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Abstract: Linear and nonlinear analyses of thermal convection with a variable

\buoyancy factor", which is de�ned as the product of thermal expansion coeÆcient

and gravitational acceleration, are investigated for a 
uid layer between two in�nite

horizontal plates. An isothermal boundary condition is applied for both boundaries,

and the buoyancy factor throughout the 
uid layer is chosen to be a function of depth.

For various pro�les of variable buoyancy factor, the associated eigenvalue problem for

the linear regime is solved numerically using a spectral method. It is found that for

the case of buoyancy factor de�cit, where the vertical rate of change of the buoyancy

factor is negative, the convective 
ow yields a higher critical Rayleigh number than

that of the constant buoyancy factor case. For the case of buoyancy factor gain, where

the vertical rate of change of the buoyancy factor is positive, the results are reversed.

A formula for the critical Rayleigh number as a function of the statistical features of

the buoyancy factor is developed. For the nonlinear regime, computations based on a

spectral Fourier{Chebyshev collocation method are carried out for six parabolic pro�les

of buoyancy factor. Flow patterns are found to be dominated by two{dimensional rolls

for the Rayleigh numbers considered. The computed Nusselt numbers indicate that

buoyancy factor de�cit (gain) yields lower (higher) heat 
ux when compared with

the corresponding constant buoyancy factor case. When the buoyancy factor de�cit

is suÆciently large to produce sign changes in the pro�le, our numerical simulations

show that multiple layering in the vertical direction can be produced.
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1 Introduction

It is well known that thermal buoyancy is the driving factor for thermal convec-

tion. Both thermal expansion coeÆcient and gravity are involved in producing thermal

buoyancy e�ects. In most thermal convection formulations, the product of thermal ex-

pansion coeÆcient and gravity represents the coeÆcient of thermal buoyancy. In this

paper, therefore, we de�ne this product as the \buoyancy factor".

Solid{state thermal convection has been used to model thermal histories of the inte-

rior of planets for many decades (see Schubert, 1995 for a recent review). For Cartesian

modeling, the gravitational �eld was typically assumed to be constant throughout the

convective domain. For spherical modeling, the gravity was taken to follow a linear

function of radius, which represents the gravity within a homogeneous sphere. However,

the gravitational �eld within a solid planet may not follow such a simple relationship,

especially when a dense central core is present (Chandrasekhar, 1961). Consider the

Earth as an example. Many investigators have studied the gravitational acceleration

within the Earth's interior (Anderson and Hart, 1976; Stacey, 1992, for example).

Gravitational acceleration at any point within the Earth's mantle is determined by its

distance to the core and the amount of mantle materials underneath. It can be shown

easily that mass associated with a spherically symmetric shell does not contribute to

the gravitational acceleration at any interior point. Generally, the added mantle mass

will increase the acceleration, whereas moving away from the core will decrease the

acceleration. These two competing e�ects can produce rather peculiar gravitational

acceleration pro�les within the Earth's mantle. In fact, according to Stacey (1992),

the gravitational acceleration within the Earth's core increases linearly with radius,

which is consistent with that of a nearly uniform spherical body. Within the mantle,

however, gravitational acceleration no longer follows the same trend. Instead, it shows

a local minimum and a local maximum before it reaches the surface value of 9.8 m/sec2.

Deviation of the �eld can be as large as 8% from the surface value, but the e�ects of

such an unusual gravitational �eld upon solid{state thermal convection have received

very little attention. Therefore, it is the purpose of this paper to examine the dynamic

behavior of thermal convection with a variable buoyancy factor, which includes cases

with a variable gravitational �eld.

We know that the gravity is positive everywhere, and for most of the substances in

nature, the thermal expansion coeÆcient is also positive, so the buoyancy factor usually

keeps a positive sign throughout the 
ow �eld. However, some materials can show nega-

tive thermal expansion characteristics under speci�c temperature ranges. For example,

ice has a maximum density at 4ÆC, which means that ice possesses negative thermal

expansion coeÆcients below 4ÆC. Thus, for icy mantle convection within Europa, for

example, a buoyancy factor inversion could exist. Meanwhile, Hsui and Riahi (2000)
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pointed out that for thermal convection between nearly insulating and rigid bound-

aries, if the buoyancy factor changes sign within a convective domain, eigenfunctions

of the stability analysis suggest that a multiple{layer 
ow structure may be possible.

Therefore, it is also of interest to investigate the e�ects of buoyancy factor pro�les that

change signs within the 
ow �eld, and determine the corresponding dynamic behavior.

In this paper, we �rst present the mathematical formulation and the governing

system for the perturbed dependent variables from a static basic state. A numerical

solution for the linear stability of the basic state is then presented. Thereafter, fully

nonlinear numerical simulations of the convective system are described and discussed,

followed by conclusions and remarks.

2 Mathematical Formulation

2.1 Governing Equations

In this study, we choose to follow a Cartesian model for analytic simplicity. This

study represents a �rst{order examination of the e�ects of nonuniform buoyancy factors

on thermal convection.

Consider a 
uid layer bounded by two in�nite horizontal 
at planes. In this model,

the buoyancy factor within the layer is assumed to be a function of depth only. For

completeness, a uniform heat source throughout the layer is included. In this model,

the top boundary is assumed to be isothermal, whereas the bottom boundary can be

either isothermal or insulating.

We start with the basic governing equations for a compressible 
ow in tensor nota-

tion. They are:
@�

@t
+

@

@xi
(�ui) = 0 ; (1)

�
Dui

Dt
= �

@p

@xi
+
@�ki

@xk
� �gÆi3 ; (2)

�Cp

DT

Dt
� �T

Dp

Dt
= �ik

@ui

@xk
+

@

@xi

 
k
@T

@xi

!
+ �H0 ; (3)

where
D

Dt
�

@

@t
+ uj

@

@xj
;

�ik = �

 
@ui

@xk
+
@uk

@xi

!
+ �Æik

@uj

@xj
;

9>>>>=
>>>>;

(4)

The subscripts i, j, and k are the dummy space indices, and subscript \3" represents

the vertical direction, which coincides with that of the gravity, � is the viscosity, � is

the density, ~u=(u1; u2; u3) is the velocity vector, ~r=(x1; x2; x3) is the position vector, g
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is the gravity function, p is the pressure, T is the temperature, Cp is the speci�c heat at

constant pressure, �H0 is the internal heat source per unit volume, Æi3 is the Kronecker

delta, and � is the bulk viscosity, which is assumed to be

�
�
2

3
�

�
according to the

Stokes' hypothesis (White, 1991). The non{subscript k is the thermal conductivity.

Both k and � are taken to be constant.

2.2 Base State

For the base 
ow, we consider a steady, motionless �eld with constant density.

Furthermore, pressure and temperature of the base 
ow are assumed to be functions

of depth (x3, or z) only. It follows that equations (1)�(3) for the base 
ow yield

p
0
(z) = ��

0

Z z

0

g(z) dz ; (5)

and

k
d2T0

dz2
= ��

0
H0 ; (6)

where the subscript \0" represents the base 
ow quantities.

Two di�erent bottom thermal boundary conditions are considered here. In the �rst

case, both boundaries are assumed to be isothermal, namely,

T0(0) = �B ; T0(h) = �T ; (7)

where subscripts \B" and \T" indicate the bottom and the top of the 
uid layer,

respectively, and h is the thickness of the 
uid layer. The corresponding thermal

pro�le for the base state is

T0(z) = �B � �z +
H0

2�Cp

z(h� z) ; (8)

where � �
�B � �T

h
represents the negative of the basic temperature gradient across

the 
uid layer, and � �
k

�
0
Cp

is the thermal di�usivity. In the second case, the bottom

boundary is assumed to be insulating whereas the top is maintained as isothermal.

