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Abstract

The addition of liquid-filled urea-formaldehyde (UF) microcapsules to an epoxy matrix
leads to significant reduction in fatigue crack growth rate and corresponding increase in
fatigue life.  Mode-I fatigue crack propagation is measured using a tapered double-
cantilever beam (TDCB) specimen for a range of microcapsule concentrations and sizes:
0, 5, 10, and 20% by weight and 50, 180, and 460�µm diameter.  Cyclic crack growth in
both the neat epoxy and epoxy filled with microcapsules obeys the Paris power law.
Above a transition value of the applied stress intensity factor ∆KT, which corresponds to
loading conditions where the size of the plastic zone approaches the size of the embedded
microcapsules, the Paris law exponent decreases with increasing content of
microcapsules, ranging from 9.7 for neat epoxy to approximately 4.5 for concentrations
above 10�wt% microcapsules.  Improved resistance to fatigue crack propagation,
indicated by both the decreased crack growth rates and increased cyclic stress intensity
for the onset of unstable fatigue-crack growth, is attributed to toughening mechanisms
induced by the embedded microcapsules as well as crack shielding due to the release of
fluid as the capsules are ruptured.  In addition to increasing the inherent fatigue life of
epoxy, embedded microcapsules filled with an appropriate healing agent provide a
potential mechanism for self-healing of fatigue damage.
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1. Introduction
Highly crosslinked epoxy resins have low strain-to-failure and exhibit poor resistance to
crack propagation.  Fatigue loading is particularly problematic, causing small cracks to
initiate and grow rapidly.  These cracks often lead to catastrophic failure. An extensive
body of work exists for the general area of fatigue of polymers [1–3], which focuses on
understanding the mechanisms of fatigue and predicting the rates of fatigue-crack growth.

Fatigue crack propagation studies are performed with the cyclic-crack-tip stress
state varying over a range defined by ∆KI�≡�(Kmax�−�Kmin).  Dependence of the
fatigue-crack-growth rate da/dN on the applied range of stress intensity factors ∆KI is
generally described by the empirical Paris law equation [4]

da

dN
= C0∆K I

n , (1)

where C0 and n are material constants that depend on the ratio of applied stress intensity
R�≡�Kmin/Kmax, the loading frequency f, and the testing environment.  The typical crack
growth behavior described by Eq. (1) yields a linear log–log plot that is bounded by a
threshold stress intensity range ∆Kth below which a crack ceases to propagate, and the
critical stress intensity KIC above which crack growth in unstable.

Several researchers [5–7] have successfully measured fatigue-crack propagation
in epoxy resins and obtained values of the Paris law exponent n on the order of 10.
Incorporation of either a rubbery second phase [8–11] or solid particles [7,12–13]
significantly improves the resistance to fatigue-crack propagation.  Several of these
studies [5,8–9,11,13–14] suggest that improvements in the resistance to fatigue crack
propagation behavior are also associated with increased toughness in monotonic fracture
[1–2,14–15].

Previously, we investigated the effect of embedded urea-formaldehyde (UF)
microcapsules on the monotonic fracture properties of a self-healing epoxy [15].  In
addition to providing an efficient mechanism for self-healing [16–18], the presence of
liquid-filled microcapsules increased the virgin monotonic-fracture toughness of epoxy
by up to 127% [15,17].  The increased toughening was correlated with a change in the
fracture plane morphology from mirror-like to hackle markings with subsurface
microcracking.  The inherent fracture toughness as well as the healing efficiency both
depended strongly on the size and concentration of microcapsules.  In the current work,
we extend this investigation to examine the influence of microcapsules on the fatigue
crack propagation behavior of epoxy, with the effects of self-healing precluded.
Consistent with the monotonic fracture studies, the addition of microcapsules to an epoxy
matrix significantly increased the resistance to crack growth under dynamic loading
conditions.

2. Experimental procedure
2.1. Materials and sample preparation
Urea-formaldehyde microcapsules containing dicyclopentadiene (DCPD) monomer were
manufactured with average diameters of 50, 180, and 460�µm using the emulsion in situ
polymerization microencapsulation method outlined by Brown et al. [19].  Shell wall
thickness was 190�±�30�nm for all batches. Tapered double-cantilever beam specimens
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were cast from EPON® 828 epoxy resin (DGEBA) and 12 pph Ancamine® DETA
(diethylenetriamine) curing agent with a prescribed concentration of microcapsules
mixed into the resin.  The epoxy mixture was degassed, poured into a closed silicone
rubber mold and cured for 24�hours at room temperature, followed by 24�hours at 30°�C.
Relevant physical and mechanical properties of the microcapsules and neat epoxy are
listed in Table 1.  The tensile modulus and mode I critical stress intensity factor, KIC, of
the microcapsule toughened epoxy were measured as a function of capsule concentration
by Brown et al. [15, 20] and Rzeszutko et al. [21] and summarized in Table 2.

