
Cosserat fluids and the continuum mechanics
of turbulence: a generalized Navier–Stokes-α
equation with complete boundary conditions

By EL IOT FRIED1 AND MORTON E. GURTIN2

1Department of Mechanical and Aerospace Engineering, Washington University in St. Louis,
St. Louis, MO 63130-4899, USA

2Department of Mathematical Sciences, Carnegie Mellon University,
Pittsburgh, PA 15213-3890, USA

(Received )

We here develop a continuum-mechanical formulation and generalization of the Navier–
Stokes-α equation based on a general framework for fluid-dynamical theories involving
gradient dependencies (Fried & Gurtin 2005). That generalization entails two additional
material length scales: one of energetic origin, the other of dissipative origin. In contrast
to Lagrangian averaging, our formulation delivers boundary conditions — involving yet
another material length scale — and a complete framework based on thermodynamics
applied to an isothermal system. As an application, we consider the classical problem
of turbulent flow in a plane, rectangular channel with fixed, impermeable, slip-free walls
and make comparisons with results obtained from direct numerical simulations. For this
problem, only one of the material length scales involved in the flow equation enters the
final solution. When the additional material length scale associated with the boundary
conditions is signed to ensure satisfaction of the second law at the channel walls the
theory delivers solutions that agree neither quantitatively nor qualitatively with observed
features of plane channel flow. On the contrary, we find excellent agreement when the sign
of the additional material parameter associated with the boundary conditions violates
the second law. We discuss the implication of this result.

1. Introduction
The Lagrangian averaged Navier–Stokes-α model for (statistically homogeneous and

isotropic) turbulent flow yields a governing equation for the fluid velocity v that can be
written in the form

ρv̇ = −gradp + µ(1− α2∆)∆v + 2ρα2div
◦
D; (1.1)

as is customary, we refer to (1.1) as the Navier–Stokes-α equation. In this equation v is
subject to the incompressibility constraint

divv = 0, (1.2)

v̇ (often written as Dv/Dt) is the material time derivative of v, p is the pressure, ∆ is
the Laplace operator, D = 1

2 (gradv + (gradv)�) is the stretch-rate,
◦
D = Ḋ + DW −WD, (1.3)
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with W = 1
2 (gradv − (gradv)�) the spin, is the corotational rate of D. The Lagrangian

averaged Euler equation, which is (1.1) with µ = 0, was first derived by Holm, Marsden
& Ratiu (1998a, 1998b). Subsequently, Chen, Foias, Holm, Olson, Titi & Wynne (1998,
1999a, 1999b) added the viscous term to the Lagrangian averaged Euler equation, giving
(1.1). Derivations of (1.1) via Lagrangian averaging were provided by Shkoller (2001)
and Marsden & Shkoller (2003).

Aside from the density ρ and the shear viscosity µ of the fluid, the flow equation (1.1)
involves an additional material parameter α > 0 carrying dimensions of length. Within
the framework of Lagrangian averaging, α is the statistical correlation length of the
excursions taken by a fluid particle away from its phase-averaged trajectory. More intu-
itively, α can be interpreted as the characteristic linear dimension of the smallest eddies
that the model is capable of resolving. Like equations arising from Reynolds averaging,
the Navier–Stokes-α equation provides an approximate model that resolves motions only
above some critical scale, while relying on filtering to approximate effects at smaller scales.
A synopsis of properties and advantages of the Navier–Stokes-α equation is provided by
Holm, Jeffrey, Kurien, Livescu, Taylor & Wingate (2005).

The structure of (1.1) is formally suggestive of a conservation law expressing the bal-
ance of linear momentum, and one might ask whether there is a complete continuum
mechanical framework in which the Navier–Stokes-α equation is embedded along with
suitable boundary conditions. Based on experience with theories for plates, shells, and
other structured media, the presence of a term involving the fourth-order spatial gradient
of the velocity indicates that any such framework should involve a hyperstress in addition
to the classical stress. Within the context of turbulence theory, a hyperstress might be
viewed as providing a means to account for interactions across disparate length scales.

To see the need for an additional hyperstress assume an inertial frame, neglect non-
inertial body forces, and note first that the weak form of the classical momentum balance

divT + b = 0, (1.4)

with inertial force

b = −	v̇ (1.5)

treated for convenience as a body force, has the form∫
∂R

t(n) · φda +
∫
R

b · φdv

︸ ︷︷ ︸
Wext(R,φ)

=
∫
R

T :gradφdv

︸ ︷︷ ︸
Wint(R,φ)

, (1.6)

with

tn = Tn (1.7)

the classical surface-traction of Cauchy. Granted smoothness, (1.6) holds for all virtual
velocities (i.e., test fields) φ and all control volumes R if and only if the balance (1.4)
is satisfied at all points in the fluid and the traction condition (1.7) is satisfied — for
any choice of the unit vector n — at all points in the fluid. Moreover, the requirement
of frame-indifference applied to (1.6) yields the symmetry of the stress T.

When φ represents the velocity v of the fluid, the weak balance (1.6) is a physical
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balance ∫
∂R

tn · v da +
∫
R

b · v dv

︸ ︷︷ ︸
Wext(R)

=
∫
R

T :gradv dv

︸ ︷︷ ︸
Wint(R)

(1.8)

between:
(i) the external power Wext(R), which represents

(a) power expended on R by tractions acting on ∂R, and
(b) power expended by the inertial force b directly on the interior points of R;

(ii) the internal power Wint(R), the integrand of which represents the classical stress
power T :gradv expended within R by the stress field T.
Here and in what follows, we write Wext(R) for the external power associated with an
actual flow and Wext(R,φ) for the (virtual) external power associated with a virtual
velocity field φ. Note that, by (1.5), the negative inertial power is the kinetic energy
rate.

The balance (1.6) represents a nonstandard form of the classical principle of virtual
power (Gurtin 2001). This nonstandard form has been generalized by Fried & Gurtin
(2006) to develop a gradient theory for liquid flows at small length scales and, when
combined with suitable constitutive relations, results in a partial differential equation
slightly more general than (1.1) but with the term involving the corotational rate of
D removed. Conventional versions of this principle are formulated for the fluid region
as a whole rather than for control volumes and as such generally involve particular
boundary conditions. Here the principle of virtual power is used instead as a basic tool
in determining the structure of the tractions and of the local force balances. As such,
conditions on the external boundary play a role no different from those on the boundary
of any control volume. Basic to this view is the premise, central to all of continuum
mechanics, that any basic law for the body should hold also for all subregions of the body.
On a more pragmatic note, the nonstandard formulation allows for the derivation of the
associated angular momentum balance. (See Antman & Osborn (1979) for a rigorous
treatment of the classical virtual-work principle.)

To capture the internal power associated with the formation of eddies during turbulent
flow, we generalize the classical theory by including, in the internal power, a term linear
in the vorticity gradient gradω = gradcurlv. Specifically, we introduce a second-order
tensor-valued hyperstress G via an internal power expenditure of the form G :gradω and
rewrite the power expended within R in the form

Wint(R) =
∫
R

(
T :gradv + G :gradω

)
dv. (1.9)

In conjunction with the internal power expenditure (1.9), we introduce a corresponding
external power expenditure

Wext(R) =
∫
S

(
tS · v + mS ·

∂v
∂n

)
da +

∫
R

b · v dv, (1.10)

in which tS and mS represent tractions on the bounding surface S = ∂R of R, while b
represents the inertial body force(1.5). Here the term

mS ·
∂v
∂n

, (1.11)



4 E. Fried, M. E. Gurtin

which is not present in classical theories, is needed to balance the effects of the internal-
power term G :gradω, which involves the second gradient of v.

The principle of virtual power replaces v by φ and (hence) ω by curlφ and is based
on the requirement that

Wext(R,φ) =Wint(R,φ) (1.12)

for all control volumes R and any choice of the virtual velocity field φ. Consequences of
the virtual power principle and the requirement that the internal power expenditure be
frame-indifferent are that:

(i) The classical macroscopic balance ρv̇ = divT must be replaced by the balance

ρv̇ = divT + curldivG, (1.13)

with T symmetric as in the classical theory.
(ii) Cauchy’s classical condition tn = Tn for the traction across a surface S with unit

normal n must be replaced by the conditions

tS = Tn + divS(Gn×) + n× (divG− 2KGn),

mS = n×Gn,

}
(1.14)

in which divS is the divergence operator on S and K is the mean curvature of S.
Within the framework of finite deformations of an elastic solid with couple-stress, the

balance (1.13) was first derived by the Cosserats (1909); see, also, Toupin (1962, 1964),
Mindlin & Tiersten (1962), and Green & Naghdi (1968). The traction conditions (1.14)
are special cases of traction conditions derived variationally by Toupin (1962, 1964) for
the boundary of the elastic solid.

The balance (1.13) is identical to — and the traction conditions special cases of —
equations (5.11) and (5.12) of Fried & Gurtin (2006), whose theory replaces curlω in the
internal power with the full second gradient grad2v and G by an analogous third-order
hyperstress. After submitting our paper to press and after completing the derivation of
the results presented here, we discovered work of Bluestein & Green (1967), who discuss
second-gradient fluids based on the multipolar theory of second-gradient materials due
to Green & Rivlin (1964). This theory results in redundant boundary conditions, which
Bluestein & Green (1967) reduce using arguments of an ad hoc nature.

