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Polymer gels can undergo a volume phase transition (either continu-

ous or discontinuous) when an external condition such as temperature

or solvent composition is altered [1, 2]. This phase transition is either a

shrinking or a swelling. We investigate the instability of a tubular 
uid

gel after shrinking. When gels are immersed in a solvent, the polymer

network undergoes a di�usion inducing an osmosis pressure through the

gel. A bubble and a bamboo pattern were observed under such conditions

(E. sato-Matsuo and T. Tanaka, Nature 358 482 (1992)). In this paper we

investigate this pattern formations as a mechanical instability.

The study of the structure and dynamics of self-assembly is a �eld of growing inter-

est. In particular, shape 
uctuations and instabilities of gels and membranes, under

equilibrium, or metastability conditions have been the subject of several studies. Pat-

tern forming in swelling and shrinking gels are one of the most amazing patterns one

can encounter in complex systems [3, 4]. The polymer gels studied by Tanakas group

were cross-linked polymer network immersed in liquid. Various shrinking patterns

were classi�ed in form of a phase diagram, and the shape variety was explained in

term of macroscopic phase separation. The wavelength associated to two patterns

were measured. In Sato-Matsuo and Tanaka [4], cylindrical gels of acrylamide, of

various diameters were prepared. Each end of the dried gel was glued to a glass

rod; the separation of the tip was varied to control the �nal length of the cylinder.

The gel was allowed to swell in water and, after it reached equilibrium, placed in
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an acetone-water. The dependence of the pattern on the acetone composition and

�nal length was investigated. Mainly bubble and bamboo patterns were observed.

The bubble pattern resemble the Rayleigh instability known in hydrodynamics. The

cylinder is composed of swollen regions believed to su�er tension and shrunken regions

su�ering compression. At di�erent experimental conditions bamboo patterns appear;

they are made of cross-sectional planes consisting the collapsed gel membrane. The

wavelength of the bubble was found to scale with the initial radius of the cylinder

and the bamboo patterns was found to vary like
p
R .

In this paper, we explain the origin of this dependence of the wavelength of the

bamboo and the bubble pattern found in [3] versus the radius of the cylinder in terms

of a linear stability analysis. First we will study the bamboo instability, where thin

disks appear along the shrunken cylinder. It is to be kept in mind that in this case

the skin of the cylinder is rigid and the diameter of the cylinder is constant in time.

Let's consider a cylindrical gel of diameter 2R that undergoes the bamboo insta-

bility. In �gure 1, we display a sketch of such a pattern, where we draw 2� pattern.

2R

displacement

Fig. 1. A sketch of the bamboo instability. The cylinder has a diameter of 2R. We

also displayed the displacement vector u of the gel network.

The generalized deformational free energy of a gel can be written as [5, 6]:

�G = �(Gspinodal+Grubber +Gornstein-Zernick) (1)

where, using displacement vector u as in [5],
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In equation 3, �z, �r are the elongation ratios in the longitudinal and transversal

directions respectively. In equation 4 � can be seen as the sti�ness of the gel. Since

the pattern observed in cylindrical gels is periodical, we will expand the displacement

~u in Fourier component, keeping in mind that ~u = (0; 0; uz(z; r)). We have:

uz(z; r) =
X
k;q

u0(k) exp(iqr + ikz)

Where q = (n+1=2)�

R
and R is the radius of the cylindrical gel. Equation 1 will write:
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The linear instability appears for �(k; q) < 0. The condition �(k; q) = 0 gives the

threshold of the instability and the value of � at the onset of the instability, one gets:

qc = q0 =
�

2R
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z
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In Figure 5 of reference [4], the bamboo pattern has wavelength so that � �

0:032
p
R. From this �t we �nd that 2

p
�

(��2
r
=�)1=4

= 0:032

In the following, we will describe the bubble instability taking into account the


exibility of the outer skin of the cylinders in [3]. A scheme of the instability is in

�gure 2.
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2λ

Fig. 2. A schematic view of the bubble instability. The wavelength is the distance

between the antinode. Here we displayed 2�

The deformation energy can be written:

�G =
kBT
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u is the displacement vector and � the polymer density.

The �rst term is the Flory-Higgins term, the second is the shear deformations term

(induces long wave lengths) and the third term is the Ornstein-Zernick term (large

wave lengths) the last term is the skin term which favors long wave length.

The term involving � is responsible for the spinodal decomposition.

� = �0(1�r � u) with local free energy:

f(�) = f(�0) + �=2(�� �0)
2 + � � � � < 0! spinodal decomposition

Suppose u = (x
r
ur;

y

r
ur; uz),

where ur = u0
r
cos(kz) sin(qr) and uz = u0

z
sin(kz) then
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Clearly the instability occur if B2 �AC > 0

We �nd that k � 1
R
or � � R
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We can also, study the instability as a hydrodynamic instability of the skin of the

gel. Here we suppose that the cylinder is hollow and that the skin that has a bending

modulus is responsible for the instability when it is in competition with the osmotic

pressure forcing. In this following model, we consider that the only length scale in

the problem is R, which is not entirely true, as we will see in a future work [10]. We

will focus on the cylinders whose length has increased or remained unchanged (Fig.

3 in [3]). The mechanical instability is induced by an osmosis pressure due to the

di�usion of the polymer network into the solvent [4, 7, 8]. In the following we will

show that when the gel shrinks, while keeping its volume constant, the competition

between the compression stress and the curvature of the cylinder are responsible of

the wavelength selection. First of all, we point out that the cylinders su�ering the

bubble instability are hollow, and can be seen as a hollow shell whose mean curvature

is H and its curvature energy is :

Eb = �

Z
dsH2 (10)

where � is the bending sti�ness of the cylinder membrane. In equilibrium, the cylin-

der has no tension, but during the shrinking instability, the membrane will su�er a

tension, especially in the region of the cylinder which look like ellipsoids and where

the gel looks stretched (See Fig. 1 of [3]). The \ surface energy" looks like:

Es = G

Z
ds (11)

where G is similar to a surface tension and is analog to surface tension in the case of


uid membranes and liquids [9].

We will assume small axisymmetric deformations of the gel from its cylindrical

shape conserving the total volume. The local circular circular radius R(z) is written

as

R(z) = R+ u(z) (12)

Let's write the radius as a function of its fourier transform, since we assumed axisym-
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metric deformations

u(z) =
X
q

uqe
iqz (13)

The conservation of volume will allow us to express the radius R as a function of its

original radius R0, we have

R(z) = R0(
q
1� juqj2 + (

uqp
2
eiqz + c:c) (14)

In cylindrical coordinate the mean curvature becomes:

H =
1

R
p
1 +R02

�
R00

(1 +R02)3=2
(15)

where R0 = dR=dz and the surface element becomes ds = 2�R
p
1 +R02dz The total

free energy looks like for small deformations that is R0 << 1

E = Eb + Es (16)

Where

Eb = ��L=R0 +
��L

R3
0

X
q

(
3

2
�

1

2
(qR0)

2 + (qR0)
4)juqj2 (17)

and the energy associate to the tension writes

Es = Es0 + �GL=R0

X
q

(1� (qR0)
2)juqj2 (18)

The threshold of the instability occurs when the term proportional to juqj2 is zero

an that gives

qcR0 � 1 (19)

for G� 2�=R0

This is in agreement with the results of [3], where it was found that � � 1:4R A

more sophisticated model will be the subject of a future publication [10]
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