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Theory of direct initiation of gaseous detonations and comparison
with experiment

A. R. Kasimov and D. S. Stewart∗

Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, Urbana,
IL 61801, USA

Abstract

In this work we discuss the application of an evolution equation that we have developed for the
dynamics of a slowly evolving weakly-curved detonation to a problem of direct detonation initiation.
Despite the relative simplicity of the theory, it successfully explains basic features of the initiation pro-
cess which are observed in experiments and numerical simulations. Moreover, the theory allows one to
calculate initiation energies based on the explosive chemical and thermodynamic properties only, with-
out having to invoke significant modeling assumptions. The evolution equation exhibits the competing
effects of the exothermic heat release, curvature, and shock acceleration. The detonation dynamics dur-
ing the initiation depends on the relative strength of the heat release and flow divergence, resulting in
successful initiation of self-sustained detonation if the heat release is sufficiently stronger than diver-
gence or in failure if otherwise. Using global kinetic data from Caltech detonation database, which are
derived from detailed chemical calculations, we have calculated critical initiation energies of spherical
detonation for hydrogen-oxygen, hydrogen-air, and ethylene-air mixtures at various equivalence ratios
and found a very good agreement with recent experimental data.

1 Introduction

The problem of detonation initiation in gases is of great practical importance, particularly because of related
safety issues. Understanding the critical conditions delineating initiation and failure by a given energy
source is a major problem that has challenged researchers for decades. Although many qualitative features
of the underlying mechanisms are well known, sufficiently accurate quantitative theories and measurements
have been difficult to achieve. One of the main mechanisms by which a gaseous detonation can be initiated
is referred to as a direct initiation. In this case detonation is initiated by a strong localized source, for
example, a high-explosive charge, electric spark, an exploding wire, etc., all of which produce a blast wave
that propagates into the surrounding explosive gas and, if sufficiently strong, can trigger a detonation wave
in the gas. The main quantity of interest is the critical energy of the initiating source. Current understanding
in the area is such that critical energies experimentally determined by different researchers can disagree
by orders of magnitude. Most existing models of direct initiation require major empirical inputs to fit the
experimental data. A theory that would be able to explain the essential mechanism involved in the direct
initiation and to predict the critical energy based only on thermodynamic and chemical properties of an
explosive mixture has been absent. This work presents such a theory based on an analysis of reactive Euler
equations in the asymptotic limit of small shock curvature (measured on the steady reaction-zone length)
and slow time evolution (measured on the reaction time scale of the steady detonation).

∗Corresponding author:216 Talbot Lab, 104 S. Wright St. Urbana, IL 61801 USA. email: dss@uiuc.edu, fax: (217) 244-5707.
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In both experiments and numerical simulations, a successful direct initiation process is observed to
proceed as follows. The shock speed of an initial strong blast wave decays to speeds below the Chapman-
Jouguet (CJ) speed,DCJ, of the gaseous explosive, reaches a certain minimum speed and subsequently
accelerates toDCJ and propagates at that level, often exhibiting a pulsating character after ignition. There
exists an extensive literature on experimental investigations and modeling of the direct initiation that attempt
to characterize the observed dynamics. For a recent review and further references the reader is referred
to [1]. All currently proposed models are based on the idea first proposed in Zel’dovich, Kogarko, and
Simonov’s 1957 work, [2], on blast initiation of spherical detonation. That influential work proposed that
the time required for the initial blast-wave speed to decay toDCJ has to be proportional to the induction
periodτi of the explosive gas. From this idea one can derive that the critical energyEc is proportional toτ3

i ,
or equivalently to reaction zone thickness cubed,l3

rz. In a number of works since 1957, this correlation has
been made to agree with experiment by invoking variety of assumptions, most notably by Lee and coworkers,
(see references in [1]), and by Vasiliev and his colleagues, (see [3] and references therein). Essentially, the
modeling assumptions involve various other relevant length scales, such as the detonation cell size, critical
diameter, etc., that replace the reaction zone length in the expression for the critical energy. In addition,
because of the experimental observation that the detonation proceeds through a phase of sub-CJ speeds, it is
often suggested that the shock speed used in the critical energy calculations be some empirically determined
sub-CJ velocity rather than the CJ velocity.