When supplemented by constitutive equations for the stress and hyperstress, the bal-
ance (1.13) yields a flow equation. Restricting attention to incompressible fluids, we
invoke the standard decomposition

T = S− p1, trS = 0, (1.15)

of the stress into a traceless extra stress S and a powerless pressure p and, motivated by
the form of the Navier–Stokes-α equation (1.1), take the extra stress to be of the form

S = 2µD + 2λ
◦
D, µ > 0, λ > 0, (1.16)

familiar from the theory of Rilvin–Ericksen fluids; cf. Rivlin & Ericksen, 1955; Truesdell
& Noll, 1965, §119; Dunn & Fosdick, 1974. Further, we take the hyperstress to be of the
simple linear form

G = ζ gradω + ξ(gradω)�, (1.17)

with ζ > 0 and −ζ ≤ ξ ≤ ζ to ensure non-negative dissipation.
Using (1.15)–(1.17) in (1.13) and assuming that the moduli µ, λ, ζ, and ξ are constant,
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we arrive at the flow equation

ρv̇ = −gradp + µ∆v − ζ∆∆v + 2λdiv
◦
D, (1.18)

which, for the particular choices

λ = ρα2 and ζ = µα2 (1.19)

of λ and ζ, specializes to the Navier–Stokes-α equation (1.1).
We develop counterparts of the classical notions of a free surface and a fixed surface

without slip (we tacitly assume throughout that such boundaries are impermeable). Our
results hinge on rewriting the external power expenditure (3.4) for the entire fluid body
B and focusing on that portion of this expenditure associated with tractions. In this
regard, we derive boundary force and moment balances

tS = tenv
∂B + 2σKn and mS = menv

∂B (1.20)

giving the tractions tS and mS in terms of their environmental counterparts tenv
∂B and

menv
∂B , and use these balances to express the power expended by tractions in the form∫

∂B

(
(tenv
∂B + 2σKn) · v + menv

∂B ·P
∂v
∂n

)
da. (1.21)

We assume that the mean curvature K of — and the surface tension σ at — the boundary
∂B are known; (1.21) then suggests that reasonable boundary conditions might, at each
point of ∂B, consist of

(i) a prescription of tenv
∂B or v, or a relation between tenv

∂B and v; and
(ii) a prescription of menv

∂B or P∂v/∂n, or a relation between menv
∂B and P∂v/∂n.

Consistent with this, we consider specific boundary conditions in which a portion Sfree

of ∂B is a free surface and the remainder Snslp is a fixed surface without slip. On Sfree,
the environmental tractions tenv

∂B and menv
∂B vanish and the classical condition Tn = σKn

is replaced by the conditions

Tn + divS(Gn×) = σKn and n×Gn = 0. (1.22)

To describe the conditions on Snslp, we first note that, if v = 0 on Snslp, then

P
∂v
∂n

= ω × n (1.23)

with ω = curlv the vorticity. Based on this identity, we take, as boundary condition on
Snslp, the classical condition

v = 0 (1.24)

supplemented by a condition of the form

n×Gn = menv
∂B (1.25)

with menv
∂B = −µ�∂v/∂n = −µ�ω× n, where |�| represents a material length scale. Thus

we are led to the boundary condition

n× (Gn− µ�ω) = 0. (1.26)

We refer to (1.26) as the wall-eddy condition and to � as the wall-eddy modulus.
To display some of the central features of the theory, we consider the classical problem

of steady, turbulent flow in a plane channel. We invoke the kinematical assumptions
standard for plane Couette flow. Further, we assume that the channel walls are fixed and
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without slip. The flow equation (1.18) and boundary conditions (1.24) and (1.26) yield a
fourth-order boundary-value-problem for the downstream component of the velocity as a
function of the coordinate normal to the channel walls. Experiments and DNS simulations
of channel flow show that, for suitably normalized laminar and turbulent velocity profiles,
the slopes of the turbulent profiles at the channel walls have magnitudes greater than
their laminar counterparts (Pope 2000). A central result of our work is that the solution
of the channel problem is consistent with this “wall-slope requirement” only for negative
values of the wall-eddy modulus �:

� < 0 (1.27)

Interestingly, such values of � imply that
• µ� |n×ω|2 — a term that would usually be thought of as dissipative — is negative!
We show that µ� |n×ω|2 is also strictly negative in a solution of the Navier–Stokes-α

equation — subject to boundary conditions in which the velocity vanishes on the channel
walls and the shear component of the traction is given — presented previously by Chen,
Foias, Holm, Olson, Titi & Wynne (1999) (granted that their wall modulus is converted
to ours).

Assuming that � is negative, we use the method of least-squares to fit our solution of
the channel flow problem to the mean downstream velocity for turbulent channel flow
predicted by the direct numerical simulations (DNS) of Kim, Moin & Moser (1987) and
Moser, Kim & Mansour (1999) for three values of the friction Reynolds number. We find
that the velocity profile shows good agreement and that the Reynolds shear stress in
the downstream plane of the channel agrees with the numerical results only outside the
viscous wall region. This discrepancy might be attributed to statistically inhomogeneous
and/or anisotropic fluctuations within the viscous wall region. As would be expected
from the sentence containing (1.27), for positive � the calculated velocity profile differs
both qualitatively and quantitatively from the DNS simulations.

Marsden & Shkoller (2001) recently established well-posedness results for the Navier–
Stokes-α equation on bounded domains based on the simple boundary conditions v = 0
and ∆v = 0. Such boundary conditions do not fit within the virtual-power framework
used here, nor do they seem capable of characterizing turbulent behavior near a fixed
surface: even so, the results of Marsden & Shkoller (2001) would seem to indicate the
value of the Navier–Stokes-α equation itself, devoid of questions regarding boundary
conditions. In this regard, it would seem interesting to see if analogous results hold for
the boundary conditions v = 0 and n×Gn = 0, the latter condition being natural with
respect to the virtual-power framework.

The question of whether initial-boundary-value problems for the Navier–Stokes-α equa-
tion are well-posed when boundary conditions appropriate to turbulence are imposed
remains open, as does the question of whether solutions to initial-boundary-value prob-
lems for the Navier–Stokes-α equation converge to solutions of the classical Navier–Stokes
equation. Because of the seemingly unstable structure of boundary conditions, at least
those proposed here for a fixed surface without slip, it seems likely that answers to these
questions will require novel analytical approaches.

2. Preliminaries
To simplify our calculations, we use direct notation. However, for clarity, we also

present key definitions and results in component form.
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2.1. Notation
We find it most convenient to work spatially; i.e., to use what is commonly called an
Eulerian description. We write ρ(x, t) for the mass density, v(x, t) for the velocity,

D = 1
2

(
gradv + (gradv)�

)
and W = 1

2

(
gradv − (gradv)�

)
(2.1)

for the stretching and spin, and

ω = curlv (2.2)

for the vorticity. We use a superposed dot for the material time-derivative; e.g., for ϕ(x, t)
a scalar field

ϕ̇ =
∂ϕ

∂t
+ v · gradϕ.

Balance of mass is then the requirement that

ρ̇ + ρdivv = 0. (2.3)

2.2. Control volume R. Differential geometry on ∂R

We denote by R an arbitrary region, fixed in time, that is contained in the region of
space occupied by the body over some time interval. We refer to R as a control volume
and write

S = ∂R

for the boundary of R and n for the outward unit normal on S, which we assume to be
smooth. We let P denote the projection onto the plane normal to n:

P = 1− n⊗n (Pij = δij − ninj). (2.4)

The operator gradS defined on any vector field g by

gradSg = (gradg)P
(
(gradSg)ij = gi,j − gi,knknj

)
is the surface gradient ;

divSg = tr(gradSg) = P :gradg = divg − n · (gradg)n = gi,i − gi,knink

defines the surface divergence; ∂/∂n defined by

∂g
∂n

= (gradg)n

is the normal derivative. Then

gradg = gradSg +
∂g
∂n
⊗n, divg = divSg +

∂g
∂n
· n. (2.5)

The surface divergence of a tensor field A is the vector field defined by

divSA = (gradA)P
(
(divSA)i = Aij,kPkj

)
. (2.6)

Note that the domains of gradSg divSg, ∂g/∂n, and divSA are restricted to the surface
S.

Granted a smooth extension of the unit normal n, gradn is defined in a neighborhood
of S and the field

K = −gradSn = −(gradn)P;
is the curvature tensor of S; as is well known,

K = K�, Kn = 0. (2.7)
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The scalar field
K = 1

2 trK = − 1
2divSn

is the mean curvature of S.
Let A be a (second-order) tensor field and let g be a vector field. We make considerable

use of the identities

divS(AP) = divSA + 2KAn,

divS(A�g) = g · divSA + A :gradSg.

}
(2.8)

and, in particular, their specializations

divSP = 2Kn, divS(A�n) = n · divSA−A :K, (2.9)

which arise, respectively, on choosing A = 1 in (2.8)1 and g = n in (2.8)2.
We close this section by establishing an identity important to what follows. Assume

that on a subsurface S0 of S,

v = 0. (2.10)

Then v · n = 0, so that gradS(v · n) = 0 and

(gradSv)�n = P(gradv)�n = 0;

hence ω × n = P(ω × n) = 2PWn = (Pgradv)n = P(∂v/∂n) and the desired identity,

P
∂v
∂n

= ω × n on S0, (2.11)

follows.

3. Power expenditures
Throughout this section R — with boundary S and outward unit normal n — is an

arbitrary control volume.

3.1. Internal power
In discussing the manner in which power is expended internally, bear in mind that our
goal is a theory that accounts, not only for the velocity gradient, but also for the gradient,
gradω, of the vorticity ω. To accomplish this we generalize the classical theory — which
has internal power of the form∫

R

T :gradv dv =
∫
R

Tijvi,j dv

with T the stress and T :gradv the stress power — by introducing a hyperstress G with
associated hyperstress power G :gradω, and therefore write the internal power in the
form

Wint(R) =
∫
R

(T :gradv + G :gradω) dv =
∫
R

(Tijvi,j + Gijωi,j) dv. (3.1)

The fields T and G are defined over the deformed body for all time. Since tr(gradω) = 0,
we may, without loss in generality, require that G be traceless:

trG = 0. (3.2)
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3.2. External power
Conventionally, power is expended on a control volume R by surface tractions acting
on S = ∂R and body forces acting over R, and each of these force fields expends power
(pointwise) over the velocity v. Conventional continuum mechanics is based on a classical
hypothesis of Cauchy asserting that the surface traction at a point x on S and time t be
a function tn(x, t) of the normal n(x, t). Here, as we shall see, it is necessary to abandon
this hypothesis and assume instead that for each control volume R and each time t there
is a surface-traction field tS defined over S = ∂R such that tS gives the surface force, per
unit area, on S.

As is classical, we assume that the body force is given by a field b, and that both tS
and b are power conjugate to the velocity v. Further:

(i) we stipulate that b account for inertia;
(ii) we assume that the underlying frame is inertial;
(iii) we neglect non-inertial body forces.