Thus,
dT0

dz
(0) = 0 ; T0(h) = �T : (9)

The thermal pro�le for the base state, in this case, becomes

T0(z) = �T +
H0

2�Cp

(h2 � z2) (10)
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We note that in the �rst case, because of the existence of an internal heat source, the

energy input from the bottom boundary Qin, as de�ned below, is not always positive

even when �B > �T. In fact,

Qin = �k
dT0

dz
(0)

8>>>>>>>>>><
>>>>>>>>>>:

> 0 if �B � �T >
H0h

2

2�Cp

= 0 if �B � �T =
H0h

2

2�Cp

< 0 if �B � �T <
H0h

2

2�Cp

One can expect that the 
ow has di�erent features corresponding to di�erent signs

for Qin. In other words, one can anticipate that the nondimensional parameter H =
H0h

2

�Cp(�B � �T)
plays di�erent roles depending on whether its value is smaller or larger

than 2.

2.3 The Perturbed Governing Equations

To examine the deviation of the 
ow from the base state, the following disturbances

are introduced:
ui = u0i(x; y; z; t) (i = 1; 2; 3) ;

p = p
0
(z) + p0(x; y; z; t) ;

T = T0(z) + �0(x; y; z; t) ;

� = �
0
(1� ��0 + �p0) ;

9>>>>>>>=
>>>>>>>;

(11)

where the primed quantities (u0i ; p
0 ; and �0) represent the dependent variables for the


ow deviation from the base state derived in Section 2.2, � is the thermal expansion

coeÆcient, and � is the compressiblity coeÆcient. Substituting (11) into the governing

equations (1)�(3), we have the following equations:

��
@�0

@t
+ �

@p0

@t
+
@u0i
@xi

= 0 ; (12)

�
0

 
@u0i
@t

+ u0k
@u0i
@xk

!
= �

@p0

@xi
+
@� 0ki
@xk

� �
0
gÆi3(���0 + �p0) ; (13)

�
0
Cp

 
@�0

@t
+ u0k

@�0

@xk
+ u0

3

dT0

dz

!
� �T0

 
u0
3

dp
0

dz
+
@p0

@t

!

= k
@2�0

@xi@xi
+ �

0
H0(���0 + �p0) ;

(14)
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where � 0ki = �

 
@u0i
@xk

+
@u0k
@xi

�
2

3
Æik

@u0j

@xj

!
is the perturbed viscous stress tensor.

For a nondimensionalization of the governing equations, the following characteristic

scales are introduced:

Length: h Velocity:
�

h
Time:

h2

�

Density: �
0

Pressure:
��

h2
Temperature: T �

Gravity: g
0

Heating:
�CpT

�

h2
Expansivity: �

0

9>>>>>>>=
>>>>>>>;

(15)

Here h is the depth of the layer, g
0
is a characteristic gravitational acceleration, T � is a

characteristic temperature, and �0 is a characteristic thermal expansion coeÆcient. For

this study, we set g
0
and �0 to be the corresponding values at the top boundary, and

the choice of T � varies with respect to the choice of the thermal boundary condition

at the bottom. The following nondimensional parameters can then be introduced:

Ra =
�
0
�
0
g
0
T �h3

��
; Pr =

�

�
0
�
; Di =

�
0
g
0
h

Cp

Æ = �
0
T � ; K =

���

�
0
T �h2

; H =
H0h

2

�CpT
�

9>>>>=
>>>>;

(16)

For the Earth's mantle the nondimensional parameter Æ is only a few percent (Jarvis

and McKenzie, 1980) and K lies between 10�5 and 10�6 (Turcotte et al., 1973). There-

fore, it is reasonable to introduce the anelastic liquid assumption, which sets Æ = K = 0.

We further assume that the viscous dissipation can be neglected, i.e. Di = 0. Therefore,

the important nondimensional parameters in this study become the Rayleigh number

Ra, the Prandtl number Pr, and the internal heating parameter H. The resulting

nondimensional equations for the disturbances are

@ui

@xi
= 0 ; (17)

1

Pr

 
@ui

@t
+ uk

@ui

@xk

!
= �

@p

@xi
+

@2ui

@xk@xk
+Ra�g�Æi3 ; (18)

@�

@t
+ uk

@�

@xk
+ f(z)u3 =

@2�

@xi@xi
; (19)

where the primes have been dropped for notation simplicity, and f(z) representing the

nondimensional temperature gradient for the base state is given by

f(z) =

8><
>:
�
�B � �T

T �
+
H

2
(1� 2z) for case 1

�Hz for case 2

(20)
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It is clear that the thermal expansion coeÆcient � and the gravity g appear only in

pairs with each other in this model. Therefore we de�ne the \buoyancy factor" B � �g

and hereafter discuss the e�ects of B only, rather than discussing the e�ects of � and

g separately.

Regarding the choice of T �, it is natural and customary to choose the temperature

di�erence between the two boundaries as the characteristic temperature scale when

the bounding temperatures are prescribed. For case 1, therefore, T � = �B � �T and

f(z) = �1 +
H

2
(1 � 2z). For case 2, a natural choice is T � =

H0h
2

�Cp

, which leads to

H = 1 and f(z) = �z.
As to the boundary conditions for equations (17)�(19), three categories of bound-

ary condition need to be considered: horizontal velocity conditions, vertical velocity

conditions, and thermal conditions. For the horizontal velocity components, there are

two possible choices for the boundary conditions: rigid (\no{slip") or stress{free. For

a rigid boundary (denoted as \R" hereafter),

u1 = u2 = 0 : (21a)

For a stress{free boundary (denoted as \S" hereafter),

@u1

@z
=

@u2

@z
= 0 : (21b)

Since the top and the bottom boundaries can possess di�erent mechanical properties,

a total of four combinations of boundary conditions need to be considered: RR, RS,

SR, and SS, where the �rst letter stands for the boundary type at the bottom (z = 0),

and the second letter stands for the boundary type at the top (z = 1). For the vertical

velocity component, the most natural choice is the no{penetration condition, i.e.

u3(x; y; 0; t) = u3(x; y; 1; t) = 0 : (22)

Finally, for thermal boundary conditions, we have

�(x; y; 0; t) = �(x; y; 1; t) = 0 (23a)

for case 1 and
@�

@z
(x; y; 0; t) = 0; �(x; y; 1; t) = 0 (23b)

for case 2.

3 Stability Analysis and Numerical Method

In this section, we will consider stability of the basic motionless state, which

was described in Section 2.2. The disturbances are assumed to be in�nitesimal in
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amplitude. As a result, the governing equations are described by (17)�(19) with the

nonlinear terms dropped because they represent second{order terms.

3.1 Normal Mode Analysis

We assume that the nondimensional disturbances have the form

ui(x; y; z; t) = ~ui(z) exp[i(�x+ 
y � !t)] (i = 1; 2; 3) ;

p(x; y; z; t) = ~p(z) exp[i(�x + 
y � !t)] ;

�(x; y; z; t) = ~�(z) exp[i(�x+ 
y � !t)] ;

9>>=
>>; (24)

where i �
p
�1 is the pure imaginary number, � and 
 are the wavenumbers in the

x and y direction, respectively, and ! is the temporal growth rate of the disturbance.

Furthermore, since x and y are interchangable in the linearized equations (17)�(19)
and boundary conditions (21)�(23), we can, without loss of generality, consider two{
dimensional disturbances only. In other words, we can set

u2 = 0; 
 = 0 :

Using a two{dimensional version of (24) in the linearized form of the equations (17)�(19),
we are led to the following equations:

i�~u1 +
d~u3

dz
= 0 ; (25)

�i!~u1 = �i�Pr~p+ Pr

 
d2

dz2
� �2

!
~u1 ; (26)

�i!~u3 = �Pr
d~p

dz
+ Pr

 
d2

dz2
� �2

!
~u3 +RaPrB~� ; (27)

�i!~� = �f(z)~u3 +
 
d2

dz2
� �2

!
~� : (28)

Applying the two{dimensional forms of (24) in the boundary conditions (21)�(23), we
�nd 8>>>>>>>>><

>>>>>>>>>:

(RR) : ~u1(0) = ~u1(1) = 0 ;

(RS) : ~u1(0) = 0;
d~u1

dz
(1) = 0 ;

(SR) :
d~u1

dz
(0) = 0; ~u1(1) = 0 ;

(SS) :
d~u1

dz
(0) =

d~u1

dz
(1) = 0 ;

(29)

~u3(0) = ~u3(1) = 0 ; (30)
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8><
>:

(Case1) : ~�(0) = ~�(1) = 0 ;

(Case2) :
d~�

dz
(0) = 0; ~�(1) = 0 :

(31)

By solving the eigenvalue problem consisting of (25)�(31), we can obtain the growth

rate as a function of the Rayleigh number Ra and the disturbance wavenumber �. We

are particularly interested in the contour of zero growth, which is called the \neutral

curve". From the neutral curves, we can determine the critical Rayleigh number and

the critical wavenumber, which are the critical conditions for the onset of instability.

