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Guided by the kinematical treatment of vacancies in theories for solid-state diffusion,
we develop a theory for compaction and segregation in flowing granular materials. This
theory leads to a partial differential equation for the macroscopic motion of the material
coupled to a system of partial differential equations for the volume fractions of the indi-
vidual particle types. When segregation is ignored, so that the focus is compaction, the
latter system is replaced by a scalar partial differential equation that closely resembles
equations arising in theories of traffic flow. To illustrate the manner in which the theory
describes compaction and segregation, we present three explicit solutions. In particular,
for an arbitrary loosely packed mixture of small and large particles in a fixed container
under the influence of gravity, we show that a layer of large particles forms at the free
surface and grows with time, while a closely packed mixture of large and small particles
forms and grows from the base of the container; the final solution, attained in finite time,
consists of a layer of closely packed large particles above a closely packed mixed state.
At the mundane level of everyday experience, this solution at least qualitatively explains
why in a container of mixed nuts, Brazil nuts are generally found at the top.

1. Introduction
A granular material is a collection of solid particles together with an interstitial fluid

such as air or water. Granular materials consist not of identical particles, but, rather, of
various particle types that may differ in size, shape, density, resilience, and roughness.
When a polydisperse granular material flows in the presence of gravity, its constituents
tend to segregate. Consider, for example, a horizontal cylinder filled partially with a
granular material involving particles of two types. If the cylinder is rotated slowly about
its axis, an axial separation occurs, involving a series of alternating bands containing
only particles of one or the other type (Donald & Roseman 1962; Campbell & Bauer
1966). Further, by altering the cylinder rotation speed, this separation can be reversed
to create a state in which the two particle types are well-mixed (Hill & Kakalios 1994).

While segregation may occur in any granular material consisting of particles with
disparate properties, differences in particle size are thought to be dominant (Brown 1939;
Williams 1963, 1976; Bridgewater 1976). In particular, contrary to what experience with
conventional fluids might lead one to expect, experiments conducted with horizontally
vibrated binary mixtures of small and large particles show that the large particles rise
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upward against gravity even when the density of a large particle exceeds markedly that
of a small particle (Harwood 1977).

While mineral processing technologies exploit the tendency for granular materials to
segregate, industrial mixing technologies must counteract this tendency. Though vital
to the chemical, pharmaceutical, powder metallurgy, glass, ceramic, paint, food, and
construction industries, separation and mixing technologies are presently limited by a re-
liance upon empirically-based heuristics (Ottino & Khakhar 2000). An enhanced under-
standing of the mechanisms underlying segregation is therefore likely to lead to significant
advances in a broad spectrum of industrial enterprises.

At present, molecular dynamics appears to be the method of choice for numerical
simulations of segregation-by-particle-type (Haff & Werner 1986; Ohtsuki et al. 1993;
Baumann et al. 1994; Ristow 1994; Dury & Ristow 1997). However, even with the most
advanced computing resources currently available, the inherent memory demands of this
method make it infeasible for systems of more than 106 particles. Thus, to simulate geo-
physical and industrial flows, which generally entail extremely large numbers of particles,
an alternative approach would be useful.

One such alternative would be provided by a continuum theory involving evolution
equations appropriately analogous to those arising in the Navier–Stokes theory. Indeed,
when faced with the challenge of modeling granular materials involving great numbers
of particles, the advantage of a continuum theory is clear: in such a theory, each point in
the region occupied by the medium corresponds to a great number of particles. Insofar
as monodisperse granular materials are concerned, continuum-level theories have been
exploited to considerable advantage (Savage 1984; Hutter & Rajagopal 1994; Wang &
Hutter 2001). Avenues to such a framework are provided by the kinetic theory (Jenkins
& Mancini 1989; Arnarson & Willits 1998; Jenkins 1998; Arnarson & Jenkins 2000) and
by mixture theory (Aranson et al. 1999; Khakhar et al. 1999).

Here, we take an alternative approach that emphasizes the essential role of voids in
the segregation process (Rosato et al. 1986, 1987; Savage & Lun 1988; Fitt & Wilmott
1992). In so doing, we are guided by the treatment of vacancies in theories of solid-state
diffusion (Ågren 1982; Cahn & Larché 1983; Larché & Cahn 1983; Mullins & Sekereka
1985; Fried & Gurtin 1999). In these theories, vacancies are viewed as an ‘atomic species,’
are endowed with chemical potential, and may diffuse through the crystal lattice. This
allows for an efficient bookkeeping whereby vacancies enter the basic laws in a physically
relevant manner. The analogy between the role of vacancies in solid-state diffusion and of
voids in granular flow has been recognized earlier by Litwiniszyn (1963), Mullins (1972),
and Caram & Hong (1992) in works concerning monodisperse granular materials.

Because our approach is nonstandard, the main purpose of this work is to develop a
kinematical foundation for the treatment of voids and to formulate the basic physical laws
within a setting that allows for segregation via the diffusion of different particle types.
We focus on media in which rigid particles of one or more discrete types are represented,
ignore all forms of inertia, and restrict attention to flows in which the particles remain in
close contact. Insofar as constitutive equations are concerned, we emphasize the devel-
opment of equations that describe the relative diffusion between particles and between
particles and voids, leaving aside the detailed discussion of constitutive equations for the
extra stress.

The final governing equations of our theory include a partial differential equation
for the macroscopic motion of the material coupled to a system of partial differential
equations for the volume fractions of the individual particle types. When segregation is
ignored, so that the focus is compaction, the system of equations for the volume frac-
tions is replaced by a scalar partial differential equation that closely resembles equations
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arising in theories of traffic flow. For what we call a ‘simple granular material,’ the sys-
tem of equations for the volume fractions is hyperbolic. A simple granular material is
a cohesionless medium consisting of particles that differ only by size and for which: (i)
the particulate mobilities depend separably on the particulate volume fractions and the
invariants of the aggregate strain rate; (ii) the particulate mobilities and the extra stress
depend on the particulate volume fractions only through their sum — the void fraction.
Hence, shocks are possible in a cohesionless medium. We develop the general conditions
governing particulate shocks and discuss their specialization to compactification and seg-
regation shocks. We also discuss the conditions that hold at free surfaces and at solid
boundaries.

