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ABSTRACT 
In-situ deformation studies in a transmission electron microscope equipped with an 
environmental cell have shown that solute hydrogen increases the velocity of dislocations, 
decreases the stacking-fault energy, and increases the stability of edge character dislocations. 
Theoretical modeling has established that the hydrogen atmospheres formed at dislocations 
through the elastic interaction cause a change in the stress field of the dislocation-hydrogen 
complex in such a manner as to reduce the interaction energy between it and other elastic 
obstacles. Consequently, solute hydrogen increases the mobility of dislocations, which will be 
localized to regions of high hydrogen concentration.  On the basis of this material softening at 
the microscale, a solid mechanics analysis of the hydrogen solute interaction with material 
elastoplasticity demonstrates that localization of the deformation in the form of bands of intense 
shear can occur at the macroscale.  Thus, the present combined experimental and 
numerical/analytical results provide a clear explanation for the hydrogen-enhanced localized 
plasticity mechanism of hydrogen embrittlement. 
   

1. INTRODUCTION 
 Hydrogen embrittlement is a severe environmental type of failure that affects almost all 
metals and their alloys. By way of example, one of the many high-symmetry ordered 
intermetallics, polycrystalline Ni3Al, exhibits very poor ductility and brittle fracture in the 
presence of hydrogen or even moist air (Kuruvilla, 1985; Bond et al., 1989; George et al., 1992).  
Reviewing the voluminous literature on the subject, one may safely summarize that despite study 
for 100 years, a complete mechanistic understanding of hydrogen embrittlement has yet to be 
achieved.  Our current understanding leads to the recognition that no single mechanism is 
responsible for all hydrogen-induced failures (Birnbaum and Sofronis, 1994; Birnbaum et al., 
1997). 

Many mechanisms have been proposed to explain hydrogen related failure, and as the 
evidence for and against each mechanism has been extensively reviewed (see for example, 
(Oriani, 1987; Hirth, 1980; Birnbaum et al., 1997)) it is not the purpose to repeat those 
arguments here but rather to provide the theoretical and experimental evidence for just one 
mechanism, namely, the Hydrogen Enhanced Localized Plasticity (HELP) mechanism 
(Beachem, 1972; Eastman et al., 1981; Tabata and Birnbaum, 1984b; Robertson and Birnbaum, 
1986; Shih et al., 1988; Birnbaum and Sofronis, 1994; Ferreira et al., 1998).  Evidence for 
plasticity on hydrogen-induced fracture surfaces has been a common observation for over thirty 
years and is not an issue of dispute (Beachem, 1972; Oriani and Josephic, 1974; Oriani and 
Josephic, 1977).  What was an issue, and to some extent still remains one, is the significance of 
the observation of plasticity. Generally, this plasticity was dismissed as an occurrence during or 
following hydrogen embrittlement rather than a cause of it.  Beachem (Beachem, 1972), based 
on careful fractography of hydrogen embrittled steels, was the first to propose that the failure 
occurred by ductile processes and that hydrogen enhanced not retarded the mobility of 
dislocations.  This idea was summarily dismissed and ignored until the late seventies and early 
eighties when Robertson, Birnbaum and coworkers (Eastman et al., 1981; Tabata and Birnbaum, 
1984b; Robertson and Birnbaum, 1986; Bond et al., 1987; Bond et al., 1988; Shih et al., 1988; 
Bond et al., 1989; Hanninen et al., 1993; Ferreira et al., 1998) and independently Lynch (Lynch, 
1979; Lynch, 1988) revived Beachem’s mechanism.  Robertson and Birnbaum provided direct 
observation of the dislocation velocity enhancement due to hydrogen by deforming materials in-
situ in a transmission electron microscope equipped with an environmental cell. Lynch, based on 
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high-resolution fractography and the similarity of liquid metal and hydrogen embrittled fracture 
surfaces, proposed that hydrogen enhanced the injection of dislocations from the surface (Lynch, 
1979; Lynch, 1988).   What distinguishes these dislocation mechanisms is the location of the 
enhancement, which in Lynch’s model occurs at the surface and in Robertson and Birnbaum’s 
model throughout the material.  

In this manuscript, we first review the experimental evidence demonstrating that 
hydrogen enhances dislocation mobility at the microscale, and then use a micromechanics 
approach to explain that the enhanced dislocation mobility is due to the hydrogen-induced 
shielding of the interactions between dislocations and elastic obstacles.  Lastly, a continuum 
mechanics approach will be used to show that hydrogen-induced softening at the microscale can 
lead to shear localization of the plastic flow at the macroscale. 

