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Abstract14

Unveiling the coupling between the atmosphere and the Earth, improving our understanding15

of the preparation phase of earthquakes and volcanic eruptions, mitigating induced seismic16

hazard, discovering new natural resources all require improved imaging and monitoring17

of the top first kilometers of the crust. Passive seismic imaging and monitoring usually18

relies on blind correlations of long time series of noise. Instead, seismic interferometry19

applied to opportunistic sources of noise relies on an accurate understanding of noise source20

mechanisms, on time window and station pair selection, and on specific seismic phases21

extraction (surface, body). Recently, massive freight trains have been recognized as the most22

persistent and powerful cultural seismic sources generating tremor equivalent to magnitude23

2 earthquakes and detectable up to 100 km distance. In this paper, we discuss the source24

mechanisms of train tremor and review some basic theory on seismic interferometry applied25

to opportunistic sources. We finally show two case studies of long-range body- and surface-26

waves retrieval in the contexts of mineral exploration in Canada and fault zone monitoring27

in Southern California. This approach of noise recovery to create valuable sources together28

with disruptive dense data acquisition technologies such as nodes or Distributed Acoustic29

Sensing will deeply transform our capability to explore and monitor the shallow crust with30

improved spatial and temporal resolution.31
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1 Introduction32

Vehicle traffic has long been recognized as a pervasive source of noise detrimental to the33

quality of seismic records (Douze and Laster, 1979). In recent years, the intriguing tremors34

generated by trains startled seismologists and gave rise to a number of publications related to35

signal detection and characterization (Riahi and Gerstoft, 2015; Li et al., 2018; Green et al.,36

2017; Fuchs et al., 2018; Inbal et al., 2018) and source modelling (Lavoué et al., 2020). In37

pioneer studies Nakata et al. (2011); Quiros et al. (2016); Chang et al. (2016) have proposed38

the idea of using traffic noise and seismic interferometry for both body- and surface-wave39

imaging. These studies are however limited to local sources of cultural noise and near-surface40

applications.41

In an attempt to reveal the signature of non-volcanic tremors (NVT) along the San42

Andreas Fault in Southern California, Inbal et al. (2018) discovered tremors that shared43

a puzzling similarity with NVTs but that were found to be generated by massive freight44

trains running along the Coachella Valley and detected up to 100 km from the railways.45

Indeed Brenguier et al. (2019) estimated that the radiated seismic energy from a single46

1-km-long freight train travelling through a 10-km-long railway section is equivalent to a47

magnitude 2 earthquake. By further applying the concepts of seismic interferometry to the48

correlation of this long-range train-generated noise, Brenguier et al. (2019); Dales et al. (2020)49

demonstrated the possibility of extracting useful information on the Earth’s shallow crust50

structure and temporal evolution down to a few kilometers depth, thus providing a potential51

alternative to costly active-source monitoring (Tsuji et al., 2018). This paper reviews basic52

concepts and shows examples of the application of seismic interferometry to train noise with a53

special focus on long-range body-waves reconstruction for crustal exploration and monitoring54

(Fig. 1).55

Green’s function retrieval through the correlation of a diffused coda or seismic noise56
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recorded at different sensors, also referred to as seismic interferometry, has revolutionized57

seismology in the last decades (Campillo and Paul, 2003; Shapiro et al., 2005) and led to58

the publication of more than 2000 papers in the last 15 years. It has been mainly applied to59

crustal imaging using correlations of the pervasive surface wave noise generated in the oceans60

in the period range from 1 to 20 seconds. Recent studies have also unveiled the possibility61

of reconstructing body-waves at global (Poli et al., 2012; Boué et al., 2013) and local scales62

(Draganov et al., 2009; Nakata et al., 2015; Olivier et al., 2015; Nakata et al., 2016).63

A perfect Green’s function retrieval using seismic interferometry requires the correlation64

of either a fully diffused seismic wavefield or of noise signal generated by sources distributed65

all around the studied region, including at depth (Wapenaar, 2004). In practice these66

conditions are never fulfilled, leading to partial reconstructions and potentially biased arrivals67