TABLE 1 Properties of the constituent materials [15]
Properties Epoxy Urea-formaldehyde microcapsules
Density (kg/m3) 1160 ~1000

Diameter (µm) — 50±20
180±40
460±80

Wall thickness (nm) — 190±30
KIC (MPa m1/2) 0.55±0.04 —
Young’s modulus (GPa) 3.4±0.1 —
Ultimate stress (MPa) 39±4 —

TABLE 2 Mechanical properties of neat epoxy and epoxy with embedded
microcapsules [15]
Microcapsule
concentration
(wt%)

Diameter, d
(µm)

Young’s
modulus, E
(GPa)

Critical stress
intensity factor,
KIC (MPa m1/2)

Critical strain
energy release
rate, GC (J/m2)

0 — 3.4±0.1 0.55±0.04 88±14

5 50±20 3.2±0.1 1.1±0.1 350±70
10 50±20 — 1.2±0.2 —
20 50±20 — 1.1±0.1 —
5 180±40 3.2±0.1 0.78±0.16 190±90
10 180±40 2.8±0.1 1.2±0.2 430±170
20 180±40 2.7±0.1 1.0±0.2 400±130
10 460±80 — 0.92±0.07 —
20 460±80 — 1.2±0.1 —

2.2 Mechanical testing
The fatigue-crack propagation behavior of the microcapsule-modified epoxy was
investigated using the tapered double-cantilever beam (TDCB) specimen shown in Fig. 1.
Side grooves ensured controlled crack growth along the centerline of the brittle specimen.
The TDCB geometry, developed by Mostovoy et al. [22], provided a crack-length-
independent relationship between applied stress intensity factor KI and load�P,

K I = αP , (2)
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which only required knowledge of the coefficient α.  For the TDCB sample geometry in
Fig. 1, α  = 11.2x103 m-3/2 was determined experimentally [17].  A constant range of
Mode-I stress intensity factor ∆KI was achieved by applying a constant range of load ∆P,
independent of crack length.  The constant-K region of the TDCB specimen enables
crack-growth-rate measurements over a range of cycles, rather than requiring use of the
modified secant formulation commonly employed for changing ∆KI of a compact tension
specimen [14].  Moreover, the constant-K region is of great importance for observing the
time-dependent effects of self-healing during growth of a fatigue-crack [20].

Figure 1.  Tapered-double-cantilever-beam geometry [17].  All dimensions in mm.

Fatigue crack propagation studies were performed using an Instron DynoMight
8841 low-load frame with 250�N load-cell.  Samples were precracked with a razor blade
while ensuring the precrack tip was centered in the groove and then pin loaded.  A
triangular frequency of 5�Hz was applied with a load ratio (R�=�Kmin/Kmax) of 0.1.  Crack
lengths were determined by optical measurements at finite times and by
compliance-inferred measurements [23] acquired approximately every 256th cycle.

The optically measured crack-tip position and specimen compliance are plotted
against number of cycles in Fig. 2a.  The linear relationship between optically measured
crack length and specimen compliance (Fig. 2b) is used to calculate the crack-tip position
at all times during the experiment (Fig. 2c).  Crack-growth data are generated under
constant ∆P  (i.e. constant ∆KI), with a complete set of loading conditions measured on a
single specimen by incrementally increasing ∆P.  Crack-growth rates are obtained from
the number of cycles N required to grow a crack a distance ∆a of approximately 1�mm for
a given range of Mode-I stress intensity factor ∆KI.  Statistically equivalent values of
crack-growth rate are obtain from using either the optically measured crack length prior
to, ai= 0

opt , and following, ai= S
opt , the application of N cycles at a give ∆KI,

da

dN ∆K

=
∆a

∆N
=

ai= S
opt − ai= 0

opt

Ni= S

, (3)

or from using a linear fit of the compliance-inferred measurements ai
comp,
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where S is the total number of cycle samples acquired.
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Figure 2.  Plots illustrating method to calculate the continuous crack-tip position from
compliance data (–) and finite optical measurements (�) (a). (b) Linear fit of optically
measured crack vs. specimen compliance.  The squares (�) represent compliance values
corresponding to the optical data and the line (–) represents the linear best fit.  (c) Crack
length calculated from measured compliance using the relationship obtained from (b)
plotted vs. number of cycles.  The specimen is neat epoxy; the test parameters are
f�=�5�Hz, R�=�0.1, and ∆KI�=�0.472�MPa�m1/2.

Fracture surface morphologies of the fatigue samples were examined with an
environmental scanning electron microscope (Philips XL30 ESEM-FEG).  After failure,
specimens were mounted and sputtered with gold/palladium.  Micrographs were obtained
using 10kV secondary electrons in high vacuum mode.

3. Results
The effect of embedded microcapsule concentration on fatigue crack growth is shown in
Fig. 3 for 180�µm diameter microcapsules.  The relationship between the crack growth
rate da/dN of epoxy and the applied range of Mode-I stress intensity factor ∆KI clearly
follows the Paris power law (Eq. 1).  The measured Paris exponent is n�=�9.7 for crack
propagation in neat EPON®�828–Ancamine®�DETA (no microcapsules).  At applied
stress intensity factors greater than ∆K�~�0.35 to 0.4�MPa�m1/2, a distinct transition in
crack growth is observed for the microcapsule filled epoxy.  Above a transition value
∆KT, epoxy with microcapsules exhibits a higher resistance to fatigue crack growth than
neat epoxy, accompanied by a reduction of the Paris law exponent n.  At applied load
levels below the transition point, the microcapsules have little influence on the crack
growth rate.
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Figure 3.  Influence of microcapsule concentration on the fatigue crack growth behavior
for 180�µm diameter microcapsules.

Measured Paris law parameters for epoxy with embedded 50, 180, and 460�µm
diameter microcapsules are summarized in Table 3.  The Paris law exponent, n is plotted
as a function of microcapsule concentration in Fig. 4.  Above  ∆KT, the value of n
decreases significantly with increasing microcapsule concentration, independent of
capsule diameter.  For concentrations greater than 10�wt% microcapsules, n  has a
steady-state value of approximately 4.5. Others have observed similar behavior for
rubber-modified epoxies [14, 24].