Two other models should be mentioned, namely the one by He and Clavin [5, 6] and by Eckett et al.
[4]. He and Clavin, [5, 6], build their theory based on the theoretical observation that the quasi-steady solu-
tion of a curved detonation has a C-shaped form in the space of the shock speedD and shock radiusR (an
observation that dates back at least to Tsuge and coworkers in the early 70’s, see the review by Stewart [7]
). TheD−R curve was derived using a square-wave model of the detonation reaction zone. They used the
upper turning point of the quasi-steady detonation speedD, curvatureκ response curve, to define the critical
conditions for detonation initiation. They assumed that failure occurs due to the loss of the quasi-steady so-
lution below the turning point. They did not consider the possibility that unsteady effects (such as the shock
accelerationḊ that we consider in this work) can affect the critical conditions. As Lee and Higgins empha-
size in [1], unsteady effects in direct initiation can be significant and the curvature considerations alone are
insufficient for accurate prediction of the critical energy. Eckett et al. [4] demonstrated that unsteady pro-
cesses play a very important role in the direct initiation and affect the critical energies significantly. Eckett,
Quirk, and Shepherd’s model that accounts for unsteadiness shows much better agreement with experiments
than can be obtained based on the model of He and Clavin, the latter overpredicting the critical energies by
three orders of magnitude. In the present theory we show that with the inclusion of the shock acceleration
term from rational analysis that derives the detonation evolution equation that results inḊ−D−κ relation
results in critical conditions for initiation that differ from the quasi-steady theory significantly and result in
much better agreement with experiment.

The present work is an application of a more general, rational theory of self-sustained detonation waves
that is developed in [8]. Essentially, the theory treats a self-sustained detonation wave as a structure contain-
ing an embedded sonic surface, that serves as an information boundary, isolating the reaction zone behind
the lead shock from acoustic perturbations in the far field. The theory generalizes classical notion of a sonic
locus in a detonation wave (in steady planar CJ detonation) to unsteady and multi-dimensional detonation
waves in explosives with general constitutive description. Particularly, here we apply a simple version of the
theory that retains leading contributions from chemical reaction, flow divergence (curvatureκ), and shock
accelerationḊ and uses ideal-gas equation of state. A simple evolution equation is derived that is shown to
reproduce the essential physical processes involved in detonation initiation. With the help of the strong-blast
wave solution and global description of the chemical heat-release rate, the theory is capable of predicting
the critical initiation energy from the thermo-chemical properties of the explosive only. We calculate the
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critical energies for a number of explosive mixtures and show that the agreement is remarkably good for
most of the mixture compositions considered. It should also be noted that the present theory does not in-
volve the notion of a critical radius, which is a major departure from all previous work. Instead, it is shown
that appropriate criticality is based on a criticalDs(R) ignition curve which we callignition separatrixthat
separates solutions with initial conditions that lead to ignition from those that lead to failure.

In section 2, we start with a general discussion of the evolution equation that predicts the ignition and
failure phenomenon. Section 3 contains the detailed discussion of the solutions of the evolution equation
and calculations of the critical energies for several explosive mixtures with comparison against experimental
data. Section 4 contains concluding remarks.

2 The evolution equation

The basis of the present theory of direct initiation is a general theory of weakly-curved and slowly-varying
detonations that are self-sustained and are assumed to contain an embedded sonic locus within the post-
shock flow, that is developed in [8, 9, 10]. Specifically, we consider a simplified version of the theory that
retains leading order unsteady and shock curvature terms, and obtain an evolution equation in the form of a
functional relationship between shock speedD, its acceleratioṅD, and curvatureκ. When applied to spher-
ically (or cylindrically) expanding detonations, the evolution equation is a relatively simple second order
ordinary differential equation. Nevertheless, solutions of the equation exhibit basic physical characteristics
of the initiation process that are observed in experiments and numerical simulations. Most importantly for
the present purpose, it contains the critical behavior of solutions, such that depending on the initial condi-
tion, the long-time attractor is either a stable Chapman-Jouguet detonation (in which case we have successful
initiation) or an essentially inert decaying shock whose final speed is that of an acoustic disturbance in the
unreacted mixture (in which case we have initiation failure).