It then follows that

b = −ρv̇. (3.3)

The external power expended on the boundary of the body sets the stage for the
formulation of boundary conditions; this power should therefore be based on kinematical
fields that — when restricted to the boundary — may be specified independently. Further,
since the internal power depends on grad2v, through gradcurlv, the external power
should include a boundary expenditure involving gradv. But the fields v and gradv are
kinematically coupled on S, since a knowledge of v on S implies a knowledge of the
tangential derivatives of v on S; thus the tangential part of gradv cannot be specified
independently of v. Bearing this in mind, we consider a (vectorial) hypertraction mS(x, t)
that expends power over the normal part ∂v/∂n of the velocity gradient. Based on this
discussion, we assume that the power expended externally on an arbitrary control volume
R has the form

Wext(R) =
∫
S

(
tS · v + mS ·

∂v
∂n

)
da +

∫
R

b · v dv. (3.4)

Note that by (2.11), on any subsurface of S for which v = 0 and mS · n = 0 (cf. (4.19)),
the integral over S in (3.4) takes the form∫

S

(n×mS) · ω da, (3.5)

showing that in this special but important case the power expended at the boundary by
tractions is due solely to vorticity.

4. Principle of virtual power
Most commonly, the principle of virtual power is used to generate weak formulations of

boundary-value problems. In this form, the principle is stated for the body B as a whole
and is contingent upon the provision of particular conditions on the boundary ∂B of B.
Here, we use the principle of virtual power to determine the structure of the tractions and
of the local force balances. This involves a nonstandard formulation in which the principle
is stated for an arbitrary control volume R as opposed to the body as a whole. As such,
conditions on ∂B play a role no different from those on the boundary ∂R of any control
volume R.
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4.1. Statement of the principle of virtual power
To state this principal, assume that, at some arbitrarily chosen but fixed time, the region
occupied by the body is known, as are the tractions tS and mS , the body force b, and the
stresses T and G, and consider the velocity v as a virtual field φ that may be specified
independently of the actual evolution of the body. Then, writing

Wext(R,φ) =
∫
S

(
tS · φ+ mS ·

∂φ

∂n

)
da +

∫
R

b · φdv,

Wint(R,φ) =
∫
R

(T :gradφ+ G :gradcurlφ) dv,


 (4.1)

respectively, for the external and internal expenditures of virtual power, the principle of
virtual power is the requirement that the external and internal powers be balanced : given
any control volume R,

Wext(R,φ) =Wint(R,φ) for all virtual velocities φ. (4.2)

4.2. Consequences of the principle of virtual power
To determine the consequence of this principle, we first consider the individual terms in
the internal power. Using the divergence theorem, we obtain∫

R

T :gradφdv = −
∫
R

divT · φdv +
∫
S

Tn · φda. (4.3)

Similarly, the divergence theorem applied twice yields∫
R

G :gradcurlφdv = −
∫
R

(divG) · (curlφ) dv +
∫
S

Gn · curlφda

= −
∫
R

(curldivG) · φdv +
∫
S

(Gn · curlφ+ (n× divG) · φ) da.

Thus

Wint(R,φ) = −
∫
R

(divT + curldivG) · φdv

+
∫
S

(Gn · curlφ+ (Tn + n× divG) · φ) da. (4.4)

Further, by (2.5)1,

gradφ = gradSφ+
∂φ

∂n
⊗n;

therefore, letting

g = Gn (4.5)

it follows that

g · curlφ = −(g×):gradφ = −(g×):gradSφ− (g×):
( ∂φ

∂n
⊗ n

)
= −(g×):gradSφ+ (n× g) · ∂φ

∂n
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and (4.4) becomes

Wint(R,φ) = −
∫
R

(divT + curldivG) · φdv −
∫
S

(g×):gradSφda

+
∫
S

(
(Tn + n× divG) · φ+ (n× g) · ∂φ

∂n

)
da. (4.6)

Our next step is to establish an important identity for the integral
∫
S(g×):gradSφda;

specifically, letting A = −(g×), we now show that∫
S

A :gradSφda = −
∫
S

(divSA + 2KAn) · φda. (4.7)

The verification of (4.7) is based on the surface divergence theorem: let τ be a tangential
vector field on S and let T be a subsurface of S with ν the outward unit normal to the
boundary curve ∂T (so that ν is tangent to S, normal to ∂T , and directed outward from
T ); then ∫

∂T

τ · ν ds =
∫
T

divSτ da. (4.8)

To establish (4.7) note that

τ
def= PA�φ

represents a tangential vector field, so that, by (4.8),∫
∂T

τ · ν ds =
∫
T

divS(PA�φ) da. (4.9)

Further, by (2.8)2 — with A replaced by AP — and (2.8)1,

divS(PA�φ) = (AP):gradSφ+ φ · divS(AP) = A :gradSφ+ φ · (divSA + 2KAn);

hence (4.9) takes the form∫
∂T

τ · ν ds =
∫
T

(A :gradSφ+ (divSA + 2KAn) · φ) da. (4.10)

Finally, if we take T = S, then ∂T is empty and the left side of (4.10) vanishes; thus
(4.7) is satisfied; thus

−
∫
S

(g×):gradSφda =
∫
S

(divS(g×)− 2Kn× g) · φda. (4.11)

and therefore

Wint(R,φ) = −
∫
R

(curldivG + divT · φdv

+
∫
S

(
(Tn + divS(g×)− 2Kn× g + n× divG) · φ+ (n× g) · ∂φ

∂n

)
da. (4.12)
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We are now in a position to apply the virtual-power balance (4.2): by (4.1)1 and (4.12),∫
S

(
tS · φ+ mS ·

∂φ

∂n

)
da +

∫
R

b · φdv = −
∫
R

(divT + curldivG) · φdv

+
∫
S

(
(Tn + divS(g×)− 2Kn× g + n× divG) · φ+ (n× g) · ∂φ

∂n

)
da; (4.13)

using (4.5) and rearranging (4.13), we have the “only if” implication in the next result.
(#) Given any virtual velocity φ and any control volume R, the virtual balance∫
S

(
tS · φ+ mS ·

∂φ

∂n

)
da +

∫
R

b · φdv

︸ ︷︷ ︸
Wext(R,φ)

=
∫
R

(T :gradφ+ G :gradcurlφ) dv

︸ ︷︷ ︸
Wint(R,φ)

(4.14)

is satisfied if and only if∫
S

(tS −Tn− divS(Gn×) + 2Kn×Gn− n× divG) · φda

+
∫
S

(mS − n×Gn) · ∂φ
∂n

da = −
∫
R

(divT + curldivG + b) · φdv. (4.15)

The reverse implication, that (4.15) implies (4.14), follows upon reversing the argument
leading to (4.14).

4.3. Local force balance and traction conditions
Since the control volume R and the virtual field φ in (4.15) may be arbitrarily chosen,
we may appeal to the the fundamental lemma of the calculus of variations and arrive at
the local force balance

divT + curldivG + b = 0 (Tij,j + εikrGrj,jk + bi = 0) (4.16)

and — bearing in mind that, since φ is arbitrary, φ and ∂φ/∂n may be arbitrarily
chosen independent of one another on S (cf. the paragraph containing (3.4)) — the
traction conditions

tS = Tn + divS(Gn×) + n× (divG− 2KGn),

mS = n×Gn.

}
(4.17)

In view of (3.3), the local force balance becomes the local momentum balance

ρv̇ = divT + curldivG (ρv̇i = Tij,j + εikrGrj,jk). (4.18)

Note that, as a consequence of (4.17)2, the hypertraction is tangent to the boundary:

mS · n = 0. (4.19)

4.4. Digression: virtual power balance with Cosserat stresses
Assume that the stress T, hyperstress G, and body force b are consistent with the local
force balance (4.16) and moment balance T = T�. Then, by (4.4), whose derivation is
based on the explicit form (4.1) of the internal power Wint(R,φ),

Wint(R,φ) =
∫
S

(Gn · curlφ+ (Tn + n× divG) · φ) da +
∫
R

b · φdv, (4.20)
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and hence, appealing to (4.1), we arrive at the following integral identity:∫
S

(Gn · curlφ+ (Tn + n× divG) · φ) da +
∫
R

b · φdv

=
∫
R

(T :gradφ+ G :gradcurlφ) dv. (4.21)

If we define symmetric and skew Cosserat stresses CS and CA by

CS
def= T and CA

def= −(divG)×,

and a total Cosserat stress C by

C = CS + CA,

then (4.21) becomes∫
S

(Cn · φ+ Gn · curlφ) da +
∫
R

b · φdv =
∫
R

(CS :gradφ+ G :gradcurlφ) dv, (4.22)

which is the form the virtual-power balance would take within the Cosserat framework.
(See Mindlin & Tiersten (1962): in that study the right side of (1.13) gives the internal
power; the right side of (1.4) subject to (1.6) and (1.7) gives the external power.)

The virtual balance (4.22) gives a sense in which the “traction” Gn is conjugate to
the vorticity and hence a sense in which the G represents a couple-stress. Unfortunately,
this balance is of little use in virtual power arguments: a knowledge of φ on S implies a
knowledge of the tangential derivatives of φ on S, and so φ and curlφ cannot generally
be varied independently. For that reason a portion of the power expenditure Gn · curlφ
should be explicitly accounted for in the term conjugate to φ and the terms divS(Gn×)−
2Kn×Gn appear in the relation (4.17)1 for the traction tS .

5. Balance laws for forces and moments
5.1. Consequences of frame-indifference

Frame-indifference requires that the theory be invariant under all changes in frame. In
accord with this principle we require that the internal power be invariant under trans-
formations of the form

ṽ(x, t) �→ ṽ(x, t) +α(t) + Ω(t)x︸ ︷︷ ︸
w(x,t)

, (5.1)

where α(t) is an arbitrary scalar and Ω(t) an arbitrary skew tensor, at each t. It then
follows, as a consequence of the virtual balance (4.2), that the external power is auto-
matically consistent with frame-indifference.

Consider the internal power. By (5.1), the velocity gradient transforms according to
gradv(x, t) �→ gradv(x, t)+Ω; we may therefore conclude from (3.1) that for the internal
power to be frame-indifferent we must have∫

R

T :Ωdv = 0
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for all skew tensors Ω and all control volumes R; hence the stress T is symmetric:

T = T�. (5.2)

A consequence of (5.2) is that the stress power T :gradv in the internal power (3.1) may
equally well be written in the form T :D, with D the stretching defined in (2.1)1.