(Snieder et al., 2006; King and Curtis, 2012). Moving trains are opportunistic sources of68

noise located at specific locations (railways) at the surface of the Earth and should thus69

be considered with care for seismic interferometry. Traffic train noise cannot be blindly70

correlated without considering the effects of non-even source distribution on body-wave71

reconstruction.72

In this paper we first illustrate some typical train noise signal, discuss some recent models73

of the source mechanisms of train seismic radiations and introduce a map of the predicted74

spatial extent of useful train noise throughout the contiguous US. Secondly we propose a75

methodological framework focusing our approach on the concept of stationary phase kernels76

(Snieder, 2004) and propose a signal processing strategy for applying seismic interferometry77

to train noise with a focus on long-range body-waves reconstruction. We finally review78

two recent case studies in the contexts of mineral exploration in Canada and tectonic fault79

monitoring in Southern California.80
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Figure 1: Cartoon showing examples of studies related to train seismic tremors.

2 The sound of trains in the Earth81

Massive freight trains generate a seismic wave train that shows a striking similarity with82

episodic tectonic tremors (Fig. 2 top). As Inbal et al. (2018) report, the confusion can be83

even more puzzling because train traffic may not show typical cultural diurnal or weekly84
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modulation and typical train speed (25 m/s or 90km/h) is also in the range of reported85

tectonic tremor migration velocity at depth. Train hum has however a specific spectral86

signature with clear spectral lines above 1 Hz (Fuchs et al., 2018) illustrated in Fig. 2 for87

a train signal recorded in Canada about 3 km from the railway (first case study presented88

below).89

The engineering community has studied train-induced ground vibrations thoroughly in90

order to mitigate their intensity. Several source mechanisms have been proposed (e.g. Connolly91

et al., 2015) including quasi-static excitation due to axle load, and dynamic interactions92

between trains, track and ground. In a recent study, Lavoué et al. (2020) showed that93

the quasi-static excitation due to axle loads is the main mechanism explaining the spectral94

characteristics of seismic signals observed at intermediate to long distances from the railway95

(from hundreds of meters to tens of kilometers, Fuchs et al., 2018; Inbal et al., 2018; Li et al.,96

2018; Brenguier et al., 2019). It is therefore possible to model train-generated seismic signals97

by considering only the vertical forces due to loading applied by axles on the railroad ties98

(referred here to as sleepers) along the railway (Krylov and Ferguson, 1994; Lavoué et al.,99

2020).100

Lavoué et al. (2020) conclude that the spectral lines arise from the complex interactions101

of periodic loads from the regularly spaced wheels on the also regularly spaced sleepers. The102

frequencies of these spectral lines thus depend on train geometry (i.e. wagon length and wheel103

spacing within each wagon), spacing between sleepers, and train velocity. We propose an104

open-source code to assess the frequency content of a specific train at (https://gricad-gitlab.105

univ-grenoble-alpes.fr/pacific/publications/2020_Lavoue-et-al_SRL_supplemental-material).106

It is worth mentioning that for typical massive American freight trains (2 km long, 15 kilotons)107

we predict that the dominant spectral lines are in the range 1 to 20 Hz which is ideal for108

crustal body-wave imaging and monitoring (wavelengths not too large and scattering not109

too strong) (Brenguier et al., 2019).110
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Our ability to predict the long-range, body-wave Peak Ground Velocity (PGV) of a111

moving train tremor is crucial to use it for imaging and monitoring with seismic interferometry.112

Lavoué et al. (2020) propose that train tremor PGV is directly proportional to the wagon113

weight for a given train length and a square root function of train length for constant wagon114

weight. It is also discussed that higher train speeds generate higher PGVs. Moreover,115

the ground stiffness beneath the railways control the high-frequency content and amplitude116

of the excitation (trains travelling over a stiff soil generate higher-frequency and higher-117

amplitude signals). This ground stiffness parameter may also reflect the coupling between118

the rail track and the ground. While this maximum detection distance may be short (a119

few kilometers) in sedimentary basins due to attenuation and weak excitation, it can reach120

almost 100 km on a hard-rock substratum. In southern California, for instance, Inbal et al.121