 
2.  EXPERIMENTAL EVIDENCE FOR HYDROGEN ENHANCING DISLOCATION 
MOBILITY 

A controlled environment transmission electron microscope permits gas solid interactions 
to be observed in real time and at high spatial resolution; the design of such a facility has been 
described by Robertson and coworkers (Lee et al., 1991; Robertson and Teter, 1998).  Straining 
stages for use in this microscope permit deformation experiments to be performed in gaseous 
environments, allowing for direct observation of the embrittlement effect albeit in an electron 
transparent specimen.  The samples used are of a simple rectangular geometry with dimensions 
of 10 x 3 x 0.150 mm.  The central portion of these samples is thinned to electron transparency 
using conventional thinning techniques. 

The series of images shown in Fig.1 were captured as individual frames from a videotape 
and illustrate the change in the dislocation structure as the hydrogen pressure in the 
environmental cell, and, hence, the concentration in the sample, increases.  The dislocations were 
produced by deforming the material in vacuum. The load was then held constant and hydrogen 
gas introduced so that any changes resulted solely from the introduction of the gas; it is 
important to note that gases other than hydrogen were introduced but hydrogen was the only one 
to cause such motion.  The motion continues for periods longer than the equilibration time, 
which is consistent with the effect not being due to the stress field generated from the hydrogen 
concentration gradient at the surface.  The dislocation motion could be stopped and started 
simply by removing and reintroducing the gas from the environmental cell and, hence, from the 
sample. Similar observations have been made in a wide range of materials with different crystal 
structures Fe (Tabata and Birnbaum, 1984a), Ni (Robertson and Birnbaum, 1986), steels 
(Rozenak et al., 1990; Hanninen et al., 1993), Al and Al alloys (Bond et al., 1987; Bond et al., 
1988), Ti and Ti-alloys (Shih et al., 1988), and Ni3Al (Bond et al., 1989).  Hydrogen enhanced 
dislocation mobility has been observed for perfect edge, screw and mixed dislocations as well as 
for partial dislocations. These generalities suggest that the responsible mechanism has to be 
universal and not particular to any crystal structure or dislocation type. 

The above observations were made in thin (<200nm thick) electron transparent foils, 
which raises the question about surface effects.  Supporting experimental observations on bulk 
materials are available in the form of stress drop and strain-rate change mechanical property tests 
on nickel (Sirois and Birnbaum, 1992) and 310s stainless steels (Abraham and Altstetter, 1995).  
These bulk studies showed a reduction in the activation area and activation enthalpy for 
dislocation motion in the presence of hydrogen, which is consistent with hydrogen reducing the 
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interaction energy between dislocations and obstacles and ultimately with hydrogen increasing 
the mobility of dislocations. 

 These experimental observations were the driving force for modeling the influence of 
hydrogen on the stress field of dislocations and other elastic obstacles.   

  
3.  HYDROGEN SOLUTE INTERACTION WITH ELASTIC DEFORMATION 
The total elastic interaction energy between a solute atom and a dislocation is comprised of two 
components.  The first component is a first-order elastic interaction energy (Cottrell, 1948; 
Eshelby, 1957) associated with the lattice dilatation when a hydrogen solute is introduced against 
a stress field.  The other is a second–order interaction that results from the additional change in 
the potential energy due to the change of the moduli upon the introduction of the stress center 
(solute atom) in the lattice while the external stresses are held fixed.  In general, the second-order 
interaction energy is much smaller than the first-order interaction energy.  In the vicinity of a 
dislocation, the second-order interaction energy decreases with distance from the dislocation as 

21 r  in contrast to the 1 r  dependence of the first-order interaction energy.  In a linearly elastic, 
isotropic material, the first-order interaction dominates all solute interactions with edge 
dislocations.  It also dominates the interaction between screw dislocations and solutes having 
distortion fields with symmetries lower than cubic (e.g. C interstitials).  The second-order 
interaction energy dominates the interaction between screw dislocations and solutes such as 
hydrogen that have isotropic distortion fields (e.g. H interstitials).  Thus, for a linearly elastic, 
isotropic material a hydrogen atmosphere develops more readily around an edge than a screw 
dislocation, and this has important implications for hydrogen influencing dislocation character 
(Ferreira et al., 1998).   

