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Asymptotic theory of ignition and failure of self-sustained detonations

Aslan R. Kasimov and D. Scott Stewart∗
Department of Theoretical and Applied Mechanics,

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Based on a general theory of detonation waves with an embedded sonic locus that we have developed in Kasi-
mov (2004) and Stewart & Kasimov (2004), we carry out asymptotic analysis of weakly-curved slowly-varying
detonation waves and show that the theory predicts the phenomenon of detonation ignition and failure. The
analysis is not restricted to near Chapman-Jouguet detonation speeds and is capable of predicting quasi-steady,
normal detonation shock speed, curvature (D−κ) curves with multiple turning points. An evolution equation
that retains the shock acceleration,Ḋ, namely aḊ−D− κ relation is rationally derived and its solution for
spherical (or cylindrical) detonation is shown to reproduce the ignition/failure phenomenon observed in both
numerical simulations of blast wave initiation and in experiments. A simple physically transparent explanation
of the ignition phenomenon is given in terms of the form of the evolution equation. A single-step chemical
reaction described by one progress variable is employed, but the kinetics is sufficiently general and is not re-
stricted to Arrhenius form, although most specific calculations in this work are performed for Arrhenius kinetics.
As an example, we calculate critical energies of direct initiation for hydrogen-oxygen mixtures and find close
agreement with available experimental data.

I. INTRODUCTION

During detonation in an explosive, the lead shock is maintained by the chemical energy release in the reaction zone.
However the region that influences the shock and hence the reaction zone immediately behind the shock can be as
large as the domain of the reacted products or as small as a reaction zone thickness. Self-sustained detonation waves
are detonations whose dynamics are determined by a reaction zone of limited extent between the lead shock and a
trailing sonic locus. The flow in the reaction zone between shock and sonic locus is isolated from the far-field flow,
and acoustic disturbances on the downstream side of the sonic locus, which serves as a boundary, do not penetrate into
the reaction zone. The sonic locus considered here is a characteristic surface and serves as an information boundary.

The simplest example of a self-sustained detonation is a plane, steady, Chapman-Jouguet (CJ) detonation (e.g.
Fickett & Davis 1979) that when measured in the frame of the steady lead shock is sonic at the end of the reaction
zone. Consider one-dimensional steady detonation. If one draws the forward (C+) characteristics in a space-time
plane traveling with the lead steady shock, the history line of the forward characteristic at the sonic point would be
parallel to the history line of the lead shock, while forward characteristics between the shock and sonic point intersect
the shock. The flow between the shock and sonic point is subsonic relative to the lead shock. The history lines of
forward characteristics downstream of the sonic point are at most parallel to the shock or point away and do not
intersect the shock or enter the reaction zone since the flow is supersonic. In contrast overdriven detonations require
additional external support such as a piston to maintain the detonation structure at its nominal speed, and all forward
characteristics intersect the lead shock.

Rational analyses of curved detonation have their origins in the study of the central problem of a steady detonation
in a cylindrical stick of explosive (rate stick), identified by Eyringet al. (1949) in an attempt to explain the diameter
effect, and a later analysis by Wood & Kirkwood (1954). In the analysis the radius of curvature of the lead shock was
assumed to be large compared to the reaction zone. Generalized Chapman-Jouguet conditions were enforced at a point
behind the shock to reflect the fact that the flow is sonic at some point in the reaction zone structure. Bdzil (1981)
carried out the first consistent asymptotic analysis of the rate stick and used Lighthill’s method of strained coordinate
which invoked a regularity condition to derive a closure condition that was absent from the original Wood-Kirkwood
analysis. Bdzil determined the axial detonation velocity in terms of the stick radius and the explosive properties and
the confinement material properties.

Stewart & Bdzil (1988a) gave the first asymptotic derivation of the intrinsic relation between normal detonation
shock speed,Dn and sum of the principal shock curvatures (or total curvature)κ and showed that that relationship
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depended only on the properties of the explosive. They also introduced the idea of slow time variation of the detonation
dynamics, where time is measured on the scale of the particle passage time through the reaction zone. They used the
method of matched asymptotic expansions to match the solution for the reaction zone structure in the near-shock layer
to the solution in a transonic layer near the sonic point. Bdzil & Stewart (1988b, 1989) coined the word "Detonation
Shock Dynamics" (DSD), to describe both the asymptotic theory associated with weak shock curvature and slow time
evolution and the engineering application of the results to explosive systems. Klein & Stewart (1993) extended the
work in Stewart & Bdzil (1988a) to consider reaction rate laws for Arrhenius kinetics with large activation energies.
With a combination of distinguished asymptotic limits for large activation energy and numerics, Yao & Stewart (1995)
and Stewart & Yao (1998) calculated the critical curvature and demonstrated that explosives with Arrhenius kinetics
may have a quasi-steady detonation velocity, curvature relation in the shape of a Z with two, (an upper and lower)
turning points. The normal detonation velocity-curvature curve has a high velocity branch that connects to the plane
CJ value Dn = DCJ and a low velocity branch that connects asymptotically to a weakly reacting detonation with
Dn ∼ c0, wherec0 is the ambient sound speed of the unreacted explosive.

An extension of the asymptotic theory to include higher order effects such as shock acceleration and time derivative
of shock curvature was first considered by Yao & Stewart (1996), which gave results for pulsating and cellular gaseous
detonation. Subsequently Stewart with Yao made an attempt at a revision of Yao & Stewart (1996), to develop a
reduced theory, but due to confusion in regards to the nature of the sonic conditions and related difficulties with
transonic-layer matching, the theory was left incomplete. Aslam, Bdzil & Hill (1998) calculated extensions to DSD
theory that included both detonation acceleration and higher order transverse variations along the shock. Extension of
DSD to steady detonation with two-step chemistry was carried out by Short & Bdzil (2003). All the works mentioned
above have been based on the concept of “Master equation” where the definition of the sonic locus was identical to
that in a steady wave, measured in the frame of the lead shock.

Generalization of the steady sonic-locus concept to unsteady detonations has been a problem that has been largely
unaddressed. We have developed a general theory of detonation waves with an embedded sonic locus (Kasimov 2004;
Stewart & Kasimov 2004) that applies to wide class of detonation waves in explosives with general equation of state
and complex chemistry, and recently illustrated the behavior of the sonic locus by means of a numerical simulation
in Kasimov & Stewart (2003). The sonic locus in general is unambiguously defined to be a characteristic surface
that serves as a separatrix and an information boundary for the reaction zone initiated by the lead shock. Since it is
characteristic, this boundary admits weak discontinuities in the gradients of flow variables in the normal direction to
the surface. In the simplest one-dimensional case, the sonic locus is a separatrix of forwardC+ characteristic lines
that remains at a finite non-zero distance from the shock at all times (Kasimov & Stewart 2003). We have shown
that the sonic condition generalizes all previously known conditions that have been derived in asymptotic limits of
weak curvature and slow time variation or have been used in linear stability studies of detonations in ideal gases as
far-field boundary conditions (the so-called radiation conditions). The characteristic conditions require that the flow
in the neighborhood of the sonic locus evolve smoothly. Of course in an asymptotic analysis, the conditions are
approximated, starting from a general formulation.

The problem of detonation initiation, propagation and failure are the basic problems of detonation theory, which
have implications for safety and performance of explosives and the engineering of explosive systems. Depending on
the kind of sources used to initiate detonation, the explosive thermo-chemical properties, and geometrical constraints,
one can ignite and propagate a self-sustained detonation. If certain critical conditions are not met the detonation fails.
Direct initiation refers to detonation initiation of a main charge by a strong point-blast wave that is generated by an
embedded smaller explosive charge, or energetic discharge from some other source such as an exploding bridge-wire.
The ability to predict the critical conditionsa priori is the ultimate goal of studies of detonation initiation.

Rational theoretical prediction of the critical conditions which would be based on the mixture constitutive properties
only, has been a challenge in detonation theory, although variety of successful semi-empirical theories have been
developed (e.g. Benedick et al 1986; Lee 1977; Lee 1984). In this work we derive a nonlinear evolution equation
for a self-sustained detonation wave in the asymptotic limit of small curvature and slow-time variation, which are
measured in the scales of steady reaction-zone length and time in the same sense of the previous DSD-theories. We
assume that the detonation has an embedded sonic locus and employ the general characteristic conditions that we
have developed in Kasimov (2004) and Stewart & Kasimov (2004). The equation retains the leading contributions
from the shock curvature and shock acceleration. With a newly derived analytical formula not restricted to near
Chapman-Jouguet speeds, we show that the quasi-steady form of the evolution equation exhibits a characteristic Z-
shape curve in the space of the normal shock speedDn and shock curvatureκ that agrees closely with numerics. We
show that the solution to the evolution equation that retains the shock acceleration, aḊn−Dn−κ relation, reproduces
the ignition/failure phenomenon observed in both numerical simulations and in experiments on blast wave initiation in
spherical (or cylindrical) geometries. We show that the critical energy of direct initiation provided by a strong point-
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blast wave can be calculated and compares very well with available experimental data (Matsui & Lee 1979; Litchfield
et al. 1962; Kaneshigeet al. 1997).