To illustrate the manner in which our theory describes compaction and segregation,
we focus on simple granular materials. Within this setting, we present three explicit
solutions. First, for loosely packed particles of a single type in a fixed container under the
influence of gravity, we show that a closely packed layer of particles forms and grows from
the base of the container resulting in a final solution, attained in finite time consisting of
closely packed particles. Next, for an arbitrary loosely packed mixture of small and large
particles in a fixed container under the influence of gravity, we show that a layer of large
particles forms at the free surface and grows with time, while a closely packed mixture
of large and small particles forms and grows from the base of the container; the final
solution, attained in finite time, consists of a layer of closely packed large particles above
a closely packed mixed state. Finally, we show that, under very special conditions, our
theory allows for the desegration of a layer of small particles above a mixture of small
and large particles but that, once mixed, the medium segregates to leave a layer of large
particles above.

2. Volume-based kinematics. Conservation of volume
2.1. Volume fractions for particles and voids

Consider a mixture of rigid particles and voids. We view the mixture as a continuum
and, with the aim of developing local field equations, focus attention on a fixed control
volume R through which this mixture is flowing. We write x for an arbitrary point of R,
n(x) for the outward unit normal on ∂R, and t for any arbitrary instant of time.

We assume that the particles are of K discrete types and denote by ϕk(x, t) the volume
fraction of particles of type k = 1, 2, . . . ,K and by ϕv(x, t) the volume fraction of voids.
Consistent with the requirement that all volume be accounted for by particles and voids,
we assume that

K∑
k=1

ϕk + ϕv = 1. (2.1)

We also insist that the volume fractions take values between 0 and 1, so that 0 ≤ ϕk ≤ 1
for each k = 1, 2, . . . ,K and 0 ≤ ϕv ≤ 1, which, in combination with (2.1), yields the
constraint

K∑
k=1

ϕk ≤ 1. (2.2)

We write vk(x, t) for the velocity of particles of type k and vv(x, t) for the velocity of
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voids, take the volume-weighted velocity

v =
K∑
k=1

ϕkvk + ϕvvv (2.3)

as the relevant velocity field for the mixture, and describe the motion of particles and
voids relative to the mixture through the relative velocities uk(x, t) and uv(x, t) defined
via

uk = vk − v and uv = vv − v. (2.4)

We write ∂/∂t for the spatial time-derivative (with respect to t holding x fixed) and
use grad and div to denote the spatial gradient and spatial divergence (with respect to x
holding t fixed). We consider the mixture as a continuum that convects with the volume-
weighted velocity v; consistent with this, we write D/Dt for the material time-derivative,
so that

Dg
Dt

=
∂g

∂t
+ v · (gradg) (2.5)

for a scalar field g(x, t) and similarly for a vector field.
Since the particles are rigid, the volume occupied by each particle type and the volume

occupied by voids must be preserved throughout the motion. The integrals∫
R

ϕk dV and −
∫
∂R

ϕk vk · ndA

represent the volume of particles of type k in R and the volume of particles of that
type entering R across ∂R, per unit time, and analogous statements hold for voids.
Conservation of volume is therefore the requirement that

d
dt

∫
R

ϕk dV = −
∫
∂R

ϕkvk · ndA and
d
dt

∫
R

ϕv dV = −
∫
∂R

ϕvvv · ndA (2.6)

for all control volumes R; since R is fixed,

d
dt

∫
R

g(x, t) dVx =
∫
R

∂g(x, t)
∂t

dVx (2.7)

for any field g(x, t), and we are led to the local balances

∂ϕk
∂t

= −div(ϕkvk) and
∂ϕv

∂t
= −div(ϕvvv). (2.8)

Summing these relations over all constituents (voids and particles) we find, with the aid
of (2.1) and (2.3), that the mixture is locally volume-preserving; viz.,

divv = 0, (2.9)

which manifests our use of voids to provide an accounting for all volume. By (2.7), (2.9),
and the divergence theorem,

d
dt

∫
R

g dV +
∫
∂R

gv · ndA =
∫
R

Dg
Dt

dV. (2.10)
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Figure 1. Schematic of the packing domain A and the closely-packed manifold for the special
case of two particle types.

Using (2.9), (2.4), and (2.5), we may rewrite (2.8) in the alternative form

Dϕk
Dt

= −div(ϕkuk) and
Dϕv

Dt
= −div(ϕvuv). (2.11)

The field

k = ϕkuk (2.12)

represents the volume flux of particles of type k, and their introduction allows us to
rewrite (2.11)1 as

Dϕk
Dt

= −divk. (2.13)

2.2. Packings
We refer to lists

�ϕ = (ϕ1, ϕ2, . . . , ϕK),
as packings and consistently use the abbreviation

CP = closely packed.

We assume that each packing �ϕ belongs to a closed subset A of the unit cube [0, 1] ×
[0, 1]× · · ·× [0, 1] in RK ; A is called the packing domain. The set of all packings that are
CP, called the CP manifold, is then a smooth subsurface of ∂A. It is beyond our present
scope to describe in detail the properties of the packing domain and the CP manifold;
Figure 1 gives a schematic of these sets for the special case of two particle types.

3. Mass-based kinematics. Conservation of mass
Restricting attention momentarily to particles, we denote by mk the mass density of

a single particle of type k and define the mass density ρk(x, t) of particles of type k, per
unit mixture-volume, by

ρk = mkϕk. (3.1)

Then

ρ =
K∑
k=1

ρk (3.2)
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represents the mixture density ρ(x, t),

ck =
ρk
ρ

(3.3)

gives the mass concentration ck(x, t) of particles of type k,

vp =
K∑
k=1

ckvk (3.4)

determines the mass-weighted velocity vp(x, t), and

up = vp − v =
K∑
k=1

ckuk (3.5)

characterizes the net relative-velocity up(x, t).
Multiplying (2.11)1 by mk we arrive at the mass balance

Dρk
Dt

= −div(ρkuk), (3.6)

for particles of type k. When summed over all particulate species, (3.6) yields the net
mass-balance

Dρ
Dt

= −div(ρup), (3.7)

showing that, although the mixture itself is locally volume-preserving, density changes
are not excluded. Using (2.5) with g = ρ, (3.5), and (2.9), we observe that (3.7) can be
rewritten as

∂ρ

∂t
= −div(ρvp). (3.8)

4. Force and moment balances
We assume that inertia is negligible and write T (x, t) for the stress, carrying dimensions

of force per unit mixture-area, and f(x, t) for the specific body-force, carrying dimensions
of force per unit mass, so that ρf represents the body force, per unit mixture-volume.