(2018) observed a freight train tremor signal as far as 90 km away from the railway. At 45 km122

from the railway they estimate a PGV of about 10−7 m/s. By applying a simple correction123

of intrinsic attenuation and geometrical spreading for body-waves (P), we estimate that124

the level of PGV for this specific train would be on the order of 5.10−6 m/s at 10 km and125

10−4 m/s at 1 km from the railway located in the Coachella valley. These values are quite low126

and train signals a these distances might only be recorded using quiet and high sensitivity127

seismometers. (Brenguier et al., 2019) confirm that these trains from the Coachella Valley128

can be used for seismic interferometry from a array of geophones (nodes) located as far as129

60 km from the railway.130

We use this value of 50 km as a typical maximum distance range for detecting train131

tremors and investigate the spatial spread of detectable train tremor areas throughout the132

entire contiguous US and southern Canada (Fig. 2)1. This map represents the main freight133

railway routes. The swathes in colors represent high tonnage routes where the thickness134

1This figure is based on a map published by the US Department of Transportation (https://railroads.
dot.gov/sites/fra.dot.gov/files/inline-images/0209.png), built from the (confidential) waybill samples 2010
established by the US Surface Transportation Board.
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(100 km), provides an estimate of regions of potential long-range train tremor detections.135

This map doesn’t take into account the reduced detection capacity in urban areas due to136

intense local noise and in sedimentary basins due to strong attenuation compared to the137

Southern California reference.138

The colors in Fig. 2 represent annual freight tonnage, which is an indication for the139

number of trains travelling on the rail sections. Assuming average trains with a length of 2 km140

and a weight of 15 kilotons (according to statistics derived from the public waybill samples,141

20182), a tonnage of 100 MT/year corresponds to approx. 18 trains per day. The number142

of trains per day will condition our capability to stack the reconstructed body waves using143

seismic interferometry and will also affect the temporal resolution for monitoring applications144

(see Section 4).145

This map highlights the potential of using trains as a source of opportunity with possible146

applications to Cascade Volcanoes, the San Andreas Fault system in Northern and Southern147

California, induced seismicity (e.g. Oklahoma) and resource exploration and monitoring148

(mineral, water).149

3 Seismic interferometry with opportunistic sources150

Seismic interferometry is a general term that defines all methodologies aiming to create151

seismic responses from the correlation of seismic signals observed at different receiver locations152

(e.g., Wapenaar et al., 2010a,b). In the prospect of turning sensors into virtual sources, this153

concept has been developed in seismology and seismic exploration mostly during the last 20154

years based on the pioneering work on random fields or vertical planar wave autocorrelation155

(Aki, 1957; Claerbout, 1968) and the time-reversal principle in acoustic (Fink, 1997).156

When it comes to retrieving a Green’s function using the correlation or a equivalent157

2https://prod.stb.gov/wp-content/uploads/PublicUseWaybillSample2018.zip
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Figure 2: Top: A train tremor recorded 3 km away from a seismic station in Marathon,
Canada. Bottom: Its spectrogram showing clear specrtal lines.

operator, the theory mostly relies on either a stationary phase condition (e.g., Snieder, 2004;158

Roux et al., 2005) and/or an equipartition of modes defining a diffuse fields (e.g., Sánchez-159

Sesma and Campillo, 2006). The stationary phase condition implies that the correlation160
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Figure 3: Regions of potential long-range train tremor detection from the main railway route
and annual tonnage information in North America. Colors represent annual freight tonnage,
which is an indication of the number of trains travelling on the rail sections. Colored lines
are 100-km-thick, which is an indication for the distance from which we may detect train-
generated signals (' 50 km from the railway, see details in the text).

function convergences towards the Green function requires the presence of sources (or scatterers)161

inline with the two considered receivers. In a 2D homogeneous medium, these stationary162

points defined an hyperbolic area, outward from the receiver pair, and which aperture is163

frequency dependent (the lower frequency the broader source region). Also known as Fresnel164

zones, these "kernels" correspond to the sensitivity of the correlation to the source location.165