Here, we summarize the basic ideas of the analysis behind the evolution equation, and refer the reader
for a detailed discussion of the theory to [8, 9]. The starting point is the system of reactive Euler equations
in which general unsteady terms and leading-order curvature terms have been retained. In addition, one has
the Rankine-Hugoniot conditions at the shock. With only these conditions, the system is not closed and
requires that some conditions in the far field of the reaction zone be satisfied for determination of the shock
speed, a situation analogous to classical Chapman-Jouguet analysis, but complicated by unsteadiness and
multi-dimensionality. Such conditions have been derived in [8, 10], and are called speed relation (analog of
local sonicity requirement) and compatibility condition (essentially a generalization of the equation for the
Riemann invariant on forward-facing characteristics). These equations form a closed system of equations
that allow for a solution that includes the detonation speed and the location of the sonic locus.

The reactive Euler equations, written in the shock-attached frame, that retain the general unsteady terms
and leading-order curvature terms are

Mn =−ρt −κρ(U +D) , (1)

Pn =−Mt −ρḊ−κρU (U +D) , (2)

Hn =−Ht

U
− Ḋ+

pt

ρU
, (3)

λt +Uλn = ω, (4)

where conserved variables are introduced,M = ρU, P = p+ ρU2, H = e+ p/ρ +U2/2−λQ as mass
flux, momentum flux, and total enthalpy, respectively. The primitive variables are densityρ, pressurep,
particle velocity relative to the shockU , e is the internal energy (e= p/ρ/(γ−1) in the case of an ideal
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gas),Q is the heat of reaction, and reaction progress variableλ is such thatλ = 0 at the shock andλ = 1
at the end of the reaction zone. The reaction rateω = ω(p,ρ,λ) is assumed general for now since the
basic analysis does not require that it has a specific form. Subscriptst and n indicate time- and space
differentiation, respectively. Total time derivative will be indicated by a dot over a symbol. The shock is
located atn = 0 and the reaction zone extend ton < 0.

We rescale the state variables with respect to the initial state by using the ambient pressurepa, density
ρa, andua =

√
pa/ρa for velocity. The spatial variable is scaled with respect to the half-reaction length,

l1/2, and time asl1/2/ua. All governing equations retain their form.
The following conditions must be satisfied at the sonic locus (denoted by subscript∗),

ṅ∗ = c∗+U∗, (5)

ṗ∗+ρ∗c∗u̇∗+κρ∗c2
∗u∗ = (γ−1)Qρ∗ω∗, (6)

whereγ is the ratio of specific heats,c is the sound speed. Equation 5 is the equation of the forward
characteristics, which reflects the fact that the sonic locus in general is a characteristic surface, and Eq. 6
is the form of equation for theJ+ Riemann invariant that must hold onC+ characteristics; the dot in this
equation indicates time-differentiation on this limitingC+ characteristic. Two equations, Eq. 5 and Eq. 6,
are the necessary closure equations that allow one to determine the lead shock speedD(t) and the sonic
locusn∗(t). To obtain the evolution equation one has to integrate the Euler equations from the shock to the
sonic locus and substitute the result in the sonic conditions.

Now we look for solutions that have slow time evolution, that is the time-derivatives in Euler equation
can be considered small in addition to small curvature assumption, that is we assume

κ = o(1),
∂
∂t

= o(1). (7)

In our scales, small curvature means that the length of the reaction zone is much smaller than the radius of
shock curvature. Small time derivative means that the dynamical processes of interest take place on time
scales long compared to the half-reaction time. We should note that these are two essentiallyindependent
assumptions and one does not necessarily has to relate them (that is choose a distinguished limit) explicitly in
order to proceed with derivations in a consistent manner. For a numerical example illustrating the time scales
involved, consider the case of a stoichiometric hydrogen-oxygen mixture for which a detailed calculation
of the dynamics is given below. The length of the reaction zone and the detonation speed for the mixture
are roughlylrz ≈ 0.04mmandDCJ ≈ 2800m/s, which gives the reaction time scaletrz ∼ 0.1µs, while the
initiation dynamics takes place over time scales of at least100· trz ≈ 10µs (see figure 3). As far as the
curvature is concerned, for the same mixture we haveκ < 0.01even near the upper turning point (see figure
1).