The balance laws for forces and moments require that∫
∂R

TndA+
∫
R

ρf dV = 0 (4.1)

and ∫
∂R

(x− 0)× TndA+
∫
R

(x− 0)× ρf dV = 0 (4.2)

for each control volume R, whereby the standard local relations

divT + ρf = 0 and T = T� (4.3)

hold.
For convenience, we decompose T in the form

T = S − p1, p = − 1
3 trT , (4.4)
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with S(x, t) the extra stress and p(x, t) the pressure; the relations (4.3) then become

divS + ρf = gradp and S = S�. (4.5)

Finally, note that, trivially, the body force admits the decomposition

ρf =
K∑
k=1

ρkf . (4.6)

5. Energetics
5.1. Energetics associated with the field f

Basic to our theory is the view that f is a background field that interacts with massy
quantities moving through space. Thus∫

R

ρf dV and
∫
R

ρkf dV

represent respective net forces exerted by the field f on the mixture in R and on particles
of type k in R. We assume that the body force ρkf acting on particles of type k expends
power over the particle velocity vk; thus the total power expended by the body force,
per unit mixture-volume, is, by (3.4),

K∑
k=1

ρkf · vk = ρf · vp.

Given any control volume R, the integral∫
R

ρf · vp dV

then represents the net working of the body force on that portion of the mixture in R.
We assume that f is time-independent and conservative with potential energy Ψ(x),

per unit mass:

f = −gradΨ. (5.1)

In many, if not most, applications of interest the field f will be gravitational and hence
of the form f = g, with g the (constant) gravitational acceleration, so that, ignoring an
inconsequential constant,

Ψ(x) = −g · x.
Our general results, however, are independent of the particular choice of f .

Given a control volume R, it follows from (3.8) and (5.1) that

d
dt

∫
R

ρΨ dV =
∫
R

∂ρ

∂t
Ψ dV

= −
∫
R

Ψdiv(ρvp) dV

= −
∫
∂R

ρΨvp · ndA−
∫
R

ρf · vp dV,
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and we have the identity:

d
dt

∫
R

ρΨ dV +
∫
∂R

ρΨvp · ndA = −
∫
R

ρf · vp dV. (5.2)

The left side of (5.2) represents the potential energy produced within R, per unit time,
as it expresses, for R, the temporal change in potential energy plus the rate at which
potential energy is carried out across ∂R by particle flow. The identity (5.2) therefore
shows that the action of the body force on the mixture may be expressed alternatively
as a production of potential energy or as an expenditure of power.

By (3.3) and (3.5), the left side of (5.2) may be written as

d
dt

∫
R

ρΨ dV +
∫
∂R

ρΨv · ndA+
K∑
k=1

∫
∂R

ρkΨuk · ndA

and therefore, by (2.12) and (3.1), we may express (5.2) equivalently as

d
dt

∫
R

ρΨ dV +
∫
∂R

ρΨv · ndA = −
K∑
k=1

∫
∂R

(mkΨ)k · ndA−
K∑
k=1

∫
R

ρkf · vk dV. (5.3)

The left side of (5.3) represents the temporal change in the potential energy of the
convected control volume that occupies the fixed region R at the current time. The
first term on the right represents the potential energy carried out of this convected
control volume across its boundary by the diffusion of particles relative to the mixture,
an identification that establishes mkΨ as the chemical potential of particles of type k in
the field f .

5.2. Energy imbalance

In our purely mechanical setting, the first and second laws of thermodynamics are re-
placed by an energy imbalance asserting that the energy in a control volume R increases
at a rate no greater than the net rate at which work is performed on R plus the rate
at which energy flows into R across ∂R. We allow for a free-energy density ψ for the
mixture as a whole and a chemical potential µk for each particle type k. Thus, since we
neglect inertia, the energy imbalance is the requirement that

d
dt

∫
R

(ψ + ρΨ) dV +
∫
∂R

(ψ + ρΨ)v · ndA

≤ −
K∑
k=1

∫
∂R

(µk +mkΨ) k · ndA +
∫
∂R

Tn · v dA, (5.4)

or equivalently, by (5.3), that

d
dt

∫
R

ψ dV +
∫
∂R

ψv · ndA ≤ −
K∑
k=1

∫
∂R

µk k · ndA+
∫
∂R

Tn · v dA+
∫
R

ρf · vp dV.

(5.5)
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5.3. Local dissipation inequality
We now localize the energy imbalance (5.5). By the force balance (4.3)1, the decomposi-
tion (4.4) of T , the moment balance (4.5)2, and the relation divv = 0,∫

∂R

Tn · v dA+
∫
R

ρf · v dV =
∫
R

T · gradv dA =
∫
R

S ·D dV, (5.6)

with

D = 1
2

(
gradv + (gradv)�

)
(5.7)

the strain-rate. Using the definition (3.5), we therefore arrive at the power balance∫
∂R

Tn · v dA+
∫
R

ρf · vp dV =
∫
R

(S ·D + ρf · up) dV. (5.8)

The left side of this balance represents power expended externally on the mixture in R
by tractions exerted across ∂R and by the field f , while the right side represents power
expended internally via the stress power S ·D, which is classical, and a nonstandard term
ρf · up that represents an interaction between particles and the particle-void mixture;
particles do not convect with the mixture and hence interact internally with the mixture
through the background field f .

Finally, applying (2.10) with g = ψ, (5.8), and the divergence theorem to (5.5),
∫
R

Dψ
Dt

dV ≤
K∑
k=1

∫
R

(
S ·D + ρf · up − div(µk k)

)
dV,

and, since ρf · up = mkk · f and k = ϕkuk, we may use (2.13) to conclude that

S ·D +
K∑
k=1

k · (mkf − gradµk) ≥
Dψ
Dt
−

K∑
k=1

µk
Dϕk
Dt

. (5.9)

We regard this dissipation inequality as a restriction on possible constitutive equations.

6. Constitutive equations
Our goal is not a general set of constitutive equations, but instead a fairly simple set

that exhibits compaction and segregation.

6.1. Free energy and chemical potentials. Residual inequality
We assume that the free-energy density is a function

ψ = ψ̂(�ϕ)

of the particulate volume fractions, and that the particulate chemical potentials are given
by the classical expression

µk =
∂ψ̂(�ϕ)
∂ϕk

. (6.1)

We consider two special cases of the theory: (i) a cohesionless material in which ψ ≡ 0
(so that all particulate chemical potentials µk vanish); (ii) a cohesive material in which
ψ does not vanish identically.
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Returning to the general theory, (6.1) reduces (5.9) to the residual inequality

S ·D +
K∑
k=1

k · (mkf − gradµk) ≥ 0. (6.2)

In fact, we restrict attention to constitutive equations consistent with the more stringent
requirement that the diffusive dissipation† and the stress power be separately nonnega-
tive:

S ·D ≥ 0 and
K∑
k=1

k · (mkf − gradµk) ≥ 0. (6.3)

Trivially, (6.3)2 may be written in an alternative form,

K∑
k=1

k · grad(mkΨ + µk) ≤ 0, (6.4)

asserting that, in the absence of other particles, particles of type k diffuse down the
gradient of the net chemical potential mkΨ + µk.