In 3D and for both surface and body wave retrieval the requirement of equipartition remains166

and it has been shown that the full Green function retrieval requires sources distributed167

along arbitrarily shaped surface enclosing the two sensors (e.g., Wapenaar, 2004; Wapenaar168

and Fokkema, 2006). But even with a clearly dominant distribution of sources at the free169
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surface, several studies successfully investigated the feasibility of retrieving body-waves (e.g.,170

Draganov et al., 2009, 2013), and even specifically using traffic noise (Nakata et al., 2011).171

Each of the possible phases (or wave front) included in the Green’s function has its own172

source sensitivity. The main contribution to a particular phase is dominated by sources173

within its stationary phase area. We can therefore measure a specific phase between two174

receivers by correlation as soon as a source is located within its stationary phase zone,175

including at the surface. In the following case study sections we investigate P waves emanating176

form moving trains and that emerge from the interference between a direct P recorded at177

a first station, and a PP recorded at a second station after a rebound below the first one178

(Figure 3b). This interference is possible as soon as seismic sources (trains) comply with the179

criteria that the arrival time of the PP wave at the second receiver minus the arrival time of180

the P wave at the first receiver is smaller than the arrival time of the P wave between the two181

receivers plus/minus a quarter of the dominant period (which is a definition of the stationary182

phase zone). Note that using somehow controlled sources to retrieve body wave response183

through interfereometry is very similar to daylight imaging developed by (Schuster et al.,184

2004) or to virtual source approach discussed by (Bakulin and Calvert, 2006) for borehole185

imaging.186

Train signals represent a very good opportunity for interfereometric studies because187

we can easily detect and/or predict the source time and location. As soon as a railway188

is sufficiently close to the targeted area, a single train could illuminate different azimuth189

and potentially different depth. Figure 3a shows an example of geometry in Marathon190

(Ontario, Canada) where a railway circumvents a temporary array deployment for ore deposit191

exploration (detailed in the following section). By selecting stations pairs that are in-lined192

with specific train location (illustrated for two position by red and blue stars), one can193

potentially illuminate the structure with on a broad azimuth range. Figure 3b to d are194

schematics showing different scenarios of interference between a pair of stations : a perfect195
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ballistic interference between a diving P and PP wave (Figure 3b) leading to a directly196

measurable diving P wave between the two receivers; a classical scenario of a more-or-less197

scattered wavefield from which we expect some energy to transit between the two receivers198

from whatever source; and a more problematic interference between two diving wave, or a199

head wave recorded at the two stations (Figure 3d). The last scenario are sometime referred200

as spurious correlations or virtual refractions (Dong et al., 2006; Snieder et al., 2006; Mikesell201

et al., 2009); although not included within the impulse response between the two stations,202

this correlation feature might be useful for imaging if well distinguished from expected diving203

waves (Dong et al., 2006).204

Our idea is to explore the possibility of using a specific data processing workflow, starting205

with the selection of specific and short time windows including train passage in order to206

illuminate specific ray paths. This method, which could be extended to any kind of seismic207

tremors, should help us to extract body-waves between well selected pairs of stations useful208

for imaging and monitoring studies.209

4 Strategy for data processing210

The standard noise-correlation workflow typically removes strong transient events such as211

earthquakes and correlate the entire time series recorded at different sensors (Bensen et al.,212

2007). In case of specific opportunistic sources such as train traffic we propose a novel213

workflow based on source characterization, signal and station pairs selection instead as an214

alternative to blind correlation. By doing so we aim at improving signal to noise ratio of215

the reconstructed correlation functions and the temporal resolution of monitoring studies.216

Figure 5 summarizes the five main stages of data processing in comparison to the classical217

method where continuous data is blindly correlated:218

- Source detection and characterization: the first step consists of identifying the opportunistic219
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a)

d)

c)

b)