TABLE 3 Constants of the Paris power law, ∆KI
max, ∆KT, and ry

Microcapsule
concentration (wt%)

Diameter
(µm)

Co

(above ∆KT)
n ∆KI

max

(MPa m1/2)
∆KT

(MPa m1/2)
0 — 8.2 × 10−2 9.7 0.60 —
10 50±20 1.5 × 10−3 4.9 0.82 0.41
20 50±20 1.6 × 10−3 4.6 0.81 0.44
5 180±40 4.2 × 10−3 6.1 0.64 0.46
10 180±40 5.4 × 10−4 4.4 0.82 0.40
20 180±40 3.8 × 10−4 4.3 0.80 0.36
10 460±80 7.8 × 10−4 4.4 0.64 0.40
20 460±80 8.6 × 10−4 4.7 0.82 0.39
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Figure 4.  Influence of microcapsule concentration on Paris law exponent, n.

The effect of the microcapsules on life extension is shown more clearly in Fig.�5
by comparison of crack length as a function of loading cycles for neat epoxy and epoxy
with 20 wt% microcapsules above ∆KT.  The addition of microcapsules significantly
increases fatigue life; for the loading condition of ∆KI�=�0.586�MPa�m1/2 the fatigue life
increases from 86�×�103�cycles for neat epoxy to 239�×�103�for the microcapsule filled
system.
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∆KI�=�0.586�MPa�m1/2.
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Examination of the fatigue-fracture surface for neat epoxy reveals a relatively
featureless morphology (Fig. 6a–c).  River markings [25] are observed on some fracture
surfaces, but are only initiated at locations corresponding to the crack-tip position when
∆KI is incrementally increased (Fig. 6d–f).  In contrast, the fatigue-fracture surface for
epoxy with embedded microcapsules is characterized by substantial out-of-plane
morphology at all length scales (Fig.�7).  At the largest length scale, the microcapsules
are ruptured at the fracture plane (similar to monotonic fracture), the
fatigue-crack-growth path has significant deviation in and out of the plane, and the crack
branches out of the plane at several locations (Fig.�7a).  At smaller length scales the
microcapsule walls have numerous secondary cracks (Fig. 7b,c) and the matrix has
additional contortion and river markings at decreasing length scales (Fig. 7d,e).

Figure 6.  Fatigue-fracture surfaces for neat epoxy.  (a–c)�The dominant surface
morphology is featureless at different length scales and (d–f)�has some local river
markings.  Note: The crack propagation is from left to right in all images.
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Figure 7.  Fatigue-fracture surfaces for epoxy with 20�wt% of 180�µm microcapsules.
(a)�At large length scales the fracture plane has a contorted crack-growth path and
ruptured microcapsules.  At smaller length scales (b,c)�the microcapsules exhibit cracking
and (d,e)�the matrix has complex morphology.  Note: The crack propagation is from left
to right in all�images.

4. Discussion
The addition of microcapsules significantly improves the fatigue response above a

transition value of the applied stress intensity factor, ∆KT.  Similar improvements
reported in the literature for rubber modified epoxies have been explained by effects of
plastic zone size [11,14] and increases of monotonic fracture toughness [5,8–9,11,13–14].
Azimi et al. [12,14] observed a transition point in the fatigue crack propagation behavior
of DGEBA epoxies modified with CTBN and silicon rubber.  Above a threshold value,
the rubber-modified epoxy exhibited improved resistance to fatigue crack growth.  Below
the threshold, both neat epoxy and the rubber-modified epoxy had similar resistance.  The
transition was attributed to interactions between the rubber particles and the plastic zone
present at the crack tip.  Moreover, Azimi showed that the transition phenomenon was
triggered when the size of the theoretical crack-tip plastic zone was of the order of the
size of the filler.

Applying Azimi’s hypothesis [12,14] to microcapsule-toughened epoxy, the
theoretical plastic zone size at a cyclically loaded crack tip is estimated based on
Irwin’s�[26] formula for the size of a plastic zone,
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ry ∆KT( ) =
1

2π

∆KT 1− R( )
σ YS

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

, (5)

where σYS is the yield stress of the epoxy with embedded microcapsules.  In previous
work, Irwin’s formula accurately captured the plastic zone size in EPON®

828–Ancamine® DETA under monotonic fracture conditions [15].  The plastic zone size
estimated by Eq. (5) for 5, 10, and 20 wt% of 180�µm diameter microcapsules is c.a. 70
µm (assuming σYS = 20 MPa [15]).  The calculated plastic zone size at the transition point
for samples with 180�µm is within an order of magnitude of the microcapsule diameter
consistent with Azimi’s findings for 2–3�µm diameter rubber particles.  When ∆KI is less
than ∆KT, the plastic zone is smaller than the embedded microcapsules.  In this regime the
plastic zone is unaffected by the microcapsules—other than the presence of
discontinuities along the crack front—resulting in little or no toughening and a fatigue
response similar to that of the neat epoxy.  When ∆KI is greater than ∆KT, the plastic zone
is sufficiently large to encompass the majority of microcapsules in its path, activating
toughening mechanisms similar to those observed for monotonic fracture.

The onset of fatigue crack growth instability is generally considered to be
equivalent to monotonic fracture.  Hence, the maximum stress intensity value during the
cycle when the fatigue crack propagation becomes unstable should correlate with the
monotonic fracture toughness,

Kmax ∆K I
max( ) ≡

∆K I
max

1− R
= K IC (6)

In Fig. 8, ∆KI
max values from Table 3 are plotted against the corresponding KIC values

from Table 2 for the range of microcapsule sizes and concentrations tested.  With the
exception of neat epoxy, the data for microcapsule filled epoxy falls close to a line with a
slope less than unity (KIC�>�Kmax(∆KI

max)), indicating a trend of increasing fatigue crack
growth resistance with increasing monotonic fracture toughness.  A similar trend has
been reported previously for rubber-modified epoxies [5,8–9,13], implying that the
failure mechanisms for static fracture and fatigue failure in modified epoxies are
comparable.