6.2. Particulate volume fluxes
It is convenient to write ıD for the list

ıD = (|D|,detD) (6.5)

of invariants of the strain-rate D. We suppose that the relative velocities uk of the
particulate species are characterized by velocity moduli Ukj(�ϕ, ıD) through constitutive
relations of the form

uk =
K∑
j=1

Ukj(�ϕ, ıD)(mkf − gradµj), (6.6)

k = 1, 2, . . . ,K. If we define flux moduli through

Jkj(�ϕ, ıD) = ϕkUkj(�ϕ, ıD),

then we can rewrite the constitutive relations (6.6) in the form

k =
K∑
j=1

Jkj(�ϕ, ıD)(mkf − gradµj). (6.7)

We assume that the K × K matrix with entries Jkj is positive semi-definite to ensure
that (6.3)2 is satisfied.

Since particle diffusion should be impossible at all closely packed states, we require
that

Ukj(�ϕ, ıD) = 0 for all �ϕ that are CP, (6.8)

j, k = 1, 2, . . . ,K; then, trivially, Jkj(�ϕ, ıD) = 0 for �ϕ CP. (One might expect that pack-
ings that are not CP should not diffuse without sufficient agitation, and for that reason
one might assume that the mixture is undergoing a background agitation of sufficiently
small amplitude that its presence is not mentioned explicitly in the underlying theory or

† We use the terms ‘diffusion’ and ‘diffusive’ when discussing the relative motion of particles,
even though the equations that govern cohesionless materials are generally hyperbolic.
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should allow for the possibility that, for each �ϕ, the moduli Ukj(�ϕ, ıD) vanish for some
set of values of ıD. We will not explicitly address this issue.)

For a cohesionless material the chemical potentials vanish identically and we may,
without loss in generality, take

Ukj = 0 for k �= j and write Uk = Ukk

(and similarly for the flux mobilities); (6.6) and (6.7) then become

uk = mkUk(�ϕ, ıD)f and k = mkJk(�ϕ, ıD)f . (6.9)

6.3. Extra stress
Invariance under changes of observer requires the extra stress S be an isotropic function
of D and �ϕ consistent with (6.3)1. If this function is well-defined at D = 0, it follows
that S = 0 when D = 0 independent of �ϕ. A particularly simple example of this type is
the generalized Newtonian relation

S = 2η(�ϕ, |D|)D (6.10)

with viscosity consistent with η(�ϕ, |D|) ≥ 0.
More generally, we can consider a relation which is not defined at D = 0. In this case,

S is indeterminate when D = 0, but objectvity requires that the set of attainable extra
stresses be invariant. An example of this type is the generalized Bingham relation


|S| ≤ s(�ϕ) when D = 0,

S = s(�ϕ)
D

|D| + 2η(�ϕ, |D|)D when D �= 0,
(6.11)

with yield stress s(�ϕ) > 0 and viscosity η(�ϕ, |D|) ≥ 0, which might potentially describe
plug flows.

Both (6.10) and (6.11) are capable of encompassing the quadratic dependence of shear
stress on shear strain-rate that has been observed for granular materials (Bagnold 1954;
Shahinpoor & Lin 1982). However, because they cannot account for the normal stress
differences that typically arise in granular materials, these choice represent severe ide-
alizations. More generally, we would find acceptable any expression for S that encom-
passes the observed non-Newtonian characteristics of granular materials and that satisfies
S ·D ≥ 0. A thorough discussion of such relations is beyond the scope of this paper,
especially since little is known about the effect of particle size distributions on flow.† The
subsequent discussion will be independent of the particular constitutive equation chosen
for S.

6.4. Simple granular materials
We now describe a class of materials that hopefully characterizes at least qualitatively
the tendency of granular materials to segregate by size. These materials, called simple
granular materials, are defined by the following set of constitutive assumptions:

(G1) The material is cohesionless:

ψ ≡ 0.

(G2) Particles differ only by size:

m1 = m2 = · · · = mK = m. (6.12)

† See the review articles of Hutter & Rajagopal (1994) and Wang & Hutter (2001) for dis-
cussions of constitutive equations for the stress in a monodisperse granular medium.
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(G3) The packing domain A is the set of all packings �ϕ such that the total particulate
volume fraction

ϕp =
K∑
k=1

ϕk (6.13)

satisfies

ϕp ≤ ∗ϕ, (6.14)

where ∗ϕ is a constitutive constant consistent with 0 < ∗
ϕ < 1. (By definition, packings

�ϕ automatically satisfy ϕk ≥ 0, k = 1, 2, . . . ,K.) The CP manifold is then the set of all
packings �ϕ such that

ϕp = ∗
ϕ,

so that the total particulate volume fraction has the same value at all CP states, as does
the void fraction ϕv = 1− ϕp, which has the value

∗
ϕv = 1− ∗ϕ. (6.15)

(G4) The constitutive relations for the velocity moduli have the simple form

Uk(�ϕ, ıD) =
1
m
αk(ıD)h(ϕp), (6.16)

with αk(ıD) ≥ 0 and

h(ϕp) > 0 for 0 < ϕp <
∗
ϕ, h(ϕp) = 0 for ϕp ≥ ∗ϕ, (6.17)

so that (6.3)2 is satisfied and so that the relative velocities vanish when the packing is
CP. The corresponding flux moduli are given by

Jk(�ϕ, ıD) =
1
m
ϕkαk(ıD)h(ϕp). (6.18)

We refer to h as the compaction function and to the αk as the effective mobilities. The
only constitutive moduli that differentiate between particle types are then the effective
mobilities αk(ıD). We assume that these mobilities are nonzero (even when D = 0);
without loss in generality, we may then assume that

α1(ıD) > α2(ıD) > · · · > αK(ıD) > 0 (6.19)

for all D, so that, for �ϕ not CP,

U1(�ϕ, ıD) > U2(�ϕ, ıD) > · · · > UK(�ϕ, ıD) > 0 (6.20)

for all D.
(G5) The constitutive equation for the extra stress depends on �ϕ through ϕp, so that,

for example, (6.10) would specialize to

S = 2η(ϕp, ıD)D.