Figure 4: Schematic representation of seismic interferometry for opportunistic sources.
(a) A railway surrounding a dense geophone array; an example from Marathon (Canada)
deployment. Different train location (stars) allow to illuminate the array with different
azimuths. Yellow kernels are schematic views of the propagation a P diving waves. (b-d) 3
different scenarios of wave interference: (b and c) leading to a proper measurement of a P
diving wave and (d) leading to a spurious or virtual refraction measurement.

source signature in the continuous data and if possible to locate these sources at least in220

azimuth. As shown in section 2 the modelling of opportunistic sources helps understanding221

the temporal and spectral content of the generated wavefield. Standard (STA/LTA) and222

more advanced techniques such as machine learning (e.g. Seydoux et al., 2016) are used to223

detect these transient events and array techniques can be used to locate these sources.224

- Station pairs selection: Using source location estimates we can apply a spatial selection225

of station pairs. For a given signal window in time only station pairs located in the stationary226

phase zone are used 3. During a train passage, the energy emitted by the train travels227

through an array of sensors from different directions depending on the train position. figure228

4a illustrate two train positions at different times (red and blue stars) and the associated229

selected stations for pair-wise correlations (red and blue dots).230

- Compute cross-correlations: after proper time windowing and station pairs selection,231
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we perform cross-correlations.232

- Stack(by events, by azimuth): to improve SNR, we can stack the cross-correlations over233

different events. Especially for cultural sources such as train traffic we can benefit from their234

repeatability.235

- Measurement and analysis: depending on the type of studies different approaches such236

as travel time measurements can be applied for imaging and monitoring applications.237

5 Body- and surface-wave retrieval from correlations of238

train tremor in the context of mineral exploration239

To illustrate one application of train signals to extract body waves in the near sub-surface240

for imaging purposes, we study a mining exploration block in Marathon, Ontario, Canada241

(see Fig. 6b). The potential targets are a high concentration of platinum group metals, and242

minor Cu, hosted in a gabbro intrusion. 1200 seismic stations were deployed in fall 2019243

within a backbone array and a dense station line (see Fig. 6b). We recorded 30 days of244

continuous seismic signals.245

Dales et al. (2020) showed that the main source of high-frequency seismic noise in246

Marathon is freight trains traveling on the railway south-west from the array. They demonstrated247

that selecting the portions of the noise that correspond to traffic enables to significantly248

improve the retrieval of body waves compared to correlating the entire noise records. They249

used only azimuths inline with the dense station line. Here, we generalize the method to all250

the azimuths to illuminate the medium from a different direction. Following the workflow251

proposed in section 4, we detect train passages, infer the position and azimuth of the train252

relative to the array, and carefully select station pairs and time windows for correlation, and253

finally, we stack by train passage and azimuth.254

First, we generate a train catalog. To detect train passages, we use the covariance matrix255
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Figure 5: Chart illustrating the processing steps for opportunistic sources (in blue) compared
to the standard ambient noise correlation workflow (in orange).
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method proposed by Seydoux et al. (2016). The covariance matrix analysis detects emergent256

signals in the noise, using the spatial coherence of the signals. By applying this detection257

method to the entire data set day by day, we detected the passage of 207 trains over the258

30 days of recording. From these, we retain only single passages (approx. 180 events), i.e.,259

we remove records where the signals generated by several trains overlap. The beamforming260

technique shows that the array receives energy from each train for a duration of approx.261

80 minutes. Second, we extract train signals from the rest of the recording, and we select262

the station pairs that are inline with the train position. To determine the train position, a263

1-minute-long window, beamforming is performed, and we filter between 8 and 16 Hz (Figure264