These results will be discussed in Section 4.

3.2 Numerical Method

The spectral method is chosen to solve the eigenvalue problem posed in Section

3.1 because it is well known that spectral methods can easily provide high spatial

resolution (Canuto et al., 1988). To employ such method, a Gauss{Lobatto grid with

35 gridpoints is used in the z direction and associated Chebyshev expansions for the

tilde quantities are applied to discretize the governing equations (25)�(28) and the

boundary conditions (29) �(31). Based on the property of the Chebyshev expansion,

the derivatives in the eigenvalue system can be replaced by the so-called \derivative

matrices" (Canuto et al., 1988), and eventually the eigenvalue system becomes a large

linear algebraic system that has the matrix form:

A1x̂ = !A2x̂ :

Here A1 and A2 are matrices in which the e�ects of the governing equations and the

boundary conditions are incorporated, and x̂ is a vector consisting of the values of

the tilde quantities at every gridpoint. This is called a generalized eigenvalue problem.

Many packages, such as EISPACK, IMSL, and NAG, have routines to treat this kind of

problem. An inversed iteration method (Press et al., 1996) is employed in our current

numerical code.

To determine the components of the matriciesA1 and A2, the following items need to

be speci�ed: Prandtl number (Pr), internal heating parameter (H), horizontal velocity

boundary conditions (rigid or stress{free), thermal boundary conditions (isothermal or

insulating), and the buoyancy factor pro�le (constant or variable). For each given set of

parameter values, we �rst solve the associated eigenvalue problem for � 2 [0:0001; 20:0]

and Ra 2 [100:0; 25000:0] to determine the neutral curve and the critical conditions.

The eigenfunctions for ~u1; ~u3; ~p, and ~� corresponding to the critical conditions are

then calculated. These eigenfunctions are normalized in such a way that the resultant

normalized kinetic energy for the disturbances over the whole layer becomes unity, i.e.Z
1

0

�
~u2
1
+ ~u2

3

�
dz = 1 : (32)
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The shape of the normalized ~u3 eigenfunction is then examined, so that the location

and the magnitude of the extremum can be determined.

4 Results and Discussion of Stability Analysis

For the present stability study, we restrict our computation to the case where the

thermal boundary conditions are isothermal on both boundaries. The main general

results are:

(i) The real part of the eigenvalue ! is always zero, implying that the disturbances

are not oscillatory in time. Thus, ! is exactly zero on the neutral curve.

(ii) The complex eigenfunctions for ~u1 and ~p are purely imaginary, while those for ~u3

and ~� are purely real.

(iii) The critical conditions for the eigenvalue and eigenfunctions are all independent

of Pr.

Before applying our numerical scheme to the variable buoyancy factor (VB) cases,

we �rst carry out a brief study for the e�ects of H and the velocity boundary conditions

on the onset of instability in the presence of a constant buoyancy factor (CB). Such a

study can help us evaluate the roles played by H and the velocity boundary conditions.

In addition, it is important to establish a baseline of reference so that a meaningful

comparison with the results of variable buoyancy factor cases can be constructed.

4.1 The E�ect of H

For this study, we chose SS for the horizontal velocity boundary conditions |

see equation (29) | and CB cases for H = 0; 1:0;�2:0;�5:0 have been calculated.

The reason that we chose to calculate such cases is to see if around H = 2:0 there is

a signi�cant change in the critical conditions. The data generated from the neutral

stability curve are shown in Table I, where (Ra)cr and �cr are the critical Rayleigh

number and the critical wavenumber, respectively. Table I shows that the critical

wavenumber is independent of H, and the critical Rayleigh number decreases slowly

as jHj increases. The rate at which (Ra)cr decreases, is smaller as jHj decreases (see
Figure 1).

The shapes of the ~u3 and ~� eigenfunction are shown in Figures 2 and 3, respectively.

From these �gures, we see that H has very little e�ect on the eigenfunctions. The

eigenfunctions seem to follow a shape of half a sine cycle, with its maximum point

located at the center (z = 0:5). As jHj increases from 0 to 5.0, the maximum value
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H 0 1.0 �2.0 �5.0
(Ra)cr 657.51 656.69 654.26 638.21

�cr 2.221 2.221 2.221 2.221

Table I. E�ect of H on the critical conditions

Rayleigh number, Ra

W
av

en
um

be
r,

α

0 5000 10000 15000 20000 25000
0

3

6

9

12

15

Figure 1. E�ect of jHj on the neutral curve (The solid line is for jHj=0,
the dashed line is for jHj=1.0, the dashdot line is for jHj=2.0,

and the dashdotdot line is for jHj=5.0).
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of ~u3 shows only a 0.18% reduction (from 0.8159 to 0.8144). Furthermore, when H is

positive, the maxima of the eigenfunctions of ~u3 and ~� shift upward from the centerline.

Real part, Re

D
ep

th
,Z

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

H = -5.0
H = -2.0
H = 0
H = 1.0
H = 2.0
H = 5.0

Figure 2. E�ect of jHj on ~u3 eigenfunction.

In this investigation, we consider a CB case only; therefore

B(z) = B(1� z) :

It can be proved, based on our formulation, the following relationships exist between

the case of +H and the case of �H for both the RR and the SS cases:8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

�
�H

= �
+H

;

!
�H

= !
+H

;

(Ra)
�H

= (Ra)
+H

;

(~u1)
�H
(z) = (~u1)+H(1� z) ;

(~u3)
�H
(z) = �(~u3)+H(1� z) ;

~p
�H
(z) = ~p

+H
(1� z) ; and

~�
�H

(z) = �~�
+H
(1� z) :

This means that the case of �H is mathematically equivalent to the case of +H.
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Real part, Re

D
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,Z

0 0.02 0.04 0.06 0.08
0

0.2

0.4

0.6

0.8

1
H = -5.0
H = -2.0
H = 0
H = 1.0
H = 2.0
H =5.0

Figure 3. E�ect of jHj on ~� eigenfunction.

4.2 The E�ect of the Velocity Boundary Conditions

For this study, we chose CB and H = 0. Cases for RR, RS, SR, and SS velocity

boundary conditions are calculated. Results about the growth rate contours (Table II

and Figure 4) indicate that the SS case gives the lowest (Ra)cr and the smallest �cr,

the RR case gives the largest (Ra)cr and the biggest �cr, whereas the RS case and the

SR case have exactly the same critical conditions. These results are physically under-

standable. A rigid boundary poses friction on a 
ow and leads to shorter-wavelength


ow circulations, which imply a higher value for both �cr and (Ra)cr as compared with

the corresponding e�ects due to a stress{free boundary.