7. Governing equations
7.1. Basic evolution equations

Our theory yields evolution equations for v, p, and the particulate fields ϕk and uk.
These consist of the constraint equation

divv = 0, (7.1)
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the force balance

divS +
K∑
k=1

mkϕkf = gradp (7.2)

supplemented by a constitutive relation for S, and the (constitutively augmented) par-
ticulate volume balances

Dϕk
Dt

= −
K∑
j=1

div
(
Jkj(�ϕ, ıD)(mkf − gradµj)

)
with µk =

∂ψ̂(�ϕ)
∂ϕk

, (7.3)

k = 1, 2, . . . ,K. (Cf. (2.13), (3.1), (3.2), (4.5), (6.7).) For a cohesive material, the presence
of the chemical potentials complicates these equations.

If the material is cohesionless the chemical potentials vanish and we may use (6.9) in
place of (6.7) for the fluxes; the result is

Dϕk
Dt

= −mk div
(
ϕkUk(�ϕ, ıD)f

)
. (7.4)

Unless further restrictions are placed on the mobilities, this system — as a system of first-
order partial differential equations for �ϕ, given the field v — is without type and hence
intricate with respect to the choice of natural boundary conditions. A second difficulty
arises in the requirement that �ϕ is constrained to lie in a closed set, the packing domain,
which in the case of a simple granular material has the form (6.14).

The special case of one particle type (K = 1) is useful in the study of pure compaction;
here, omitting subscripts, there is a single volume balance

Dϕ
Dt

= −div
(
ϕU(ϕ, ıD)(mf − ψ̂′(ϕ)gradϕ)

)
. (7.5)

For a cohesionless material this balance has the form
Dϕ
Dt

= −mdiv
(
ϕU(ϕ, ıD)f

)
(7.6)

and represents a hyperbolic partial differential equation for ϕ, given the field v, in contrast
to the parabolic nature of such equations in more standard theories of diffusion.

7.2. Volume balances for simple granular materials
If the material is simple, then the flux is given by (6.18) and the system of volume
balances takes the form

Dϕk
Dt

= −div
(
ϕkαk(ıD)h(ϕp)f

)
, ϕp =

K∑
k=1

ϕk, (7.7)

with volume fractions subject to the constraint

ϕk ≥ 0, k = 1, 2, . . . ,K, ϕp ≤ ∗ϕ. (7.8)

Less succinctly, (7.7) may be written in the form

Dϕk
Dt

= −αk(ıD)
K∑
j=1

(
δjkh(ϕp) + ϕkh′(ϕp)

)
f · gradϕj + Φk(�ϕ,D, gradD), (7.9)

with δjk the Kronecker delta. Let

Mkj(�ϕ) = δjkh(ϕp) + ϕkh′(ϕp).
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ν S
νVS

+

−−

Figure 2. Schematic of shock surface S with orientation ν and scalar normal velocity VS
across which the volume fractions are discontinuous.

Then for �ϕ in the interior of the constraint set defined by (7.8),Mkj(�ϕ) = ϕkBkj(�ϕ) with
Bkj = Bjk. TheK×K coefficient matrix with entries αk(ıD)Mkj(�ϕ) therefore hasK (not
necessarily distinct) eigenvalues for each such choice of �ϕ. Thus for αk(ıD)Mkj(�ϕ) and
Φk(�ϕ,D, gradD) “frozen” at fixed values of their arguments, the resulting linear system
for �ϕ may be rewritten in diagonal form; in this sense the system (7.9) is hyperbolic.

8. Particulate shocks in cohesionless materials
We assume throughout this section that the material is cohesionless.

8.1. Particulate shocks
The force balance, although coupled to the volume balances, is the basic evolution equa-
tion for the velocity field v and we expect that, as in more standard theories of Newtonian
and non-Newtonian fluids, this equation should lead to behavior in which v is continuous
— an expectation we now take as a basic assumption. On the other hand, as we have seen,
for a cohesionless material the volume balances can be hyperbolic; with this in mind, we
now discuss possible jump conditions at a surface across which the particulate volume
fractions and relative velocities suffer jump discontinuities. We refer to such surfaces as
particulate shocks. Here it is important to note that if the constitutive equation for the
extra stress S involves the volume fractions �ϕ, as in (6.10), then one would expect jump
discontinuities in S and D.

Consider a particulate shock S, let ν denote a continuous unit normal field for S, and
let VS denote the (scalar normal) velocity of S in the direction of ν, so that

V = VS − v · ν (8.1)

represents the velocity of the shock relative to the mixture. Further, given a field g, let
g+ denote the limit of g, on S, taken from the region into which ν points (the (+) side
of S), let g− denote the corresponding limit from the other side of S (the (−) side), and
let [[g]] = g+ − g−.

Choose a control volume R that contains S. Then, localizing the integral statement
(4.1) for balance of forces at a point on S, we find (for ρf integrable) that

[[S]]ν − [[p]]ν = 0.

Similarly, localizing the volume balance (2.6)1 for particles of type k, we obtain [[ϕk]]VS =
[[ϕkvk]] · ν, or equivalently, by (2.4)1 and (8.1),

[[ϕk]]V = [[ϕkuk]] · ν.
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Thus, by (6.9),

[[ϕk]]V = mk[[ϕkUk(�ϕ, ıD)]]f · ν, k = 1, 2, . . . ,K. (8.2)

If f · ν = 0, then, granted at least one the particulate volume fraction is discontinuous
at S, then V = 0 and the shock convects with the mixture.

We henceforth assume that
f · ν �= 0.

We find it convenient to write
U±k = Uk(�ϕ±, ı±D),

and for a simple granular material,

α±k = αk(ıD±) and h±k = hk(ϕp±).

8.2. Compactification shocks
We say that a packing on, say, the (+)-side, is compatible with a packing on the (−)-side if
(8.2) is satisfied for some choice of V . For example, any two CP packings are compatible,
and V = 0 is always the corresponding velocity (cf. (6.8)).

We now determine the class of CP packings compatible with a prescribed LP packing,
where we use the abbreviation

LP = not CP.
Such CP packings are said to compactify the LP material. More specifically, we say that
a shock S compactifies LP material on its (+)-side if:
• the particles on the (+)-side are LP;
• the (−)-side consists of exactly the same particle types as the (+) side;
• the (−)-side is CP.

Given such a compactification shock S, we may, without loss of generality, relabel the
particle types present on its two sides by the integers 1, 2, . . . , A, with A ≤ K, so that

ϕp+ = ϕ+
1 + ϕ+

2 + · · ·+ ϕ+
A and ϕp− = ϕ−1 + ϕ−2 + · · ·+ ϕ−A = ∗

ϕ. (8.3)

Thus, by (6.8), U−k = 0 for k = 1, 2, . . . , A and (8.2) yields

(ϕ+
k − ϕ−k )V = R+

k f · ν (8.4)

with
R+
k = mkϕ

+
kU

+
k > 0.