6-d and e, the right side shows 6 beamforming panels for 6 different events at two different265

times). Each panel corresponds to one-minute time window beamforming and one single266

train passages. We can see that if we properly select the time window for each event, we267

have similar azimuths. For each time window, we assume that the main source of energy268

is the train, and we pick the maximum beam power. We back-projected this signal onto269

the railway to located the train by minute. Figure 6-b (red and blue cross) shows the train270

position corresponding to the fist beamforming panel (i.e., one single train). Then, we select271

station pairs that are inline with the train position for each minute (The red and blue arrow272

fig. 6b). We apply an azimuthal filter of +/- 5 degrees for each station pairs with respect273

to the train position. Third, we cross-correlate the selected station pairs by minute without274

overlapping and for each event (i.e., train passage). We filter between 10 and 18 Hz to avoid275

surface waves. We stacked the cross-correlations according to their inter-station distances276

into distance-binned correlation gathers for the selected station pairs (second step).277

In the last step, we stack by events for the same train position (i.e, same azimuth). We278

stack correlation gathers into a reference azimuthal gather. We converge to stable reference279

stack with 6 train passages. Figure 6-d and e, left side shows the stacked section over 6280

train passages, using one-minute data segments. We retrieve two dominant arrivals with an281
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apparent velocity of 3.8 km/s and 7 km/s (yellow and green line, respectively Fig. 6d and282

e). We suggest that the first arrival is the P-wave and the second one is a S-wave. Figure 6a283

shows one minute the stack of one-minute cross-correlation for a quiet period (i.e., non-train284

passage). In comparison with a cross-correlation with regular seismic record, selected stack285

during train passage allows us to retrieve high-frequency energy even using an array that286

was initially deployed for a typical passive seismic interferometry.287

In the future we plan to use these retrieved sections and both high-frequency surface-288

and body-waves to map seismic velocity anomalies at different depths.289

6 Long-range body-wave retrieval from train tremor correlations290

for monitoring the San Jacinto Fault Zone291

Following the pioneer work of Nakata et al. (2015) and Nakata et al. (2016) on high-frequency292

body-wave retrieval using dense arrays, Takano et al. (2020), Brenguier et al. (2020) and Zhou293

and Paulssen (2019) investigated a strategies for monitoring temporal changes of ballistic294

wave velocities in the aim of improving the depth localisation of stress perturbations at depth.295

In this section, we illustrate the use of opportunistic seismic sources for passive monitoring296

applications and revisit the experiment of Brenguier et al. (2019). Here, the goal is to use297

ballistic P-waves reconstructed from ambient vibrations between two dense arrays to monitor298

subtle velocity changes at depth within the San Jacinto Fault Zone (SJFZ). Brenguier et al.299

(2019) showed that using standard ambient noise correlation processing they were able to300

retrieve high-frequency direct P-waves propagating between the two arrays located at Pinon301

Flat Observatory (PFO) and in the Cahuilla Reservation (CIR, Fig. 7c). The main sources302

of these P-waves are the freight trains traveling in the neighboring Coachella Valley, about303

30 km to the East-North-East of PFO.304
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Brenguier et al. (2019) used the full records of ambient noise to obtain stable direct P-305

wave seismograms. Here we show that, by carefully selecting time-windows where most of the306

energy is generated by trains, we can improve the quality and spatiotemporal stability of the307

reconstructed P-waves. As described in Figure 5, the standard three-steps noise correlation308

computation workflow is replaced by a four-steps one aiming at correlating only the main309

source of opportunistic energy, i.e., here trains. First, we build a train catalog for the time310

period of interest (July 22 to August 11 of 2018). To do so, we use three broadband stations311

(MGE, IDO, and THM of the CI network, Fig. 7c) located along the railway in the Coachella312

Valley. After band-pass filtering the continuous data between 0.75-5 Hz we slant-stack the313

envelopes of the continuous seismograms with apparent velocities of ±95 km/h (dashed blue314

and orange lines in Fig. 7a), respectively) to detect trains passing through the Fresnel zone315

(Fig. 7c) and traveling from North to South or South to North, respectively. Once the catalog316

is completed, we can automatically reject broad time-windows when no train is traveling317