For neat epoxy the Kmax(∆KI
max) value at fatigue crack instability exceeds the static

fracture toughness values KIC.  This anomalous behavior has been reported previously for
other filled polymer systems [5,11–12,14].  The inconsistency between Kmax(∆KI

max) and
KIC is explained by differences in the crack-tip geometry [27] and to a lesser degree the
loading rate [5,28] between monotonic and fatigue testing.  Montonic fracture toughness
values are determined using precracks generated by a razor blade as prescribed in ASTM
Standard D�5045.  In contrast, the maximum stress intensity values Kmax are determined
for a crack tip generated in fatigue by progressively increasing ∆KI.  As described by
Xiao et al. [27], yielding and damage at the crack tip under cyclic loading can cause
apparent fracture toughness values for DGEBA epoxy with precracks generated by
fatigue to exceed fracture toughness values measured in samples with razor blade
generated precracks by as much as 31%.  Hence, the high value of ∆KI

max for neat epoxy
is an artifact of the specimen loading history introducing progressive blunting at
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the crack tip.  This effect was only observed in the neat epoxy and is not present in the
microcapsule modified systems.
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Figure 8.  Influence of KIC on ∆KI
max.  The dashed line corresponds to the maximum

applied stress intensity range ∆KI
max for fatigue crack instability when

Kmax(∆KI
max)�≡�∆KI

max/(1-R)�=�KIC .  The solid line is the best linear fit through the data
points and the origin.

In addition to the toughening mechanisms induced by the embedded
microcapsules, the flow of fluid released into the crack plane provides a crack tip
shielding mechanism that can improve resistance to fatigue crack propagation.  Several
authors have reported that hydrodynamic pressure due to viscous flow within a fatigue
crack reduces the effective range of Mode-I stress intensity and hence the fatigue crack
growth rate for metal submerged in oil [29–32].  During cyclic loading, the crack volume
changes significantly with time, requiring fluid flow into and out of the crack.  When the
crack contains a viscous fluid, the forces required to squeeze the fluid out of the crack
during unloading and draw fluid into the crack during loading can be sufficient to shield
the crack tip.  Reduced crack growth rates in epoxy due to crack tip shielding from
viscous fluid flow have been demonstrated for infiltration of both precatalyzed
dicyclopentadiene and mineral oil [20].

5. Conclusions
Fatigue crack propagation was investigated in epoxy toughened with liquid-filled
urea-formaldehyde (UF) microcapsules.  The addition of microcapsules significantly
decreased the fatigue crack growth rate and increased the fatigue life above a transition
value of the stress intensity factor ∆KT.  Below ∆KT the fatigue behavior was unaffected
by the embedded microcapsules.  The transition value between these two regimes
corresponded to loading conditions where the size of the plastic zone approached the size
of the embedded microcapsules.  The fatigue-crack growth rate dependence on applied
range of stress intensity ∆KI was accurately captured by the Paris power law in both neat
epoxy and epoxy with embedded microcapsules.  The Paris law exponent n
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was strongly dependent on the microcapsule concentration, varying from 9.7 for neat
epoxy to approximately 4.5 above 10�wt% microcapsules, but was independent of
microcapsule diameter.  The onset of unstable fatigue-crack growth ∆KI

max increased with
monotonic fracture toughness, and was independent of microcapsule diameter.  Improved
resistance to fatigue crack propagation, was attributed to toughening mechanisms induced
by the embedded microcapsules as evidenced by changes in the fatigue fracture plane
morphology.  In addition to increasing the inherent fatigue life of epoxy, embedded
microcapsules filled with an appropriate healing agent offer a potential mechanism to
further extend fatigue life through self-healing of fatigue damage.

Acknowledgments
The authors gratefully acknowledge support from the AFOSR Aerospace and Materials
Science Directorate Mechanics and Materials Program (Award No. F49620-00-1-0094),
the National Science Foundation (NSF CMS0218863), and Motorola Labs, Motorola
Advanced Technology Center, Schaumburg Ill.  Any opinions, findings, and conclusions
or recommendations expressed in this publication are those of the authors and do not
necessarily reflect the views of the AFOSR or Motorola Labs.  The authors would also
like to thank Profs. J.S. Moore and P.H. Geubelle of the Autonomic Materials Laboratory
of the Beckman Institute of Advanced Science and Technology and Dr. A. Skipor of
Motorola Labs for technical support and helpful discussions.  Electron microscopy was
performed in the Imaging Technology Group, Beckman Institute, of the University of
Illinois at Urbana-Champaign, with the assistance of S. Robinson.

References
1. R. J. CARDOSO, A. SHUKLA, and A. BOSE, J. Mater. Sci. 37 (2002) 603.
2. R. BAGHERI and R. A. PEARSON, J. Mater. Sci. 31 (1996) 4529.
3. M. D. SKIBO, R. W. HERTZBERG, J. A. MANSON, and S. L. KIM, J. Mater.

Sci. 12 (1977) 531.
4. P. C. PARIS, M. P. GOMEZ, and W. E. ANDERSON, The Trend in Engineering

at the University of Washington 13 (1961) 9.
5. J. KARGER-KOCSIS and K. FRIEDRICH, Compos. Sci. Technol. 48 (1993) 263.
6. M. NAGASAWA, H. KINUHATA, H. KOIZUKA, K. MIYAMOTO, T.