Summing over all particle types we find, with the aid of (8.3), that

V = − (R+
1 +R+

2 + · · ·+R+
A)

( ∗ϕ− ϕp+)
f · ν, (8.5)

so that the sign of V is opposite to that of f · ν. (Note that if f is gravitational and
points “down,” and if the CP particles lie “below” the other particles, so that ν points
“up,” then the shock moves upward compacting the material above it.)

Using (8.5), we may eliminate V from (8.2); the result is an equation

ϕ−k = ϕ+
k +

R+
k ( ∗ϕ− ϕp+)

R+
1 +R+

2 + · · ·+R+
A

(8.6)

giving each of the volume fractions on the (−)-side, which is CP, in terms of the volume
fractions on the (+)-side, which is LP. Thus there is exactly one LP packing compatible
with a prescribed CP packing: the particulate volume fractions of the LP packing are given
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by (8.6) and the velocity of the shock by (8.5). Note that the process of compactification
strictly raises the volume fraction of each of the particle types involved, with relative
compaction

κk =
ϕ−k
ϕ+
k

− 1 (8.7)

proportional to mkU
+
k . Since ∗ϕ−ϕp+ = ϕv+− (1− ∗ϕ), the relative compaction increases

linearly with the volume fraction of voids on the loosely packed side of the shock.
For a simple granular material, R+

k = mϕ+
kU

+
k = ϕ+

kα
+
kh

+ (cf. (6.16)) and

V = − (ϕ+
1α

+
1 + ϕ+

2α
+
2 + · · ·+ ϕ+

Aα
+
A)h+

∗
ϕ− ϕp+

f · ν,

κk =
ϕ+
kα

+
k ( ∗ϕ− ϕp+)

ϕ+
1α

+
1 + ϕ+

2α
+
2 + · · ·+ ϕ+

Aα
+
A

.




(8.8)

When ϕ+
k has the same value ϕ+ for all particle types k present at the shock,

V = − (α+
1 + α+

2 + · · ·+ α+
A)ϕ+h+

∗
ϕ− ϕp+

f · ν,

κk =
α+
k ( ∗ϕ− ϕp+)

α+
1 + α+

2 + · · ·+ α+
A

,




(8.9)

and the relative compactions of any two particle types are in direct ratio to their effective
mobilities.

8.3. Shocks separating particles of a single type from a mixture
We, here, consider an important class of shocks that separate particles of a single type
from a mixture. A shock S separates particles of type k if particles of that type are present
on just one side of S, say the (−) side:

ϕ−k > 0 and ϕ+
k = 0. (8.10)

In this case, (8.2) yields an explit expression for the relative velocity of the shock:

V = mkU
−
k f · ν. (8.11)

In particular, if S separates particles of a given type and if the side of S on which
that type is present is CP, then S convects with the mixture. Further, by (8.11), if a
single shock separates particles of more than one type — with the sides on which the
separeted types are present allowed to vary from type to type — then the mass-weighted
velocity-moduli of the separated types must coincide at the shock.

Consider a simple granular material and let S be a shock that separate particles of a
single type from a mixture. Assume that

V �= 0 and [[D]] = 0.

Then, by (6.12) and (6.20), S can separate at most one particle type s, and, for ϕ+
s = 0,

V = αsh
−f · ν, (8.12)

where we suppress the argument ıD, since αs(ıD) is continuous across the shock. For a
shock of this type, one may ask what packings on the (+)-side are compatible with a
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given packing on the (−)-side. We now answer this question for the special case K = 2
of two particle types, with

[[ϕ1]] �= 0, ϕ+
2 = 0, ϕ−2 > 0,

and a compaction function of the special form

h(ϕp) = ∗
ϕ− ϕp. (8.13)

Thus,

h+ = ∗
ϕ− ϕ+

1 and h− = ∗
ϕ− ϕ−1 − ϕ−2 = ∗

ϕ− ϕp−,

and (8.2) yields

V = α1h
−f · ν,

V (ϕ+
1 − ϕ−1 ) = α2(ϕ+

1 ( ∗ϕ− ϕ+
1 )− ϕ−1 h−)f · ν.


 (8.14)

Eliminating V between (8.14)1 and (8.14)2, we get a quadratic equation for ϕ+
1 , which is

the unknown volume fraction of the (+)-side packing. Defining

δ =
α2

α1
− 1, (8.15)

the two solutions of this quadratic equation are determined by

ϕ+
1 =

1
2

(
ϕp− − δ( ∗ϕ− ϕp−)±

√
(ϕp− − δ( ∗ϕ− ϕp−))2 + 4δ( ∗ϕ− ϕp−)ϕ−1

)
. (8.16)

For (8.16) to yield a volume fraction, we must have

0 < ϕ+
1 <

∗
ϕ. (8.17)

In the case δ > 0, only the root taking the plus-sign has ϕ+
1 > 0 and a straightforward

calculation shows that this root obeys ϕ+
1 < ϕp− and, thus, yields a unique volume

fraction. In the case −1 < δ < 0, both roots have ϕ+
1 > 0 and straightforward algebraic

manipulations show that the root taking the plus-sign obeys ϕp− < ϕ+
1 <

∗
ϕ and that the

root taking the minus-sign obeys 0 < ϕ+
1 < ϕ

−
1 . Thus, both roots yield volume fractions.

9. Boundary conditions associated with the particulate balances
9.1. Particulate free surfaces

A (particulate) free surface is an evolving surface S that separates a region containing a
mixture of particles and voids from a region of pure voids.† Letting ν denote a continuous
unit normal field for S directed into the region of pure voids, the argument leading to
(8.11) yields a free-boundary condition

mkUk =
V

f · ν (9.1)

for any particle type k present at the free surface. In particular, by (6.12) and (6.20), at
most one particle type can be present at the free surface of a simple granular material. If
that particle type is CP then the free surface convects with the mixture.

† In problems involving the transport of granular material by a fluid a particulate free surface
would be an interface between the region containing grains and that containing pure fluid.
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9.2. Solid boundaries
Consider a solid boundary S with orientation ν directed outward from the mixture. Then
VS = v · ν = vk · ν for each particle type k; hence uk · ν = 0 and

ϕkUkf · ν = 0, (9.2)

so that, for f · ν �= 0,

ϕk = 0 or Uk = 0 (9.3)

for each particle type k. Thus, by (6.12) and (6.20), for a simple granular material,
particles present at a solid boundary must be CP.