 
 To assess the effect of this hydrogen atmosphere on the interaction energy, the case of 
two similar edge dislocations on the same slip plane was considered.  In the absence of 
hydrogen, the interaction force per unit length between two parallel edge dislocations with the 
same sign is repulsive (Hirth and Lothe, 1982).  The dependence of the shear stress, normalized 
by the shear modulus µ  and the separation distance between the dislocations, normalized by the 
magnitude of the Burgers vector of the dislocations, is shown for two similar edge dislocations 
on the same slip plane in Fig.2a.  The hydrogen effect on the interaction between dislocations 1 
and 2 is assessed by calculating the hydrogen-induced change in the shear stress of dislocation 1.  
The shear stress Hτ  induced by the hydrogen atmosphere is found from the calculation of the 
relaxed elastic stress field associated with the introduction of hydrogen into the lattice while the 
elastic moduli are allowed to vary pointwise according to the local hydrogen concentration.   
These stress fields, which are negative and increase as the absolute hydrogen concentration 
increases, are also shown in Fig. 2a for an initial hydrogen concentration of 0.1 atoms/solvent 
atom.  The total stress field in the lattice is found by superposition of the relaxed elastic stress 
due to hydrogen, and that of the standard singular elastic dislocation stress field (Sofronis and 
Birnbaum, 1995). As shown in Fig. 2a, the effect of hydrogen is to decrease the repulsive force 
between the two edge dislocations. A similar reaction would occur between an edge dislocation 
and any elastic obstacle.  

A consequence of this hydrogen-shielding model is that the equilibrium separation 
distance between dislocations in a pileup will decrease when hydrogen is introduced to the 
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system.  This effect has been observed experimentally in stainless steel and an example is shown 
in Figs. 2b-2d (Ferreira et al., 1998).  The dislocation pile-up against the grain boundary was 
created by deforming the sample in vacuum.  The load was then held constant and hydrogen gas 
introduced to the system.  With the introduction of hydrogen the dislocations moved closer to the 
obstacle and to each other.  This change can be seen by comparing Figs. 2b and 2c, which 
respectively show the initial position of the dislocations and their position after 90 torr of 
hydrogen gas has been introduced into the environmental cell.  The change in dislocation 
position is more apparent in the comparison image, Fig. 2d, which was formed by superimposing 
a negative image of the dislocation structure in 90 torr of hydrogen gas (white dislocations), Fig 
2c, and a positive image of the original position, Fig. 2b.  While these observations were made in 
a thin electron transparent foil, the mechanical property measurements on bulk Ni-C-H alloys 
(Sirois and Birnbaum, 1992) showed a decrease in the "activation enthalpy" for slip 
(corresponding to the decrease in the calculated interaction energy with hydrogen) and a 
decrease the "activation volume" (corresponding to the decrease in the width of the activation 
energy minimum) when hydrogen was present. The thin foil observations and the mechanical 
property results are fully consistent with hydrogen influencing the dislocation mobility. 
Hydrogen shielding effects were also studied for the interaction of screw dislocations in the bcc 
lattice (Sofronis and Birnbaum, 1995).  Hydrogen effects on the interaction energy in this case 
result from the local moduli changes due to hydrogen atmosphere around the carbon interstitial.  
Experimentally hydrogen has been observed to influence the mobility of screw dislocations in 
Fe, with the effect being greater in high carbon content materials (Tabata and Birnbaum, 1984a).   

The underlying principle of the hydrogen shielding mechanism is that hydrogen 
diminishes the local stress field of dislocations and solute impurities and this permits dislocations 
to move along with their hydrogen environments at lower applied stresses.  The effect must be 
reversible in that when the hydrogen is removed from the sample the dislocations within the 
pileup must move further apart.  Fig. 3 shows a series of comparison images with the negative 
image (white dislocations) showing the response of increasing or decreasing the hydrogen 
concentration.  From these images it is clear that by changing the hydrogen pressure the 
dislocations can be made to move forward or backward.  That is, the direction of motion changes 
in relation to the changes in hydrogen concentration (Ferreira et al., 1998). 
 

