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Worthington jets1 are a familiar sight in light rain upon puddles and ponds. These narrow verti-

cal jets are formed by the radial collapse of the liquid “craters” produced by the impacting rain

drops2–6. Such jets can also be generated by super-critically forcing the standing Faraday-waves7–8

on a liquid surface and have recently been cast in the formalism of physical singularities2,3 to in-

vestigate the role of the inertial focusing and the influence of surface tension on their strength.

Zeff et al.2 propose that during the collapse of the free-surface cavity the surface develops a curva-

Figure 1. Granular jet generated by the impact of a lead sphere (U = 5.5 m/s, Db = 1.34 cm, ρb = 11.5 g/cm3) onto a deep

layer of granular medium, consisting of glass spherical beads 0.079 mm in diameter. The medium sits in a circular glass

container 12.2 cm deep and 18.8 cm in diameter. a, t = 18 ms; b, t = 25 ms; c, t = 92 ms; d, t = 160 ms; e, t = 260 ms. The

upwards speed of the granular jet is about one third of the sphere impact velocity.

ture singularity which is dominated by inertia and surface tension, hence, generating high-energy

vertical jets. We have discovered that similar narrow jets occur even for granular materials, where

surface tension is absent. This new phenomenon suggests that a singularity in the surface tension
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Figure 2. The maximum height attained by the granular jet versus release height of lead sphere. Granular media consist

spherical glass beads with four different mean diameters: ds = 0.080 mm (+), 0.118 mm (�), 0.176 mm (�) and 0.275 mm

(©). The glass has density of 2.48 ± 0.05 g/cm3. The material was poured slowly between two identical glass containers and

leveled using a metallic ruler dragged over the surface. This was done before every impact, to avoid any effects of

compaction, which can greatly alter the results for the finest grains.

force is not needed to produce such jets and raises the question whether the inertial focusing is the

sole mechanism. The sequence in Figure 1 shows the generation of a granular jet resulting from the

impact of a solid lead sphere onto a deep flat layer of granular medium consisting of spherical glass

beads. Similar approach was used by Hogrefe et al.4 to generate jets in the liquid case9. The im-

pacting sphere produces a deep cylindrical cavity in the sand, which subsequently collapses radially

under the gravity-induced “hydrostatic” pressure. The sand converges axisymmetrically towards

the center of the cavity. Due to the relatively small compressibility of the granular medium, the

radial velocity diverges as 1/r when the cavity closes up. This inertial focusing produces a large

dynamic pressure-spike driving up the sand in a narrow jet along the axis of symmetry. The

granular jets are quite narrow, being comparable in shape to the energetic liquid jets. The jet in

Figure 1.d is however about 40 grain-diameters wide, where the grain size clearly would provide an

ultraviolet cutoff in this process, thus supporting a continuum viewpoint of the flow. The porosity

of the sand-medium may result in an even more pronounced inertial focusing than in the liquid

case, as the gas caught on the axis of symmetry can escape between the grains. The tuning of the

granular jet does not depend on the layer depth5 as in the fluids case, however, the granular jet

height is strongly dependent on the grain size of the granular medium (see Figure 2). We get the
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Figure 3. Dimensionless plot of the maximum height attained by the granular jet, versus jetting parameter Fr × Re.

Granular media consist spherical glass beads with four different mean diameters: ds = 0.080 mm (+), 0.118 mm (�),

0.176 mm (�) and 0.275 mm (©).

highest jets using the finest granular media for the same impact velocity.

We should mention that vertically vibrated thin granular layers have been shown to develop

“oscillons” which are heaps emanating from the surface after the closing of craters10, but these

are much less energetic than the jets studied here.

Our experiments will be useful in separating the effects of surface tension and inertial focusing11

on the tuning of singular fluid jets. More importantly, they give insights into the constitutive

properties of flowing granular media at high shear-rates. The quantity we use to characterize

the “singularity” or jetting event is the maximum height attained by the jet Hj . The absence of

surface tension makes simple dimensional analysis more pallatable here than in the liquid case.

The only other physical quantities of importance are: the sphere diameter Db, the impact velocity

U , gravity g, along with material properties: the density of the sand ρs and the sphere material

ρb, and finally the effective viscosity of the granular media µe. Here we assume that the grain-size

ds only enters the problem through the effective viscosity. The dimensional analysis shows that

the jet height should follow an unknown function of only 3 dimensionless parameters:

Hj/Db = Φ(rρ, Re, Fr)

i.e. a density ratio rρ = ρb/ρs, Reynolds number Re = ρsUDb/µe and a Froude number Fr =
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gDb. We have studied this relation by keeping rρ constant while varying U and µe indepen-

dently, as shown in Figure 3. The effective viscosity of flowing granular media remains an active

topic of research12–17 and is far from fully characterized. We use the results of Savage et al.13–15

based on their shear cell experimental results and the kinetic theory of granular materials,

µe � 2ρsd
2
sU

2/D2
b

which produces a good collapse of the data (see Figure 3). This shows clearly that gravity, inertia

and viscous forces all play a role in the granular jetting.

The absence of remnants from granular jets in lunar and planetary craters, is probably due to

the much higher material strength during those impacts18.

High-speed video clips showing the granular jet can be viewed at our web site

http://www.tam.uiuc.edu/Faculty/Thoroddsen/GranularJet.html
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