10. Compaction and segretation by gravity in a cohesionless
material: some simple solutions

10.1. Problem setting
We suppose that the body force is purely gravitational, viz.,

f = g, (10.1)

with g the gravitational acceleration. We let z denote the Cartesian coordinate in the
direction e = −g/|g| and seek solutions of the evolution equations for which the mixture
fields v and p and the particulate fields ϕk and uk are functions of z and t, with

v = ve and uk = uke.

Then, since divv = 0, v must be constant and we may, without loss in generality, assume
that

v ≡ 0.

Thus, D = 0 and, as per our discussion in § 6.3, the extra stress S either vanishes or is
indeterminate. For the indeterminate case, we take S = Se ⊗ e. Force balance requires
that

∂(p− S)
∂z

= −
K∑
k=1

mkϕk|g| (10.2)

which, given the volume fractions ϕk, determines the difference p−S between the pressure
and the extra stress. Equation (10.2) holds with S = 0 when the constitutive relation for
S is well-defined at D = 0.

We assume that the material is cohesionless; the particulate volume balances (7.4)
then take the form

∂ϕk
∂t

= wk
∂

∂z

(
ϕkUk(�ϕ)

)
(10.3)

for each particle type k, with

wk = mk|g|. (10.4)

(We omit the argument D = 0.) Regarding the shock conditions, we choose ν = e, so
that

f · ν = −|g|, mkf · ν = −wk.
We limit our discussion to evolution in a fixed container that occupies the interval
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z

t

H

T

(I)

(II)

Sfree

Scom

Figure 3. Compaction, by gravity, of particles of a single type in a fixed container. Up until time
T , the solution at any t consists of constant states separated by a shock. The states are denoted
by roman numerals: (I) consists of loosely packed particles; (II) of closely packed particles. Sfree

and Scom denote the free surface and the compaction shock.

0 ≤ z ≤ H, with z = 0 an impermeable base and z = H the initial free surface. We
assume that initially each volume fraction ϕk has a prescribed constant value:

ϕk(z, 0) = ◦
ϕk, 0 ≤ z ≤ H,

for k = 1, 2, . . . ,K, with the initial packing LP, so that, in the special case of a simple
granular material,

◦
ϕp = ◦

ϕ+
1 + ◦

ϕ+
2 + · · ·+ ◦

ϕ+
K <

∗
ϕ.

We shall consider solutions �ϕ(z, t) that consist of constant states separated by shocks;
i.e., fields �ϕ(z, t) that are constant in any open set in the (z, t)-plane not intersected by
a shock. Any such field �ϕ(z, t) satisfies the volume balances (10.3) identically away from
all shocks, thus to show that such a field �ϕ(z, t) is a solution we need only verify: that its
values lie in the packing domain; that the relevant jump conditions are satisfied across
all shocks; that the boundary condition (9.3) is satisfied at the base z = 0; and that
(9.1) is satisfied at the free boundary defined by the uppermost point of the particulate
aggregate.

10.2. Gravity-driven compaction of a single particle species
To demonstrate the process of compaction, we consider a single particle type K = 1 and
assume that its velocity modulus satisfies

U(ϕ) > 0, 0 < ϕ < ∗
ϕ, U(ϕ) = 0, ∗

ϕ ≤ ϕ < 1.

with ∗ϕ the CP volume fraction.
As a candidate for a solution we consider the field ϕ(z, t) characterized in Figure 3.

This candidate is the union of:
• a uniform LP state (I) in which ϕ ≡ ◦

ϕ; this state is bounded by a free surface Sfree

and a compaction shock Scom;
• a uniform CP state (II) bounded by the container base and the compaction shock
Scom; at the time T , Scom and Sfree meet and all of the material is CP; from then on
Sfree is horizontal.

To verify that this candidate is a solution, we write Vfree for the velocity of Sfree and
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Vcom for the velocity of Scom. We have only to show that the following conditions are
satisfied:

(i) the solid-boundary condition (cf. (9.3)2)

U(ϕ) = 0 at z = 0 (10.5)

for t > 0;
(ii) the jump condition (cf. (9.1))

[[ϕ]]Vcom = −w [[ϕU(ϕ)]] on Scom (10.6)

for 0 < t < T ;
(iii) the free-surface conditions (9.1)

Vfree = −wU(ϕ) on Sfree (10.7)

for 0 < t < T and

Vfree = 0 on Sfree (10.8)

for t ≥ T .
The first of (10.5) is immediate, since ϕ(0, t) = ∗

ϕ and U( ∗ϕ) = 0; (10.6) gives the
velocity

Vcom = w
ϕ0U(ϕ0)
∗
ϕ− ϕ0

on Scom,

while (10.7) gives the velocity

Vfree = −wU(ϕ0) on Sfree.

Since these formulas give Vcom > 0 and Vfree < 0, there is a time T at which Scom and
Sfree meet. For t > T the material is CP and U( ∗ϕ) = 0; this yields (10.8).

10.3. Gravity-driven compaction and segregation
As in § 8.3 we consider a simple granular material involving two particle types: large
particles labelled b and small particles labelled s. We assume that the smaller particles
are more mobile than the larger ones and we restrict attention to the compaction function

h(ϕp) = ∗
ϕ− ϕp.

Our candidate solution is shown in Figure 4; it is the union of:
• a uniform LP state (I) consisting only of large particles; this state is bounded by a

free surface Sfree and a segregation shock Sseg;
• a mixed uniform LP state (II) in which ϕb ≡ ◦

ϕb, ϕs ≡
◦
ϕs; this state is bounded by

Sseg and a compaction shock Scom; at the time T1 these shocks meet; from then on Sseg

is horizontal;
• a mixed uniform CP state (III) that is bounded by the container base and the

compaction shock Scom until the time T1; after T1 this state is bounded by the base and
Sseg.
• a uniform CP state (IV) consisting only of large particles; until the time T2 this

state is bounded by a compaction shock Scom and the segregation shock Sseg; at T2 the
shock Scom meets Sfree; from then on the material is CP and Sfree is horizontal.

To verify that this candidate is a solution, we write Vfree for the velocity of Sfree and
Vcom for the velocity of Scom. We have only to show that the following conditions are
satisfied:
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z

t

H

Sfree

(I)
(II)

T1 T2

(III)

(IV)
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Figure 4. Compaction and segregation, by gravity, of a granular aggregate of large and small
particles in a fixed container. The solution at any t consists of constant states separated by
shocks. The states are denoted by roman numerals: (I) and (II) consist of loosely packed particles;
(III) and (IV) of closely packed particles. Sfree denotes the free surface while Sseg and Scom denote
the segregation and compaction shocks.