(large red shaded rectangle in Fig. 7a). In a second step, we cross-correlate the remaining318

time-windows (large green rectangles), filtered between 3 and 10 Hz, using non-overlapping319

data segments of 30 min. Then, we stack the cross-correlations according to their inter-320

station distances into distance-binned correlation gathers. These 30 min correlation gathers321

are further selected or rejected based on three quality criteria extracted from their respective322

vespagrams (Davies et al., 1971). The upper panels of the middle row of Figure 7a) show the323

vespagrams associated with the correlation gathers in the lower panels. The three quality324

criteria are: 1) SNR1, the ratio between the maximum vespagram amplitude in the [0.13-325

0.2] s/km slowness ([5-7.5] km/s velocity) window (dashed black rectangle in the leftmost326

vespagram panel, Fig. 7a) and the root-mean-squared (RMS) amplitude of the rest of the327

vespagram. 2) SNR2, the ratio between the maximum vespagram amplitude in the [0.13-328

0.2] s/km slowness × [4.5-6] s travel-time window (solid black rectangle in the leftmost329

vespagram panel, Fig. 7a) and the RMS in the rest of the [0.13-0.2] s/km slowness window.330
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3) MaxAmp, the maximum vespagram amplitude in the [0.13-0.2] s/km slowness × [4.5-331

6] s travel-time window. SNR1 is used to reject gathers exhibiting phases with apparent332

velocities different from the expected apparent velocity of a direct P-wave. SNR2 is used333

to reject gathers exhibiting energetic spurious phases with too early or too late arrival time,334

even though their apparent velocity is correct. MaxAmp is used to reject gathers for which335

the expected P-wave phase is not enough energetic or for which the energy is too large336

for a train signal, indicating the detection of an earthquake located in the Fresnel zone337

(Fig. 7a, top row). For this specific application, we set thresholds such that the conditions338

SNR1 ≥ 2.5, SNR2 ≥ 1.5, and 0.15 ≤MaxAmp ≤ 4.0 must all be fulfilled for a correlation339

gather to be selected (little green rectangle in Fig. 7a). The actual values for SNR1, SNR2340

and MaxAmp are shown above each correlation gather in Figure 7a). In the last step, we341

stack the selected correlation gathers into daily gathers and a Reference gather including342

every selected gather for the whole period of interest (Fig. 7a, bottom row). Ultimately, less343

than 20% of the full dataset is used for the monitoring measurements (Fig. 7b).344

To quantify the improvement of the signals using the opportunistic sources approach, we345

measure the ratio of SNRs between a reference gather computed with all the data (similar346

to Brenguier et al. (2019)) and the reference gather from selected train windows shown in347

Fig. 7a. This operation is performed for each waveform of the gathers and the distribution of348

the results (Fig. 7d) shows that the opportunistic sources approach improves the SNR of the349

P-wave signal by more than 25% on average. This has important implications for monitoring.350

As shown by Silver et al. (2007), the SNR is the main factor controlling the precision of a351

time delay measurement between two similar waveforms; this precision scales linearly with352

the SNR. Therefore, carefully selecting train signals before correlation allows us to improve353

the precision of the monitoring measurements. The 30 min long segments of continuous data354

used here to discretize the study period could be decreased and adapted even more closely355

to the train signals, which in turn should allow even larger SNR improvements. This finer356
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processing is beyond the scope of this paper.357

The final step of the workflow is to perform the seismic velocity monitoring measurements.358

Different approaches can be taken. Here we chose to measure the relative time-shift between359

the seismograms resulting from the slant-stack at 6 km/s of the daily gathers and the360

reference gather (black and purple traces in Fig. 7b, respectively). We measure the instantaneous361

time-delay δt(t) between the traces in the 3-10 Hz frequency band using the cross-wavelet362

transform algorithm of Mao et al. (2020). For display purposes, we only show δt values363

where the amplitude of the P-wave is the largest. Here, the obtained time-shifts are smaller364

than 0.1% of the propagation time, corresponding to time-shift smaller than 5 ms between365

the daily and the reference seismograms.366
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7 Discussion and conclusion367

In this paper we discuss the opportunity of massive freight train noise recovery for crustal368

imaging and monitoring. We show applications to Northern America but the impact of369

this study is more global. Especially China has the the world’s longest high speed railway370

network (35 000 km) located mostly in the Eastern, most populated part of the country.371