TANAKA, H. KISHIMOTO, and T. KOIKE, J. Mater. Sci. 30 (1995) 1266.
7. M. K. McMURRAY and S. AMAGI, J. Mater. Sci. 34 (1999) 5927.
8. L. BECU, A. MAAZOUZ, H. SAUTEREAU, and J. F. Gerard, J. Appl. Polym.

Sci. 65 (1997) 2419.
9. L. REY, N. POISSON, A. MAAZOUZ, and H. SAUTEREAU, J. Mater. Sci. 34

(1999) 1775.
10. B. S. HAYES and J. C. SEFERIS, Polym. Compos. 22 (2001) 451.
11. H. R. AZIMI, R. A. PEARSON, and R. W. HERTZBERG, Polym. Eng. Sci. 36

(1996) 2352.
12. H. R. AZIMI, R. A. PEARSON, and R. W. HERTZBERG, J. Appl. Polym. Sci.

58 (1995) 449.
13. H. SAUTEREAU, A. MAAZOUZ, J. F. GERARD, and J. P. TROTIGNON, J.

Mater. Sci. 30 (1995) 1715.
14. H. R. AZIMI, R. A. PEARSON, and R. W. HERTZBERG, J. Mater. Sci. 31



13

(1996) 3777.
15. E. N. BROWN, S. R. WHITE, and N. R. SOTTOS, J. Mater. Sci. 39 (2004) 1703.
16. S. R. WHITE, N. R. SOTTOS, P. H. GEUBELLE, J. S. MOORE, M. R.

KESSLER, S. R. SRIRAM, E.�N.�BROWN, and S. VISWANATHAN, Nature
409 (2001) 794.

17. E. N. BROWN, N. R. SOTTOS, and S. R. WHITE, Exp. Mech. 42 (2002) 372.
18. M. R. KESSLER, N. R. SOTTOS, and S. R. WHITE, Composites Part A 34

(2003) 743.
19. E. N. BROWN, M. R. KESSLER, N. R. SOTTOS, and S. R. WHITE, J.

Microencapsul. 20 (2003) 719.
20. E. N. BROWN, in “Fracture and Fatigue of a self-healing polymer composite

material” (PhD dissertation, University of Illinois at Urbana-Champaign) (2003)
p. 103.

21. A. A. RZESZUTKO, E. N. BROWN, and N. R. SOTTOS, 2003 Proc. 5th

Undergraduate Research Conf. in Mechanics (University of Illinois at Urbana-
Champaign, TAM Report No. 1041) (2004) 27.

22. S. MOSTOVOY, P. B. CROSLEY, and E.J. RIPLING, J. Materials 2 (1967) 661.
23. A. SAXENA and S. J. HUDAK Jr., Int. J. Fract. 14 (1978) 453.
24. J. KARGER-KOCSIS and K. FRIEDRICH, Colloid Polym. Sci. 270 (1992) 549.
25. A. CHUDNOVSKY, A. KIM, and C. P. BOSNYAK, Int. J. Fract. 55 (1992) 209.
26. G. R. IRWIN, Proc. 7th Sagamore Ornance Mater. Res. Conf. 4 (1960) 63.
27. K. XIAO, L. YE, and Y. S. KWOK, J. Mater. Sci. 33 (1998) 2831.
28. W. ARAKI, T. ADACHI, M. GAMOU, and A. YAMAJI, Proc. I. Mech. E. Part

L 216 (2002) 79.
29. K.ENDO, T. OKADA, K. KOMAI, and M. KIYOTA, Bull. Japan Soc. Mech.

Eng. 15 (1972) 1316.
30. G. GALVIN, and H. NAYLOR, Proc. Inst. Mech. Eng. J 179 (1964) 56.
31. W.J. PLUMBRIDGE, P.J. ROSS, and J.S.C. PARRY, Mater. Sci. Eng. 68 (1985)

219.
32. C. POLK, W. MURPHY, and C. ROWE, ASLE Transactions 18 (1975) 290.



 



 



 



List of Recent TAM Reports 

No. Authors Title Date 
 

 

962 Harris, J. G. Rayleigh wave propagation in curved waveguides—Wave Motion 
36, 425–441 (2002) 

Jan. 2001 

963 Dong, F., A. T. Hsui, 
and D. N. Riahi 

A stability analysis and some numerical computations for thermal 
convection with a variable buoyancy factor—Journal of Theoretical 
and Applied Mechanics 2, 19–46 (2002) 

Jan. 2001 

964 Phillips, W. R. C. Langmuir circulations beneath growing or decaying surface 
waves—Journal of Fluid Mechanics (submitted) 

Jan. 2001 

965 Bdzil, J. B., 
D. S. Stewart, and 
T. L. Jackson 

Program burn algorithms based on detonation shock dynamics—
Journal of Computational Physics (submitted) 

Jan. 2001 

966 Bagchi, P., and 
S. Balachandar 

Linearly varying ambient flow past a sphere at finite Reynolds 
number: Part 2—Equation of motion—Journal of Fluid Mechanics 
481, 105–148 (2003) (with change in title) 

Feb. 2001 

967 Cermelli, P., and 
E. Fried 

The evolution equation for a disclination in a nematic fluid—
Proceedings of the Royal Society A 458, 1–20 (2002) 

Apr. 2001 

968 Riahi, D. N. Effects of rotation on convection in a porous layer during alloy 
solidification—Chapter 12 in Transport Phenomena in Porous Media 
(D. B. Ingham and I. Pop, eds.), 316–340 (2002) 

Apr. 2001 

969 Damljanovic, V., and 
R. L. Weaver 

Elastic waves in cylindrical waveguides of arbitrary cross section—
Journal of Sound and Vibration (submitted) 