B.C. RR RS SR SS

(Ra)cr 1707.76 1100.65 1100.65 675.51

�cr 3.117 2.681 2.681 2.221

Table II. E�ect of velocity boundary conditions on the critical conditions

Since we considered the CB case and no internal heating in this investigation, we

have

B(z) = B(1� z); H = 0 :

13



Rayleigh number, Ra

W
av

en
um

be
r,

α

0 5000 10000 15000 20000 25000
0

2.5

5

7.5

10

12.5

Figure 4. E�ect of velocity boundary conditions on the neutral curve

(The solid line is for the RR case, the dashed line is for the SS case,

and the dashdot line is for the RS/SR cases).
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It can be proved that the following relationships exist between the RS case and the SR

case: 8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

�
RS

= �
SR

;

!
RS

= !
SR

;

(Ra)
RS

= (Ra)
SR

;

(~u1)RS(z) = (~u1)SR(1� z) ;

(~u3)RS(z) = �(~u3)SR(1� z) ;

~p
RS
(z) = ~p

SR
(1� z) ; and

~�
RS
(z) = �~�

SR
(1� z) :

This means that the RS case is mathematically equivalent to the SR case.

The ~u3 eigenfunctions corresponding to di�erent velocity boundary conditions are

shown in Figure 5. It is found that the ~u3 eigenfunction is asymmetric with respect to

the centerline if the two velocity boundary conditions are not identical. The peak of

this eigenfunction is skewed towards the stress{free boundary.
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Figure 5. E�ect of velocity boundary conditions on the ~u3 eigenfunction.

Based on the above study for the CB cases, neither H nor Pr plays any signi�cant

role in the linear stability of the present convective system. Therefore, for the investi-

gations of the VB cases, we will set H = 0, and focus our attention on the e�ects of
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variable buoyancy factor only. Several variable buoyancy factor pro�les are used in this

study. These include two linear pro�les, a parabolic pro�le, a sinusoidal pro�le, and a

more realistic pro�le derived from Stacey's work (1992) for the Earth. Physically these

variable buoyancy factor pro�les can be implemented by either the variation of gravity

�eld or the variation of thermal expansion coeÆcient or some combinations of these

two variations. Results of the VB cases are discussed in the following subsections.

4.3 The E�ect of a Linear Buoyancy Factor Pro�le with

Reference B0 Tied to the Bottom (VB{LB)

First we want to investigate how a monotonically changing buoyancy factor pro�le

a�ects the stability of the system. Among the monotonic buoyancy factor pro�les, we

choose to start with a simple case, the linear pro�le. For this study, the buoyancy

factor pro�le is chosen to be

B(z) = 1 + �1z ;

where �
1
is a constant representing the rate of vertical change of the buoyancy factor.

The reference buoyancy factorB0 is set at the bottom boundary. Whether the buoyancy

factor increases or decreases with z depends on the sign of �
1
. Here the RR and SS

cases have been studied for �
1
ranging from �0.95 to 1.20.

Data for the growth rate contours (Figures 6) indicate that the critical Rayleigh

number decreases as �
1
increases, and the rate of decrease also decreases as �

1
increases

| notice that in Figure 6 the slope of the (Ra)cr vs. �1 curve is always negative, but

it increases as �
1
increases) | i.e.

d

d�
1

(Ra)cr < 0 ;
d2

d�2
1

(Ra)cr > 0 :

Therefore, for �
1
> 0, lower critical Rayleigh numbers are found when compared with

the CB case. Conversely, for �
1
< 0, higher critical Rayleigh numbers are obtained.

These trends hold for both the SS and the RR cases. On the other hand, the critical

wavenumber is independent of �
1
, i.e. it is 2.221 for all SS cases and 3.117 for all RR

cases (Figures 7 and 8).

As to the ~u3 eigenfunction (Figures 9 and 10), the maximum point is almost always

at the middle, except in the case of very low �
1
(i:e:�

1
= �0:95). The magnitude of the

maximum point does not depend on �
1
. However, the shape of the ~u3 eigenfunction is

slightly a�ected by the value of �
1
. For example, when �

1
= 0, a symmetric pro�le is

obtained. When �
1
> 0, the pro�le is skewed towards the upper half, and when �

1
< 0,

it is skewed in the opposite direction.

To investigate the e�ect of reference buoyancy factor location on the stability of

the system, we studied cases where the reference buoyancy factor is tied to the top
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Figure 6. E�ect of VB{LB on the critical Rayleigh number in the SS and RR cases.
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Figure 7. E�ect of VB{LB on the neutral curve in the SS case.
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Figure 8. E�ect of VB{LB on the neutral curve in the RR case.
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Figure 9. E�ect of VB{LB on the ~u3 eigenfunction in the SS case.
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Figure 10. E�ect of VB{LB on the ~u3 eigenfunction in the RR case.

boundary (VB{LT) as well. In other words, for that study, the buoyancy factor pro�le

is chosen to be

B(z) = 1 + �
1
(z � 1) :

Both the SS and RR cases have been tested for several values of �
1
. It turns out

that, since we considered no internal heating, the following relationships exist between

VB{LT case of given �
1
and VB{LB case of given ��

1
:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

�
LT;�

1
= �

LB;��
1
;

!
LT;�

1
= !

LB;��
1
;

(Ra)
LT;�

1
= (Ra)

LB;��
1
;

(~u1)LT;�
1
(z) = (~u1)LB;��

1
(1� z) ;

(~u3)LT;�
1
(z) = �(~u3)LB;��

1
(1� z) ;

~p
LT;�

1
(z) = ~p

LB;��
1
(1� z) ; and

~�
LT;�

1
(z) = �~�

LB;��
1
(1� z) :

This means that VB{LT case of given �
1
is mathematically equivalent to VB{LB case

of ��
1
.
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4.4 The E�ect of a Parabolic Buoyancy Factor

Pro�le (Para{VB)

Beginning with this subsection, we examine the e�ects of some non{monotonic

buoyancy factor pro�les. First of all, we want to see how non{monotonic buoyancy

factor pro�les with only one local extremum a�ect the stability of the system. Actually,

we chose the following parabolic pro�le for our investigation:

B(z) = 1� 4�
2
z + 4�

2
z2 ;

where the constant �
2
is called \de�cit parameter" in this paper. It stands for the

de�cit percentage of the buoyancy factor at the middle of the domain with respect to

the reference value. Both the SS and RR cases have been studied for several values of

�
2
in the range �0:80 < �

2
< 1.

Data for the growth rate contours (Figure 11) indicate that the critical Rayleigh

number increases as �
2
increases, and the rate of increase also increases as �

2
increases

| notice that in Figure 11 the slope of the (Ra)cr-�2 curve is always positive, but it

increases as �
2
increases) | i.e.

d

d�
2

(Ra)cr > 0 ;
d2

d�2
2

(Ra)cr > 0 :

Therefore, compared with a CB case, buoyancy factor de�cits (�
2
> 0) increase the

critical Rayleigh number. The larger the de�cit, the higher the critical Rayleigh number

becomes. Conversely, buoyancy factor gains (�
2
< 0) yield lower critical Rayleigh

numbers. On the other hand, for a wide range of de�cit parameter �
2
that we have

tested (�0:8 � �
2
� 0:8), the critical wavenumber remains constant, i.e. 2.221 for all

SS cases and 3.117 for all RR cases (Figures 12 and 13).

As to the ~u3 eigenfunction, it is symmetric with respect to the centerline for both

the SS and RR cases, and the de�cit parameter �
2
almost has no e�ect on its shape

and magnitude (Figures 14 and 15).

4.5 The E�ect of a Sinusoidal Buoyancy Factor

Pro�le (Sine{VB)

We next examine the e�ects of possible multiple local extrema for the dynamics of

the 
ow system. For this case, the buoyancy factor pro�le is chosen to be

B(z) = 1� �
3
sin(2�Nz) ;

where the parameters �
3
and 2�N describe, respectively, the amplitude and the wavenum-

ber of the deviation from a constant buoyancy factor pro�le. Both the SS and RR cases

have been studied for several values of �
3
and N .
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Figure 11. E�ect of para{VB on critical Rayleigh number in the SS and RR cases.
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Figure 13. E�ect of para{VB on the neutral curve in the RR case.
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Figure 14. E�ect of para{VB on the ~u3 eigenfunction in the SS case.
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Figure 15. E�ect of para{VB on the ~u3 eigenfunction in the RR case.