With the above assumptions and after some algebra, we find that the speed relation, Eq. 5 reduces to the
following equation,

1+F−λ∗+κ f + Ḋg = 0, (8)

where

F =
(
D2−D2

CJ

) D2D2
CJ− γ2

D2
(
D2

CJ− γ
)2 , (9)

andDCJ is the CJ speed given by

DCJ =
√

γ+q+
√

q, where q =
γ2−1

2
Q.
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One can see that forD < DCJ, F is negative; it is also easy to show thatF ≥ −1 for anyD with F = −1
only if D =

√γ, the ambient sound speed. Functionsf andg are explicit nonlinear functions ofD (see
Appendix) that depend on certain integrals over the reaction zone. Notice also that because0≤ λ∗ ≤ 1, the
speed relation 8 is not always satisfied which puts constraints on the possible dynamics (e.g. the sonic locus
may be absent ifD > DCJ).

The compatibility condition, Eq. 6, can be shown to result in the following equation,

Ḋ = a1Qω∗−a2κ, (10)

where again,a1 anda2 are explicit nonlinear functions ofD and are given in Appendix. By eliminatingλ∗,
which is the reaction progress variable at the sonic locus, from Eqs. 8 and 10, one obtains a single evolution
equation, relatinġD,D, andκ. By settingḊ = 0 in the evolution equation, one obtains the quasi-steadyD−κ
relation,a1Qω∗ = a2κ. The evolution equation holds generally for two-dimensional detonations, but we
specify the equation for spherically expanding detonations for the purpose of analyzing the direct initiation
problem. We also assume a one-step Arrhenius reaction rateω = k(1−λ)ν exp(−E/pv) with simple-
depletion,ν = 1, where pre-exponentk is fixed by the scaling choice, andE is the activation energy. We
emphasize that the activation energy is not assumed large, in fact it can be arbitrary. The only assumptions
on which the present theory is based are that of small curvature and slow evolution. It is a fully non-linear
theory sinceD can deviate fromDCJ by O(1) amount, that isD does not have to be close toDCJ.

3 Direct initiation of spherical detonation and comparison with experiment

We calculate critical energies for hydrogen-oxygen, hydrogen-air, and ethylene-air mixtures at various
equivalence ratios. All global reaction parameters used in this work, that is activation energyE, heat re-
leaseQ, and specific heat ratioγ, are based on the data available at Caltech, [11], which have been derived
from detailed chemical calculations for real mixtures. Both activation energiesE and heat releasesQ, which
depend on the equivalence ratioφ, are taken exactly the same as in the database, but the constant specific
heat ratioγ has been chosen so that the post-shock temperature for CJ detonation matches the detailed cal-
culations. Although some of the detonation properties, such as the detonation Mach number or CJ pressure
differ somewhat from the detailed calculations, still this is a sensible choice because it retains the overall
energetics and state sensitivity of the heat release rate near the shock. Similar parameter assignments were
used by Eckett et al. [4].

Next we show how to calculate the critical energy for one of the mixtures, namely stoichiometric
hydrogen-oxygen, which has the following parameters:γ = 1.258, E = 38.25, andQ = 40.5. Consider
the quasi-steady response, that isD−κ dependence obtained by settingḊ = 0 in Eqs. 8 and 10. Figure 1
shows the dependence with a characteristic turning point and two branches, a stable upper one and unstable
bottom one. The stability properties of the two branches will be demonstrated by solving the full equation
that retainsḊ term. We point out one important feature of the curve, that is the fact that the bottom branch
seems to terminate atκ = 0. But in fact, as in [12] a second turning point always exists at a very small cur-
vature (in figure 1, at a curvatureκ′c < 10−8) and another stable branch extends to largeκ at smaller shock
speedsD, close toca, the ambient sound speed in the unreacted explosive. As an example clearly demon-
strating the lower turning point, figure 2 shows theoretically computedD−κ response curve forγ = 1.258,
Q = 40.5, and a lower value of the activation energy,E = 10. Thus, the fullD−κ curve has a Z-shape. The
existence of the second turning point is a property of the one-step Arrhenius model and can have implica-
tions for the detonation reignition after apparent failure. Strictly speaking, because of the second turning
point, once a decaying transient-wave speed passes through the second turning point atR large, the shock
accelerationḊ becomes positive and reignition is possible. But how serious is this unphysical feature of the
one-step kinetics? From figure 1 one finds that for the stoichiometric hydrogen-oxygen mixture, reignition
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Figure 1: TheoreticalD−κ curves for stoichiometric hydrogen-oxygen,γ = 1.258, E = 38.25, andQ= 40.5.
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Figure 2: TheoreticalD−κ curve atγ = 1.258, E = 10, andQ = 40.5 showing both turning points.

at the second turning point is achieved only somewhere atR> 108. In dimensional terms, with the steady
reaction zone length of the mixturelrz = 0.043mm, the lower turning point is located farther than 4 kilome-
ters away from the center, and would not be encountered in practice. In general, the location of the second
turning point depends strongly on the activation energy, but real mixtures have sufficiently large activation
energies so that the lower turning point is often irrelevant.