We now turn to the external power (3.4), which is automatically frame-indifferent:
invariance under (5.1) implies that∫

S

tS da +
∫
R

bdv = 0,

∫
S

(x× tS + n×mS) da +
∫
R

x× b dv = 0,




(5.3)

which bear comparison to their classical conterparts in which tS = Tn and mS = 0.
When combined with (3.3), (5.3) represent balances for linear and angular momentum.
The term n×mS represents a distribution of couples on S.

Our formulation of the virtual power principle ensures that the classical balances (5.3)
are satisfied automatically.

5.2. Locality of the tractions. Action-reaction principle
A consequence of (4.17) is that the tractions are local : at any point x on S, tS(x)
depends on S through a dependence on the normal n(x) and curvature tensor K(x) at
x, while mS(x) depends on S through n(x) (where for convenience we have suppressed
the argument t). Thus, writing t(n,K) and mn for the corresponding functions, we obtain

tS = t(n,K), mS = mn (5.4)

i.e., e.g., tS(x) = t(n(x),K(x))(x). Then, letting −S denote for the surface S oriented by
−n (which has curvature tensor −K), we see that, by (4.17),

tS = −t−S , mS = m−S ; (5.5)

(5.5) represents an action-reaction principle for oppositely oriented surfaces that touch
and are tangent at a point.

Consider an arbitrary surface S with orientation n and define the plus side of S as the
side into which n points and the minus side as the other side. In the definition (3.4) of
the external power the quantity Wsurf(S) defined by

Wsurf(S) =
∫
S

(
tS · v + mS ·

∂v
∂n

)
da (5.6)

represents the power expended on the boundary of a control volume. However, because
the tractions are local, this definition is also meaningful for an arbitrary surface S with
orientation n. In this instance, Wsurf(S) represents the power expended by the material
on the plus side of S on the material on the minus side of S, so that, by (5.5) (and since
∂v/∂n = n · gradv) we have the power balance

Wsurf(S) = −Wsurf(−S). (5.7)

5.3. Environmental tractions. Balance of forces and moments at the boundary
Let B(t) denote the region of space occupied by the liquid at an arbitrarily chosen time
and let n(x, t) denote the outward unit normal to ∂B(t). We assume that ∂B(t) is smooth.
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∂S
S

−S

n

−n

ν∂B
S

Figure 1. Pillbox corresponding to a subsurface S of the boundary ∂B of the region B of
space occupied by the body. Only a portion of ∂B is depicted. Whereas n is oriented into the
environment, −n is oriented into the fluid. The outward unit normal on the lateral face ∂S of
the pillbox is denoted by ν.

We denote by tenv
∂B and menv

∂B the environmental tractions so that, given any subsurface
S of ∂B, ∫

S

tenv
∂B da and

∫
S

x× tenv
∂B da +

∫
S

n×menv
∂B da (5.8)

represent the net force and moment exerted on S by the environment.
We let σ denote the surface tension of the fluid at the boundary and assume, for

convenience, that σ is constant.
Consider an arbitrary evolving subsurface S(t) of ∂B(t). We view S as a boundary

pillbox of infinitesimal thickness containing a portion of the boundary, a view that allows
us to isolate the physical processes in the material on the two sides of the boundary. The
geometric boundary of S consists of its boundary curve ∂S. But S viewed as pillbox has
a pillbox boundary consisting of (Figure 1):
• a surface S with unit normal n; S is viewed as lying in the environment at the

interface of the fluid and the environment;
• a surface −S with unit normal −n; −S is viewed as lying in the fluid adjacent to

the boundary;
• a “lateral face” represented by ∂S.

The outward unit normal on the lateral face ∂S of the pillbox is denoted by ν.
To derive force and moment balances for the boundary we first note that, by the net

power expended on the pillbox is given by (2.4),∫
∂S

σν ds =
∫
∂S

σPν ds and
∫
∂S

σx× ν ds =
∫
∂S

σx×Pν ds.

represent the force and moment exerted by the fluid on the lateral face of the pillbox
by surface tension. Further, by (5.5), the force and moment exerted by the fluid on the
pillbox surface −S are

−
∫
S

tS da and −
∫
S

x× tS da−
∫
S

n×mS da, (5.9)

while (5.8)1 and (5.8)2 represent the force and moment exerted by the fluid on the pillbox
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surface S. Thus the force and moment balances for the pillbox have the form∫
S

tenv
∂B da−

∫
S

tS da +
∫
∂S

σPν ds = 0,

∫
S

(x× tenv
∂B + n×menv

∂B ) da−
∫
S

(x× tS + n×mS) da +
∫
∂S

σx×Pν ds = 0.



(5.10)

We now localize these balances, starting with the force balance. The counterpart of
(4.8) for tensor fields A that satisfy An = 0 is∫

∂S

Aν ds =
∫
S

divSA da. (5.11)

Thus, since surface tension σ is constant, we may use (2.9)1 to conclude that∫
∂S

σPν ds =
∫
S

2σKnda

and (5.10)1 becomes ∫
S

(tenv
∂B − tS + 2σKn) da = 0;

Since S is an arbitrary subsurface of ∂B, we have the local force balance for the boundary :

tS = tenv
∂B + 2σKn. (5.12)

A slightly more complicated analysis results in the local torque balance for the boundary :

n×mS = n×menv
∂B ; (5.13)

cf. the paragraph containing (5.12) in Anderson, Cermelli, Fried, Gurtin, and McFadden
(2005).

The hypertraction menv
∂B enters the theory through the torque balance (5.13) and since

the normal part of menv
∂B is irrelevant to this balance, we assume without loss in generality

that

n ·menv
∂B = 0. (5.14)

Thus, by (4.19), we may replace (5.13) by

mS = menv
∂B . (5.15)

Finally, by (4.17), the balances (5.12) and (5.15) expressed in terms of the stress T
and hyperstress G have the form

Tn + divS(Gn×) + n× (divG− 2KGn) = tenv
∂B + 2σKn,

n×Gn = menv
∂B .

}
(5.16)

6. Energetics. Dissipation
6.1. Free energy imbalance. Dissipation inequality

Let R(t) be an arbitrary region that convects with the body. We restrict attention to a
purely mechanical theory based on the requirement that
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(#) the temporal increase in free energy of R(t) be less than or equal to the power
expended on R(t).
Precisely, letting ψ denote the specific free energy, this requirement takes the form of a
free energy imbalance

d
dt

∫
R(t)

ρψ dv ≤ Wext(R(t)). (6.1)

The imbalance (6.1) is consistent with standard continuum thermodynamics based on
balance of energy and an entropy imbalance (the Clausius–Duhem inequality): in that
more general framework, granted isothermal conditions with temperature ϑ0, (6.1) would
be satisfied with right side minus left side equal to ϑ0 times the entropy production.
(Cf., e.g., (2.9) of Anderson, Cermelli, Fried, Gurtin & McFadden (2005); taking ϑ =
ϑ0 = constant in (2.9)2 of Anderson, Cermelli, Fried, Gurtin & McFadden (2005) and
substracting the resulting equation from (2.9)1 of Anderson, Cermelli, Fried, Gurtin &
McFadden (2005) yields (6.1).)

Balance of mass implies that (d/dt)
∫
R(t)

ρψ dv =
∫
R(t)

ρψ̇ dv; since Wext(R(t)) =
Wint(R(t)), we may therefore use the expression (3.1) for the internal power Wint(R(t))
in conjunction with the symmetry of T, to localize (6.1); the result is the local free energy
imbalance

ρψ̇ −T :D−G :gradω ≤ 0 (ρψ̇ − TijDij −Gijωi,j ≤ 0), (6.2)

where D is the stretching defined in (2.1)1. The difference

Γ def= T :D + G :gradω − ρψ̇ ≥ 0 (6.3)

represents the bulk dissipation and allows us to rewrite (6.1) in the form

d
dt

∫
R(t)

ρψ dv −Wext(R(t)) = −
∫
R(t)

Γ dv ≤ 0. (6.4)

Note that, by (4.20) and the power balance Wext(R(t)) = Wint(R(t)) we can rewrite
the free energy imbalance equivalently as

d
dt

∫
R(t)

ρψ dv −
[ ∫
S(t)

(
(Tn + n× divG) · v + Gn · ω

)
da +

∫
R

b · v dv
]

︸ ︷︷ ︸
internal power expenditure in Cosserat form

= −
∫
R(t)

Γ dv ≤ 0. (6.5)

6.2. Imbalance of free and kinetic energy

The power expended by the body force has the form

b · v = − 1
2ρ

˙|v|2,
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and we may rewrite the external power expenditure as the sum of a non-inertial expen-
diture minus a kinetic-energy rate:

Wext(R(t)) =
∫

∂R(t)

(
tS · v + mS ·

∂v
∂n

)
da

︸ ︷︷ ︸
noninertial power expenditure

− d
dt

∫
R(t)

1
2ρ|v|

2 dv

︸ ︷︷ ︸
kinetic energy

. (6.6)

By (6.6), the free energy imbalance (6.1) — for a control volume R(t) that convects
with the fluid — takes the form of an imbalance of free and kinetic energy

d
dt

∫
R(t)

ρ(ψ + 1
2 |v|

2) dv

︸ ︷︷ ︸
net energy rate

−
∫

∂R(t)

(
tS · v + mS ·

∂v
∂n

)
da = −

∫
R(t)

Γ dv

︸ ︷︷ ︸
net dissipation

≤ 0. (6.7)

Further, using standard continuum mechanics, we may rewrite (6.7) as an imbalance for
a control volume R; precisely, (6.7) is satisfied for all regions R(t) that convect with the
body if and only if

d
dt

∫
R

ρ(ψ + 1
2 |v|

2) dv +
∫
S

ρ(ψ + 1
2 |v|

2)v · nda

−
∫
S

(
tS · v + mS ·

∂v
∂n

)
da = −

∫
R

Γ dv ≤ 0. (6.8)

for all control volumes R.

