# Cloning and sequencing of the tuf genes of Streptomyces coelicolor A3(2) <br> Wezel, G.P. van; Woudt, L.P.; Vervenne, R.; Verdurmen, M.L.A.; Vijgenboom, E.; Bosch, L. 

## Citation

Wezel, G. P. van, Woudt, L. P., Vervenne, R., Verdurmen, M. L. A., Vijgenboom, E., \& Bosch, L. (1994). Cloning and sequencing of the tuf genes of Streptomyces coelicolor A3(2). Bba Gene Structure And Expression, 1219(2), 543-547. doi:10.1016/0167-4781(94)90085-X

| Version: | Publisher's Version |
| :--- | :--- |
| License: | Licensed under Article 25fa Copyright Act/Law (Amendment Taverne) |
| Downloaded from: | https://hdl.handle.net/1887/3239410 |

Note: To cite this publication please use the final published version (if applicable).

Short Sequence-Paper

# Cloning and sequencing of the tuf genes of Streptomyces coelicolor A3(2) 

Gilles P. van Wezel * Lambertus P. Woudt ${ }^{1}$, Richard Vervenne, Marlou L.A. Verdurmen ${ }^{2}$, Erik Vijgenboom, Leendert Bosch<br>Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands

Received 27 April 1994


#### Abstract

Two tuf genes are present in Streptomyces coelicolor A3(2), which have been cloned and sequenced. These genes show a high degree of nucleotide sequence identity to the tuf1 and tuf 3 genes of Streptomyces ramocissimus: the tufl genes are $94 \%$ identical, the tuf3 genes $87 \%$. S. coelicolor tufl encodes a protein of 396 amino acids, while tuf3 encodes a protein of 391 amino acids.


Keywords: Elongation factor Tu; Sequence comparison; Gene cloning; (Streptomyces)

One of the most abundant proteins in the bacterial cytoplasm is the tuf-encoded polypeptide chain elongation factor Tu (EF-Tu). Two tuf genes occur in Escherichia coli, encoding elongation factors EF-TuA and EF-TuB which differ only in their C-terminal amino acid [1,2]. The proteins occur in the bacterial cell in a 1:1 ratio [3], and are functionally indistinguishable.

Recently, we showed that in the kirromycin producer Streptomyces ramocissimus three tuf genes occur, which have been cloned and sequenced [4]. Analysis of these genes revealed that they are unexpectedly heterogeneous: tuf1 and tuf2 show $85 \%$ nucleotide sequence identity, whereas tuf3 shows only $70 \%$ identity to tufl and tuf2, which is in striking contrast to the much higher similarities found among tuf genes in other microorganisms [5,6]. EF-Tu1 has been shown to be a genuine elongation factor, but no physiological function could be revealed for the other two putative elongation factors. Hybridization analysis of other streptomycetes has shown that Streptomyces coelicolor

[^0]and Streptomyces lividans, genetically the best-characterised streptomycetes, have only two tuf genes.

Cloning of the S. coelicolor tuf1 and tuf3 genes. $S$. coelicolor presumably has two tuf genes, designated tuf1 and tuf3 by analogy to their homologues in $S$. ramocissimus. From Southern hybridization data it was concluded that tufl could be cloned as an approx. 4.5 kb BamHI fragment and tuf3 as an approx. 10 kb BamHI fragment [7]. S. coelicolor M145 total DNA was digested with $B a m \mathrm{HI}$ and separated electrophoretically on a $0.7 \%$ agarose gel in TAE buffer, whereupon fragments of the appropriate size were isolated from the gel.

For tuf1, these fragments were subcloned into BamHI-digested pAT153 [8] and screened by hybridization of the E. coli colonies with the 244 bp SmaI fragment internal to the S. ramocissimus tuf1 gene, which encodes most of the GTP-binding region. One positive signal was obtained, which appeared to contain a 4.3 kb insert, corresponding to the size expected on the basis of Southern hybridization data. This clone, which was designated pASCT1-1, contained the gene homologous to $S$. ramocissimus tuf1, as shown below.

For cloning of tuf3, fragments were cloned into pBR329 [9] and plasmid DNA was isolated from 600 colonies in pools of 24. The DNA was digested with
$\operatorname{Bam} \mathrm{HI}$, subjected to agarose gel electrophoresis and blotted onto a Hybond-N nylon filter. Pools with the correct insert were identified on the basis of hybridization signals obtained with the 600 bp SalI fragment from $S$. ramocissimus tuf3. After repeated colony purification and screening, one DNA preparation yielding
an unambiguous positive signal was obtained. BamHI digestion proved the DNA to contain a 10.3 kb insert. The clone was designated pBSCT3-1. It was shown to contain the tuf3 gene, as is demonstrated below.