May 2001 

970 Gioia, G., and 
A. M. Cuitiño 

Two-phase densification of cohesive granular aggregates—Physical 
Review Letters 88, 204302 (2002) (in extended form and with added 
co-authors S. Zheng and T. Uribe) 

May 2001 

971 Subramanian, S. J., and 
P. Sofronis 

Calculation of a constitutive potential for isostatic powder 
compaction—International Journal of Mechanical Sciences (submitted) 

June 2001 

972 Sofronis, P., and 
I. M. Robertson 

Atomistic scale experimental observations and micromechanical/ 
continuum models for the effect of hydrogen on the mechanical 
behavior of metals—Philosophical Magazine (submitted) 

June 2001 

973 Pushkin, D. O., and 
H. Aref 

Self-similarity theory of stationary coagulation—Physics of Fluids 14, 
694–703 (2002) 

July 2001 

974 Lian, L., and 
N. R. Sottos 

Stress effects in ferroelectric thin films—Journal of the Mechanics and 
Physics of Solids (submitted) 

Aug. 2001 

975 Fried, E., and 
R. E. Todres 

Prediction of disclinations in nematic elastomers—Proceedings of the 
National Academy of Sciences 98, 14773–14777 (2001) 

Aug. 2001 

976 Fried, E., and 
V. A. Korchagin 

Striping of nematic elastomers—International Journal of Solids and 
Structures 39, 3451–3467 (2002) 

Aug. 2001 

977 Riahi, D. N. On nonlinear convection in mushy layers: Part I. Oscillatory modes 
of convection—Journal of Fluid Mechanics 467, 331–359 (2002) 

Sept. 2001 

978 Sofronis, P., 
I. M. Robertson, 
Y. Liang, D. F. Teter, 
and N. Aravas 

Recent advances in the study of hydrogen embrittlement at the 
University of Illinois—Invited paper, Hydrogen–Corrosion 
Deformation Interactions (Sept. 16–21, 2001, Jackson Lake Lodge, 
Wyo.) 

Sept. 2001 

979 Fried, E., M. E. Gurtin, 
and K. Hutter 

A void-based description of compaction and segregation in flowing 
granular materials—Continuum Mechanics and Thermodynamics, in 
press (2003) 

Sept. 2001 

980 Adrian, R. J., 
S. Balachandar, and 
Z.-C. Liu 

Spanwise growth of vortex structure in wall turbulence—Korean 
Society of Mechanical Engineers International Journal 15, 1741–1749 
(2001) 

Sept. 2001 

981 Adrian, R. J. Information and the study of turbulence and complex flow—
Japanese Society of Mechanical Engineers Journal B, in press (2002) 

Oct. 2001 

982 Adrian, R. J., and 
Z.-C. Liu 

Observation of vortex packets in direct numerical simulation of 
fully turbulent channel flow—Journal of Visualization, in press (2002) 

Oct. 2001 

983 Fried, E., and 
R. E. Todres 

Disclinated states in nematic elastomers—Journal of the Mechanics 
and Physics of Solids 50, 2691–2716 (2002) 

Oct. 2001 

984 Stewart, D. S. Towards the miniaturization of explosive technology—Proceedings 
of the 23rd International Conference on Shock Waves (2001) 

Oct. 2001 



List of Recent TAM Reports (cont’d) 

No. Authors Title Date 
 985 Kasimov, A. R., and 

Stewart, D. S. 
Spinning instability of gaseous detonations—Journal of Fluid 
Mechanics (submitted) 

Oct. 2001 

986 Brown, E. N., 
N. R. Sottos, and 
S. R. White 

Fracture testing of a self-healing polymer composite—Experimental 
Mechanics (submitted) 

Nov. 2001 

987 Phillips, W. R. C. Langmuir circulations—Surface Waves (J. C. R. Hunt and S. Sajjadi, 
eds.), in press (2002) 

Nov. 2001 

988 Gioia, G., and 
F. A. Bombardelli 

Scaling and similarity in rough channel flows—Physical Review 
Letters 88, 014501 (2002) 

Nov. 2001 

989 Riahi, D. N. On stationary and oscillatory modes of flow instabilities in a 
rotating porous layer during alloy solidification—Journal of Porous 
Media 6, 1–11 (2003) 

Nov. 2001 

990 Okhuysen, B. S., and 
D. N. Riahi 

Effect of Coriolis force on instabilities of liquid and mushy regions 
during alloy solidification—Physics of Fluids (submitted) 

Dec. 2001 

991 Christensen, K. T., and 
R. J. Adrian 

Measurement of instantaneous Eulerian acceleration fields by 
particle-image accelerometry: Method and accuracy—Experimental 
Fluids (submitted) 

Dec. 2001 

992 Liu, M., and K. J. Hsia Interfacial cracks between piezoelectric and elastic materials under 
in-plane electric loading—Journal of the Mechanics and Physics of 
Solids 51, 921–944 (2003) 

Dec. 2001 

993 Panat, R. P., S. Zhang, 
and K. J. Hsia 

Bond coat surface rumpling in thermal barrier coatings—Acta 
Materialia 51, 239–249 (2003) 

Jan. 2002 

994 Aref, H. A transformation of the point vortex equations—Physics of Fluids 14, 
2395–2401 (2002) 

Jan. 2002 

995 Saif, M. T. A, S. Zhang, 
A. Haque, and 
K. J. Hsia 

Effect of native Al2O3 on the elastic response of nanoscale aluminum 
films—Acta Materialia 50, 2779–2786 (2002) 

Jan. 2002 

996 Fried, E., and 
M. E. Gurtin 

A nonequilibrium theory of epitaxial growth that accounts for 
surface stress and surface diffusion—Journal of the Mechanics and 
Physics of Solids 51, 487–517 (2003) 