7. Application to turbulent flow
7.1. Simple constitutive equations for an incompressible fluid

We assume that the fluid is incompressible, so that

ρ = constant and divv = trD = 0. (7.1)

Without loss in generality, we may then suppose that

T = S− p1, trS = 0 (Tij = Sij − pδij , Skk = 0), (7.2)

where the pressure p is a constitutively indeterminate field that does not affect the
internal power (3.1); the field S represents the extra stress. Then, by (7.1)2,

T :D = S :D, (7.3)

and the local free-energy imbalance (6.3) reduces to the dissipation inequality

Γ = S :D + G :gradω − ρψ̇ ≥ 0. (7.4)

Guided by the presence of the term involving the corotational rate
◦
D = Ḋ+DW−WD

of the stretching tensor D in the Navier–Stokes-α equation, we suppose that the specific
free energy and the extra stress are given by constitutive equations of the form

ρψ = λ|D|2 and S = 2µD + 2λ
◦
D, (7.5)

with λ and µ constant. These choices are familiar from the theory of Rivlin–Ericksen
fluids; cf. Rivlin & Ericksen, 1955; Truesdell & Noll, 1965, §119; Dunn & Fosdick, 1974.
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To ensure that the specific free energy has a strict minimum when D = 0, we assume
that

λ > 0. (7.6)

Futher, based on a result of Mindlin & Tiersten (1962) for an elastic solid, we assume
that the hyperstress is given by a constitutive equation of the form

G = ζ gradω + ξ(gradω)�, (7.7)

with ζ and ξ constant. Note that, consistent with (3.2), G as determined by (7.7) is
traceless. We conjecture that (7.7) is the most general linear, isotropic relation possible
between G and gradω.

With the choices (7.5) and (7.7), the dissipation inequality (7.4) reduces to

Γ = 2µ|D|2 + (ζ + ξ)|A|2 + (ζ − ξ)|Z|2 ≥ 0, (7.8)

where we have introduced

A = 1
2

(
gradω + (gradω)�

)
and Z = 1

2

(
gradω − (gradω)�

)
. (7.9)

Conditions that are both necessary and sufficient that (7.8) be satisfied for all D, A, and
Z are µ ≥ 0, ζ + ξ ≥ 0, and ζ − ξ ≥ 0; equivalently, µ ≥ 0, ζ ≥ 0, and −ζ ≤ ξ ≤ ζ, and
we are led to the moduli conditions:

µ ≥ 0, ζ ≥ 0, −ζ ≤ ξ ≤ ζ. (7.10)

7.2. Flow equation
Bearing in mind (7.1)2, (7.2), (7.5)2, and the assumption that λ and µ are constant,

divT = divS− gradp = µ∆v + 2λdiv
◦
D− gradp; (7.11)

similarly, in view of (7.1)2, (7.7), and the assumption that ζ and ξ are constant,

(curldivG)i = εikrGrj,jk = εikr(ζεrpqvq,pjjk + ξεjpqvq,prjk)
= ζ(δipδkq − δiqδkp)vq,pjjk + ξ(εikrεjpq)vq,prjk
= ζ(vq,qijj︸ ︷︷ ︸

=0

−vi,ppjj) + ξεjpq εikrvq,krjp︸ ︷︷ ︸
=0

= −ζ(∆∆v)i,

so that

curldivG = −ζ∆∆v. (7.12)

Using (7.11) and (7.12) in the local momentum balance (4.18), we arrive at the flow
equation

ρv̇ = −gradp + µ∆v − ζ∆∆v + 2λdiv
◦
D, (7.13)

which, in components, has the equivalent form

ρv̇i = −p,i + µvi,jj − ζvi,jjkk + 2λ
◦
Dij,j . (7.14)

With the special choices

λ = ρα2 and ζ = µα2, (7.15)

the flow equation (7.13) reduces to the Navier–Stokes-α equation:

ρv̇ = −gradp + µ(1− α2∆)∆v + 2ρα2div
◦
D. (7.16)
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The parameter α carries dimensions of length. Viewed within the context of Lagrangian
averaging, α is the statistical correlation length of the excursions taken by a fluid particle
away from its phase-averaged trajectory. More intuitively, α can be interpreted as the
characteristic linear dimension of smallest eddy resolvable by the Navier–Stokes-α model.

Returning to the general flow equation (7.13), we may identify two characteristic length
scales

Le =

√
λ

ρ
and Ld =

√
ζ

µ
. (7.17)

Whereas Le is of energetic origin, Ld is dissipative in nature. In the standard develop-
ment of the Navier–Stokes-α equation, the term involving ∆∆v is added, ad hoc, to
the equation subsequent to the Lagrangian averaging of the Euler equation. Lagrangian
averaging yields the term involving the corotational rate of D. The length scale α of the
Navier–Stokes-α theory is therefore both energetic and dissipative. We see no a priori
justification for the choices (7.15).

7.3. Free energy imbalance revisited

Next, we may use (7.8) to write the free energy imbalance (6.8) (for a control volume R)
in the form

d
dt

∫
R

(λ|D|2 + 1
2ρ|v|

2) dv +
∫
S

(λ|D|2 + 1
2ρ|v|

2)v · nda−
∫
S

(
tS · v + mS ·

∂v
∂n

)
da

= −
∫
R

(2µ|D|2 + (ζ + ξ)|A|2 + (ζ − ξ)|Z|2) dv ≤ 0, (7.18)

with A and Z the symmetric and skew parts of gradω as defined in (7.9).
Turbulence is often studied assuming spatial periodicity and restricting attention to a

control volume R consisting of a single cubic cell. We now derive the form of the free-
energy imbalace (7.18) for a cubic cell in a spatial periodic flow. Since each face of such
a cell must have bulk fields v, gradv, . . . each equal to its value on the opposing face,
while the outward normals on the two faces are equal and opposite, we may conclude,
using (4.17), that∫

S

(λ|D|2 + 1
2ρ|v|

2)v · nda = 0,
∫
S

(
tS ·v + mS ·

∂v
∂n

)
da = 0. (7.19)

(The fact that K is undefined at each corner is not a problem: simply replace each corner
with a spherical cap of radius ε; then, since the area of each cap is O(ε2), while K = ε−1,
the integral over each cap tends to zero as ε→ 0.) Further, since divv = 0,∫

R

gradv : (gradv)�dv =
∫
R

div
(
(gradv)v

)
dv =

∫
S

n · (gradv)v dv = 0;

hence

2
∫
R

|D|2 dv = 2
∫
R

|W|2 dv dv =
∫
R

|ω|2 dv, (7.20)
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and a similar argument yields

2
∫
R

|A|2 dv = 2
∫
R

|Z|2 dv =
∫
R

|gradω|2 dv (7.21)

Thus, for R for a cubic cell in a spatial periodic flow the free-energy imbalace (6.8) has
the simple form

d
dt

∫
R

1
2 (λ|ω|2 + ρ|v|2) dv = −

∫
R

(µ|ω|2 + ζ|gradω|2) dv ≤ 0. (7.22)

and yields the conclusion that the integral
∫
R
(λ|ω|2 + ρ|v|2) dv decreses with time.

8. Boundary conditions
In this section we develop counterparts of the classical notions of a free surface and

a fixed surface without slip; that is, a surface at which the fluid abuts and adheres to a
motionless, nondeformable environment. For convenience, when discussing free surfaces
we neglect the pressure of the environment.

As in §5.3, we let tenv
∂B and menv

∂B denote the traction and hypertraction exerted by the
environment on the boundary ∂B of the region occupied by the fluid, and we let n denote
the outward unit normal on ∂B.

8.1. Weak formulation of the flow equation and boundary conditions at a prescribed
time when a portion of the boundary is a free surface and the remainder a fixed

surface without slip
Because we work within a framework based on the principle of virtual power, it is fairly
straightforward to derive a weak (variational) formulation of the flow equation and the
boundary conditions discussed above. We begin by rewriting the virtual balance (4.14)
with R = B and with the tractions tS and mS specified, via the boundary force and
moment balances

tS = tenv
∂B + 2σKn and mS = menv

∂B

(cf. (5.12) and (5.15)), in terms of their environmental counterparts tenv
∂B and menv

∂B :∫
∂B

(
(tenv
∂B + 2σKn) · φ+ menv

∂B ·
∂φ

∂n

)
da +

∫
B

b · φdv =
∫
B

(T :gradφ+ G :gradcurlφ) dv.

(8.1)

Consider the boundary integral in (8.1), but with φ = v. Bearing in mind (4.19), this
term has the form ∫

∂B

(
(tenv
∂B + 2σKn) · v + menv

∂B ·P
∂v
∂n

)
da, (8.2)

with P the projection onto the plane normal to ∂B defined by (2.4).
We assume that the mean curvature K of — and the surface tension σ at — the

boundary are known. Then the form of the integal (8.2) and experience with the principle
of virtual power suggest that reasonable boundary conditions might, at each point of ∂B,
consist of a prescription of

(i) tenv
∂B or v, or a relation between tenv

∂B and v; and
(ii) menv

∂B or P∂v/∂n, or a relation between menv
∂B and P∂v/∂n.
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Consistent with this, we consider specific boundary conditions in which a portion Sfree of
∂B is a free surface and the remainder Snslp is a fixed surface without slip:

(I) On Sfree the environmental tractions vanish (tenv
∂B = menv

∂B = 0), so that

tS ≡ Tn + divS(Gn×) = σKn and mS ≡ n×Gn = 0 on Sfree (8.3)

(cf. (5.16); (8.3)1 follows from (5.16)1 and (8.3)2).
(II) On Snslp the fluid velocity vanishes and the hypertraction menv

∂B is prescribed, so
that

v = 0 and mS ≡ n×Gn = menv
∂B on Snslp; (8.4)

cf. (5.16)2. Here menv
∂B may be prescribed as a field on ∂B or constitutively as function of

such fields; in §8.2 we consider the specific condition menv
∂B = −µ�P∂v/∂n = −µ�ω × n

(cf. (2.11)) with � constant.
As is customary when discussing boundary conditions of the form (8.4)1, we restrict

attention to virtual velocity fields φ that are kinematically admissible in the sense that

φ = 0 on Snslp. (8.5)

Given such a field, granted the boundary conditions (8.3) and (8.4), the virtual-power
balance (8.1) yields the virtual balance:∫
Sfree

σKn · φda +
∫
Snslp

menv
∂B ·

∂φ

∂n
da +

∫
B

b · φdv

=
∫
B

(T :gradφ+ G :gradcurlφ) dv. (8.6)

The result (#) on page 12 then implies that, given any kinematically admissible φ, (8.6)
is equivalent to (4.15) and hence to∫
Sfree

(
σKn− (Tn + divS(Gn×)− 2Kn×Gn)

)
· φda

−
∫
Sfree

(n×Gn) · ∂φ
∂n

da +
∫
Snslp

(menv
∂B − n×Gn) · ∂φ

∂n
da

= −
∫
B

(divT + curldivG + b) · φdv. (8.7)

Thus, arguing as in the steps leading to (4.16) and (4.17), we see that, granted b is given
by (3.3), the momentum balance (4.18) is satisfied in B, while the conditions (8.3) and
(8.4) are satisfied on ∂B.