Sequences of the inserts of pASCT1-1 and pBSCT3-1: nucleotide and amino acid comparisons. Sequencing of

```
    CTCGAGCCGATGATGGCCGTCGAGGTCACCACGCCCGAGGACTACATGGGCGACGTCATCGGCGACATCAACTCC 75
    L
    76 CGCCGTGGCCAGATCCAGGCCATGGAGGAGCGGATGGGTGCCCGCGTCGTGAAGGGCCTCGTGCCGCTGTCGGAG 150
```



```
151 ATGTTCGGCTACGTCGGAGACCTCCGCAGCAAGACGTCGGGTCGCGCAAGCTACTCGATGCAGTTCGACTCCTAC 225
    M F F G Y Y V G G D L L R S S K F T T S G G R N
226 GCCGAGGTTCCCCGGAACGTCGCCGAGGAGATCATCGCGAAGGCCAAGGGCGAGTAACGGGCTACTCCGTTTAAC 300
```



```
3 0 1 ~ G G A C C C C G T T C T C A C G C T T T A G G C T T G A C C C C G G A G C C T G C A T G G G G C A T T C C G C C G T G A A C C C G G T G G A A T G C C ~ 3 7 5 ~
376 CCCGGCACCCGGGCTTTCCAGCAAAGATCACCTGGCGCCGATGAGTAAGGCGTACAGAACCACTCCACAGGAGGA 450
451 CCCCAGTGGCGAAGGCGAAGTTCGAGCGGACTAAGCCGCACGTCAACATCGGCACCATCGGTCACATCGACCACG 525
    V A
    GTAAGACGACCCTCACGGCCGCCATTACCAAGGTGCTGCACGACGCGTACCCGGACATCAACGAGGCGTCGGCGT600
        Kllllllllllllllllllllllllllllllllll
601 TCGACCAGATCGACAAGGCTCCCGAAGAGCGCCAGCGCGGTATCACCATCTCGATCGCGCACGTCGAGTACCAGA 675
```



```750
```
```

7 5 1 CGCAGATGGACGGCGCCATCCTCGTGGTCGCCGCCACCGACGGCCCGATGCCGCAGACCAAGGAGCACGTGCTCC 825

```

```

826 TGGCCCGCCAGGTCGGCGTTCCGTACATCGTGGTCGCCCTGAACAAGGCCGACATGGTGGACGACGAGGAGATCC 900

```

```

901 TGGAGCTCGTCGAGCTCGAGGTGCGTGAGCTCCTCTCCGAGTACGAGTTCCCGGGCGACGACGTTCCCGTCGTCA 975

```

```

        1 0 5 0
        V S A I K A L F G D K F W G N S V L F L M K A V D
        ACGAGGCCATCCCGGAGCCCGAGCGCGACGTCGACAAGCCGTTCCTGATGCCGATCGAGGACGTCTTCACCATCA
            1 1 2 5
        E A I I P F E P E E R D D V D D K F P
    1126 CCGGTCGCGGTACGGTCGTCACCGGCCGCATCGAGCGTGGTGTCCTCAAGGTCAACGAGACCGTCGACATCATCG 1200

```

```

        GCATCAAGACCGAGAAGACCACCACCACGGTCACCGGCATCGAGATGTTCCGCAAGCTCCTCGACGAGGGCCAGG1275
        I [llllllllllllllllllllllll
        CCGGTGAGAACGTCGGTCTGCTGCTTCGCGGCATCAAGCGCGAGGACGTCGAGCGCGGCCAGGTCATCATCAAGC1350
    ```
```

1351 CGGGCTCGGTCACCCCGCACACCGAGTTCGAGGCCCAGGCCTACATCCTGTCGAAGGACGAGGGTGGCCGTCACA
G Sllllllllllllllllllllllllllllllllllll
1425
CCCCCTTCTTCAACAACTACCGTCCGCAGTTCTACTTCCGTACGACGGACGTGACCGGCGTCGTGACCCTCCCCG
1 5 0 0
P
AGGGCACCGAGATGGTCATGCCGGGTGACAACACCGAGATGAAGGTGGAGCTCATCCAGCCCGTCGCCATGGAAG 1575

```