Next consider the full evolution equation obtained by substitutingλ∗ = 1+F +κ f + Ḋg from Eq. 8 into
Eq. 10,

Ḋ = a1Qk(1−λ∗)exp

(
−γE

c2∗

)
−a2κ, (11)

wherec2∗ = [(γ+1)/γ]2D2/
(
1+D2

)2
. We write Eq. 11 as a second-order ordinary differential equation in

the shock radiusR= 2/κ usingD = Ṙ andḊ = R̈. Our goal is to obtain the solution of equation 11 subject
to various initial conditions,̇R(0) = D0 andR(0) = R0. Figure 3 shows the computed results. Shown are
the quasi-steadyD−Rcurve (i.e. withḊ = 0) and a series ofD−Rcurves representing solutions of Eq. 11
starting from different initial conditions. An important feature is that solutions with largeD0 (sufficiently
strong initiation source) suffer an initial drop in velocity, pass through a minimum and thenD increases
and asymptotically approachesDCJ asR→ ∞. But solutions corresponding to initial conditions with low
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Figure 3: Ignition and failure for a hydrogen-oxygen atφ = 1. Thin solid lines are solutions of Eq. 11
for different initial conditions:R0 = 200 andD0/DCJ = 1.0, 0.95, 0.9, 0.81, 0.79, 0.75, and0.7 from top
to bottom. Dash-dot line is the reactive blast wave solution at critical energyEc = 1.48· 108 and radius
Rs = 89.5.

D0 (weak initiation source) decay withR and never recover. This critical behavior is strikingly similar to
what is observed in experiments and numerical simulations of detonation initiation by a strong blast. Thick
solid curve in the figure separates states that lead to ignition from those that lead to failure and is designated
as the “ignition separatrix”. The separatrix is found by solving the governing evolution equation, Eq. 11,
backward in time starting from an initial condition just below the unstable branch of the quasi-steadyD−R
curve at a very large distance. Typically we took the initial point atR= 104−105, although much smaller or
larger distances can be taken with very little effect on the curve for smallR, i.e. they all essentially collapse
on the same curve asR decreases. This just demonstrates extreme sensitivity of the dynamics on the initial
conditions near the ignition separatrix.

A feature observed in experiments and simulations, but not reproduced by this theory is the appearance
of pulsations during and subsequent to the successful initiation phase. A theory that retains higher-order
terms, similar to what is found in [13], is required for their prediction, but it is important that the present
simplified theory contains the essential physics of the phenomenon, required to delineate criticality.

It is interesting to interpret the solution in the successful initiation case in terms of the form of the evo-
lution equation, Eq. 11. Equation 11 is the dynamical law governing the shock evolution with acceleration
Ḋ and two “forcing” terms, one positive due to the heat release,a1Qω∗, and one negative due to the flow
divergence,−a2κ. Clearly, the heat release tends to accelerate the shock, while the flow divergence takes
away the energy from the shock and tends to decelerate it. At the early stage of the initiation process, that is
at small radii, the curvature term is stronger than the heat release term and the shock decelerates. But even-
tually, the increasing heat release balances the curvature term (corresponds to the minimum onD(R) curve)
and then becomes much stronger than the curvature term, resulting in initiation. During further evolution,
the heat release term starts to decrease because the sonic point moves closer to the end of the reaction zone
andλ∗ → 1, as can be seen from the speed relation, Eq. 8. As a result, at largeR, both “forcing” terms
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diminish to zero, and one obtains a steady solutionD = DCJ at R→ ∞. The heat release “force” is propor-
tional toQ and depends on the activation energy asexp

(−γE/c2∗
)
. Both of these dependencies have simple

physical consequences on the dynamics of initiation. The heat releaseQ plays a role of the “strength” of
the “force” and the greaterQ, the sooner the initiation takes place. The exponent serves as an energy barrier
that delays the initiation process. These effects can be demonstrated by direct solution of Eq. 11, which
shows that increasingQ leads to the shift of the quasi-steadyD−R curve toward smallerR and hence the
initiation occurs at shorter distances from the origin. On the other hand, increasing activation energyE has
the opposite effect, delaying the initiation till the lead shock propagates to larger distances.