Passenger trains being lighter than freight trains they generate less energetic tremor and372

applications might thus be restricted though to near-surface, environmental or engineering373

studies.374

Turning massive freight train noise as a source for imaging and monitoring applications375

shows potential but is limited to regions neighbouring railways and requires trains travelling376

at rather high speed. In a more general way, this work provides a workflow for using other377

more local sources of cultural noise like car and truck traffic, wind farms, but also natural378

like surf break or even tectonic of volcanic tremor as opportunistic sources of noise.379

Even being promising this work raises some challenges that will need to be addressed380

in the future. Most important is improving our understanding of the spatial sensitivity381

to structure of the retrieved body- and surface-waves using seismic interferometry and382

opportunistic sources. Contrarily to active controlled sources, measurements of travel times383

or temporal travel time perturbations can show sensitivity not only to the structure between384

the receivers but also between the noise source and the receivers inducing potential misleading385

interpretations of velocity or velocity change measurements. One drawback from the examples386

above is also that they use a large number of sensors (hundreds) and thus imply heavy and387

temporary data acquisition experiments thus limiting the scope of potential applications. A388

future perspective is to study how permanent, single seismic stations can be used instead389

of dense arrays. One option would be to temporary deploy dense seismic arrays around390

permanent seismic stations to help identifying useful phases emanating from noise correlations391
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of opportunistic sources that can in turn be monitored on the long-run using permanent392

stations only.393

Finally one last major perspective is to couple Distributed Acoustic Sensing (Zhan, 2020)394

data to seismic interferometry for opportunistic sources as described by Dou et al. (2017) for395

car traffic and near-surface applications. The potential of reconstructing widespread virtual396

sources along optic fibers from correlations of both short- and long-range opportunistic397

sources will open the path for endless applications ranging from water resource management398

in the near surface to earthquake studies at greater depth.399
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8 Data and Resources400

The Marathon dataset will be made publicly available on June 2021. It will either be hosted401

online or freely sent on external hard disks upon request via the website of passive seismic402

techniques for environmentally friendly and cost efficient mineral exploration (PACIFIC)403

(https://www.pacific-h2020.eu). The San Jacinto array data are available on request to404

Florent Brenguier. The broadband seismic data used in this study originate from the405

Southern California Earthquake Center, Caltech.Dataset. doi:10.7909/C3WD3xH1.406

Maps are made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.407
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Figure 6: Case studies of train tremor correlations over a dense array at Marathon/Canada.
a) One minute cross-correlation for a quiet time period. b)Map of the study zone in the
north of Marathon, Ontario, Canada. Grey dots are the 1020 seismic station. The black
dashed line is the railroad (CPRS). The red and blue cross are the position studied. c) Train
seismic record.d) - e) left: stacked section over 6 train. b) -d) right: 1-minute beamforming
panels for 6 train passages. beamforming panels. Left panel: Stack of 6 train passages.
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Figure 7: Workflow for monitoring applications (see details in the text). a) Top row: Source
detection and characterisation and broad time-windows selection. a) Middle row: Cross-
correlation computation and correlation gathers construction for every 30 min-long segments
of selected continuous data then correlation gathers selection. a) Bottom row: Stack of 30-
min gathers into daily gathers then Reference gather. b) Map of the study area showing
the Fresnel zone (orange ellipse) where train signals contribute coherently to the P-waves in
the correlations, travelling between PFO and CIR. The railway and the main highway are
shown in blue. The active tectonic faults are shown in black. The three broadband stations
used for building the train catalogue are show with red and black circles. c) Histogram of
the signal-to-noise ratio improvement between the Reference correlation gathers without and
with train signal selection. d) Monitoring results: a slant-staked reference gather (purple
seismograms) is compared with slant-stacked daily gathers (black seismograms) via cross-
wavelet transform to get the instantaneous time-shift between them (shown as the colored
background). The bottom histogram shows the number of hours of continuous noise records
stacked to obtain the daily correlation gathers.25
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