Results of the critical conditions (Tables III� VI) indicate that the critical Rayleigh

number decreases with increasing �
3
and increases with N . For a given �

3
, the critical

Rayleigh number approaches that of a CB case as N increases. On the other hand,

the critical wavenumber remains unchanged. Furthermore, the critical Rayleigh num-

bers are not much di�erent from that of a CB case, even though the buoyancy factor

pro�les di�er signi�cantly. This result suggests that in this case the average buoyancy

factor across the whole layer plays the most important role in determining the stability

behavior of the system. It is also noticed that, for N � 3, the corresponding critical

Rayleigh numbers are almost the same as that of a CB case, even for a large{amplitude

deviation such as �
3
= 0:9. As to the ~u3 eigenfunction, positive �3 makes the ~u3 eigen-

function skew towards the upper half, because the upper half has a higher buoyancy

factor and, therefore, tends to become unstable more easily. Similarly, negative �
3

makes the curve shift towards the lower half (Figures 16 and 17). However, for N � 3,

the eigenfunction di�ers only slightly from that of a CB case. This result, combined

with the e�ect of N on the critical Rayleigh number, implies that a sine{VB pro�le

can only a�ect the linear stability of the system when N = 1; 2.

Finally, since we considered no internal heating in this investigation, it can be

proved, based on our formulation, that the following relationships exist between the
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�
3

0 0.05 0.10 0.15 0.20 0.25

(Ra)cr 657.51 657.48 657.40 657.25 657.05 656.78

�cr 2.221 2.221 2.221 2.221 2.221 2.221

�
3

0.30 0.35 0.40 0.50 0.60 0.70

(Ra)cr 656.46 656.09 655.65 654.62 653.36 651.89

�cr 2.221 2.221 2.221 2.221 2.221 2.221

�
3

0.75 0.80 0.85 0.90

(Ra)cr 651.07 650.21 649.29 648.32

�cr 2.221 2.221 2.221 2.221

Table III. E�ect of �
3
on the critical conditions in the SS case (N = 1)

N 1 2 3 4 5 6 7

(Ra)cr 648.32 656.58 657.46 657.50 657.51 657.51 657.51

�cr 2.221 2.221 2.221 2.221 2.221 2.221 2.221

Table IV. E�ect of N on the critical conditions in the SS case (�
3
= 0:9)

�
3

0 0.05 0.10 0.15 0.20 0.25

(Ra)cr 1707.76 1707.65 1707.21 1706.52 1705.56 1704.32

�cr 3.117 3.117 3.117 3.117 3.117 3.117

�
3

0.30 0.35 0.40 0.50 0.60 0.70

(Ra)cr 1702.81 1701.04 1699.01 1694.17 1688.34 1681.54

�cr 3.117 3.117 3.117 3.117 3.117 3.117

�
3

0.75 0.80 0.85 0.90

(Ra)cr 1677.80 1673.84 1669.66 1665.28

�cr 3.117 3.117 3.117 3.117

Table V. E�ect of �
3
on the critical conditions in the RR case (N = 1)

N 1 2 3 4 5 6 7

(Ra)cr 1665.28 1697.16 1707.29 1707.70 1707.75 1707.76 1707.76

�cr 3.117 3.117 3.117 3.117 3.117 3.117 3.117

Table VI. E�ect of N on the critical conditions in the RR case (�
3
= 0:9)
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Figure 16. E�ect of sine{VB on the ~u3 eigenfunction in the SS case.
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Figure 17. E�ect of sine{VB on the ~u3 eigenfunction in the RR case.
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sine{VB case of given (�
3
; N) and the sine{VB case of (��

3
; N):

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

�
�
3
;N
= �

��
3
;N
;

!
�
3
;N
= !

��
3
;N
;

(Ra)
�
3
;N
= (Ra)

��
3
;N

(~u1)�
3
;N
(z) = (~u1)

��
3
;N
(1� z) ;

(~u3)�
3
;N
(z) = �(~u3)

��
3
;N
(1� z) ;

~p
�
3
;N
(z) = ~p

��
3
;N
(1� z) ; and

~�
�
3
;N
(z) = �~�

��
3
;N
(1� z) :

This means that the sine{VB case of given (�
3
; N) is mathematically equivalent to the

sine{VB of (��
3
; N).

4.6 The E�ect of a \Realistic" Buoyancy Factor

Pro�le (Real-VB)

For this study, the buoyancy factor pro�le is chosen to follow Stacey's pro�le (1992)

(Figure 18). Here the RR, RS, SR, and SS cases have been studied and compared with

their counterparts in the CB case.

Results of the critical conditions (Table VII) indicate that when compared with the

CB case, the critical Rayleigh number for the realistic VB case is slightly lower in all

four cases. The critical wavenumber remains the same, however. Furthermore, since

the realistic buoyancy factor pro�le is not symmetric with respect to the centerline of

the 
uid layer, the RS case and the SR case are no longer mathematically equivalent

to each other. However, the deviation from mathematical equivalence is quite small

(Table VII and Figure 19).

CB real-VB

RR RS SR SS RR RS SR SS

(Ra)cr 1707.76 1100.65 1100.65 657.51 1692.73 1089.66 1090.48 650.95

�cr 3.117 2.681 2.681 2.221 3.117 2.681 2.681 2.221

Table VII. E�ect of real{VB on the critical conditions
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Real part, Re

D
ep

th
,Z

0 0.25 0.5 0.75 1 1.25
0

0.2

0.4

0.6

0.8

1

SS case
RR case
RS case
SR case

Figure 19. E�ect of velocity boundary conditions on the ~u3 eigenfunction

in the real{VB case.
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4.7 Estimation of the E�ects of Variable Buoyancy

Factor on the Critical Conditions

On the basis of previous discussions, it appears that the critical wavenumber is

independent of the buoyancy factor pro�les when the buoyancy factor keeps the same

sign in the entire domain. It is of interest to examine if there is a general relationship

between a buoyancy factor pro�le and the corresponding critical Rayleigh number. We

will evaluate the relationship in terms of the following statistical quantities for a given

variable buoyancy factor pro�le B(z):

1. Bav =

Z
1

0

B(z)dz, the mean buoyancy factor.

2. Bsd =

Z
1

0

[B(z)� Bav]
2
dz, the standard deviation of the buoyancy factor.

3. Bsk =

Z
1

0

[B(z)� Bav]
3
dz, the third{order moment of the buoyancy factor.

4. B
 =

Z
1

0

[B(z)� Bav]
4
dz, the fourth{order moment of the buoyancy factor.

Therefore, for the various types of the buoyancy factor pro�les we discussed before, we

obtain the results given in Table VIII.

Type B(z) Bav Bsd Bsk B


Linear 1 + �
1
z 1 +

1

2
�
1

1

12
�2
1

0
1

80
�4
1

Parabolic 1� 4�
2
z + 4�

2
z2 1�

2

3
�
2

4

45
�2
2

16

945
�3
2

16

945
�4
2

Sinusoidal 1 + �
3
sin(2�Nz) 1

1

2
�2
3

0
3

8
�4
3

\Realistic" Discrete data 1:0174 2:7663 e�4 7:1202 e�6 3:9624 e�7

Table VIII. The statistical features of the variable buoyancy factor pro�les

We assume that by using up to the third{order moment we can capture the e�ect of

variable buoyancy factor on the critical Rayleigh number. In other words, we express

the critical Rayleigh number as a function of Bav, Bsd and Bsk. Furthermore, we assume

that the e�ects of Bav, Bsd, and Bsk on the critical Rayleigh number do not couple with

each other, i.e.

(Ra)cr = F (Bav; Bsd; Bsk) = f1(Bav)f2(Bsd)f3(Bsk) ; (33)
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where F , f1, f2, and f3 are functions to be determined, and F (1; 0; 0) = f1(1)f2(0)f3(0)

equals the critical Rayleigh number in the CB case, i.e. 657.51 for the SS case and

1707.76 for the RR case. These assumptions will be justi�ed later in this subsection.