Overview of the paper is as follows. We start with a general discussion of the governing equations in section 2,
where we introduce the truncated Euler equations in the shock-attached frame, the Rankine-Hugoniot conditions, and
scalings. Section 2.3 contains the leading-order planar quasi-steady solution of the Euler equations, while section 2.4
introduces a formulation of the governing equations in quasi-conserved variables with expansions of the state variables
in small unsteady and curvature corrections in the main reaction layer. Sections 2.5 and 2.6 contain a discussion of the
general sonic conditions in the unsteady detonation and a formulation in terms of the sonic frame. Section 3 contains
a discussion of the sonic-frame expansions and coordinate matching with the shock-frame expansions. Section 3.3
derives the main results of the analysis, which are the compatibility condition and the speed relation which include the
shock curvature and shock acceleration terms and yield an evolution equation for the detonation dynamics. Section
4.1 discusses main properties of the evolution equation, section 4.2 contains quasi-steadyD− κ solutions obtained
analytically. The discussion of detonation ignition and failure is a subject of sections 4.3-4.5, where it is shown that the
evolution equation that retains shock acceleration exhibits ignition and failure, and critical energies of direct initiation
are calculated theoretically and compared against experiment. Section 5 discusses the large-activation energy form of
the evolution equation. The section also contains a comparison of the theoretically computedD−κ curve against the
large-activation energy result as well as a numerically computed curve, which was obtained by solving the quasi-steady
Euler equations numerically. Appendix A contains calculation of certain singular integrals in the evolution equation,
while Appendix B explains the algorithm by which the numericalD−κ curve is computed.

II. SIMPLIFIED GOVERNING EQUATIONS

We consider detonation waves with reaction zone structure that is slowly varying in time, measured on the particle
passage time through the reaction zone, and that have lead shocks that have small curvature measured on reaction zone
thickness. The two asymptotic assumptions (slow variation and weak curvature) are independent in general. It is not
necessary to specify their relationship beforehand (that is choose a distinguished limit) in order to develop asymptotic
approximations and the approximations can be treated separately. However the resulting order of the asymptotic
approximations obtained depends on the size of terms that are neglected. Treating the approximations independently
allows one to generate results that are quite general and have extended validity and include those obtained by using
distinguished limits that relate the spatial and temporal scalings.

The equations we consider are the unsteady Euler equations written in the shock-attached frame, truncated to include
terms proportional to the leading order shock curvature. The Rankine-Hugoniot conditions are applied at the lead
shock. We also impose a boundary condition at the rear of the reaction zone on a limiting characteristic surface. The
flow is exactly sonic for an observer traveling on the rear surface since it is characteristic. We call the rear limiting
characteristic surface the "sonic" surface. The equations and boundary conditions form a closed system and allow for a
solution that describes the motion of the detonation shock, the evolution of the material states in the reaction zone and
the motion of the sonic surface. The reader can find a detailed derivation of the conditions at the sonic locus in Stewart
& Kasimov (2004) and a derivation of a high-order evolution equation in Kasimov & Stewart (2004). Here we present
a concise derivation of a simplified version of the evolution equation that retains the leading order curvature and shock
acceleration corrections to the quasi-steady planar solution. The reduced equation and description still retains the
basic physics involved in the ignition and failure phenomenon and leads to description of criticality, which is one of
our main concerns in this paper.

A. Reduced Euler equations in the shock-attached frame

The Euler equations written in the shock-attached frame toO(κ) are given by

ρt +(ρU)n +κρ(U +D) = 0, (1)

Ut +UUn + Ḋ+vpn = 0, (2)
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et +Uen + p(vt +Uvn) = 0, (3)

λt +Uλn = ω . (4)

The subscriptsn andt denote partial differentiation with respect to spatial variablen which measures the distance
from the shock into the reaction zone along a direction normal to the lead shock, and timet, respectively. The normal
particle velocity in the shock-frame isU = u−D, u is the normal particle velocity in the lab frame,D is the normal
shock velocity,Ḋ is the normal shock acceleration,p is pressure,ρ = 1/v is density,v is the specific volume,e is the
specific internal energy,λ is the reaction progress variable that goes form0 at the shock to1 at the end of reaction,ω
is the reaction rate. We assume an ideal-gas equation of state and a one-step exothermic reaction that can be described
by a single progress variable. Thene= pv/(γ−1)−λQ, whereγ is the polytropic exponent,Q is the heat of reaction.
The sound speed squared for the ideal EOS isc2 = γpv. We do not need to specify the form of the reaction rate for
much of the subsequent analysis, but later we will use the Arrhenius form to obtain formulas for quasi-steady response
curves and describe the ignition and failure process.

Following Erpenbeck we use the ambient state to scale our variables,p̃a, ρ̃a, and
√

p̃a/ρ̃a (tilde is used here to
denote dimensional quantities). The length scale is the half-reaction length of a plane CJ detonation,l̃1/2. The time
scale is the ratio of the length scale to the velocity scale. Under this scaling the equations remain unchanged. The
scaled values of upstream states(ρ, p,u,λ) are(1,1,0,0) and the upstream sound speed squared for an ideal gas (with
c̃2 = γp̃ṽ) is c2 = γ.

B. Rankine-Hugoniot algebra and shock boundary conditions

The Rankine-Hugoniot algebra connects the states in the reaction zone with conditions at the shock. LetM = ρU
be the mass flux,P = p+ρU2 the momentum flux, andH = e+ pv+U2/2 = c2/(γ−1)+U2/2−λQ be the specific
enthalpy. Note thatM, P andH are constant in the reaction zone for a steady state, plane detonation. Also the values
of M, P andH in ambient unreacted explosive are the same as at the shock and are given by

M0 =−D , P0 = 1+D2 , H0 =
γ

γ−1
+

D2

2
, (5)

The pressure and velocityp andU can be expressed in terms ofM andP as

p = P−M2v, U = Mv, (6)

Elimination ofU andp in favor ofv in the energy (Hugoniot) equation gives a quadratic forv (in the case of the ideal
EOS)

v2− 2γ
γ+1

P
M2 v+

2(γ−1
(γ+1)

(H +λQ)
M2 = 0. (7)

One solves the quadratic to obtain

v =
γ

γ+1
P

M2 (1−δ) , (8)

where

δ2 = 1− hM2

P2 (H +λQ) , and h =
2(γ2−1)

γ2 , (9)
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which holds throughout the reaction zone structure.
If we introduce the normal Mach number (squared) in the shock-attached frame

M2 =
U2

c2 , (10)

then some simple algebra shows thatδ2 can also be re-written compactly as

δ2 = 1−h
M2

P2 (H +λQ) =
(

1−M2

1+ γM2

)2

. (11)

This illustrates that the argument of the square root that definesδ is positive. Thus, the argument of the square root is
a perfect square and can vanish only at points where the Mach numberM measured in the shock frame is unity.

The CJ detonation velocityDCJ corresponds to the case of a plane, steady detonation with complete reaction at the
sonic point, whereM2 = 1. In this case one setsδ = 0 at λ = 1 with M =−D, P = 1+D2 andH = γ/(γ−1)+D2/2
and derives a quadratic forD2 with solution

DCJ =
√

γ+q+
√

q, where q =
(
γ2−1

)
Q/2. (12)

C. The quasi-steady planar solution

The quasi-steady planar solution corresponds to the leading order solution that ignores curvature and shock accel-
eration terms (i.eḊ = 0, κ = 0). The solution for the leading order state variables is given by the solution to the
Rankine-Hugoniot conditions discussed above. Hence the leading order quasi-steady approximation, denoted with a
0-subscript is given by

ρ0 =
γ+1

γ
D2

1+D2

1
1−δ0

, (13)

p0 =
1+D2

γ+1
(1+ γδ0) , (14)

U0 =− γ
γ+1

1+D2

D
(1−δ0) , (15)

where after a little bit of algebraδ2
0 can be expressed as

δ2
0 = 1−h

M2
0

P2
0

(H0 +λ0Q) = b2 (1+F−λ0) (16)

where

b =
D(D2

CJ− γ)
γDCJ(1+D2)

, F =
(
D2−D2

CJ

) D2D2
CJ− γ2

D2
(
D2

CJ− γ
)2 , (17)

which simplify further calculations. The leading order spatial distribution of reactantsλ0 is given by

n =
Z λ0

0

U0dλ̄0

ω0
. (18)

It is easy to see that ifD ≥ DCJ, that if the detonation is overdriven, thenF ≥ 0. For the under-driven detonation,
that is if D < DCJ, henceF < 0, the quasi-steady planar sonic locus is located atδ0 = 0 at a point of an incomplete
burning,λ0∗ = 1+ F . FunctionF has a property that its minimum value is−1 irrespective ofDCJ andγ and soλ0∗
is well defined for allD. Also, F is negative for

√γ < D < DCJ and positive forD > DCJ. This quasi-steady solution
is used below for derivation of an evolution equation that includes shock acceleration and curvature, as a basic-state
solution, that is as a first approximation in an asymptotic expansion.
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D. Formulation in conserved variables in the shock-attached frame

The variablesM, P and H have special property that they are constant for a steady, plane detonation. For this
reason, we call them “conserved variables”, although in general unsteady detonation they are not conserved. In a
multidimensional, unsteady analysis that deviates from the plane solutions, one looks for corrections to these constants.
The reduced governing equations re-written in terms ofM, P, H andλ, are

Mn =−ρt −κρ (U +D) , (19)

Pn =−Mt −ρḊ−κρU (U +D) , (20)

Hn =−Ht

U
− Ḋ+

v
U

pt , (21)

λt +Uλn = ω. (22)

Approximations that assume weak shock curvature and slow time variation seek to find corrections to the constant
values ofM, P andH as well as to a steady-state reactant distribution. Specifically the left-hand sides of (19), (20)
and (21) when integrated across the reaction zone structure generate a small correction to the values ofM, P andH
evaluated at the shock. The spatially integrated form of the governing equations are a system of integro-differential
equations forM, P andH andλ. Specifically, if we integrate from the shock atn = 0 to a point in the reaction zone
and apply the shock condition, we obtain

M = M0 +M1 , P = P0 +P1 , H = H0 +H1 , (23)

where

M1 =−
Z n

0
ρtdn−κ

Z n

0
ρ(U +D)dn, (24)

P1 =−
Z n

0

(
Mt +ρḊ

)
dn−κ

Z n

0
ρU (U +D)dn, (25)

H1 =
Z n

0

(
−Ht

U
− Ḋ+

pt

M

)
dn. (26)

In this form the corrections are exact, but with the assumptions of weak curvature and slow variation, they can
be regarded to be asymptotically small. In a similar manner, one can integrate the rate equation. The approach
is to estimate integrals inM1,P1,H1 and then invert the Rankine-Hugoniot algebra to compute the primitive states.
Importantly the shock boundary conditions are applied exactly with precision to all orders and expansions generated
by approximation have validity in the main reaction layer (MRL) that has the shock as the boundary.