Conversely, (4.18), (8.3), and (8.4) imply that (8.7) and (hence) (8.6) are satisfied for
all kinematically admissible φ. Finally, as is clear from the discussion in §7, granted the
constitutive equations (7.5)2 and (7.7), the momentum balance is equivalent to the flow
equation (7.13). We have therefore established a weak formulation of the flow equation
and the boundary conditions (8.3) and (8.4):
• Granted (3.3) and the constitutive equations (7.5)2 and (7.7), the virtual balance

(8.6) is satisfied for all kinematically admissible virtual fields φ if and only if:
(i) the flow equation (7.13) is satisfied within the fluid;
(ii) the conditions (8.3) and (8.4) are satisfied on the boundary of the fluid.
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8.2. The vorticity condition

Consider the boundary condition (8.4) for a fixed surface without slip. By (8.4)1, v = 0
on Snslp; thus, since mS = menv

∂B , we may use (2.11) and (8.2) with ∂B replaced by Snslp;
the result is ∫

Snslp

menv
∂B ·P

∂v
∂n

da =
∫
Snslp

menv
∂B · (ω × n) da, (8.8)

and, guided by this relation, we consider a constitutive equation for menv
∂B of the form

menv
∂B = −µ�ω × n on Snslp, (8.9)

with � a constitutive modulus whose magnitude |�| represents a material length scale.
At this point � may be positive or negative. Finally, since menv

∂B = n ×Gn on Snslp (cf.
(8.4)), we arrive at the boundary condition

n× (Gn− µ�ω) = 0 on Snslp. (8.10)

We refer to (8.10) as the vorticity condition and to � as the wall-eddy modulus.

8.3. Free energy imbalance, dissipation, and the sign of the wall-eddy modulus �

In a recent work (Fried & Gurtin 2006) we have given a general discussion of the use of an
energy imbalance for a boundary pillbox to develop constitutive relations describing the
interaction of the fluid and its environment. We here sketch the corresponding analysis,
but only as it applies to the boundary conditions (8.4)1 and (8.10). Let S denote a fixed
(i.e. time-independent) subsurface of Snslp with S viewed as a fixed boundary pillbox of
infinitesimal thickness (cf. §5.3).

Let ψx denote the excess free energy of the fluid at the surface Snslp, measured per
unit area, so that ∫

S

ψx da

represents the net free energy of the pillbox. Since v = 0, it is clear from (2.11) and the
paragraph containing (5.6) that

Wsurf(−S) = −
∫
S

mS ·
∂v
∂n

da = −
∫
S

mS · (ω × n) da (8.11)

represents the power expended by the fluid on the pillbox surface −S. We assume that
the power expended by the environment on the pillbox surface S vanishes and hence that
the environment is passive. (One might wonder how an environment with menv

∂B �= 0 can
be passive. As is clear from the first paragraph of §8, because Snslp abuts a motionless,
nondeformable environment, the environmental tractions tenv

∂B and menv
∂B must be indeter-

minate and hence incapable of expending power.) The power expended by the fluid on
the lateral face of the pillbox by surface tension vanishes, because the boundary curve ∂S
is stationary. Thus, since, by (5.15), mS = menv

∂B , the net power expended on the pillbox
is given by

−
∫
S

mS · (ω × n) da = −
∫
S

menv
∂B · (ω × n) da. (8.12)
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Consider the quantity D(S) defined by

d
dt

∫
S

ψx da

︸ ︷︷ ︸
free energy rate

−
∫
S

(
−menv

∂B · (ω × n)
)
da

︸ ︷︷ ︸
power expenditure

= −D(S). (8.13)

Were we to parallel the development in bulk, as discussed in §6.1, with the requirement
that the temporal increase in free energy of S be less than or equal to the power expended
on S, then D(S) ≥ 0 would represent the energy dissipated within the pillbox. Assuming
that ψx is constant and recalling that S is fixed, so that

d
dt

∫
S

ψx da = 0,

we would find, as a consequence of (8.13), that

D(S) = −
∫
S

menv
∂B · (ω × n) da ≥ 0.

Thus

−menv
∂B · (ω × n) (8.14)

would represent the dissipation per unit area, so that, by (8.9),∫
S

µ�|ω × n|2 da ≥ 0. (8.15)

Thus, since S was arbitrarily chosen, we would conclude that

� ≥ 0. (8.16)

However, as we shall see, for flow in a channel with the boundary conditions

v = 0 and n× (Gn− µ�ω) = 0 on Snslp (8.17)

(cf. (8.4)1, (8.10)), our theory with � ≥ 0 delivers solutions that agree neither quantita-
tively nor qualitatively when compared to the direct numerical simulations of Kim, Moin
& Moser (1987) and Moser, Kim & Mansour (1999) and the experimental results of Wei
& Wilmarth (1989); on the other hand there is excellent agreement when

� < 0. (8.18)

Interestingly, such values of � imply that µ� |n × ω|2 — a term which would usually be
termed dissipative — is negative! (Cf. the sentence containing (8.15).)

In this regard it is of interest to revisit the free energy imbalance (7.18) applied to the
body itself, with the entire boundary ∂B a fixed surface without slip. In this case the
non-slip boundary conditions (8.4)1 and (8.10) are satisfied on the entire boundary ∂B,
so that, by (8.9), (8.11), and (8.12),∫

∂B

(
tS · v + mS ·

∂v
∂n

)
da =

∫
∂B

µ�|ω × n|2 da

and, restricting attention to the Navier–Stokes–α theory so that λ = ρα2, (7.18) takes



Cosserat fluids and the continuum mechanics of turbulence 25

2h v(x2)

x2
e1

e2

Figure 2. Schematic for the problem of flow in a channel of gap 2h. The coordinates in the
directions downstream and out of the plane are x1 and x3.

the form

d
dt

∫
B

ρ(α2|D|2 + 1
2 |v|

2) dv =




−µ�
∫
∂B

|ω × n|2 da−
∫
B

Γ dv for � > 0,

µ |�|
∫
∂B

|ω × n|2 da−
∫
B

Γ dv for � < 0.
(8.19)

with Γ ≥ 0, given by (7.8) and (7.9), the bulk dissipation per unit volume. The re-
sult (8.19), which is quite striking, demonstrates the destabilizing effect of the non-slip
boundary conditions when � < 0. Indeed, when � > 0 the right side of (8.19) is negative
and the total energy ∫

B

ρ(α2|D|2 + 1
2 |v|

2) dv

decreases with time. But, when � < 0, the boundary term µ|�|
∫
∂B
|ω × n|2 da is positive

and hence destabilizing, because its influence on the total energy is to make it increase
with time. For � < 0 the boundary term cannot represent dissipation; instead it represents
a production of energy due to the formation of eddies at the boundary.

These conclusions render Navier–Stokes–α theory with � < 0 incompatible with ther-
modynamics as embodied in a free energy imbalance. While we know of no succesful
continuum mechanical theory for which experiments yield moduli of signs opposite to
those imposed by thermodynamics, one might argue that continuum thermodynamics is
inapplicable to a discussion of turbulence when applied at a fixed boundary without slip.
Indeed, turbulent eddies generated at such boundaries might render the state of the fluid
there sufficiently far removed from equilibrium that standard continuum thermodynam-
ical laws might no longer be valid. In this regard it is interesting to note that the free
energy imbalance applied in bulk delivers moduli of signs (µ, ζ ≥ 0) consistent with those
of the Navier–Stokes–α equation; cf. (7.10) and (7.13).

For these reasons, we do not dismiss the Navier–Stokes–α theory based on incompat-
ibity with the boundary free energy imbalance, but leave it to others who might better
understand the physics of turbulence to either accept or reject our arguments.

9. Flow in a rectangular channel
We now consider the problem of a steady, turbulent flow through an infinite, rectan-

gular channel formed by two parallel walls separated by a gap 2h (Figure 2). We suppose
that channel walls are fixed and without slip in the sense that the no-slip and wall-eddy
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conditions (8.17) hold. Further, we assume that the environmental hypertraction is of
the particular form (8.9). This simple model problem allows us to investigate the affects
of the length scales Ld and � and to make comparisons with numerical and experimen-
tal results. As noted in the paragraph including (8.18), to obtain agreement with the
observed features of turbulent flow, we find that it is necessary to take � < 0.

9.1. Solution of the channel problem

Employing the notation of Figure 2, we assume that the fluid velocity v has the form

v(x) = v(x2)e1; (9.1)

v is therefore consistent with divv = 0 and obeys v̇ = 0. In view of (9.1), the flow
equation (7.13) gives

−ζv′′′′ + µv′′ =
∂p

∂x1
, 2λv′v′′ =

∂p

∂x2
,

∂p

∂x3
= 0, (9.2)

while the conditions (8.4)1 and (8.10) for a fixed boundary without slip give

v(0) = 0, v(2h) = 0, µ�v′(0) = ζv′′(0), µ�v′(2h) = −ζv′′(2h), (9.3)

where a prime is used to denote differentiation with respect to the downstream coordi-
nate.