Since we have obtained the criticality condition in terms of the initial conditions (that isD0 andR0)
relative to the ignition separatrix, it is important to describe how the initial state is created, and in particular,
we relate the initial conditions to a strong point-blast wave solution. Strictly speaking, one has to match the
strong-blast wave solution which is valid atR→ 0 with our theoretical solution that holds atD < DCJ by
means of an intermediate solution that is valid atD > DCJ andR= O(1). Here we adopt a simple matching
procedure that connects reactive blast wave solution with the solution of the evolution equation 11 at the
point on the ignition separatrix atD = DCJ, which corresponds to smallest radius on the separatrix, that we
denote asRs. The reason for this choice is that the blast wave solution is most accurate at smaller radii.
Clearly, any point on the ignition separatrix atD < DCJ can be chosen, but one has to have a blast wave
solution that is sufficiently accurate to reproduce the reactive shock wave at such small speeds. With our
choice, given the blast wave solution asD(R,Ebw) with source energyEbw, and letting the solution pass
throughDCJ, Rs, we can estimate the critical energyEc = Ebw. We use the Taylor-Sedov-Korobeinikov blast
wave solution, [14, 15, 17, 4],

Ebw = A j

(
j +3

2

)2

ρ0D2
bwRj+1exp

(
−B jQ

D2
bw

)
, (12)

which accounts for the leading-order asymptotic effect of the chemical reaction on the strong blast dynamics
( j = 0,1,2 correspond to planar, cylindrical, and spherical symmetry, respectively). In the case of a spherical
detonation, the constantsA2 andB2 are functions ofγ that can be calculated by the following formulas, given
in Korobeinikov, [16, 17], which we reproduce here for the sake of completeness,

A2 = 0.31246(γ−1)−1.1409−0.11735log10(γ−1) , (13)

B2 = 4.1263(γ−1)1.253+0.14936log10(γ−1) . (14)

Figure 3 shows the blast wave solution for the critical initiation energy as a dash-dot line.
Following the procedure described above, we have calculated the critical energies for hydrogen-oxygen,

hydrogen-air, and ethylene-air mixtures for a range of equivalence ratios, and compared the predictions with
recent experimental data. The detonation database at Caltech, [11], was used as a source of the experimental
data. The results are shown in Figs. 4-6. Excellent agreement is found for hydrogen-oxygen, especially near
the stoichiometry. Except for lean mixtures, hydrogen-air also shows very close agreement with experiment.
From detailed chemical calculations, the two lean compositions of hydrogen-air with very large initiation
energies, have reaction zone thicknesses of 91.3 and 2.3 mm and very large activation energies. Initiation
energy is quite sensitive to both of these parameters and possible errors could be amplified by orders of
magnitude. As for the ethylene-air mixtures, the present theory overpredicts the critical energies by about
an order of magnitude, although the overall shape of the curve is reproduced very well.

Figures 4-6 also show a comparison with predictions based on He & Clavin’s theory [5]. To calculate
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the dimensionless critical energy we use

Ec = A j

(
j +3

2

)2

ρ0D2
cRj+1

c , (15)

where

Dc = DCJ

(
1− 1

2ϑ

)
, Rc =

8e jγ2

γ2−1
(16)

are the critical speed and critical radius at the quasi-steady turning point as predicted by the square-wave
model of He & Clavin [5],ϑ = ETa/Ts is the post-shock temperature-scaled activation energy. As all com-
parisons show, the theory based on the quasi-steady turning point overestimates the experimental critical
energy by about 3 orders of magnitude, as was also pointed out by Eckett et al. [4]. For numerical com-
parison, consider the stoichiometric hydrogen-oxygen, for which we have:γ = 1.258, Q = 40.5, E = 38.25,
DCJ = 7.0478, Rs = 89.5, lrz = 0.043mm, ϑ = 6.386, A2 = 1.3349, B2 = 0.8512. Then we find that the
present theory predictsEc = 1.192J, He and Clavin’s theory givesEHC