Likewise, if the curvature and unsteady corrections are small we can generate expansions in the MRL by using the
expressions forM,P andH, inserting them into formulas forδ, (9), v, (8), then forU and p (6). In particular, since
δ vanishes to leading order as we approach the end of the reaction zone for a CJ detonation we postpone expanding
it, since it changes order. Later we will see that this is required to generate a uniform asymptotic expansion. But by
expandingM andP and retainingδ as an unexpanded (treated as anO(1)) quantity to be expanded later, we generate
an MRL-expansion forv

vMRL =
γ

γ+1
P

M2 (1−δ) =
γ

γ+1
P0

M2
0

(
1+

P1

P0
− 2M1

M0
−δ

)
+ . . . , (27)
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with corresponding expansions forUMRL and pMRL. In the simplest case, when one uses the definitions ofM0,P0
andH0 (5), drops the time dependent contributions toM1, P1 andH1, only retaining the curvature corrections and
approximates the integrals with the plane, CJ, steady state, then the MRL expansions found in Stewart & Bdzil (1988a)
and Klein & Stewart (1993) are obtained with this simple expansion of the algebraic form. Thus the effects of unsteady
and curvature terms can be included as corrections to the constant steady solution.

The apparent simplicity of the approach is deceiving as the right-hand sides of the governing equations will contain
expressions involving the square root defined in equation (9). As it turns out (for more details, see Kasimov 2004;
Stewart & Kasimov 2004), most of the difficulties associated with approximating the structure of detonations with an
embedded sonic locus have to do with this square root. An obvious difficulty is seen immediately by observing that
for the steady detonation the argument of the square root vanishes at the sonic point. Since the governing equations
contain time derivatives ofv and hence of the square root, then terms having the inverse of the square root will appear,
which are potentially singular at points where the square root vanishes.

The functionδ itself is a perfectly regular function and has no singularities anywhere in the flow. But as soon as
we expand it, we immediately obtain terms that are inversely proportional to powers of the square-root obtained from
equation (9) which become singular as the argument of the square root vanishes. A simple example of such a function
is
√

x+ ε, which when expanded in smallε becomes
√

x(1+ ε/2x+o(ε)). Clearly, the singularity atx = 0 is a result
of the expansion of a function which is non-uniform, that is the function behaves like

√
x+O(ε) at xÀ ε, while for

x¿ ε the leading-order term of the function is
√

ε. The multiple-scale character of this simple function mimics the
behaviour of a detonation wave with a sonic locus as a multiple-scale phenomenon. Problems associated with this
apparent singularity in analytical treatments have been a central challenge in the theory developed to date.

E. Characteristic conditions at the sonic locus

In a recent work we demonstrated via high resolution computation, the nature of self-sustained detonations with an
embedded sonic locus behind the shock, Kasimov & Stewart (2003). In Stewart & Kasimov (2004) we worked out
the general three-dimensional formulation for this surface as a rear boundary condition. The sonic locus is coincident
with a forward propagating characteristic surface that remains at a finite distance behind the lead shock throughout
the evolution. Forward propagation is defined in terms of the component of velocity normal to the surface that points
toward the lead shock, and described in a one-dimensional context is usually associated with aC+ forward charac-
teristic. Such a "sonic locus" is a separatrix that separates the family of forward characteristic surfaces into ones that
intersect the shock in a finite time, (i.e. are in a region that is subsonic) and characteristic surfaces that flow away
from the shock and never intersect it. There are two fundamental properties of the sonic locus that is coincident with
a characteristic surface: the normal Mach number defined in terms of the normal particle speed for an observer in the
surface is unity; there is a differential constraint on the evolution of states in the surface that in a one-dimensional
isentropic context derives the Riemann invariant. The first constraint defines the normal speed of the sonic locus and
hence we refer to it as the "speed relation". The second constraint is known in the theory of characteristics as the
"compatibility condition" and we use these names throughout. A one-dimensional sketch of the sonic locus discussed
here is shown in figure 1.

For purposes of illustrating these two conditions we imagine that we choose a point on the lead shock and draw a
normal along it, and then take thex-axis in the laboratory frame coincident with that normal. Then we can write the
relation between the lab-frame position,x, shock positionxs(t) and distance measured from the shockn as

x = xs(t)+n. (28)

Next simply write equations (1)-(4) in characteristic form, then the equations on the forwardC+ characteristic obey
the differential relation

ṗ∗+ρ∗c∗u̇∗+κρ∗c2
∗u∗ = (γ−1)Qρ∗ω∗, (29)

on

dx∗
dt

= u∗+c∗ . (30)
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Figure 1:x− t diagram of the shock locus and the sonic locus in self-sustained one-dimensional planar detonation.

where we have evaluated these relations on the sonic locus denoted by a * subscript. If we differentiate the coordinate
transformation on the sonic locus,x∗ = xs(t)+n∗(t) with respect to time to obtain,dx∗/dt = D+ ṅ∗, we can represent
the expression of the characteristic speed (30) in the lab-frame to that expressed in the shock-attached frame as

ṅ∗ = c∗+U∗ , (31)

that is an explicit formula for the normal speed of the sonic locus relative to the shock (U∗ = u∗−D). The characteristic
conditions can of course be expressed in any frame, as is convenient. We refer to (29) as thecompatibility condition
and (31) as thespeed relation. These conditions applied on the sonic locus are boundary conditions that determine
both the motion of the sonic surface and the states on it. Since the sonic locus is a separatrix of characteristics, then
the flow between the shock and sonic locus is entirely determined by the data in the domain of influence between the
shock and sonic locus.

Since the normal Mach number in the shock-attached frame isM =−U/c, then an important observation is that on
the sonic surface, the shock frame Mach number can be expressed as

M∗ = 1− ṅ∗
c∗

, (32)

that is, the sonic Mach number defined in terms of the shock-frame velocity can vary around unity depending on
whether the sonic locus is moving toward (ṅ∗ > 0) or away from the shock (ṅ∗ < 0). This is where a departure
from previous theories that define the trailing sonic locus as a point where the shock-frame Mach number is one, i.e.
M∗ = 1 takes place. We can see that slow time variation associated with the motion of the sonic locus enters the
analysis through in particular the magnitude of the relative velocity of the shock and sonic surface,ṅ∗.

By inserting (32) into (8) one obtains an importantexactexpression at the sonic point,

δ∗ =
1

1+ γM2∗

ṅ∗
c∗

(
2− ṅ∗

c∗

)
, (33)

that later will be used to uniformly approximate the magnitude ofδ∗ in the transonic-layer matching.

F. Sonic-frame formulation

Next we consider a description of the detonation structure as viewed by an observer attached to the frame of the
sonic locus. LetN be a new spatial variable that measures distance along the shock normal from the sonic surface,
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N = n− n∗(t). Let D be the normal speed of the sonic locus as measured in the lab-frame andU = u−D be the
particle velocity in the sonic-locus frame. We also introduce new conserved variables

M = ρU, P = p+ρU2, H =
c2

γ−1
+

U2

2
−λQ. (34)

Then the governing equations in these variables are also similar to their counterparts in the shock frame, and it is easy
to verify that the governing equations are

MN =−ρt −κρ(U +D) , (35)

PN =−Mt −ρḊ−κρU (U +D) , (36)

HN =−Ht

U
− Ḋ +

v
U

pt , (37)

λN =
1
U

(ω−λt). (38)

The primitive variables can be expressed in terms of these new ones as

v =
γ

γ+1
P

M 2 (1−∆) , p =
P

γ+1
(1+ γ∆) , U = M v, (39)

where now

∆ =

√
1− hM 2

P 2 (H +λQ). (40)

Also, similar to that in the shock frame, we again have the equation

∆2 = 1− hM 2

P 2 (H +λQ) =
(

1−M2

1+ γM2

)2

, (41)

whereM = −U/c is now the normal Mach numberrelative to the sonic locus, with the important difference that this
timeM∗ = 1 is imposed as anexactcondition on that surface, which as one can see from (41) also corresponds to

∆∗ = 0. (42)

Equations (35)-(38) can also be integrated fromN = 0 (on the sonic locus) to an arbitrary pointN in the structure
to obtain integro-differential equations. An important difference from the shock-frame formulation is that we impose
the boundary conditionsM = M∗, P = P∗ andH = H∗ to all orders (that is exactly) at the sonic locus instead of at
the shock. And like the approximations in the main reaction layer, that are formulated with the shock as the boundary,
we will generate approximations in the transonic layer (TSL).

III. SLOW-TIME AND WEAK-CURVATURE ANALYSIS

To obtain the evolution equations for the shock and sonic locus, at some asymptotic order we approximate the flow
states variables at the sonic locus and substitute them into the compatibility condition (29) and the speed relation (31).
In order to calculate the states at the sonic locus we use a method of successive approximation to generate asymptotic
expansions, first employed in Yao & Stewart (1996) and recently by us in Kasimov & Stewart (2004) .
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A. Transonic layer expansion in the sonic frame

Near the sonic locus we develop a coordinate expansion of the solution in the sonic frame, expressed in the variable
N = n− n∗ in the limit N → 0. This solution must match with an expansion in the main reaction layer (MRL) as
n→ n∗. Matching provides the connection between the TSL and MRL layers, and allows us to derive the asymptotic
formulas for structure and the dynamics of the detonation structure.