Since v depends only on x2, (9.2) implies that

p(x1, x2) = −βx1 + λ|v′(x2)|2, with β = constant. (9.4)

We assume, without loss of generality, that the pressure decreases with increasing x. It
then follows that

β > 0. (9.5)

Further, in view of (9.2), (9.3), and (9.4), v can be expressed as

v(x2) =
βh2

2µ

{
1−

(
1− x2

h

)2

−
2
(
Ld
h + �

Ld

)
h
Ld

(
1 + �

Ld
tanh h

Ld

)(
1−

cosh h
Ld

(
1− x2

h

)
cosh h

Ld

)}
, (9.6)

with Ld the dissipative length scale defined (7.17), and, to ensure that (9.6) is nonsingular,
� assumed consistent with

1 +
�

Ld
tanh

h

Ld
�= 0. (9.7)

Importantly, the condition (9.7) allows for both positive and negative values of �.

9.2. Behavior at the wall. Sign of the wall-eddy modulus

Experiments and DNS simulations of channel flow show that, for suitably normalized
laminar and turbulent velocity profiles, the slopes of the turbulent profiles at the channel
walls have magnitudes greater than their laminar counterparts (Pope 2000). We now
show that the theory exhibits this feature of turbulent flow only when the wall-eddy
modulus � is negative.

We begin by normalizing v by its maximum value to yield

V (x2) =
v(x2)
v(h)

. (9.8)
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For comparison, we introduce

Vc(x2) = 1−
(

1− x2

h

)2

, (9.9)

which is the analogous normalization of the laminar solution to the plane channel prob-
lem. To embody the observed features of turbulent flow, the slope of V at the base of the
channel must exceed that of Vc. A calculation shows that V ′(0) > V ′c (0) if and only if(

Ld
h + �

Ld

)(
2 + sinh h

Ld
− 2 cosh h

Ld

)
h
Ld

(
1 + �

Ld
tanh h

Ld

)
cosh h

Ld

< 0. (9.10)

Since Ld > 0 and h > 0 it follows that v as defined by (9.6) captures the observed
features of turbulent channel flow only if the wall-eddy modulus obeys the inequalities

� < 0 (9.11)

and, in addition to (9.7),

Ld
h

<
|�|
Ld

. (9.12)

Later, we find that |�|/Ld ∼ 1. This being the case, the inequality (9.12) can be inter-
preted as requiring that the dissipative length scale Ld must be less than the characteristic
dimension of the channel. If Ld is identified with the parameter α of the Navier–Stokes-α
model, then the requirement that Ld < h is consistent with standard practice in sim-
ulations, where α is commonly taken to be a small fraction of the characteristic linear
dimension of the flow domain.

The requirement (9.11) that the wall-eddy modulus be negative implies, as we note
in the §8.3, that the free energy imbalance (8.15) at the boundary is not satisfied. To
obtain agreement with observed behavior at the channel walls, we must therefore violate
this form of the second law. (Cf. the discussion in the paragraph containing (6.1).)

Hereafter, we therefore assume that � is negative, so that |�| > 0, and obeys (9.12).
For simplicity, we introduce

b =
|�|
Ld
− Ld

h

1− |�|Ld tanh h
Ld

> 0 (9.13)

and write v as

v(x2) =
βh2

2µ

{
1−

(
1− x2

h

)2

+
2b
h
Ld

(
1−

cosh h
Ld

(
1− x2

h

)
cosh h

Ld

)}
. (9.14)

9.3. Comparison with the solution of Chen, Foias, Holm, Olson, Titi & Wynne (1999)
These authors use the Navier–Stokes-α theory to study flow in a channel subject to the
boundary conditions

v(0) = 0, v(2h) = 0, µv′(0) = τw, µv′(2h) = −τw. (9.15)

where τw > 0 denotes the wall shear stress. Despite the differences between (9.15)3,4 and
(9.3)3,4, the solution to this problem can be obtained directly from (9.14) on setting

Ld = α and
|�|
Ld

=
1− θ

tanh h
Ld

+
θ
h
Ld

, (9.16)
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with

θ =
βh

τw
and 0 < θ < 1. (9.17)

Importantly, we must have � < 0 to achieve this correspondence. Moreover, noting that
for the channel problem with v(x) = v(x2)e1,

mS = e2 ×Ge2 = ζv′′e1 and
∂v
∂n

= (n · e2)v′e1, (9.18)

and using the expression (8.14) for the dissipation and bearing in mind sign difference
between the normals on the channel walls, we find that

−menv
∂B ·

∂v
∂n

∣∣∣
x2 = 0

= −menv
∂B ·

∂v
∂n

∣∣∣
x2 = 2h

= L2
dτwv

′′(0) (9.19)

Futher, using (9.16) and (9.17)1 in (9.6) and bearing in mind (9.17)2, we have

v′′(0) = −β
µ

(
1 +

h
α (1− θ)
θ tanh h

α

)
< 0;

since τw > 0, it therefore follows that, for the boundary conditions (9.15),

−menv
∂B ·

∂v
∂n

∣∣∣
x2 = 0

= −menv
∂B ·

∂v
∂n

∣∣∣
x2 = 2d

< 0. (9.20)

Thus, as is the case for our solution (9.6) when the wall-eddy modulus obeys � < 0, the
solution of Chen, Foias, Holm, Olson, Titi & Wynne (1999) — which agrees well with
experimental and numerical predictions of turbulence — violates the conventional notion
of free energy imbalance at the boundary.

9.4. Comparison with numerical and experimental results
Assuming that wall-eddy modulus � is negative and consistent with (9.11), we now com-
pare the solution v to the problem for channel flow to the mean downstream velocity for
turbulent channel flow as predicted by the direct numerical simulations (DNS) of Kim,
Moin & Moser (1987) and Moser, Kim & Mansour (1999).

To make proper comparisons, we employ the standard definitions

vτ =
√

τw
ρ
, Reτ =

ρvτ
µ

, and y+ =
Reτ
h

x2 (9.21)

for the friction velocity vτ , friction Reynolds number Reτ , and the viscous length y+.
(Throughout this section, we employ the terminology and notation of Pope (2000).) In
addition, corresponding to v as defined by (9.6), we introduce a dimensionless velocity ϕ
via

ϕ(y+) =
1
vτ

v

(
h

Reτ
y+

)

=
Reτθ

2

{
1−

(
1− y+

Reτ

)2

+
2b
h
Ld

(
1−

cosh h
Ld

(
1− y+

Reτ

)
cosh h

Ld

)}
. (9.22)

Like Chen, Foias, Holm, Olson, Titi & Wynne (1999), we consider the Reynolds shear
stress 〈u1u2〉 in the downstream plane of the channel. On identifying v with the mean
downstream velocity in turbulent channel flow and writing the velocity field as ve1 + u,
with u the fluctuating velocity, the downstream component of the ensemble-averaged
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Reτ h/Ld |�|/Ld θ

180 16.6 0.957 0.0583
395 34.8 0.974 0.0336
590 48.1 0.980 0.0239

Table 1. Values of h/Ld, |�|/Ld, and θ determined by fitting ϕ to the DNS data of Kim, Moin &
Moser (1987) and Moser, Kim & Mansour (1999) for the nominal values Reτ = 180, Reτ = 395,
and Reτ = 590 of the friction Reynolds number.

Navier–Stokes equations is

µv′′ − ρ〈u1u2〉′ =
∂p

∂x1
, (9.23)

where

〈u1u2〉(0) = 〈u1u2〉(2h) = 0 (9.24)

and ∂p/∂x1 is constant. Integration of (9.23) yields

−ρ〈u1u2〉(x2) = µv′(0)
(

1− x2

h

)
− µv′(x2). (9.25)

To make appropriate comparisons, we introduce the dimensionless Reynolds shear stress

r(y+) = − 1
τw
〈u1u2〉

(
d

Reτ
y+

)

= ϕ′(0)
(

1− y+

Reτ

)
− ϕ′(y+). (9.26)

We use the nonlinear least-squares method to fit ϕ as defined by (9.22) to the DNS data
of Kim, Moin & Moser (1987) and Moser, Kim & Mansour (1999) for the nominal values
Reτ = 180, Reτ = 395, and Reτ = 590 of the friction Reynolds number. The values of
the parameters h/Ld, |�|/Ld (note from (9.13) that b depends on both h/Ld and |�|/Ld),
and θ determined by these fits are listed in Table 1. Plots of ϕ and r corresponding to
these fits are shown, along with the DNS data, in Figure 3. While the plots of ϕ exhibit
very close agreement with the data, the plots of r agree with the data only for y+ � 70
— that is, for y+ outside the viscous wall region. As Chen, Foias, Holm, Olson, Titi &
Wynne (1999) note, this discrepancy might be attributed to the presence of statistically
inhomogeneous and/or anisotropic fluctuations within the viscous wall region.

Interestingly, despite the fairly wide disparity between the friction Reynolds numbers
considered, the fitted values of |�|/Ld listed in Table 1 are all very close. This suggests
that the magnitude of the wall-eddy modulus � should remain close to the viscous length
Ld.

Let Φ denote the dimensionless version of the solution of Chen, Foias, Holm, Olson,
Titi & Wynne (1999). Since Φ involves only two independent dimensionless parameters,
h/α and θ, it should not be surprising that ϕ provides superior fits. Generally, fits based
on Φ lie noticably above the DNS data for 1.2 � y+ � 40 and very slightly below the
DNS data for y+ � 70 (Chen, Foias, Holm, Olson, Titi & Wynne 1999). This observation
is consistent with Figure 4, which shows the relative difference (ϕ − Φ)/ϕ between the
fits corresponding to ϕ and Φ for Reτ = 395. In contrast, the plots of the dimensionless
Reynolds shear stresses corresponding to ϕ and Φ show negligible differences over the
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Figure 3. Comparison of the dimensionless velocity profile φ and the dimensionless Reynolds
shear stress r with the data arising from the DNS simulations of Kim, Moin & Moser (1987) and
Moser, Kim & Mansour (1999) for the nominal values Reτ = 180, Reτ = 395, and Reτ = 590 of
the friction Reynolds number.

range (y+ � 70) of viscous lengths where they agree with the DNS data. Within the
viscous wall region, the match provided by r provides only a marginal improvement over
its counterpart associated with Φ.