Jan. 2002 

997 Aref, H. The development of chaotic advection—Physics of Fluids 14, 1315–
1325 (2002); see also Virtual Journal of Nanoscale Science and 
Technology, 11 March 2002 

Jan. 2002 

998 Christensen, K. T., and 
R. J. Adrian 

The velocity and acceleration signatures of small-scale vortices in 
turbulent channel flow—Journal of Turbulence, in press (2002) 

Jan. 2002 

999 Riahi, D. N. Flow instabilities in a horizontal dendrite layer rotating about an 
inclined axis—Journal of Porous Media, in press (2003) 

Feb. 2002 

1000 Kessler, M. R., and 
S. R. White 

Cure kinetics of ring-opening metathesis polymerization of 
dicyclopentadiene—Journal of Polymer Science A 40, 2373–2383 
(2002) 

Feb. 2002 

1001 Dolbow, J. E., E. Fried, 
and A. Q. Shen 

Point defects in nematic gels: The case for hedgehogs—Proceedings 
of the National Academy of Sciences (submitted) 

Feb. 2002 

1002 Riahi, D. N. Nonlinear steady convection in rotating mushy layers—Journal of 
Fluid Mechanics 485, 279–306 (2003) 

Mar. 2002 

1003 Carlson, D. E., E. Fried, 
and S. Sellers 

The totality of soft-states in a neo-classical nematic elastomer—
Journal of Elasticity 69, 169–180 (2003) with revised title 

Mar. 2002 

1004 Fried, E., and 
R. E. Todres 

Normal-stress differences and the detection of disclinations in 
nematic elastomers—Journal of Polymer Science B: Polymer Physics 40, 
2098–2106 (2002) 

June 2002 

1005 Fried, E., and B. C. Roy Gravity-induced segregation of cohesionless granular mixtures—
Lecture Notes in Mechanics, in press (2002) 

July 2002 

1006 Tomkins, C. D., and 
R. J. Adrian 

Spanwise structure and scale growth in turbulent boundary 
layers—Journal of Fluid Mechanics (submitted) 

Aug. 2002 

1007 Riahi, D. N. On nonlinear convection in mushy layers: Part 2. Mixed oscillatory 
and stationary modes of convection—Journal of Fluid Mechanics 
(submitted) 

Sept. 2002 



List of Recent TAM Reports (cont’d) 

No. Authors Title Date 
 1008 Aref, H., P. K. Newton, 

M. A. Stremler, 
T. Tokieda, and 
D. L. Vainchtein 

Vortex crystals—Advances in Applied Mathematics 39, in press (2002) Oct. 2002 

1009 Bagchi, P., and 
S. Balachandar 

Effect of turbulence on the drag and lift of a particle—Physics of 
Fluids, in press (2003) 

Oct. 2002 

1010 Zhang, S., R. Panat, 
and K. J. Hsia 

Influence of surface morphology on the adhesive strength of 
aluminum/epoxy interfaces—Journal of Adhesion Science and 
Technology 17, 1685–1711 (2003) 

Oct. 2002 

1011 Carlson, D. E., E. Fried, 
and D. A. Tortorelli 

On internal constraints in continuum mechanics—Journal of 
Elasticity 70, 101–109 (2003) 

Oct. 2002 

1012 Boyland, P. L., 
M. A. Stremler, and 
H. Aref 

Topological fluid mechanics of point vortex motions—Physica D 
175, 69–95 (2002) 

Oct. 2002 

1013 Bhattacharjee, P., and 
D. N. Riahi 

Computational studies of the effect of rotation on convection 
during protein crystallization—International Journal of Mathematical 
Sciences, in press (2004) 

Feb. 2003 

1014 Brown, E. N., 
M. R. Kessler, 
N. R. Sottos, and 
S. R. White 

In situ poly(urea-formaldehyde) microencapsulation of 
dicyclopentadiene—Journal of Microencapsulation (submitted) 
 

Feb. 2003 

1015 Brown, E. N., 
S. R. White, and 
N. R. Sottos 

Microcapsule induced toughening in a self-healing polymer 
composite—Journal of Materials Science (submitted) 

Feb. 2003 

1016 Kuznetsov, I. R., and 
D. S. Stewart 

Burning rate of energetic materials with thermal expansion—
Combustion and Flame (submitted) 

Mar. 2003 

1017 Dolbow, J., E. Fried, 
and H. Ji 

Chemically induced swelling of hydrogels—Journal of the Mechanics 
and Physics of Solids, in press (2003) 

Mar. 2003 

1018 Costello, G. A. Mechanics of wire rope—Mordica Lecture, Interwire 2003, Wire 
Association International, Atlanta, Georgia, May 12, 2003 

Mar. 2003 

1019 Wang, J., N. R. Sottos, 
and R. L. Weaver 

Thin film adhesion measurement by laser induced stress waves—
Journal of the Mechanics and Physics of Solids (submitted) 

Apr. 2003 

1020 Bhattacharjee, P., and 
D. N. Riahi 

Effect of rotation on surface tension driven flow during protein 
crystallization—Microgravity Science and Technology 14, 36–44 (2003) 

Apr. 2003 

1021 Fried, E. The configurational and standard force balances are not always 
statements of a single law—Proceedings of the Royal Society 
(submitted)  

Apr. 2003 

1022 Panat, R. P., and 
K. J. Hsia 

Experimental investigation of the bond coat rumpling instability 
under isothermal and cyclic thermal histories in thermal barrier 
systems—Proceedings of the Royal Society of London A, in press (2003) 