(i) the solid-boundary condition (cf. (9.3)2)

U(ϕp) = 0 at z = 0 (10.9)

for t > 0;
(ii) the jump conditions (cf. (9.1))

[[ϕk]]Vcom = −wαk[[ϕkh(ϕ)]] on Scom (10.10)

and

[[ϕk]]Vseg = −wαk[[ϕkh(ϕ)]] on Sseg (10.11)

for 0 < t < T1, k = s, b;
(iii) the interface condition (cf. (9.1))

Vseg = 0 on Sseg (10.12)

for t ≥ T1;
(iv) the jump conditions (cf. (9.1))

[[ϕk]]Vcom = −wαk[[ϕkh(ϕp)]] on Scom (10.13)

for T1 < t < T2, k = s, b;
(V ) the free-surface conditions (9.1)

Vfree = −w ◦ϕbh(p) on Sfree (10.14)

for 0 < t < T2 and

Vfree = 0 on Sfree (10.15)

for t ≥ T2.
The first of (10.5) is immediate, since ϕp(0, t) = ∗

ϕ and h( ∗ϕ) = 0; (10.10) gives the
velocity

Vcom = w(αb
◦
ϕb + αs

◦
ϕs) on Scom,
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while (10.11) gives the velocity

Vseg = −wαs( ∗ϕ− ◦
ϕb −

◦
ϕs) on Sseg.

Since these formulas give Vcom > 0 and Vseg < 0, there is a time T1 at which Scom and
Sseg meet. For t < T1 the material below Scom is CP and h( ∗ϕ) = 0; this yields (10.12)
and determines uniquely the volume fractions (cf. (8.6))

ϕIII
b = ◦

ϕb +
αb
◦
ϕb(

∗
ϕ− ◦

ϕb −
◦
ϕs)

(αb
◦
ϕb + αs

◦
ϕs)

and ϕIII
s = ◦

ϕs +
αs
◦
ϕs(

∗
ϕ− ◦

ϕb −
◦
ϕs)

(αb
◦
ϕb + αs

◦
ϕs)

in (III). Next, (10.13) gives the velocity

Vcom = wαbϕ
I
b

while (10.14) gives the velocity

Vfree = −wαb( ∗ϕ− ϕI
b).

To determine ϕI
b, we employ the results of § 8.3 across Sseg between t = 0 and t = T1.

Since the large particles are above, b and s identitified, respectively, with 1 and 2. Hence,
we obtain

ϕI
b =

1
2

(
◦
ϕp− − δ( ∗ϕ− ◦

ϕp−) +
√

( ◦ϕp− − δ( ∗ϕ− ◦
ϕp−))2 + 4δ( ∗ϕ− ◦

ϕp−) ◦ϕ
−
b

)
,

with
δ =

αs
αb
− 1 > 0.

Since these formulas give Vcom > 0 and Vfree < 0, there is a time T2 > T1 at which
Scom and Sfree meet. For t > T2 the volume fraction of slow particles in (IV) is CP and
h( ∗ϕ) = 0; this yields (10.15).

10.4. Gravity-driven desegregation of a more mobile species
The problems considered in §§ 10.2–10.3 illustrate the manner in which our theory de-
scribes the compaction and segregation of cohesionless granular mixtures under the in-
fluence of gravity. In addition to these generic results, our theory also predicts that, for
a special class of initial conditions, gravity may drive a layer of small particles resting on
a mixture of small and large particles to desegregate. We emphasize that, subsequent to
such a process, segregation of the type discussed in § 10.3 occurs. Thus, for these special
initial conditions, desegregation is a necessary precursor to segregation.

As before, we use b and s to denote the species of large and small particles. We continue
to assume that the smaller particles are more mobile than the larger particles, so that
αs > αb, and to restrict attention to the compaction function h(ϕp) = ∗

ϕ− ϕp. To focus
on the phenomenon in question, we consider a layer of small particles of height H resting
on a mixture of small and large particles occupying the semi-infinite interval (−∞, 0).
We denote by ◦

ϕ+
s the volume fraction of the small particles in the layer and by ◦

ϕ−b and
◦
ϕ−s the volume fractions of small and large particles in the mixture below.

We identify, until further notice, s and b with species 1 and 2 in § 8.3. Then

−1 < δ =
αb
αs
− 1 < 0

and, provided that ◦ϕ+
s is related to ◦

ϕ−b and ◦
ϕ−s by either of the two solutions (cf. (8.16))

◦
ϕ+
s =

1
2

(
◦
ϕp− − δ( ∗ϕ− ◦

ϕp−)±
√

( ◦ϕp− − δ( ∗ϕ− ◦
ϕp−))2 + 4δ( ∗ϕ− ◦

ϕp−) ◦ϕ
−
s

)
,
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z

t

H
Sfree

T

Sdes

(I)

(II)

Figure 5. Desegregation, by gravity, of a granular aggregate that initially consists of a layer of
small particles over a semi-infinite layer of large and small particles. Up until time T the solution
involves constant states separated by shocks. The states are denoted by roman numerals: (I)
consists of loosely packed small particles; (II) of loosely packed large and small particles. Sfree

denotes the free surface and Sdes denotes the desegregation shock. With the disappearance, at
time T , of the initial layer of small particles, a segregation shock forms at the free surface and
a layer of large particles with volume fraction determined by the proportions of small and large
particles in (II) develops.

it follows that there exists a free surface Sfree and a shock Sdes with velocities

Vfree = −wαs( ∗ϕ− ◦
ϕ+
s ) and Vdes = −wαb( ∗ϕ− ◦

ϕp−)

emanating, respectively, from the free surface and from the interface that initially sepa-
rates the layer of small particles from the mixture below.

Using these formulas, we find that V∗ > Vfree. Thus, there exists a time T at which the
shocks Sfree and Sdes will meet and Sdes is a desegregation shock. The results of § 10.3
show that, at time T , a segregation shock will issue downward from the free surface at
the intersection of Sfree and Sdes. Hence, subsequent to time T , the medium segregates,
developing a layer of large particles adjacent to the free surface.

Suppose that the volume fractions ◦
ϕ−b and ◦

ϕ−s are given. The different signs in the
expression for ◦

ϕ+
s then correspond to two different states for which desegregation may

occur. For ◦
ϕ+
s determined by the plus-sign, ◦ϕ+

s >
◦
ϕp− and the layer of small particles

above is more closely packed than the mixture. Thus, it is not surprising that small
particles diffuse into the mixture. For ◦ϕ+

s determined by the minus-sign, ◦ϕ+
s <

◦
ϕ−s <

◦
ϕp−.

Although the mixture is more closely packed than the layer, diffusion still occurs in this
case.
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