c = 1.213·103J, while the experimen-
tal result isEexp

c = 2.092J. Overprediction of the critical energies seems to be a general feature of a theory
that defines the criticality by the upper turning point of the quasi-steadyD−κ curve, which apparently has
to do with the actual onset of unsteady self-sustained detonation at radii much below the quasi-steady critical
radius. That higher-order unsteady contributions can change the critical conditions significantly compared
to the quasi-steady theory was first demonstrated by Eckett et al. [4] in a combined numerical-analytical
study. Their simulations and the present theory are in agreement in that the critical conditions occur well
before the quasi-steady critical radius is reached. In view of the sensitivity of the critical energy to the radius
(Ec∼ R3), accurate prediction of the ignition separatrix is extremely important.

Considering numerous uncertainties and sources of error involved in both experiment and kinetic data
used for theoretical predictions (for more detailed discussion of these issues, see [4]), and that the theory
does not rely on any fitting adjustments, the agreement can be considered quite satisfactory to excellent.
It is also possible that higher order corrections to the evolution equation that account for oscillatory or
cellular dynamics similar to that observed in experiments and simulations, may adjust the critical initia-
tion conditions, but that is a subject for future analysis, as are the demands for more precise experimental
measurements and precise constitutive descriptions.

We make a final remark regarding the constitutive description on which the present study is based. The-
ories and models based on one-step Arrhenius kinetics have been criticized over recent years because of the
unphysical feature essentially associated with the lower turning point on theD−κ curve, namely that such
kinetics predicts that reignition occurs after an initial decay, given detonation is allowed to run sufficiently
far. In the absence of a satisfactory theory, even an extreme call has been made that the one-step model
“...should be abandoned in favor of more complex chemistry...”, [1]. While, undoubtedly, studies of the role
played by more complex chemistry are important, it is also clear that the single-step kinetics has tremendous
power in predicting not only qualitative aspects, but as can be seen from this work, even sensitive quanti-
tative aspects of direct initiation. The problem of delayed reignition behavior is essentially absent in the
systems that we have considered here, because the second turning point is located at unrealistically large
distances from the origin. The most important features here are the upper turning point and the ignition sep-
aratrix. In the context of a corresponding evolution equation derived from the full reactive Euler equations,
they define criticality and allow connection to an external initiating point-blast source in a theory of direct
initiation.
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4 Conclusions

In this paper we have presented a simplified version of a general theory developed by us in [8, 9, 10] and
applied it to the problem of initiation of spherical detonation by a strong blast wave. We have shown that
the evolution equation of the theory exhibits ignition/extinction phenomenon and that it predicts an ignition
separatrix which is a curve in the plane of the shock speed vs the shock radius such that any initial condition
above the separatrix leads to ignition while that below it leads to failure. A major strength of the present
theory is that it does not involve any empirical input, besides the constitutive description of the explosive
gas. By using a global kinetic description derived from detailed chemical calculations, we calculated critical
initiation energies for hydrogen-oxygen, hydrogen-air, and ethylene-air, and found close agreement with
recent experimental data.
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Appendix: Functions in the evolution equation

The following functions are used in the evolution equation 11:

a1 =
γ+1

γ
(γ2−1)D3

(1+D2)(γ+3D2)
, a2 =

γ
γ+1

(1+D2)(D2− γ)
γ+3D2 , (17)

b =
D(D2

CJ− γ)
γDCJ(1+D2)

, f (D) =
2
b2

[
n0∗− I0 +

D2

1+D2 (n0∗−J0)
]
, (18)

g(D) =
2
b2

[
1+

(
2−1/γ2

)
D2

(1+D2)2 (n0∗− I0)+
hD

2(1+D2)2S1− 1
D

I1

]
, (19)

n0∗ =−D
Z 1+F

0

dλ0

ρ0ω0
, I0 =−D

Z 1+F

0

dλ0

ω0
, J0 =−D

Z 1+F

0

dλ0

ρ2
0ω0

, (20)

I1 =−D
Z 1+F

0

∂ρ0

∂D
dλ0

ρ0ω0
, S1 =−D

Z 1+F

0

∂p0

∂D
dλ0

ρ0ω0
, (21)

ρ0 =
γ+1

γ
D2

1+D2

1
1−δ0

, p0 =
1+D2

γ+1
(1+ γδ0) , δ0 = b

√
1+F−λ0. (22)
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