```

        AGGGCCTGAAGTTCGCCATCCGCGAGGGTGGCCGGACCGTGGGCGCCGGCCAGGTCACCAAGATCAACAAGTAAC
                                    1650
    ```

```

1651 TCCGCTTGCTTGTCGGTCGACCGACCTGACATGGGCTGATGCCTGAAGGGCCGTACGACTTCGGTCGTACGGGTC 1725
1726 CTTTCGCCATGTGCGGTCGGGTCCAGGCCGCTGAGGAAGTCGCCCTGCCAGAGCGCCGCGGCCGTGCGCAGCCGG
1 8 0 0
1 8 0 1 ~ G C C A C C G C C T C T T C C C G G C G G T C C T C G T G G C C G A G C C G T C T G G C C C C G G C C A C G A G G G C G G T G A A G A G T A C G G C G ~ 1 8 7 5 ~

```

Fig. 1. Nucleotide sequence of tufl and flanking regions, which include the end of the fus gene. The deduced amino acid sequences of both fus (nt positions 1-282; encoding EF-G) and tufl (nt positions 456-1649; encoding EF-Tu1) are given below the nucleotide sequence.
pASCT1-1 resulted in the identification of an ORF of 1194 bp , putatively encoding a 396 amino acid protein (Fig. 1). Sequencing of pBSCT3-1 identified an ORF of 1179 bp , corresponding to a protein of 391 amino acids (Fig. 2). The ORF located on pASCT1-1 is very similar to \(S\). ramocissimus tuf1, and a second ORF is located upstream of it that very much resembles the \(S\). ramocissimus fus gene, indicating its probable location in the so-called S12 operon, a location typical for the major tuf gene in all microorganisms [10]. Therefore, the gene was designated tuf1. Again on the basis of the very high similarity to its homologue in \(S\). ramocissimus, the ORF identified on pBSCT3-1 was designated tuf3.

An amino acid alignment of the tuf-gene products
of \(S\). coelicolor, \(S\). ramocissimus and \(E\). coli is shown in Fig. 3. From this alignment it follows that the tuf1 and tuf3 gene products contain the consensus sequences for GTP binding proteins [11] and show a perfect fit with the D-loop motif [12]. From alignments of both the tuf-gene nucleotide sequences and the amino acid sequences deduced thereof, identities were calculated (Table 1). The tuf1 genes of \(S\). coelicolor and \(S\). ramocissimus are \(94 \%\) identical, and the deduced amino acid sequences of their gene products (designated EFTu1) are \(96 \%\) identical. The tuf3 genes of these organisms are \(87 \%\) identical, their gene products (designated EF-Tu3) sharing \(91 \%\) identical amino acids. The low similarity of EF-Tu3 to EF-Tu1, the major EF-Tu in Streptomyces, is underlined by the fact that EF-Tu3


Fig. 2. Nucleotide sequence of tuf3 and flanking sequences. The deduced amino acids sequence of tuf3 is given below the nucleotide sequence.
\(\begin{array}{ll}S C & E F-T u 1 \\ S r & E F-T u 1 \\ S C & E F-T u 3 \\ S r & E F-T u 3 \\ S r & E F-T u 2 \\ E C & E F-T U A\end{array}\)
Consensus

SC EF-Tu1
Sr EF-Tul SC EF-Tu3 Sr EF-TU3 Sr EF-Tu2 EC EF-TUA Consensus

SC EF-TU1 Sr EF-TU1 SC EF-Tu 3 Sr EF-TU3 Sr EF-Tu2 EC EF-TUA Consensus

SC EF-TUI Sr EF-Tul SC EF-TU3 Sr EF-TU3 Sr EF-TU2 EC EF-TUA Consensus

SC EF-TuI Sr EF-Tul SC EF-TU3 ST EF-TU3 Sr EF-Tu2 EC EF-TUA Consensus
```

SC EF-Tu1