We write the governing system in the sonic frame as follows

M = M∗−
Z N

0
ρtdN−κ

Z N

0
ρ(U +D)dN, (43)

P = P∗−
Z N

0

(
Mt +ρḊ

)
dN−κ

Z N

0
ρU (U +D)dN, (44)

H = H∗+
Z N

0

(
−Ht

U
− Ḋ +

v
U

pt

)
dN, (45)

λN =
1
U

(ω−λt). (46)

In this form the system is exact. The leading order termsM∗, P∗, andH∗ areexactvalues evaluated at the sonic locus.
If we denote

M1 =−
Z N

0
ρtdN−κ

Z N

0
ρ(U +D)dN,

P1 =−
Z N

0

(
Mt +ρḊ

)
dN−κ

Z N

0
ρU (U +D)dN,

and

H1 =
Z N

0

(−Ht/U− Ḋ +vpt/U
)

dN,

then we write

M = M∗+M1, P = P∗+P1, H = H∗+H1. (47)

The termsM1,P1 andH1 that contain time derivatives and terms proportional to the shock curvature can be considered
as corrections to the leading order terms.

The correctionsM1,P1 andH1 in the TSL can be expanded uniformly to obtain

M1 =−
Z N

0
ρtdN =−ρ∗tN−κρ∗ (U∗+D)N+O(N2), (48)

P1 =−(
M∗t +ρ∗Ḋ

)
N−κρ∗U∗ (U∗+D)N+O(N2), (49)

H1 =
(
−H∗t

U∗
− Ḋ +

1
M∗

p∗t
)

N+O(N2), (50)

10



Also let λ = λ∗+λ1 and by integrating the rate equation in the sonic frame for smallN, we obtain

λ = λ∗+
Z N

0

1
U

(ω−λt)dN = λ∗+
1

U∗
(ω∗−λ∗t)N+O(N2), (51)

with λ1 identified as

λ1 =
1

U∗
(ω∗−λ∗t)N. (52)

Notice that in reducing the above expressions we replaced(ρt)∗ with (ρ∗)t = dρ∗/dt and similarly with other time
derivatives evaluated at the sonic locus. This is justified since at the sonic locusd/dt = ∂/∂t +(c∗+U∗)∂/∂N = ∂/∂t
which holds becausec∗+U∗ = 0.

We can now evaluate the spatial expansion ofv. First, let us find the expansion of∆,

∆2 = 1− 2(γ2−1)
γ2

(M∗+M1)2

(P∗+P1)2 (H∗+λ∗Q+H1 +λ1Q)+o(M1,P1,H1,λ1) . (53)

Using∆∗ = 0, we obtain

∆2 =−H1 +λ1Q
H∗+λ∗Q

−2

(
M1

M∗
− P1

P∗

)
+h.o.t. (54)

We now take advantage of the following exact expressions

v∗ =
γ

γ+1
P∗

M 2∗
, p∗ =

P∗
γ+1

, U∗ =
γ

γ+1
P∗
M∗

=−c∗ , (55)

and

H∗+λ∗Q =
γ+1

2(γ−1)
U2
∗ , ρ∗ =

γ
γ+1

P∗
U2∗

, M∗ =
γ

γ+1
P∗
U∗

, (56)

ρ̇∗ =
γ

γ+1

(
Ṗ∗
U2∗

− 2P∗U̇∗
U3∗

)
, Ṁ∗ =

γ
γ+1

(
Ṗ∗
U∗

− P∗U̇∗
U2∗

)
. (57)

Inserting these expressions into (54), after some algebra we obtain

∆2 =− 2
γ+1

1
c2∗

[
u̇∗+

ṗ∗
ρ∗c∗

]
N− 2κ

γ+1
u∗
c∗

N+Q
λ̇∗/U∗ ·N+λ1

H∗+λ∗Q
+O(N2). (58)

Also using (52) it follows that

Q
λ̇∗/U∗ ·N+λ1

H∗+λ∗Q
=−2(γ−1)

γ+1
Q
c2∗

ω∗
c∗

N+O(N2). (59)

Combining all terms in (58) together results in the following spatial expansion for∆2,

∆2 =− 2
γ+1

1
ρ∗c3∗

[
ṗ∗+ρ∗c∗u̇∗− (γ−1)ρ∗Qω∗+κρ∗c2

∗u∗
]
N+O(N2). (60)
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Remarkably, we find thatthe leading order spatial expansion of∆2 proportional toO(N) is proportional to the com-
patibility condition, i.e. the expression of the forward characteristic relation expressed on the sonic locus. Since the
sonic locus is characteristic, the compatibility condition is identically satisfied, and so the terms in square brackets in
(60) vanish. Hence, the sonic frame expansion ofv is given by

vTSL= v∗
[
1+

P1

P∗
− 2M1

M∗
−∆

]
+ ... = v∗+O(N). (61)

The fact that the expansion of∆2 starts withO(N2) terms and thatO(N) terms are absent can be derived in a different
way. Since the spatial derivative ofv (and hencep andU) contains a term proportional to

∂∆
∂N

=
1

2∆
∂∆2

∂N
(62)

and at the sonic point∆∗ = 0, it must also be true that
(
∂∆2/∂N

)
∗ = 0 if the derivatives of the state variables are to

remain finite. Direct calculation of
(
∂∆2/∂N

)
∗ shows that indeed it is proportional to the compatibility condition and

hence vanishes at the sonic locus. Thus we come to an important conclusion thatthe compatibility condition (which is
fundamental) is also a regularity condition for the derivatives of the state variables at the sonic point. In other words,
on the sonic surface, the spatial and temporal derivatives of the state variables must be finite.

B. Spatial matching of the Main Reaction Layer and Transonic Layer

To demonstrate the matching of the MRL and TSL expansions we expandvMRL given by (27) in the limit asn→ n∗
and compare it tovTSL in (61) asN → 0. Specifically we writen = n∗+ ∆n and evaluate the integrals in equations
(24)-(26) atn = n∗+∆n, where∆n≡ N→ 0 to obtain the expansions

M = M0 +M1∗+O(∆n) , P = P0 +P1∗+O(∆n) , H = H0 +H1∗+O(∆n). (63)

We substitute these into equation (27) and obtain

vMRL =
γ

γ+1
1+D2

D2

(
1+

P1∗
P0
− 2M1∗

M0
−δ∗

)
+O(∆n). (64)

NoticeM1∗,P1∗,H1∗ andδ∗ are functions of time. We do not expandδ but rather use itsexactvalue at the sonic point,
which leaves the truncated terms atO(∆n). Note again thatδ is uniformly regular as∆n→ 0 while its expansion is
not. Spatial matching of the TSL and MRL to leading order obtains the sonic state specific volume

v∗ =
γ

γ+1
1+D2

D2

(
1+

P1∗
P0
− 2M1∗

M0
−δ∗

)
. (65)

The pressure at the sonic locus,p∗ is given simply by

p∗ =
1+D2

γ+1

(
1+

P1∗
P0

+ γδ∗
)

. (66)

UsingU∗ =−c∗ =−√γp∗v∗, we can find the sonic-frame particle velocity,

U∗ =− γ
γ+1

1+D2

D

(
1+

P1∗
P0
− M1∗

M0
+

γ−1
2

δ∗
)

. (67)

Next the sonic states listed above are computed to include corrections toO
(
Ḋ,κ, ṅ∗

)
. Then the compatibility

condition and speed relation are imposed at the sonic locus. To complete the analysis we must consider contributions
to the integrals that require consideration of the rate equation. We proceed to these calculations next and derive
equations for the main unknowns of the problem,D, λ∗ andn∗.
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C. Calculation of the compatibility condition and the speed relation

Here we evaluate the integralsM1∗, P1∗, andH1∗ to the leading leading order corrections in∂/∂t andκ, in order to
compute the sonic state variables. Then we substitute the result into the sonic conditions to obtain a reduced evolution
system for the shock dynamics.

First consider the compatibility condition. To obtain terms up toO(Ḋ,κ) we only need the leading-order quasi-
steady, planar solution since the compatibility condition is a differential relation. The leading order sonic-state is
given by

p0∗ =
1+D2

γ+1
, v0∗ =

γ
γ+1

1+D2

D2 , c0∗ =−U0∗ =
γ

γ+1
1+D2

D
, (68)

so that

ρ0∗c0∗ = D, u0∗ =−c0∗+D+ ṅ∗ =
D2− γ

(γ+1)D
. (69)

Then we find that toO(Ḋ,κ),

ṗ∗ =
2DḊ
γ+1

, u̇∗ =
D2 + γ

(γ+1)D2 Ḋ, κρ∗c2
∗u∗ = κ

γ
(γ+1)2

(1+D2)(D2− γ)
D

. (70)

Notice thatṅ∗ is absent in (70) because it comes in only through the derivative ofδ∗, which iso(ṅ∗) and so is of higher
order than we retain here. Substitution of (70) into the compatibility condition (29) results in an equation relating
Ḋ, D, κ, andλ∗,

Ḋ = a1ω∗−a2κ, (71)

where

a1 =
γ+1

γ
(γ2−1)QD3

(1+D2)(γ+3D2)
, a2 =

γ
γ+1

(1+D2)(D2− γ)
γ+3D2 . (72)

One immediate observation from equation (71) is that ifḊ is neglected (corresponding to quasi-steadycurved
detonation), the equation has no solution with negative curvature for one-step exothermic reaction (that is forω∗ ≥ 0),
which implies that for this type of chemistry, no quasi-steady converging detonation wave with a sonic locus can exist.
Clearly, if more complex kinetics is considered such thatω∗ can be negative, then quasi-steady converging (κ < 0)
detonation is possible.

