϕ

>

2 ) = ( ◦ϕ1,
◦
ϕ2) by a discontinuity (the segregation shock) satisfying the constraint

(6.10) along with the jump conditions

α1ϕ1(1− ϕ1 − ϕ2)− α1
◦
ϕ1(1−

◦
ϕ1 −

◦
ϕ2) = Vseg(ϕ1 − ◦

ϕ1),

α2ϕ2(1− ϕ1 − ϕ2)− α2
◦
ϕ2(1−

◦
ϕ1 −

◦
ϕ2) = Vseg(ϕ2 − ◦

ϕ2).

}
(6.39)

The above conditions implies that Vseg = α1(1 − ◦
ϕ1 −

◦
ϕ2) and that ϕ2 given by (6.30).

Since α1 > α2 and 1− ◦
ϕ1 −

◦
ϕ2 > 0, it follows that (6.30) has only one positive real root

ϕ2 and that ϕ2 < 1. Hence, the root of (6.30) yields a packing fraction.
• At the point (x, t) = (0, 0), the state (ϕ∗1, ϕ

∗
2) connecting to the right of ( ◦ϕ1,

◦
ϕ2)

satisfies the relation ϕ∗1 + ϕ∗2 = 1. However, from (6.6) it follows that λ−(ϕ∗1, ϕ
∗
2) = 0

and λ+(ϕ∗1, ϕ
∗
2) = −(α1ϕ

∗
1 + α2ϕ

∗
2). Since one of the eigenvalues is constant, a contact

discontinuity (the compaction shock) emanates from the base. From the jump conditions

α1
◦
ϕ1(1−

◦
ϕ1 −

◦
ϕ2) = −Vcom(ϕ∗1 −

◦
ϕ1),

α2
◦
ϕ2(1−

◦
ϕ1 −

◦
ϕ2) = −Vcom(ϕ∗2 −

◦
ϕ2),

}
(6.40)

and the condition ϕ∗1 + ϕ∗2 = 1, it follows that Vcom = −(α1
◦
ϕ1 + α2

◦
ϕ2) and (ϕ∗1, ϕ

∗
2) is

given as in (6.31).
• At the point (x, t) = (X1, T1), we can regard (ϕ<1 , ϕ

<

2 ) = (0, ϕ2) and (ϕ>1 , ϕ
>

2 ) =
(ϕ∗1, ϕ

∗
2), where ϕ∗1+ϕ∗2 = 1. Since the admissible state (ϕ̄1, ϕ̄2) lies in D−(ϕ̄1, 0, ϕ<2 = ϕ2),

this state must be connected to (ϕ<1 , ϕ
<

2 ) = (0, ϕ2) by a discontinuity (a compaction
shock) that satisfies the constraint (6.9) along with the jump conditions

α1ϕ̄1(1− ϕ̄1 − ϕ̄2) = Vcomϕ̄1,

α2ϕ̄2(1− ϕ̄1 − ϕ̄2)− α2ϕ2(1− ϕ2) = Vcom(ϕ̄2 − ϕ2).

}
(6.41)

This implies that ϕ̄1 = 0 and that Vcom = −α2ϕ2. To determine ϕ̄2, we note that
(ϕ>1 , ϕ

>

2 ) = (ϕ∗1, ϕ
∗
2) lies inD+(ϕ∗1, 0, ϕ̄2). Hence, the state (0, ϕ2) is connected to (ϕ>1 , ϕ

>

2 ) =
(ϕ∗1, ϕ

∗
2) by a discontinuity (the segregation shock) that satisfies the constraint (6.10)
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along with the jump conditions

α1ϕ
∗
1(1− ϕ∗1 − ϕ∗2) = Vseg(−ϕ∗1),

α2ϕ̄2(1− ϕ̄1 − ϕ̄2)− α2ϕ
∗
2(1− ϕ∗1 − ϕ∗2) = Vseg(ϕ̄2 − ϕ∗2).

}
(6.42)

The above conditions imply that Vseg = 0 and ϕ2 = 1.
• At the point (x, t) = (X2, T2), we can regard (ϕ<1 , ϕ

<

2 ) = (0, 0) and (ϕ>1 , ϕ
>

2 ) = (0, 1).
Proceeding exactly as in the case of the point (x, t) = (0, 0), it follows that the solution
can be described by a contact discontinuity (the free surface) separating the free surface
from the compacted layer where (ϕ1, ϕ2) = (0, 1).

7. Discussion
Using a model proposed by Fried et al. (2001), we have studied size-based segregation

occuring under the action of gravity. For a flow with constant velocity, the model reduces
to a system of one-dimensional conservation laws. We have presented a solution for a
particular initial-value problem involving a mixture of particles of K ≥ 2 sizes. This
solution shows segregation and compaction by particle size. At steady state, this solution
consists of layers of closely packed particles, with the upper-most layer consisting only
of particles of the largest size. Numerical solutions for K = 3 particles were computed
using LeVeque’s (1994) CLAWPACK. Relying on methods developed by Smoller (1994),
we established the uniqueness of the solution for the case K = 2 of a mixture of small
and large particles. The issue of uniqueness in the case K > 2 remains open.

The problem considered here is idealized in the sense that the flow field is trivial.
Furthermore, we have ignored variations of the particulate mobilities with the strain-rate.
As discussed by Fried et al. (2001), such variations should rule out particle diffusion in the
absence of sufficient agitation. Under flow conditions more general than those considered
here, strain-rate dependence of the mobilities would allow for the existence of regions in
which particles would simply move with the mixture. Compaction and segregation would
thus be confined to regions of sufficiently high agitation.
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