```
Sr EF-TuI
SC EF-TU3
Sr EF-Tu3
Sr EF-Tu2
EC EF-TuA
Consensus
SC EF-TuI
Sr EF-TuI
SC EF-Tu3
Sr EF-Tu3
Sr EF-TU2
EC EF-TUA
Consensus
\(\begin{array}{ll}S C & E F-T u 1 \\ S r & E F-T u 1 \\ S C & E F-T u 3 \\ S r & E F-T u 3 \\ S r & E F-T u 2 \\ E C & E F-T U A\end{array}\)
Consensus
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{VAKAKFERTK} & PHVNIGTIGH & IDHGKTTLTA & AITKVLHDAY & PD. INEASAF & 49 \\
\hline & & & & . L TP & 49 \\
\hline MS TAYV & L M & V & AERG & AGSTTQYVS & 50 \\
\hline MS TAYV & L M & V & AERG & SGT. . .FVP & 47 \\
\hline Q & & & RF & . L PFTP & 49 \\
\hline S E & V & V & T AKT & GG. . A R & 47 \\
\hline \multicolumn{2}{|l|}{\(\mathrm{V}-\mathrm{K}-\mathrm{KF}-\mathrm{RTK}\) PHVNIGMIGH} & -DHGKTITLTA & AITKVL---- & ---------F & \\
\hline DQIDKAPEER & QRGITISIAH & VEYQTEARHY & AHVDCPGHAD & YIKNMITGAA & 99 \\
\hline N & & & & & 99 \\
\hline \(\mathrm{R} \quad \mathrm{R} \quad \mathrm{A}\) & A N & E DT & M & V V & 100 \\
\hline R R A & A N & E DT & M & V V & 97 \\
\hline & & & & & 99 \\
\hline \(\mathrm{N} \quad \mathrm{K}\) & A NTS & D PT & & V & 97 \\
\hline D-ID-APEE- & -RGITI-IAH & VEY-T--RHY & AHVDCPGHAD & Y-KNMITGAA & \\
\hline \multirow[t]{2}{*}{QMDGAILVVA} & ATDGPMPQTK & EHVLLARQVG & VPYIVVALNK & ADMVDDEEIL & 149 \\
\hline & & & & M & 149 \\
\hline \(L \quad\) S & L I A & & DH & . AG LT & 149 \\
\hline \(L \quad S\) & L I A & & DH & . AG LT & 146 \\
\hline & & & & T & 149 \\
\hline & R & I G & I F & C L & 147 \\
\hline
\end{tabular}

QMDGAILVVA ATDGPMPQT- EHVLLARQVG VPYIVVALNK ADMVDDEE--

ELVELEVREL LSEYEFPGDD VPVVKVSALK ALEGDKEWGN SVLELMKAVD


ELVEYEVREL LSEY-FPODD -PVVRVSALK ALEGD--WI-SVL-L--AVD

--PEPER-V D-PFL-PIED VFTITGRGTV VIGR-ERG-- -V---VEI-G

IKTEKTTPTV TGIEMFRKLL DEGQAGENVG LLLRGIKRED VERGQVIIKP 299
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ASV . . . V & & T G & PM & E & A & D & A & & VA & DT & R & & VAA & 296 \\
\hline AGL . . . V & L & T G & & & A & D & A & & VP & DA & R & H & VAA & 293 \\
\hline HEQR R & & & & & R & & & & V & Q & & & V R & 299 \\
\hline - TQKS C & V & & & & R & & & V & & E & I & & LA & 296 \\
\hline
\end{tabular}

I--E--TMV TG-EMPRKLL DEGQAGENVG LLLRG-KRE-VERGQV-- - -


GSV-PHI-PE AQ-YILSKDE GGRHIPFF-M YRPOFYFRTI DVIG-V-LPE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{GTEMVMPGDN}} & \multicolumn{3}{|l|}{TEMKVELIQP} & \multicolumn{3}{|l|}{VAMEEGLKFA} & IREGGRTVGA & & TKINK & 397 \\
\hline & & \multicolumn{3}{|c|}{R} & & & & & & V & 397 \\
\hline E. AVAR & T & VT & T & GRD & PL & T & G & & T & AVE. & 392 \\
\hline V.GVAR & ET & VS & I & GRE & PL & P & G & & T & ALV. & 389 \\
\hline & & A & H & & I & & & & & R V & 397 \\
\hline V & & IK & V & H & I & DD & R & & V & A VLG & 394 \\
\hline
\end{tabular}

\footnotetext{
G-RMNMPGDA - M-VELI-P VAME-GL-RA IREGGRIVGA G-VT--
}

Table 1
Nucleotide sequence identities between the tuf genes of \(S\). coelicolor, S. ramocissimus and E. coli (above the diagonal) and amino acid identities between their deduced gene products (below the diagonal)
\begin{tabular}{lllllll}
\hline & Sc 1 & Sc 3 & Sr 1 & Sr 2 & Sr 3 & Ec A \\
\hline Sc tuf1, EF-Tu1 & & 69 & 94 & 84 & 70 & 71 \\
Sc \(t u f 3\), EF-Tu3 & 63 & & 69 & 70 & 87 & 61 \\
Sr tuf1, EF-Tu1 & 96 & 63 & & 85 & 70 & 71 \\
Sr \(t u f 2\), EF-Tu2 & 89 & 64 & 88 & & 70 & 69 \\
Sr \(t u f 3\), EF-Tu3 & 64 & 91 & 65 & 64 & & 63 \\
Ec \(t u f A\), EF-TuA & 75 & 60 & 74 & 72 & 60 &
\end{tabular}