Next we evaluate the speed relation. Since the speed relation is algebraic in state variables, we need to compute
the sonic states including the integral corrections, which giveO

(
Ḋ,κ

)
contributions. The original speed relation is

ṅ∗ = c∗+U∗, or which is the same,M∗ = 1− ṅ∗/c∗. We will use an equivalent relation that is written in terms of the
conserved variables, for which we have simple asymptotic expansions. Such a relation is provided by equation (11)
that relates all conserved variables to the Mach numberM. Also recall that we have an exact expression forδ∗ in terms
of ṅ∗ provided by equation (33). Therefore, the speed relation is used in the form of equation (11) evaluated at the
sonic point,

δ2
∗ = 1−h

M2∗
P2∗

(H∗+λ∗Q) . (73)

whereM∗,P∗, andH∗ all retain the unsteady and curvature terms toO(Ḋ,κ) andδ2∗ is evaluated from the exact equation
(33). Sinceδ2∗ = O(ṅ2∗), thenṅ∗ is absent in the speed relation to leading order and we can drop the left-hand side of
equation (73) and hence obtain an equation that relatesḊ, D, andλ∗ by expandingM∗,P∗, andH∗. Notice again, that
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just like the compatibility condition the speed relation also does not containṅ∗ to the leading order, which leaves us
with only two equations (instead of three in general) to solve forD andλ∗.

The correction termsM1∗,P1∗, andH1∗, found by substituting the quasi-steady planar solution, equations (13)-(16),
into the integrands of equations (24)-(26), are

M1∗ =−ḊI1 +κD(n0∗− I0) , (74)

P1∗ = Ḋ(n0∗− I0)+κD2 (n0∗−J0) , (75)

H1∗ =−Ḋ

(
n0∗− I0 +

1
D

S1

)
, (76)

where we denote various integrals as

n0∗ =−D
Z λ0∗

0

dλ0

ρ0ω0
, I0 =

Z n0∗

0
ρ0dn, J0 =

Z n0∗

0
v0dn, (77)

I1 =
Z n0∗

0
ρ0Ddn, S1 =

Z n0∗

0
p0Ddn. (78)

The subscriptD here denotes partial differentiation with respect toD. Note thatn0∗ is the leading-order position of
the sonic locus. These integrals are calculated using the change of the integration variabledn=−Dv0dλ0/ω0 and the
upper limit of the integration toλ0∗ = 1+F .

SubstitutingM∗ = M0 +M1∗, P∗ = P0 +P1∗, H∗ = H0 +H1∗, with the corrections given by equations (74)-(76), into
equation (73), we obtain after some algebra that the speed relation is given by

1+F−λ∗+κ f + Ḋg = 0, (79)

where we denote

f =
2
b2

[
n0∗− I0 +

D2

1+D2 (n0∗−J0)
]
, (80)

g =
2
b2

[
1+(1+h/2)D2

(1+D2)2 (n0∗− I0)+
hD

2(1+D2)2 S1− 1
D

I1

]
. (81)

In deriving (79), one takes advantage of the expansionλ∗ = λ0∗+λ1∗ whereλ0∗ = 1+F = O(1) is the leading-order
value of the progress variable at the sonic locus, andλ1∗ is o(1) correction to that. It is important to note thatF = O(1)
and no assumption thatF = o(1) (that isD−DCJ = o(1)) is necessary. Note also that the requirement thatλ∗ ≤ 1 puts
a constraint onF so that if detonation is overdriven, that is ifF > 0, equation (79) may not have a solution forλ∗,
which means that the sonic point may be absent in the flow.

We call equation (71) in whichλ∗ is substituted from the speed relation, equation (79), theevolution equation. In
general, if higher-order terms are included, we have a system of evolution equations forD, λ∗ and ṅ∗ comprised of
the compatibility condition, the speed relation and also the rate equation evaluated to sufficiently high accuracy. The
evolution equation, equation (71) admits a simple physical interpretation as the dynamical equation that governs the
shock motion. It says that the shock acceleration is controlled by the competition between the heat release, represented
by a1ω∗, that tends to accelerate the shock, and the flow divergencea2κ that takes the energy away from the shock and
thus tends to decelerate it. The quasi-steady solution,Ḋ = 0, corresponds to the exact balance of the two competing
effects,a1ω∗ = a2κ, the equation that yieldsD−κ relation.
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IV. SOLUTIONS OF THE EVOLUTION EQUATION

Two equations, (71) and (79) are the main result of the present work. The evolution equation (71) is theḊ−D−κ
relation that governs the dynamics of slowly-evolving weakly-curved detonations. The main purpose here is to use the
equation for the analysis of detonation initiation and failure in the case of spherical or cylindrical detonations. But it is
clear from the above derivations that the evolution equation (71) has wider applicability, namely to two-dimensional
weakly-curved and slowly-varying detonations, as its derivation does not rely on specific spatial symmetry. Before
proceeding to the analysis of solutions of the evolution equation we point out several of its general properties.

A. Properties of the evolution equation

Several comments should be made regarding the character of theḊ−D− κ relation derived above. Perhaps the
most important feature of the relation is that its derivation does not require anyspecificassumptions about the ordering
of eitherD−DCJ or Ḋ with regard to each other orκ. The only assumption is that oḟD = o(1) andκ = o(1). The
three quantities are related in the final result in a rather general form and involve a range of scales that would hardly
be possible to anticipatea priori. As for any assumption forD−DCJ, none is necessary to derive the above evolution
equation.

There exists a dynamic change of the time scale in the evolution equation that can be seen from consideration of the
near-CJ limit ofD−DCJ = O(F), F → 0. It is easy to see that two of the above integrals, namelyI1 andS1 are in fact
singular asD → DCJ because of the derivatives of the seed state in the integrands. As shown in Appendix A, in the
limit F → 0 the integrals behave as follows

I1 =
constant

|F |ν−1/2
+ reg. (82)

if 1/2 < ν < 1 and

I1 = constantln |F |+ reg. (83)

if ν = 1/2, whereregdenotes regular terms. IntegralS1 has exactly similar behaviour. Since none of the other integrals
exceptI1 andS1 are singular, we conclude thatḊ changes its order, that is, it becomes smaller for near-CJ detonation
compared to the dynamics withD−DCJ = O(1) by a factor ofO(|F |ν−1/2). This is what we mean by “dynamic scale
change” since the order oḟD is exactly the order of the time derivative. Hence near-CJ detonation in present theory
evolves on a slower time scale than sub-CJ detonation.

The fact that the problem involves a range of scales, for example for near-CJ detonation can be seen from the
evolution equation as follows. Suppose we assumea priori scales forκ = O(ε) and∂t = O(εα), ε → 0, α > 0. The
question is: What is the scale ofD−DCJ that is consistent with the compatibility condition and the speed relation?
Let κ = εκ′ andḊ = εαḊ′ with α ∈ (0,2) andκ′ = O(1), Ḋ′ = O(1). Then equation (71) results in

1−λ∗ = O
[
(a1ε+a2εα)1/ν

]
(84)

while using the latter result, equation (79) gives

D−DCJ = O
[
(a1ε+a2εα)1/ν

]
− εκ′ f − εαḊ′. (85)

From equation (85) we see immediately that a number of scales enters the expansion ofD−DCJ. For a more

explicit example, takeα = 3/2 andν = 3/4. Then1− λ∗ = O
[
ε1/ν (

a1 +a2ε1/2
)1/ν

]
= O(ε1/ν) + O(ε1/ν+1/2) =

O(ε4/3)+O(ε11/6) and therefore

D−DCJ = O(ε)+O(ε4/3)+O(ε3/2)+O(ε11/6). (86)
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The last three terms are all intermediate betweenO(ε) and O(ε2). Retaining them is essential for capturing the
correct physics contained in the compatibility condition and the speed relation. Anya priori assignment of a single
scale forD−DCJ in addition to those ofκ andḊ, although entirely legitimate, will produce an evolution equation
which is restricted to phenomena on those scales only. But detonation with the sonic locus is intrinsicallymulti-
scalephenomenon and in general requires treatment of all scales for capturing the correct dynamics. This shows that
with pre-set scales of all the small quantities, one in general has to include a number of reaction-order dependent
intermediate scales in the expansions of state variables.

An important conclusion from the above discussion is that in the present analysis we are looking at detonation
dynamics that is subject to the distinguished limit thatḊ→ 0 asD−DCJ→ 0. Clearly such a theory is insufficient for
prediction of more complex dynamics such as pulsating or cellular detonations. Inclusion of higher-order terms with
more accurate representation of the solution in the transonic layer (which is precisely the source of the singularities)
avoids these difficulties as we discuss in the forthcoming paper (Kasimov & Stewart 2004).

Another observation concerns the magnitude of different terms in the evolution equation (71). The assumptions
on which the theory is based are those of small time derivatives i.e.Ḋ = o(1) and small curvature,κ = o(1). As a
consequence of these assumptions and the compatibility condition (71) it follows that the reaction rate at the sonic
locus must also be small,ω∗ = o(1). By not specifying how exactlyω∗ = o(1) the theory is general so that various
asymptotic limits are included. The simplest example is1−λ∗ = o(1) with D−DCJ = o(1), which is consistent with
ω∗ = o(1). But D−DCJ = O(1) is included so long asω∗ = o(1). In the case ifḊ = 0, thenω∗ = O(κ) is all that is
required whenD−DCJ = O(1). That is theD−κ curve is scaled by the reaction rate and lies in the neighbourhood of
small curvature. In the special case of state-sensitive kinetics such as Arrhenius kinetics with large activation energy,
ω∗ is uniformly small asD decreases fromDCJ to the ambient sound speed,c0.

We should also point out that the reaction mechanism is only assumed to be of one-step reaction described by a
single progress variable. There has been no assumption made with regard to the form of the rate function. As far as
mathematical character of the evolution equation, one can show that local linearization of the speed relation and the
compatibility condition results in a hyperbolic partial differential equation provided the functionsf andg are positive.
One can easily prove that functionf is always positive and numerical calculations show that functiong is also positive.