If only two of the parameters h/Ld, |�|/Ld, and θ are independent, a fit based on ϕ
will not necessarily improve upon one based on Φ. In particular, if we assume that |�|/Ld
is determined in terms of h/Ld and θ via (9.16)2 it then follows from (9.13) that

ϕ(y+) =
Reτθ

2

{
1−

(
1− y+

Reτ

)2

+
2(1− θ)

θ h
Ld

tanh h
Ld

(
1−

cosh h
Ld

(
1− y+

Reτ

)
cosh h

Ld

)}
. (9.27)

Using the values of h/Ld and θ listed in Table 1 in (9.16) yields 0.950, 0.970, and
0.980 for the values of |�|/Ld corresponding to Reτ = 180, Reτ = 395, and Reτ = 590,
respectively. Comparison with the values, 0.957, 0.974, and 0.980 of |�|/Ld listed in
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Figure 4. Relative difference (ϕ−Φ)/ϕ between the fits obtained for ϕ and Φ for the nominal
value Reτ = 395 of the friction Reynolds number.

Table 1 suggests that the difference between fits based on ϕ and Φ should decrease
as Reτ increases.

Within the context of plane channel flow, the sole distinction between the full theory
involving the energetic and dissipative length scales Le and Ld defined in (7.17) and the
Navier–Stokes-α theory arises in the expression (9.4) for the pressure. Due to the presence
of λ, the appropriately nondimensionalized version of (9.4) yields a dependence upon L2

e.
This dependence allows for an additional degree of freedom — and, thus, superior results
— when fitting the pressure.

The theory can be used to determine a drag law relating the friction Reynolds number
Reτ to the actual Reynolds number

Re =
ρ

2µh

∫ 2h

0

v(x2) dx2 =
∫ Reτ

0

ϕ(y+)dy+. (9.28)

Specifically, using the expression (9.22) for ϕ in (9.28), we find that

Re = Re2
τθ

{
1
3

+
b
h
Ld

(
1− Ld

h
tanh

h

Ld

)}
. (9.29)

Recalling the definition (9.17) of θ and defining τw via

τw = µv′(0) = βh
(
1 + b tanh

h

Ld

)
, (9.30)

we find from (9.29) that the theory predicts a resitance law

Reτ = c
√

Re, (9.31)

where c depends only on h/Ld and |�|/Ld and has the particular form

c =

√
1− |�|Ld tanh h

Ld√
1− Ld

h tanh h
Ld

√
1
3 + b

h
Ld

(
1− Ld

h tanh h
Ld

) . (9.32)

In view of (9.31), the theory underpredicts, by a factor of Re3/8 the scaling Reτ ∼ Re7/8

exhibited by the empirical Blasius resistance law (Blasius 1914; Dean 1978; Pope 2000).
Agreement with this classical scaling would be achieved if one were to follow Chen,
Foias, Holm, Olson, Titi & Wynne (1999) (who allow α to depend on Re) and take
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Ld or � to depend on Re. However, constitutive parameters — including Ld and � —
should be independent of flow parameters such as the Reynolds number. Alternatively,
allowing Ld or � to depend on a frame-indifferent variable such as |gradω| might lead to
a resistance law consistent with experimental observations. We leave the investigation of
this possibility for future study.

10. Addendum: vortex kinetic energy
The term 1

2λ|ω|2 appearing in the integrand on the left side of the equality (7.22) is
suggestive of a vortex kinetic energy, even though it arises from the free energy. However,
the inequality (7.22) holds only for a spatially periodic flow. We now develop an extended
theory that has a vortex kinetic energy in all flows.

10.1. Gradient kinetic energy. Inertial power balance

We now consider a kinetic energy, per unit volume of the form

1
2 (ρ|v|2 + κ|ω|2),

in which κ, like ρ, is constant, so that the kinetic energy of any region R(t) that convects
with the fluid is given by

K(R(t)) =
∫
R(t)

1
2 (ρ|v|2 + κ|ω|2) dv (10.1)

and that

d
dt
K(R(t)) =

∫
R(t)

(ρv̇ · v + κω̇ · ω) dv. (10.2)

Our goal is to determine inertial components of the body force b and the traction tS
appropriate to the kinetic energy (10.1). In particular, recalling that b is assumed to be
purely inertial, we first seek a body force b and an inertial traction tin

S with the following
properties:

(i) There is a noninertial traction such that

tS = tin
S + tni

S . (10.3)

(ii) The kinetic-energy rate (10.2) is balanced by the negative of the power expended
by b and tin

S in the sense of the inertial power balance:∫
R

(ρv̇ · v + κω̇ · ω) dv = −
∫
R

b · v dv −
∫
S

tin
S · v da, (10.4)

where in writing (10.4) we have, without loss of generality, replaced R by an arbitrary
control volume R and ∂R by ∂R = S. (See Podio-Guidugli (1996), who bases his discus-
sion of (classical) kinetic energy on a balance between the rate of kinetic energy and the
power expended by an inertial body force.)

Actually, we shall work within a virtual-power framework more stringent than that
expressed in (ii).
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10.2. Inertial virtual-power balance. Inertial body force and surface traction

With a view toward making use of experience gained in the virtual power analysis of §3
and §4, we define (tensorial and vectorial) momentum-rate forces p and q via

p = ρv̇ and q = κω̇, (10.5)

an we rewrite (10.4) in the form∫
R

(p · v + q · ω) dv = −
∫
R

b · v dv −
∫
S

tin
S · v da. (10.6)

Guided by our discussion of virtual power in §4 (in particular, in the paragraph containing
(4.1)) and comparing (10.6) to the virtual power relation defined by (4.1) and (4.2), we
assume that, at some arbitrarily chosen but fixed time, the region occupied by the fluid
is known, as are the inertial traction tin

S , the inertial body force bin, and the momentum-
rate forces p and q, and consider the velocity field v as a virtual field φ that may be
specified independently of the actual evolution of the fluid :∫

R

(p · φ+ q · curlφ) dv = −
∫
R

b · φdv −
∫
S

tin
S · φda. (10.7)

This paradigm represents an intrinsic method of decomposing the rate of kinetic energy
into the negative of a power expenditure by a body force field b and a traction field
tin
S , with each of these fields uniquely determined. As a bonus, this treatment of inertia

guarantees a variational framework for the resulting partial differential equation.
Writing n for the outward unit normal to S = ∂R, if we integrate the term in (10.7)

involving q · curlφ by parts we find that∫
R

(b + p + curlq) · φdv +
∫
S

(tin
S + q× n) · φda = 0; (10.8)

since this is to hold for all virtual fields φ, we arrive at explicit expressions for b and tin
S :

b = −p− curlq,

tin
S = −q× n.

}
(10.9)

Next, using (2.2), (10.3), (10.5), and (10.10), we may express the net body force b and
the net surface traction tS in the forms

b = −ρv̇ − κcurl ω̇ = −ρv̇ − κcurl ˙curlv,

tS = −κω̇ × n + tni
S = −κ ˙curlv × n + tni

S ,


 (10.10)

where tni
S is the noninertial surface traction. With a view toward writing (10.10) in terms

of the acceleration v̇, we note that( ˙curlv
)
i
= εijk

(∂vk,j
∂t

+ vk,jlvl

)
= εijk

(∂vk
∂t

+ vk,lvl

)
,j
− εijkvk,lvl,j

= εijk(v̇k),j − εijkvk,lvl,j
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and, hence, that (
curl ˙curlv

)
i
= −∆v̇i + vi,k∆vk + vi,kjvk,j + gradq, (10.11)

with

q = 1
2div

(
div(v ⊗ v)

)
, (10.12)

and that ( ˙curlv × n
)
i
= (v̇i),jnj − vi,lvl,jnj . (10.13)

On defining (
(grad2v)gradv

)
i

def= vi,kjvk,j

we may use direct notation to write the identities (10.11) and (10.13) as:

curl ˙curlv = −∆v̇ + (gradv)∆v + (grad2v)gradv,

˙curlv × n = (grad v̇ − (gradv)gradv)n.


 (10.14)

Thus, by (10.10)1, we find that

b = −κgradq − (ρ− κ∆)v̇ − κ
(
(gradv)∆v + (grad2v)gradv

)
,

tS = −κ(grad v̇ − (gradv)gradv)n + tni
S .

}
(10.15)

10.3. The flow equation and free energy imbalance with vortex kinetic energy
We continue to work within the constitutive framework set out in §7, so that the force
balance (4.16) remains valid. Thus, by (10.15)1, we have the flow equation

ρv̇ − κ(∆v̇ − (gradv)∆v − (grad2v)gradv)

= −gradP + µ∆v − ζ∆∆v + 2λdiv
◦
D, (10.16)

with

P = p + κq (10.17)

the effective pressure.
Next, arguing as in the steps leading up to (7.18) we find, using (10.4), that

d
dt

∫
R

(
λ|D|2 + 1

2 (ρ|v|2 + κ |gradv|2)
)
dv

+
∫
S

(
λ|D|2 + 1

2 (ρ|v|2 + κ |gradv|2)
)
v · nda−

∫
S

(
tni
S · v + mS ·

∂v
∂n

)
da

= −
∫
R

(2µ|D|2 + (ζ + ξ)|A|2 + (ζ − ξ)|Z|2) dv ≤ 0. (10.18)

Thus for a periodic flow with R a unit cell, we find as a consequence of (7.20) and (7.21)
that

d
dt

∫
R

1
2 (ρ|v|2 + (λ + κ)|gradω|2) dv = −

∫
R

(µ|ω|2 + ζ|gradω|2) dv ≤ 0. (10.19)

Therefore, granted a periodic flow, the energy imbalance (10.19) for a cubic control
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volume in the theory with vortex kinetic energy is exactly the same as its counterpart
(7.22) for the theory with conventional kinetic energy provided that we replace λ in the
conventional theory by λ + κ.

10.4. Plane Poiseuille flow revisited
Granted that the fluid velocity is of the form (9.1) assumed for the problem of plane
Poiseuille flow, kinematics alone yields the conclusion that

˙curlv = 0. (10.20)

Thus, when gradient kinetic energy is accounted for and inertial body forces are neglected,
it follows from (10.14) that the flow equation (10.16) reduces to the form (7.13) of the
theory without gradient kinetic energy. In addition, the non-slip boundary condition
(8.17) is unaltered. The problem of plane Poiseuille flow for the theory with gradient
kinetic energy therefore reduces to the problem considered in Section 9 and the resulting
solutions are therefore unchanged.
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