Since a sinusoidal buoyancy factor pro�le has the same Bav and Bsk values as

the constant buoyancy factor pro�le, the only factor that a�ects the critical Rayleigh

number in a sinusoidal buoyancy factor �eld is Bsd. By analyzing the results for N = 1

that we obtained in Section 4.6, we have the following form for f2 based on the least{

square{error algorithm:

f2(x) =

8><
>:

f2(0) (1� 0:0621x) for RR case

f2(0) (1� 0:0347x) for SS case
(34)

Similarly, for the linear buoyancy factor pro�le, only Bav and Bsd a�ect the critical

Rayleigh number, where the e�ect of Bsd is expressed by (34). Again, based on the

least{square{error algorithm, we obtain the following best�t for f1 for both the RR

and the SS cases:

f1(x) = f1(1) x
�0:998 ; (35)

and, using (33)�(35) to analyze the critical Rayleigh numbers in the parabolic buoy-

ancy factor �elds (Section 4.5), we obtain the following best�t for f3:

f3(x) =

8>><
>>:

f3(0)
h
0:9118 + 0:0882 exp

�
10:237x1=3

�i
for RR case

f3(0)
h
0:9138 + 0:0862 exp

�
9:499x1=3

�i
for SS case

(36)

It should be noted that f1(1), f2(0), and f3(0) in (34)�(36) can not be completely

determined in this investigation. However, according to (33), these three numbers

must satisfy the following constraint:

f1(1)f2(0)f3(0) =

8><
>:

1707:76 for RR case

657:51 for SS case
(37)

We used (33)�(37) to estimate the critical Rayleigh numbers for all the variable

buoyancy factor pro�les we studied and compared them with the corresponding results

from the linear stability analysis. For the 58 cases we have studied, the relative di�er-

ence between the estimated value and the computed values is (1:418� 7:037)�10�3 for

the RR case, and (1:314� 5:462)�10�3 for the SS case. In other words, the estimation

based on (33)�(36) is quite excellent. It also indicates that the assumptions we made
in (33) are reasonable. Therefore, given a pro�le of buoyancy factor, now we can �rst

calculate the corresponding Bav, Bsd, and Bsk, and then use (33)�(37) to estimate the
critical Rayleigh numbers for both the RR and the SS cases.
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4.8 E�ect of a Buoyancy Factor Pro�le with a Sign Change

So far we have examined many variable buoyancy factor pro�les, but none of them

changes sign in the 
ow domain. For all those buoyancy factor pro�les, none of the

corresponding ~u3 eigenfunctions has interior zero points (see Figures 3, 5, 9�10, 14�17,
and 19), which implies that it is impossible to have a multiple{layer structure in the

�eld. However, Hsui and Riahi (2000) pointed out that for nearly insulating and rigid

boundaries, if the buoyancy factor changes sign in the �eld, the ~u3 eigenfunction may

have interior zero points, which suggests that multiple{layer 
ow structure may be

possible. Therefore, it is of interest to examine some buoyancy factor pro�les that

have a sign change in the domain �1 � z � 1 and see how such pro�les a�ect the

linear behavior of the thermal convective system.

Following Hsui and Riahi (2000), a parabolic buoyancy factor pro�le is chosen for

this investigation, i.e.

B(z) = 1� 4�
2
z + �

2
z2 ;

where the reference of the buoyancy factor is chosen such that the buoyancy factor at

either the top or the bottom boundary becomes unity, and �
2
, as we used in Section

4.5, is the buoyancy factor de�cit parameter.

Using the same boundary conditions as prescribed in Section 3, we examined a se-

ries of parabolic gravity pro�les corresponding to de�cit parameter �
2
between 1.0 and

1.45. For each given �
2
, we solve the associated eigenvalue problem for � 2 [0:0001; 20:0]

and Ra 2 [100:0; 250000:0] (In this investigation, we are dealing with heavy buoyan-

cy factor de�cit, which dramatically increases the critical Rayleigh number, compared

with the CB case. That is why we set the upper limit of Ra to be as high as 250000

when computing the neutral curves. In fact, when �
2
= 1:45, the corresponding crit-

ical Rayleigh number is as high as 241979.) to obtain the neutral curve that yields

results of the critical Rayleigh number and the corresponding critical wavenumber of

the perturbation.

The results of the critical Rayleigh number and the critical wavenumber are shown

in Figure 20. It is noticed that there is a sudden change of slope for both the (Ra)crvs:�2
curve and the �crvs:�2 curve, around �

2
= 1:168. In fact, after examining the shape

of the ~u3 eigenfunction, we found that the change of slope corresponds to the change

from a single{layer structure to a multiple{layer structure. Another interesting thing

is, in previous subsections we found that the critical wavenumber does not depend on

the buoyancy factor pro�les, as long as there is no sign change of the buoyancy factor

within the 
ow �eld. This time, however, the critical wavenumber increases as the

buoyancy factor de�cit parameter �
2
increases.

Seven di�erent shapes of the ~u3 eigenfunction are found in this investigation as

�
2
increases up to 1.45 (Figure 21). Type I has only one local maximum, no local
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Figure 20. The e�ect of buoyancy factor de�cit parameter on the critical conditions.

minimum, and no internal zero point. The ~u3 eigenfunction of type I is symmetric

with respect to the centerline z = 0:5. Type II has two local maximum points, which

have the same positive maximum value, one local minimum point which has a positive

minimum value, and no internal zero point. The shape of type II is also symmetric

with respect to the centerline. Type III has one local maximum point, which has a

positive maximum value, one local minimum point, which has a negative minimum

value, and one internal zero point at z = 0:5. The shape of type III is antisymmetric

with respect to the centerline, and there is a zone (about 0.35 � z � 0.65) where the

~u3 eigenfunction is linearly proportional to the depth z. Type IV has almost the same

features as type III, except that the linearly proportional zone for type IV (about 0.45

� z � 0.55) is much narrower than that for type III. Type V has two local maximum

points, which have positive maximum values, and two local minimum points, which

have negative minimum values. These local extrema are alternately located, resulting

in three internal zero points. It is observed that z = 0:5 is always a zero point, and the

other two zero points are located symmetrically with respect to the centerline. The

shape of type V is antisymmetric with respect to the centerline. Type VI has almost

the same features as type V, except that the shape is no longer antisymmetric. Type

VII has two local maximum points, which have the same positive maximum value, one

local minimum point, which has negative minimum value, and two internal zero points.
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The shape of type VII is symmetric with respect to the centerline.
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Figure 21. The seven shapes of the ~u3 eigenfunction.

It is interesting to see how the ~u3 eigenfunction changes its shape as �
2
increases.

Results in Section 4.5 show that, for �
2
less than 1, the ~u3 eigenfunction is always type

I. As �
2
increases to a certain number between 1.0769 and 1.1538, the ~u3 eigenfunction

starts to deform at the middle. (Our main purpose of this investigation is to see

whether or not the multiple{layer structure is possible for buoyancy factor pro�les

with a sign change in the �eld. Since the change from type I to type II does not mean

the appearance of the multiple{layer structure, it is beyond our interest to determine

the value of the certain number we mentioned here.) As a result, z = 0:5 is no

longer the local maximum point. Instead, it becomes the local minimum point, and

two local maximum points appear symmetrically beside it. As �
2
increases further,

the minimum value keeps decreasing and the maximum value keeps increasing. When

�
2
increases from 1.1677 to 1.1678, all of sudden the shape of the ~u3 eigenfunction

switches from type II to type III, and the multiple{layer structure appears. Therefore,

the critical buoyancy factor de�cit parameter in our case is between 1.1677 and 1.1678.