B. Quasi-steady response: TheD−κ relation

Now let us calculate the quasi-steadyD−κ relation which is obtained by settinġD = 0 in equation (71) for various
parameter sets. We calculateD−κ curves and analyze the effects of some of the constitutive parameters. Consider a
gaseous explosive mixture with a rate law of Arrhenius form

ω = k(1−λ)ν exp

(
− E

pv

)
. (87)

Then, we find that to leading order

p0∗v0∗ = c2
0∗/γ =

1
γ

(
γ

γ+1
1+D2

D

)2

(88)

and the evolution equation (71) becomes aD−κ equation

F +κ f +κ1/ν exp

[
γE
ν

(
γ+1

γ
D

1+D2

)2
]
·
[(

γ
γ+1

)2 (1+D2)2(D2− γ)
(γ2−1)kQD3

]1/ν

= 0. (89)

We can immediately see that forD−DCJ = o(1) this is a familiar result (e.g. Klein and Stewart 1993), but importantly,
equation (89) has no assumption in it regardingD−DCJ or the magnitude of the activation energyE.

Note that the general qualitative character of theD−κ relation can be easily seen from the equationa1ω∗ = a2κ as
follows. Let us write the equation as

k(1−λ∗)ν exp

(
−γE

c2∗

)
= ā(D−√γ)κ. (90)
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Figure 2:D−κ curves forν = 1, γ = 1.2, Q = 50 (a) andQ = 30 (b) for various activation energies:E = 0,5,10,20 and30. E
increases from right to left on each figure.

Now assume for simplicity that the speed relation yields1−λ∗ =−F = b̄(DCJ−D). Here we separate the important
dependencies ina1, a2, andF by introducingā(D) and b̄(D) as certain weak functions ofD. Then we obtain the
following explicit formula forκ(D):

κ = c̄
(DCJ−D)ν

D−√γ
exp

(−d̄E/D2) , (91)

where again̄c andd̄ are weak functions ofD. It is clear now from (91), that asD decreases belowDCJ, κ first increases
from κ = 0 because of the factor(DCJ−D)ν, but then the exponential term that decreases asD goes down starts to
dominate causingκ to decrease. As a result we have a first (upper) turning point at someD = Dc. The curvature will
decrease after reaching the upper turning point until eventuallyD becomes close to the ambient sound speed,

√γ, so
that the denominatorD−√γ causesκ to grow again, which explains the existence of the second (lower) turning point.
Since the exponential term although small, never vanishes,κ will eventually increase to infinity asD→√γ. It is also
clear that if the activation energy is sufficiently small, then the exponential term may not be able to compensate for
the increase ofκ due to(DCJ−D)ν, in which case there will be no turning points andκ will increase monotonically
to infinity. This simple picture explains the essential nature of theD−κ relation that can exhibit two turning points.

Next we plot exactD(κ) dependencies that follow from equation (89) for various values ofE, Q, γ, andν. Figure
2 showsD−κ curves for varying activation energy for two different heat release parametersQ. Increasing activation
energy fromE = 0, (in which case there are no turning points) to largerE causes two turning points appear, which
move toward smallerκ asE is increased. DecreasingQ from Q = 50 to Q = 30 causes a similar change inD− κ
curves as does increasing the activation energyE.

Figure 3 shows variations of reaction orderν (a) and specific heat ratioγ (b). The reaction order is seen to have a
negligible effect on the solution, except near the lower branch, whereν = 3/4 shows critical curvature larger than all
other cases. Variations of the adiabatic exponent have much more significant effect on theD−κ solution. The upper
turning point is seen to move toward smaller curvatureκ and larger velocityD asγ is decreased.

C. Ḋ−D−κ relation and the ignition/failure phenomenon

Next we apply the evolution equation (71) to describe the dynamics of a spherically expanding detonation wave in
a mixture with heat release governed by the simple-depletion Arrhenius rate law

ω = k(1−λ)exp

(
− E

pv

)
. (92)
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Figure 3: (a)D−κ curves forγ = 1.2, Q = 30, E = 20 for several reaction orders,ν = 1/2 (solid), ν = 2/3 (dashed),ν = 3/4
(dash-dot), andν = 1 (dotted); (b)D−κ curves forν = 1, Q = 30, E = 20 for severalγ: γ = 1.2 (solid), γ = 1.4 (dashed), and
γ = 1.6 (dash-dot).

We write the evolution equation as a second-order ordinary differential equation in the shock radiusR= 2/κ, D = Ṙ,
andḊ = R̈. Our goal is to obtain the solution of the equation subject to the initial conditions,Ṙ(0) = D0 andR(0) = R0
for different values ofD0 andR0. As a specific example, we consider a mixture withγ = 1.25, Q = E = 40, which is
representative of near-stoichiometric hydrogen-oxygen mixtures.

The quasi-steady response curve for this parameter set is shown in figure 4(a) with the upper turning point at
κc = 7.19·10−3, Dc/DCJ = 0.876, whereDCJ = 6.8896. The lower turning point is located at essentially zero curvature
(less than10−8). Figure 4(b) demonstrates the ignition and failure phenomenon exhibited by the evolution equation.
Equation (71) is solved starting from variety of initial conditions, which are chosen so thatR0 = 200is fixed andD0 is
varied from about CJ value6.8 to 5.0. If D0 is sufficiently large, then the shock speed first decays to a certain minimum,
which is reached at the quasi-steady curve,Ḋ = 0, and then increases, asymptotically approaching the quasi-steady
D−R curve asR→ ∞. In this case we have a successful initiation. If the initial shock speed is sufficiently low, then
the solution has a qualitatively different character, namely the shock speed continues to decay and does not recover
until very large distances are reached, that correspond to the lower turning point in figure 4(a), so that the distance is at
least2 ·108. As the solution crosses the lower branch, the shock accelerationḊ becomes positive and ignition results.
As figure 2 shows, the curvature at the lower turning point decreases rapidly with increasing activation energy, thus
the re-ignition of the initially failed detonation will take place at very large distances for sufficiently large activation
energies, which are typical of real mixtures, and thus can be essentially ignored. The existence of the lower turning
point is a feature of the one-step Arrhenius kinetics, that allows for a finite reaction rate at arbitrarily low shock speeds
(hence shock temperatures). In reality, the chemical reactions responsible for the heat release may terminate if the
gas temperature drops below a certain, mixture dependent value. Extensions of the theory to include more complex
chemistry that includes such property of the realistic chemistry should eliminate the re-ignition behaviour associated
with the lower turning point. We should emphasize that the essential mechanism of the initiation/failure phenomenon
is principally associated with the upper turning point, which is expected to exist for arbitrary chemistry models. Thus,
despite its simplicity the Arrhenius kinetics is still capable of describing the main physical mechanism of the initiation
process.

The dash-dot line in figure 4(b) is what we call anignition separatrix. It is a curveDIS(R) that delineates initial
conditions that lead to ignition (above the curve) and those that lead to failure (below the curve). One can easily
calculate the ignition separatrix by taking the initial condition at sufficiently largeRand just below the middle branch
of theD−R curve and integrating the evolution equation (71), backward in time.

The solution that starts just above the separatrix, that is atD0 = 5.85 most clearly shows that between the initial
decay and final acceleration of the shock there is a relatively long phase of almost constant shock speed. Similar
behaviour is also observed in both numerical simulations and experiments, and the phase has been called “a quasi-
steady” stage of detonation initiation (e.g. Lee & Higgins 1999). The term may be justified to some degree as the
detonation does indeed have very small acceleration (none exactly at the lower branch of the quasi-steadyD−R
curve), the acceleration, however small, is followed by a very rapid approach to the CJ velocity. The closer the initial
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Figure 4: (a)D−κ curve for detonation in an ideal gas withγ = 1.25, Q = E = 40; (b) Ignition and failure. Dashed line is the
quasi-steadyD−Rcurve, dash-dot line is the ignition separatrix, and solid lines are solutions of equation (71) with initial conditions
given byR0 = 200and variousD0, D0 = 6.8, 6.5, 6.2, 5.85, 5.84, and5.0 from top to bottom.
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Figure 5: Position of the sonic locus,n0∗ and the ratio of the heat release terma1ω∗ to the curvature terma2κ in equation (71)
during successful ignition (a) and failure (b) for detonation in an ideal gas withγ = 1.25, Q= E = 40. (a) corresponds toR0 = 200,
D0 = 5.85, (b) corresponds toR0 = 200, D0 = 5.841.

condition to the ignition separatrix, the more extended the “quasi-steady” stage is.
Figure 5 shows plots of the ratio of the heat release,a1ω∗ and curvature (or divergence),a2κ terms in equation (71)

and the location of the sonic locus,n0∗ during ignition (a) and failure (b). In the case of the successful initiation, (a),
one can see thata1ω∗/a2κ is less than unity, hencėD < 0 during the initial decay of the shock (see equation 71),
and until its value reaches unity, the sonic locus retreats from the shock. As the ratioa1ω∗/a2κ becomes equal to
unity and starts increasing further, the sonic locus reverses its direction and starts moving toward the shock. There
is a rapid increase of the heat release term during the initiation phase, and then the term decreases because of the
fuel depletion at the sonic locus, that is becauseλ∗ → 1. As R further increases, both the reaction terma1ω∗ and
curvature terma2κ tend to zero, their ratio approaching unity, and henceḊ approaching zero. The failed case is shown
in figure 5(b), where the reaction terma1ω∗ is seen to remain much smaller than the curvature term and the sonic locus
keeps retreating from the lead shock. Therefore, the dominating flow divergence,a2κ in this case results in detonation
failure.
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D. The direct initiation and critical energy

Criticality of solutions of the evolution equation, equations (71), demonstrated in figure 4 is a function of the initial
conditions,D0 andR0. Importantly, the mechanism by which the initial condition is created can be arbitrary and
depends on specific means of initiating the detonation. One important means is by direct initiation by a blast release of
concentrated energy. Direct initiation can be accomplished by a hypervelocity projectile and detonation re-initiation
upon diffraction round a corner. Diffracted detonation wave may fail in certain cases and identification of the failure
conditions has implications for the problem of detonation transmission from confined into unconfined space. The
failure can be predicted by the above theory provided the initial conditions from the early stage of the diffracted
detonation correspond to detonation radius and speed below those of the ignition separatrix. Such calculations of
detonation diffraction and comparisons with the present theory are being carried out in our group by B. Wescott and
will be reported on shortly.