May 2003 

1023 Fried, E., and 
M. E. Gurtin 

A unified treatment of evolving interfaces accounting for small 
deformations and atomic transport: grain-boundaries, phase 
transitions, epitaxy—Advances in Applied Mechanics, in press (2003) 

May 2003 

1024 Dong, F., D. N. Riahi, 
and A. T. Hsui 

On similarity waves in compacting media—Horizons in Physics, in 
press (2003) 

May 2003 

1025 Liu, M., and K. J. Hsia Locking of electric field induced non-180° domain switching and 
phase transition in ferroelectric materials upon cyclic electric 
fatigue—Applied Physics Letters, in press (2003) 

May 2003 

1026 Liu, M., K. J. Hsia, and 
M. Sardela Jr. 

In situ X-ray diffraction study of electric field induced domain 
switching and phase transition in PZT-5H—Journal of the American 
Ceramics Society (submitted) 

May 2003 

1027 Riahi, D. N. On flow of binary alloys during crystal growth—Recent Research 
Development in Crystal Growth, in press (2003) 

May 2003 

1028 Riahi, D. N. On fluid dynamics during crystallization—Recent Research 
Development in Fluid Dynamics, in press (2003) 

July 2003 



List of Recent TAM Reports (cont’d) 

No. Authors Title Date 
 1029 Fried, E., V. Korchagin, 

and R. E. Todres 
Biaxial disclinated states in nematic elastomers—Journal of Chemical 
Physics 119, 13170–13179 (2003) 

July 2003 

1030 Sharp, K. V., and 
R. J. Adrian 

Transition from laminar to turbulent flow in liquid filled 
microtubes—Physics of Fluids (submitted) 

July 2003 

1031 Yoon, H. S., D. F. Hill, 
S. Balachandar, 
R. J. Adrian, and 
M. Y. Ha 

Reynolds number scaling of flow in a Rushton turbine stirred tank: 
Part I—Mean flow, circular jet and tip vortex scaling—Chemical 
Engineering Science (submitted) 

Aug. 2003 

1032 Raju, R., 
S. Balachandar, 
D. F. Hill, and 
R. J. Adrian 

Reynolds number scaling of flow in a Rushton turbine stirred tank: 
Part II—Eigen-decomposition of fluctuation—Chemical Engineering 
Science (submitted) 

Aug. 2003 

1033 Hill, K. M., G. Gioia, 
and V. V. Tota 

Structure and kinematics in dense free-surface granular flow—
Physical Review Letters, in press (2003) 

Aug. 2003 

1034 Fried, E., and S. Sellers Free-energy density functions for nematic elastomers—Journal of the 
Mechanics and Physics of Solids, in press (2003) 

Sept. 2003 

1035 Kasimov, A. R., and 
D. S. Stewart 

On the dynamics of self-sustained one-dimensional detonations: 
A numerical study in the shock-attached frame—Physics of Fluids 
(submitted) 

Nov. 2003 

1036 Fried, E., and B. C. Roy Disclinations in a homogeneously deformed nematic elastomer—
Nature Materials (submitted) 

Nov. 2003 

1037 Fried, E., and 
M. E. Gurtin 

The unifying nature of the configurational force balance—Mechanics 
of Material Forces (P. Steinmann and G. A. Maugin, eds.), in press 
(2003) 

Dec. 2003 

1038 Panat, R., K. J. Hsia, 
and J. W. Oldham 

Rumpling instability in thermal barrier systems under isothermal 
conditions in vacuum—Philosophical Magazine (submitted) 

Dec. 2003 

1039 Cermelli, P., E. Fried, 
and M. E. Gurtin 

Sharp-interface nematic–isotropic phase transitions without flow—
Archive for Rational Mechanics and Analysis (submitted) 

Dec. 2003 

1040 Yoo, S., and 
D. S. Stewart 

A hybrid level-set method in two and three dimensions for 
modeling detonation and combustion problems in complex 
geometries—Combustion Theory and Modeling (submitted) 

Feb. 2004 

1041 Dienberg, C. E., 
S. E. Ott-Monsivais, 
J. L. Ranchero, 
A. A. Rzeszutko, and 
C. L. Winter 

Proceedings of the Fifth Annual Research Conference in Mechanics 
(April 2003), TAM Department, UIUC (E. N. Brown, ed.) 

Feb. 2004 

1042 Kasimov, A. R., and 
D. S. Stewart 

Asymptotic theory of ignition and failure of self-sustained 
detonations—Journal of Fluid Mechanics (submitted) 

Feb. 2004 

1043 Kasimov, A. R., and 
D. S. Stewart 

Theory of direct initiation of gaseous detonations and comparison 
with experiment—Proceedings of the Combustion Institute (submitted) 

Mar. 2004 

1044 Panat, R., K. J. Hsia, 
and D. G. Cahill 

Evolution of surface waviness in thin films via volume and surface 
diffusion—Journal of Applied Physics (submitted) 

Mar. 2004 

1045 Riahi, D. N. Steady and oscillatory flow in a mushy layer—Current Topics in 
Crystal Growth Research (submitted) 

Mar. 2004 

1046 Riahi, D. N. Modeling flows in protein crystal growth—Current Topics in Crystal 
Growth Research (submitted) 

Mar. 2004 

1047 Bagchi, P., and 
S. Balachandar 

Response of the wake of an isolated particle to isotropic turbulent 
cross-flow—Journal of Fluid Mechanics (submitted) 

Mar. 2004 

1048 Brown, E. N., 
S. R. White, and 
N. R. Sottos 

Fatigue crack propagation in microcapsule toughened epoxy—
Journal of Materials Science (submitted) 

Apr. 2004 

 