The ~u3 eigenfunction almost keeps the same features as �
2
increases from 1.1678 to

a value between 1.2307 and 1.3403. When �
2
exceeds that value, some deformation

occurs around the centerline. This is actually the occurrence of type IV. As �
2
keeps

increasing, eventually a narrow zone where the ~u3 eigenfunction is constant forms
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around the centerline and a further increase in �
2
brings the type V pro�le. This

occurs when �
2
reaches a certain number between 1.3806 and 1.3941. After that, the

two internal zero points other than z = 0:5 move away from the centerline, both local

maxima increase, and both local minima decrease as �
2
increases. When �

2
exceeds a

value between 1.4438 and 1.4443, the ~u3 eigenfunction is no longer antisymmetric, and

it becomes type VI. According to our results, type VI can exist only for a rather narrow

range of �
2
(1.4438 < �

2
< 1.4445). For �

2
in this range, an increase of �

2
makes both

the maximum and the minimum decrease, and therefore the non-symmetry increase.

When �
2
increases from 1.4444 to 1.4445, all of sudden the shape switches from type

VI to type VII, and it is symmetric again.

In the linear stability analysis, the existence of internal zero points of the ~u3 eigen-

function implies the existence of a multiple{layer structure, and the number of the

internal zero points plus 1 gives the number of vertical layers in the 
ow. Therefore,

according to the above results, we say that type I and II correspond to a single{layer

structure, type III and IV correspond to a double{layer structure, type VII corresponds

to a triple{layer structure, and type V and VI correspond to a quadri{layer structure.

5 Fully Nonlinear Simulation and Results

5.1 Governing Equations

For a fully nonlinear simulation, we start with the governing equations (17)�(19).
As in the linear stability analysis, the important parameters are the Rayleigh number

Ra, the Prandtl number Pr, the dissipation number Di, and the internal heating pa-

rameter H. For our case studies, we assume Di = 0 and Pr!1, so that the nonlinear

inertia terms in (18) drop out, and the only nonlinearities retained are the nonlinear

convection terms in the energy equation.

In this paper, periodic conditions are chosen in the horizontal directions. As to the

vertical boundary conditions, we chose stress{free conditions for the horizontal velocity

components, a no{penetration condition for the vertical velocity, and an isothermal

condition for the temperature. Thus, the boundary conditions considered here are

(21b), (22) and (23a).

5.2 Numerical Method

For the nonlinear simulation, we follow a spectral Fourier{Chebyshev collocation

method developed by Balachandar and Yuen (1994). The spectral method is chosen

for its exponential convergence and its superior resolution of a wide range of length

scales associated with the complex 
ows. A Chebyshev expansion is used in the vertical
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direction to take care of the non{periodic behavior in that direction, while the periodic

horizontal boundary conditions are implemented with a Fourier expansion in these

directions.

The numerical procedure can be outlined in the following four steps (Balachandar

and Yuen, 1994):

(i) Temperature step:

Temperature equation in Fourier space is solved by using an explicit three{stage

Runge{Kutta scheme for the nonlinear terms and an implicit Crank{Nicholson

scheme for the linear terms.

(ii) Vertical velocity step:

The vertical velocity and the pressure can be connected by an algebraic relation

in the Fourier space, so we can �nally obtain a linear algebraic system for the ver-

tical velocity (in the Fourier space) only. The boundary pressures are evaluated

through the in
uence matrix technique (Canuto et al., 1988).

(iii) Pressure step:

Once the vertical velocity is known, the pressure can be solved in the Fourier

space by using the algebraic relation mentioned in step (ii).

(iv) Horizontal velocity step:

The reduced matrix technique (Canuto et al., 1988) is employed to eliminate the

boundary velocity values from the linear algebraic system.

Our numerical code is derived from the original code of Balachandar and Yuen

(1994). Modi�cations are made to implement variable buoyancy factor pro�les and

some data processing. All these modi�cations are interface{type, and the core of the

algorithm implementation has been kept unchanged.

5.3 Numerical Results

For the nonlinear simulation, we have tested six di�erent pro�les of buoyancy

factor. The �rst three are buoyancy factor pro�les that have no sign change within the


ow domain, and the second three are pro�les that have a sign change in the domain.

For each case, we had two choices to start the simulation. One is to start from a

motionless state with a linear temperature pro�le. The other is to start from a given


ow �eld previously calculated. For the former choice, we usually introduced a small

arti�cial sinusoidal temperature perturbation so that the development of a 
ow can

be induced. The wavelength of the disturbance is chosen such that the disturbance is

linearly unstable.
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5.3.1 Numerical Results for Buoyancy Factor Pro�lesWithout Sign Change

For this investigation, we have tested three buoyancy factor pro�les: a constant

pro�le (i.e. a CB case that has a critical Rayleigh number of about 657), an �
2
= 0:25

parabolic pro�le (i.e. a 25% para{VB case that has a critical Rayleigh number of about

840), and an �
2
= 0:50 parabolic pro�le (i.e. a 50% para{VB case that has a critical

Rayleigh number of about 1200). Results of the simulation for Ra = 5000 are shown in

Figures 22 and 23. For this calculation, the CB case is started with a motionless state

with a linear temperature pro�le, while the simulations for both the 25% para{VB and

the 50% para{VB cases are started with the 
ow �eld corresponding to the CB case

after 21500 timesteps. As a result, the simulation for the CB case takes more than

10000 time steps (about 33 CPU hours on the NCSA's Origin{2000 machine) for the


ow �eld to reach a steady state, while it takes only about 5500 timesteps (about 18

CPU hours) for both the 25% para{VB and the 50% para{VB cases to reach a steady

state (Figure 22).
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Figure 22. Evolution of the surface Nusselt number for Ra=5000.

Figure 22 presents the surface Nusselt number (Nu)s as a function of numerical

time steps. It illustrates the evolution of the dynamic 
ow. For the three buoyancy

factor pro�les that we have investigated, the surface Nusselt numbers tend to settle

at about 3.597, 3.287, and 2.864, respectively. These results indicate that a de�cit in

buoyancy factor reduces the surface Nusselt number signi�cantly (every 25% buoyancy
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Figure 23. Horizontally{averaged temperature pro�le for Ra=5000.

factor de�cit causes about 10% reduction in the surface Nusselt number).

Figure 23 shows the steady{state horizontally{averaged temperature pro�les across

the 
uid layer for these three cases. We checked the relative di�erence of temperature

at every gridpoint in our computational domain and found that the averaged relative

temperature di�erence is about 6% between the CB case and the 25% para{VB case,

and about 12% between the CB case and the 50% para{VB case.

In our simulation, we also examined the 
ow structure. For this Rayleigh number,

a two{dimensional roll structure along the x direction is observed. All the three cases

show a structure qualitatively similar to the ones shown in Figures 24 and 25, where

Figure 24 is a velocity vector plot of the 
ow cells, and Figure 25 represents the

corresponding isothermal structure.

The simulation for these three buoyancy factor pro�les has also been carried out

for Ra = 10000. At this Rayleigh number, the surface Nusselt numbers are found to

be 4.681, 4.362, and 3.948, respectively, for the CB case, the 25% para{VB case and

the 50% para{VB case. The corresponding averaged relative temperature di�erence is

about 13% between the CB case and the 25% para{VB case, and about 17% between

the CB case and the 50% para{VB case. Compared with the results of Ra = 5000,

the surface Nusselt number drops a bit faster as the buoyancy factor de�cit increases

(Figure 26), and the averaged relative temperature di�erence between the CB case and
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Figure 24. Velocity vector plot for Ra=5000.
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Figure 25. Temperature isosurface plot for Ra=5000.
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the VB cases becomes larger. The 
ow structure, on the other hand, remains the same

as two{dimensional rolls.
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Figure 26. The e�ect of buoyancy factor de�cit on the surface Nusselt number.

5.3.2 Numerical Results for Buoyancy Factor Pro�les With a Sign Change

For this investigation, we chose three parabolic buoyancy factor pro�les to study:

�
2
=1.10, 1.25, and 1.45, respectively. According to the linear stability results in

Section 4.9, these three pro�les correspond to a single{layer structure, a double{layer

structure, and a triple{layer structure, respectively. The conditions used in these simu-

lations are listed in Table IX, where (Ra)cr and �cr are the critical conditions predicted

by the linear stability analysis (Figure 20), Ra is the selected Rayleigh number for

this investigation, � is the wavelength of the initial arti�cial disturbance, and ! is

the nondimensional temporal growth of the initial disturbance predicted by the linear

stability analysis.