We now give more details on how the direct initiation can be treated using the present theory. The main idea is to
relate the characteristics of the strong blast wave such as its shock speed,Dbw and radius,R to the initial conditions,
D0 andR0 required to solve the evolution equation. If the energy of the blast wave,Ebw is sufficiently large so that
the point(R,Dbw) happens to be above the ignition separatrix at some point of the blast-wave decay, then successful
ignition would follow. Otherwise, the blast wave would continue to decay and consequently lead to detonation failure.
Then, a critical energy,Ec exists such that the decaying blast wave follows the ignition separatrix. Thus, given the
strong-blast wave solution, we can identify its strength that would correspond to the ignition separatrix. A simple
way to estimate the critical energy is to require that the blast-wave solution and the ignition separatrix match at, for
example,D = DCJ. Let us denote the corresponding radius on the ignition separatrix asRs. Then we obtain the
criticality condition

Dbw(Rs,Ec) = DCJ. (93)

The blast-wave solutionDbw(R,Ebw) depends parametrically on the blast energyEbw, thus allowing us to extract the
critical energy from equation (93).

In the case of a detonation with point symmetry (j = 0,1,2 correspond to planar, cylindrical and spherical symmetry,
respectively) one can use Korobeinikov’s extension of the Taylor-Sedov blast-wave formula (Korobeinikov 1991;
Eckettet al. 2000),

Ebw = A j

(
j +3

2

)2

ρ0D2
bwRj+1exp

(
−B jQ

D2
bw

)
, (94)

which accounts for the leading-order asymptotic effect of the chemical reaction on the strong blast dynamics. In the
case of a spherical detonation, the constantsA2 andB2 are functions ofγ that can be calculated by the following
formulas,

A2 = 0.31246(γ−1)−1.1409−0.11735log10(γ−1) , (95)

B2 = 4.1263(γ−1)1.253+0.14936log10(γ−1) , (96)

which are valid for1.2≤ γ≤ 2. For the parameter set that we used to plot figure 4, that isγ = 1.25, Q = E = 40, we
find thatRs = 114.6, DCJ = 6.8896, and the critical energyEc = 3.08·108.

If one has thermodynamic and kinetic data that describe real mixtures within the framework of the ideal-gas equation
of state and one-step Arrhenius kinetics, one can follow the above procedure to estimate the critical energies for real
mixtures. Such thermo-chemical data obtained from detailed chemical calculations of the steady one-dimensional
detonations (e.g. the activation energyE, heat releaseQ, von Neumann temperature, reaction zone lengths, etc.) can
be found at Caltech detonation database (Kaneshigeet al. 1997). As for the adiabatic exponentγ which is assumed
constant and the same for the reactants and products, one can obtain it from the shock conditions by demanding that
the shock temperature agrees with detailed numerical predictions. Therefore, from the detailed chemical calculations
we retain the effective activation energy, the total heat release, and the von Neumann temperature, all of which are of
the most significance for the detonation dynamics. Figure 6 shows comparison of the critical energies calculated by
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(HE initiation - Matsui & Lee 1979; exploding bridge-wire - Litchfieldet al. 1962).

this method forH2−O2 mixtures of various equivalence ratiosφ against experimental data (which are again found at
the Caltech detonation database).

Two sets of experimental data are plotted, which correspond to different means of strong initiation, namely by a
high explosive discharge and an exploding bridge-wire. For calculations of the dimensional critical energies one also
needs to know the dimensional half-reaction lengthl̃1/2. We took l̃1/2 equal to the reaction zone lengths found at
Caltech database, which are based on a detailed chemical mechanism and correspond to the distance from the shock
to the point in the reaction zone at which the temperature gradient attains a maximum. While this may not exactly
be the half-reaction length, they are sufficiently close for our purpose here. One can see that despite the simplicity of
the underlying constitutive description, the agreement of the theory and experiment, in particular the one with high-
explosive initiation, is remarkably good. The experiment with high-explosive (HE) initiation compares better with
present theory because the blast wave formed due to HE detonation is more likely to represent a point explosion than
the wave formed in the exploding bridge-wire experiment. Experimental results on direct initiation are themselves
subject to often more than an order of magnitude difference and the comparison should be looked at with that caveat in
mind. In addition, simplicity of chemistry employed by the theory may have consequences. But more careful studies
of the initiation are required in all respects before a more definitive conclusion can be reached (for further discussion
see also Eckettet al. 2000).

To summarize the critical energy calculation procedure, given the mixture global thermo-chemical parameters such
asγ, Q, ν, andE, we can compute the ignition separatrix by solving the evolution equation (71), and findRs, then find
the critical initiation energyEc from equations (93)-(96).

E. On weak initiation

Now we consider initiation by a weak source that can also be treated with present theory. While the theory of direct
(strong) initiation discussed in the preceding section is closely related to the properties of theD−κ curve near the
upper turning point, weak initiation has to do with the lower turning point. Note that if one looks at the sign ofḊ at
different regions ofD−Rplane, one finds that to the left of the quasi-steadyD−Rcurve, the acceleration is negative,
that isḊ < 0, while to the right it is positive. Consequently, below the lowest branch of the quasi-steadyD−R curve
(see figure 7), at shock speeds very near the ambient sonic speed, the shock acceleration is positive, and therefore
ignition from such initial conditions is possible.

In figure 7, we consider detonation in a gas withγ = 1.2, Q = 50, ν = 1, and activation energyE = 13 which
is sufficiently small so that the lower turning point is not at unreasonably large distances. If we solve the evolution
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Figure 7: Detonation initiation by a weak source for a mixture withγ = 1.2, Q = 50, E = 13. Solid line is a quasi-steadyD−R
curve and dashed line is a solution of theḊ−D−κ equation with initial conditionsD0 = 1.101, R0 = 100.

equation (71) starting from an initial condition just below the quasi-steady curve, atD0 = 1.101andR0 = 100, then
the detonation evolves so that the solutionD(R) remains below the quasi-steady curve until it passes the lower turning
point, after which the shock speed starts to increase rapidly, indicating transition to theCJ detonation.

It is interesting to look at the position of the sonic locus as it varies with the shock speed. Figure 8(a) shows how
the sonic locus defined as

n0∗ =−D
Z 1+F

0

dλ0

ρ0ω0
=−D

Z 1+F

0

exp
(
γE/c2

0

)
dλ0

ρ0k(1−λ0)
(97)

varies along the quasi-steadyD−R curve of figure 7. One can see that along both upper and lower stable branches of
D−R curve, the sonic locus tends to be much closer to the shock than along the middle branch, which implies that
both near-CJ detonation (F close to 0) and near-sonic detonation (F close to -1) have small domains of influence with
sonic locus near the lead shock. The situation for the unstable middle branch ofD−R curve is different. The sonic
locus for such detonation can move away from the shock to very large distances. This behaviour follows from the
definition (97). IfF is close to 0, thenc2

0 (which is proportional to the temperature in the reaction zone) is sufficiently
large so that the exponential in the integrand is not a large quantity. If on the other hand, we look at the middle branch,
the post-shock temperature drops so much that the exponential is a large number with a consequence that the sonic
locus moves further from the shock. The reason that the sonic locus returns closer to the shock as we get close to the
bottom branch of theD−Rcurve is that asD→ ca =

√γ, we getF →−1, and so the upper limit of the integration in
(97) tends to 0. Figure 8(b) show how the sonic locus evolves during the weak initiation shown in figure 7.

This phenomenon of weak initiation could in principle be related to any initiation mechanism that creates the initial
condition such that the detonation is very slightly supersonic. For example, in the case shown in figure 7, the initial
detonation Mach number isD0/

√γ = 1.005. Here we do not discuss in any detail possible physical situations that
could result in such initial conditions, but clearly one can think of many (e.g. weak shocks that can arise in the
deflagration-to-detonation transition). We also note that of course, if the initial condition is just above the quasi-steady
curve, one would still obtain ignition after the solution passes through the neighbourhood of the lower turning point
of the quasi-steadyD−R curve.

If the activation energy is sufficiently large, then the weak initiation becomes problematic as the lower turning point
moves to very large distances. In such cases, a sufficiently strong shock must be created such that the initial condition
corresponds to states well above the lower branch of the quasi-steadyD−R curve if successful initiation is to be
expected.
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Figure 8: (a) The sonic locus along the quasi-steadyD−R curve and (b) the sonic locus for weak ignition, both of figure 7.

V. LARGE-ACTIVATION-ENERGY FORM OF THE EVOLUTION EQUATION

All integrals in the evolution equation are of the form

G =
Z 1+F

0
g(λ,D)

dλ
ω

. (98)

In the limit of large activation energy, the integral can be simplified and can be calculated explicitly. Let us write

ω = k(1−λ)ν exp(−ϑ)exp

[
ϑ

(
1− c2

s

c2
0

)]
, (99)

wherec2
s is the sound speed at the shock andϑ = γE/c2

s is the activation energy, that we consider to be large, that is
we compute the integrals in the asymptotic limit of largeϑ. Sincec2

0/c2
s = T/Ts and the temperature at the shock is

lowest within the reaction zone, the largest contribution to the integral comes from near the shock, that is from the
induction zone.