4. HYDROGEN EFFECT ON SHEAR LOCALIZATION OF THE PLASTIC FLOW 

In the preceding section a theoretical explanation and experimental confirmation of the 
shielding mechanism of hydrogen-enhanced plasticity was presented. These effects will be 
confined to, and be more prevalent in regions of high hydrogen concentration, which will tend to 
localize the effects. Localization effects due to hydrogen have been observed in a number of bulk 
studies (Abraham and Altstetter, 1995; Bernstein and Dollar, 1988; Deve et al., 1989; Hicks and 
Altstetter, 1992; Onyewuenyi, 1984; Tien and Altstetter, 1993).  In this section a theoretical 
explanation is presented for the onset of the shear localization in the presence of hydrogen 
(Sofronis et al., 2001).  Hydrogen is assumed to reside at normal interstitial lattice sites (NILS) 
or reversible trapping sites at microstructural defects generated by plastic deformation.  
Interstitial hydrogen populations are qualified by the hydrostatic stress whereas the trapped 
hydrogen populations develop always in equilibrium with NILS hydrogen (Taha and Sofronis, 
2001) as dictated by Oriani’s theory (Oriani, 1970).  The number of traps is assumed to vary 
proportionally with dislocation density that is assumed to vary linearly with plastic strain.  The 
model assumes one trapping site per atomic plane threaded by a dislocation.  Thus the total 
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hydrogen concentration (in trapping and NILS sites) can be determined as a function of both the 
hydrostatic stress and the equivalent plastic strain pε  in the form ( ), p

kkc c σ ε= , where c  is 

measured in hydrogen atoms per solvent atom.  Based on the fact that hydrogen increases the 
dislocation mobility, one may suggest that the hydrogen effect on the local flow stress Yσ  can be 

stated as ( )1/
0 01

nH p
Yσ σ ε ε= + , where 0

Hσ  is the initial yield stress in the presence of hydrogen 

that decreases with increasing hydrogen concentration (Sofronis et al. 2001), 0ε  is the initial 

yield strain in the absence of hydrogen, pε  is the logarithmic strain in uniaxial tension, and n  is 
the hardening exponent that is assumed to be unaffected by hydrogen.   

 For the plastic response in the presence of hydrogen, the material is assumed to flow 
according to the von Mises 2J  flow theory and harden isotropically.  Thus (Sofronis et al., 
2001), 
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, 2 3p p p
ij ijD D dtε = ∫  is the effective plastic strain, ijδ is 

the Kronecker delta, the summation convention is used over a repeated index, and the superposed 
∇  denotes the Jaumann stress rate that is spin invariant.  Following Rudnicki and Rice (Rudnicki 
and Rice, 1975) and Rice (Rice, 1976), one finds that localization of the plastic flow is possible 
when the hardening modulus h  reduces upon loading to a critical value that depends on the local 
stress and factors such as c, pc ε∂ ∂ , kkc σ∂ ∂ , Yc σ∂ ∂ , and elastic moduli (Sofronis et al., 
2001).  The localization condition was studied by solving the elastoplastic boundary value 
problem coupled with the calculation of the hydrogen concentration in the case of a niobium 
specimen stressed in uniaxial tension under plane strain conditions.  Fig. 4 shows the normalized 
true (logarithmic) strain 22 0ε ε  at localization plotted against the initial hydrogen concentration 

0c  for work hardening exponents 5n =  and 10n = , and yield stress 0 400MPaσ = .  The effect 
of hydrogen causes the critical modulus for localization to be positive.  The model is based on 
hydrogen induced material softening and lattice dilatation both of which have been 
experimentally verified.  The numerical results seem to overestimate the macroscopic strain 
required for localization as predicted by experiments.  It is, however, well known that the von 
Mises flow theory dramatically overestimates the bifurcation strain.  Furthermore, the calculated 
hydrogen effect can be intensified quantitatively by considering more effective trapping modes 
of hydrogen such as in the form of atmospheres in the presence of higher stress triaxialities such 
as those ahead of a crack tip. 
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5.  CONCLUSIONS 

 A theoretical framework for explaining the experimentally observed mechanism of 
hydrogen enhancement of the dislocation mobility has been presented.  This mechanism must 
therefore be accounted for in life prediction models of hydrogen embrittlement.  It must be 
appreciated that this is just one of the viable mechanisms of hydrogen embrittlement and it will 
likely dominate only when certain conditions prevail.  Hydrogen-induced decohesion and stress-
induced hydride formation and cleavage will also occur under appropriate circumstances and it is 
likely that more than one mechanism may operate within a given system. 
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Figure 1.  Dislocation motion induced by the introduction of hydrogen gas 
into the environmental cell and, hence, into the sample.  The material is iron.

9



Figure 2.  Hydrogen shielding model.  a) Plot of the normalized shear stress as 
a function of separation distance for two edge dislocations on the same slip 
plane with and without hydrogen atmospheres.  b) Dislocation pileup at a 
grain boundary in 310s stainless steel.  c) Effect of introducing 90 torr of 
hydrogen gas on the dislocation pileup.  d) Comparison image made from 
superimposing a negative image of c) on a positive image of b).
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Figure 4.  Macroscopic strain at the onset of localization versus initial hydrogen
concentration. 
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