The 
ow structures we obtained in these three cases are shown in Figures 27�32.
From the velocity vector plots (Figures 27, 29, and 31), we see that a single{layer

structure exists when �
2
= 1:10 (Figure 27), a double{layer structure exists when

�
2
= 1:25 (Figure 29), and a triple{layer structure exists when �

2
= 1:45 (Figure 31).

In fact, in the �
2
= 1:25 case, the vertical velocity equals zero at z = 0:5, and thus

z = 0:5 is the dividing line between the two layers. In the �
2
= 1:45 case, comparatively,
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Case �
2

(Ra)cr �cr Ra � !

Case110 1.10 21886.2 2.716 40000 2.80 10.61

Case125 1.25 90465.3 4.838 100000 4.40 3.61

Case145 1.45 241979.0 6.841 300000 7.00 13.60

Table IX. The conditions used in the nonlinear simulations for �
2
> 1:0

there are two dividing lines, located at about z = 0:36 and z = 0:64, respectively.

The corresponding temperature isosurfaces (Figures 28, 30, and 32) also show quite

di�erent features. In the �
2
= 1:10 case, a temperature isosurface can have a rather

large penetration depth (Figure 28). In the �
2
= 1:25 case, isosurfaces for T > 0:5

are con�ned in the lower half of the domain, whereas isosurfaces for T < 0:5 are

con�ned in the upper half, and the T = 0:5 isosurface is located right at the middle

(z = 0:5) (Figure 30). In the �
2
= 1:45 case, isosurfaces for T � 0:7 are con�ned in

the sub-domain z < 0:35, and isosurfaces for T � 0:3 are con�ned in the sub-domain

z > 0:65. In the remaining region (0:35 � z � 0:65), all the temperature isosurfaces

are almost 
at lines, showing that in that region the velocity is very small and the

thermal structure is very close to a conductive layer (Figure 32).
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Figure 27. Velocity vector plot in �
2
= 1:10 case.
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Figure 28. Temperature isosurface in �
2
= 1:10 case.
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Figure 29. Velocity vector plot in �
2
= 1:25 case.
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Figure 30. Temperature isosurface in �
2
= 1:25 case.
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Figure 31. Velocity vector plot in �
2
= 1:45 case.
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Figure 32. Temperature isosurface in �
2
= 1:45 case.

The surface Nusselt number (Nu)s in these three cases are 4.081, 1.237, and 1.102,

respectively. These results indicate that when the buoyancy factor de�cit becomes very

heavy, the surface Nusselt number decreases very rapidly, and �nally it does not di�er

signi�cantly from 1.0, the surface Nusselt number for a conductive layer. The pro�les

of the horizontally averaged temperature in these three cases are shown in Figure 33. In

the �
2
= 1:10 case, a large di�erence from the linear horizontally-averaged temperature

pro�le can be observed. In the �
2
= 1:25 and �

2
= 1:45 cases, on the other hand, the

di�erence from the linear temperature pro�le is not very large. This result is consistent

with the result for the surface Nusselt number.

6 Conclusions and Remarks

In this paper, we have carried out the linear stability analyses and fully nonlinear

simulations to investigate thermal convection between two in�nite horizontal planes

with di�erent vertically varying buoyancy factors. An isothermal boundary condition

is used for both boundaries. By solving the linear stability eigenvalue problem numer-

ically, we reach the following conclusions:

(i) Buoyancy factor de�cits yield higher critical Rayleigh numbers than that in the

CB case. The more the de�cit is, the higher the critical Rayleigh number becomes.
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Figure 33. Horizontally{averaged temperature pro�les in nonlinear simulations.

(ii) When the buoyancy factor does not change sign throughout the �eld, the critical

wavenumber is independent of the buoyancy factor pro�les. When there is a

sign change of the buoyancy factor in the �eld, however, the critical wavenumber

increases with the buoyancy factor de�cit.

(iii) With regard to the ~u3 eigenfunction, buoyancy factor variations have only very

small e�ects on the shape of the eigenfunction, provided there is no sign change

in the buoyancy factor. If there is a sign change, the shape of the ~u3 eigenfunction

can change signi�cantly as the buoyancy factor changes. In fact, for parabolic

pro�les with a sign change, seven di�erent shapes of the ~u3 eigenfunction have

been observed in this investigation.

(iv) When the buoyancy factor does not change sign throughout the 
uid layer, the

e�ects of the buoyancy factor variation on the critical Rayleigh number can be

approximated by a function of up to the third{order moment of the variable

buoyancy factor pro�le, and this approximation gives quite a good estimate of

the critical Rayleigh number.

(v) A critical value close to 1.1677 has been found for the buoyancy factor de�cit

parameter �
2
. When �

2
is less than the critical value, there is no interior zero

point for the ~u3 eigenfunction, and thus only a single{layer structure is possible.
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When �
2
is greater than the critical value, on the other hand, there exist interior

zero point(s) for the ~u3 eigenfunction, and therefore multiple{layer structures

may be possible.

The results of our fully nonlinear computational study for parabolic pro�les of

buoyancy factor with no sign change, at Ra = 5000 and 10000, and for Pr!1, yield

the following conclusions:

(i) The surface Nusselt number decreases with increasing de�cit parameter �
2
. The

rate of change of the heat 
ux with respect to �
2
is about 10% for every 25%

parabolic buoyancy factor de�cit.

(ii) The horizontally{averaged temperature has about 10% di�erence between the

CB case and the VB cases. The larger the buoyancy factor de�cit is, the larger

the relative di�erence is. Also, the larger the Rayleigh number is, the larger the

relative di�erence is.

(iii) The 
ow structure, however, is qualitatively the same for all the three buoyancy

factor pro�les that we have tested. No multiple{layer structure in the vertical

direction is detected.

Nonlinear simulations for three parabolic buoyancy factor pro�les with a sign change

in the �eld have also been carried out, for Rayleigh numbers not quite above the

corresponding critical Rayleigh numbers (Table IX). The following conclusions can be

drawn from this investigation:

(i) The one with the least buoyancy factor de�cit shows a single{layer structure,

while the other two yield multiple{layer structures. These results agree with the

predictions of the linear stability analysis.

(ii) As the buoyancy factor de�cit increases, the 
ow �eld breaks into multiple layers,

and the depth of each layer becomes smaller. As a result of the structure change,

the convection eÆciency of the system decreases, resulting in a lower surface

Nusselt number.

In this study, we have carried out investigations only for 
uid layers with isothermal

boundary conditions. However, our model can also be extended to incorporate other

types of thermal boundary condition.

With regard to the horizontal 
ow structure for the present convection problem,

it is expected (Riahi, 1996) that two{dimensional rolls, detected in the present study,

should govern over an extensive range of the supercritical domain (Ra > (Ra)cr), except

for very small amplitude of subcritical convection for an asymmetric buoyancy factor
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pro�le with respect to the mid-plane of the layer, where hexagonal cells can be realized

in a small subcritical domain. However, for the far{supercritical domain (Ra� (Ra)cr),

a three{dimensional structure will dominate. To reach a more realistic simulation of

the dynamical behavior within planetary interiors, nonlinear stability analysis and fully

nonlinear numerical simulation using more speci�c physical parameters and at large

Ra (Ra� (Ra)cr) are necessary.

Finally, it should be noted that in our present nonlinear simulations for the multiple{

layer structure, the selected Rayleigh numbers are not far above the critical values. It

would be of interest to study the behavior of the convective system under Rayleigh

numbers that are far above the critical ones. Such studies would be able to address if a

multiple{layer structure can be maintained under large supercritical Rayleigh numbers.
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