All values are given in percentages. Abbreviations: Sc, S. coelicolor; \(\mathrm{Sr}, \mathrm{S}\). ramocissimus; and Ec, E. coli. Alignments were done with the program 'Gap' [13].
shows almost as much amino acid identity with \(E\). coli EF-Tu as with S. coelicolor EF-Tu1.

A surprising observation is that the nucleotide sequences of tufl and tuf3 are more homologous to each other than the deduced amino acid sequences ( \(69 \%\) versus \(63 \%\) ), which is also observed for the \(S\). ramocissimus tuf1 and tuf3 genes and their gene products (Table 1). This is due to nucleotide substitutions in the tuf3 gene at the first and second codon position rather than the third ('wobble') position, so that many nucleotide substitutions lead to amino acid substitutions. Still, amino acids in the GTP-binding domains are conserved, suggesting that the tuf3 gene product also belongs to the family of GTP-binding proteins.

Since it has been demonstrated for \(S\). ramocissimus EF-Tu1 that it functions as an elongation factor [4] we
assume on the basis of the very high similarity of the proteins that such is also the case for \(S\). coelicolor \(\mathrm{EF}-\mathrm{Tu} 1\) and no further investigation to address this point has been performed. The role of EF-Tu3 is unclear and is presently being investigated in our laboratory.

\section*{References}
[1] An, G. and Friesen, J.D. (1980) Gene 12, 33-39.
[2] Yokota, T., Sugisaki, H., Takanami, M. and Kaziro, Y. (1980) Gene 12, 25-31.
[3] Van der Meide, P.H., Vijgenboom, E., Talens, A. and Bosch, L. (1983) Eur. J. Biochem. 130, 397-407.
[4] Vijgenboom, E., Woudt, L.P., Heinstra, P.W.H., Rietveld, K., Van Haarlem, J., Van Wezel, G.P., Shochat, S. and Bosch, L. (1994) Microbiology 140, 983-998.
[5] Sela, S., Yogev, D., Razin, S. and Bercovier, H. (1989) J. Bacteriol. 171, 581-584.
[6] Filer, D. and Furano, A.V. (1981) J. Bacteriol. 148, 1006-1011.
[7] Van Wezel, G.P (1994) PhD thesis, Leiden University, Leiden, Netherlands.
[8] Twigg, A.J. and Sherratt, D. (1980) Nature 283, 216-218.
[9] Covarrubias, L. and Bolivar, F. (1982) Gene 17, 79-89.
[10] Lindahl, L. and Zengel, J.M. (1986) Annu. Rev. Genet. 20, 297-326.
[11] Dever, T.E., Glynias, M.J. and Merrick, W.C. (1987) Proc. Natl. Acad. Sci. USA 84, 1814-1818.
[12] Saraste, M., Sibbald, P.R. and Wittinghofer, A. (1990) Trends in Biochem. Sci. 15, 430-434.
[13] Devereux, J., Haeberli, P. and Smithies, O. (1984) Nucleic Acids Res. 12, 387-395.

\footnotetext{
Fig. 3. Amino acid alignment of Streptomyces EF-Tus and E. coli EF-TuA. Abbreviations: Ec, E. coli; Sc, S. coelicolor; Sr, S. ramocissimus. Numbers at the right of the figure refer to the amino acid positions. A consensus (grey shaded) is given when the amino acid alignment shows more than three identical amino acids. The amino acids (of Sc EF-Tu1) that constitute the GTP binding consensus sequence are shown in bold face.
}```


[^0]:    * Corresponding author. Fax: + 3171274340. E-mail: wezel_g@chem.leidenuniv.nl.
    ${ }^{1}$ Present address: Zaadunie BV, Department of Biotechnology, P.O. Box 26, 1600 AA Enkhuizen, The Netherlands.
    ${ }^{2}$ Present address: Centocor Europe BV, P.O. Box 251, 2300 AG Leiden, The Netherlands.