Since

p0 =
1+D2

γ+1
(1+ γδ0) , v0 =

γ
γ+1

D2

1+D2 (1−δ0) , (100)

andδ0 = b
√

1+F−λ0, we find

c2
0 = c2

∗ (1+ γδ0)(1−δ0) . (101)

Herec∗is the sound speed at the sonic point. Now lets= λ/(1+F) and expandc2in smalls:

c2
0 = c2

∗
(
α1 +α2s+O(s2)

)
= c2

s (1+βs)+O(s2), (102)

where

β =
γb2

1− (γ−1)b1/2

1+(γ−1)b1− γb2
1

, (103)
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andb1 = b
√

1+F . Then

c2
s

c2
0

= 1−βs+O(s2). (104)

Using this expansion we find that

G∼ g(0,F)
1+F

kβ
exp(ϑ)

ϑ
. (105)

Define

Φ =
1+F

kβ
exp(ϑ)

ϑ
. (106)

Then the integralsn0∗, I0, andJ0 in theD−κ equation are

n0∗ =−D
Z 1+F

0

dλ0

ρ0ω0
=−DvsΦ, (107)

I0 =−D
Z 1+F

0

dλ0

ω0
=−DΦ, J0 =−D

Z 1+F

0

dλ0

ρ2
0ω0

=−Dv2
sΦ. (108)

The functionf becomes

f =
2
b2 DΦ(1−vs)

[
1− D2

1+D2 vs

]
= f0Φ. (109)

This asymptotic form exhibits theD−κ curve very nicely.
Similarly, integralsI1 andS1 in g are

I1 =−D
Z 1+F

0
(lnρ0)D

dλ0

ω0
=−D

(
ρ0D

ρ0

)

s
Φ, (110)

S1 =−D
Z 1+F

0

p0D

ρ0

dλ0

ω0
=−D

(
p0D

ρ0

)

s
Φ. (111)

It is assumed thatF < 0, that is sub-CJ detonations are considered. The derivatives ofp0 andρ0 are

(lnρ0)D =−(lnv0)D =
2

D(1+D2)
+

1
1−δ0

δ0D, (112)

p0D

ρ0
=

c2
0

γ
(ln p0)D =

c2
0

γ

[
2D

1+D2 +
γ

1+ γδ0
δ0D

]
. (113)

And

δ0D = bD

√
1+F−λ0 +

b
2

FD√
1+F−λ0

, (114)
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Figure 9: Comparison of the exact theory, largeϑ asymptotic version of the theory, and numerically computedD−κ curves for
γ = 1.2, E = 50, andQ = 30.

bD =
D2

CJ− γ
γDCJ

1−D2

(1+D2)2 , FD =
2D2

CJ

(
D4− γ2

)

D3
(
D2

CJ− γ
)2 . (115)

g = g0Φ. (116)

Figure 9 shows comparisons of the exact theory, largeϑ asymptotic version of it and the direct numerical solution
of the reduced Euler equations (19)-(22), with no unsteady terms. The algorithm for the numericalD−κ curve that we
used to produce figure 9 is explained in Appendix B. One can see a remarkable agreement between the present theory
and numerically generatedD−κ solution for the entire curve fromDCJ down to the lower turning point.

VI. CONCLUSIONS

In this paper we have presented a simplified version of a general theory developed by us (Kasimov 2004, Stewart &
Kasimov 2004) that treats detonation waves with an embedded sonic locus in the asymptotic limit of small curvature
and slow-time variation, and applied the theory to the problem of initiation of spherical/cylindrical detonation. We
derived a front evolution equation that is a relationship between the shock acceleration, shock speed, and the local
shock curvature. Solutions of the equation are shown to exhibit ignition/failure phenomenon. An important property
of the equation is that it predicts criticality and identifies an ignition separatrix which is a curve in the plane of the
shock speed versus the shock radius such that any initial condition on one side of it leads to ignition while that on the
other side to failure.

The theory is developed based only on the assumptions of slow time variation, weak curvature, and negligible trans-
verse variations at the shock front, and is valid for shock speeds that can deviate from CJ speed byO(1) amount.
A more general version of the theory that includes higher-order time and curvature effects is developed in Kasimov
& Stewart (2004), but the present simplified version is capable of capturing the essential critical behaviour of the
detonation dynamics. Finer details of the initiation process such as the front oscillations observed in numerical simu-
lations and experiments must be treated with a higher-order theory. Clearly, the present theory can predict the ignition
and failure only for curved detonations. Yet, one-dimensional planar detonations also exhibit critical behaviour. For
their prediction the theory also needs to be extended to include higher order unsteady effects, as they are likely to be
responsible for the criticality in planar geometry.
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Other prospects of the present approach include the analysis of ignition in an explosive with more complex consti-
tutive description. An extension of the theory to non-ideal equation of state is of much practical interest, for example
in relation to detonation initiation in high explosives. Most of the calculations will then have to be done numerically,
but in principle, the compatibility condition and the speed relation can be formulated without difficulty. This work
in collaboration with Wescott will be reported in a sequel to the paper. Of equal importance is the extension to more
complex kinetics. Chain-branching kinetics or kinetics with endothermic reactions may all play a role in detonation
initiation and require further investigation with careful comparison against numerics and extensive experimental data
available today.

Acknowledgments

This work was financially supported by U.S. Air Force Office of Scientific Research under contracts F49620-00-1-
0005 and F49620-03-1-0048 (Program Manager Dr. Arje Nachman). D.S.S. was also supported by the U.S. Air Force
Research Laboratory Munitions Directorate, Eglin AFB, under contract F8630-00-1-0002, and by the U.S. Department
of Energy, Los Alamos National Laboratory, DOE/LANL 3223501019Z.

Appendix A: ASYMPTOTICS OF I1 AND S1 AS D→ DCJ

Let us calculate the singular terms inI1 andS1. Since bothp0 and ρ0 depend onδ0 then their derivatives will
depend onδ0D which produces the derivative of

√
1+F−λ0. In the limit F → 0, the integrands inI1 andS1 have

terms proportional to

1√
1+F−λ0 (1−λ0)

ν (A1)

which are sources of singular behaviour ifν≥ 1/2. Note, that ifν < 1/2 the integrals are regular.
We have

p0D =
γ

γ+1

(
1+D2) bFD

2
1√

1+F−λ0
+ reg., (A2)

(lnρ0)D =
1

1−δ0

bFD

2
1√

1+F−λ0
+ reg., (A3)

whereregdenotes regular terms. Then

I1 =−D
Z λ0∗

0

1
1−δ0

bFD

2
1√

1+F−λ0

dλ0

ω0
+ reg. =

−DbFD

2k

Z λ0∗

0

1
1−δ0

exp
(
γE/c2

0

)
√

1+F−λ0

dλ0

(1−λ0)
ν + reg. (A4)

Let F → 0− in which caseλ0∗ = 1+F . Let y =
√

1+F−λ0 and then denoting the integral in (A4) asI1s we find

I1s =
2

(−F)ν

Z √
1+F

0

dy
1−by

exp
(
γE/c2

0

)

(1−y2/F)ν =

2
(−F)ν

Z √
1+F

0

dy
1−by

exp
(−ν ln

(
1−y2/F

)
+ γE/c2

0

)
. (A5)

SinceF → 0, the main contribution to the integral comes fromy→ 0. We expand the logarithm in smally2/F and
obtain
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I1s =
2

(−F)ν

Z √
1+F

0

dy
1−by

exp
(
νy2/F + γE/c2

0 +O
(
y4/F2))∼ exp

(
γE/c2

0∗
)

(−F)ν

√
−πF

ν
, (A6)

and therefore

I1 =−DbFD

2k

√
π
ν

exp
(
γE/c2

0∗
) 1

(−F)ν−1/2
+ reg., F → 0−. (A7)

If ν = 1/2, a logarithmic singularity in (A5) appears. Indeed, by lettingy = ξ
√−F in (A5), we find

I1s = 2
Z ξ∗

0

dξ
1−by

exp
(
γE/c2

0

)
√

1+ξ2
∼−2

exp
(
γE/c2

0s

)

1−b
ln(ξ∗) , (A8)

whereξ∗ =
√
−(1+F)/F → ∞. Therefore

I1s =−2exp
(
γE/c2

0s

)

1−b
ln(−F) . (A9)

Subscriptshere indicates evaluation at the shock, that is atλ0 = 0.
Calculation of the second integral,S1, is quite similar and yields the same singular behaviour as forI1, that is again

S1 ∼ constant

|F |ν−1/2
+ reg. (A10)

or a logarithmic singularity ifν = 1/2.

Appendix B: ON NUMERICAL CALCULATION OF THE D−κ RELATION

One writes the quasi-steady system of mass and momentum equations as

Mλ =−κφ, (B1)

Pλ =−κφU, (B2)

where

φ =
M (U +D)
ω(p,v,λ)

, (B3)

and

U = Mv, p = P−M2v, (B4)

v =
γ

γ+1
P

M2

[
1−

√
1−h

M2

P2 (H0 +Qλ)

]
. (B5)

Now the thermicity condition can be written as
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κU2
∗ (U∗+D)− (γ−1)Qω∗ = 0, (B6)

where, for Arrhenius kinetics,

ω∗ = k(1−λ∗)ν exp

(
− γE

U2∗

)
(B7)

becomes a function ofU∗ only if we take advantage of the energy equation which can directly be integrated and takes
a simple form,H∗ = H0 = γ/(γ−1)+D2/2, that is

γ+1
2(γ−1)

U2
∗ −λ∗Q = H0, (B8)

so that

λ∗ =
1
Q

(
γ+1

2(γ−1)
U2
∗ −H0

)
. (B9)

The sonic condition to be used for iterations onκ is

P2
∗ −hM2

∗ (H0 +λ∗Q) = 0. (B10)

Thus the numerical procedure is as follows. GivenD, one solves (B10) forκ by iterations. At each iteration step,
knowing a guess forκ, one solves (B1) and (B2) from the shock, using RH conditions,M0 =−D andP0 = 1+D2 to
λ = λ∗, whereλ∗ is found from the system of two algebraic equations, (B9) and (B6), forλ∗ andU∗. Then,κ is varied
in the iteration procedure until equation (B10) is satisfied to prescribed accuracy. Afterκ is found,D is decreased
by a given decrement, and the procedure is repeated to find a newκ. Arclength continuation can be used for faster
integration, but simple scanning ofD with subsequent solution forκ works reasonably well.
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