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1. Introduction

A del Pezzo surface over a field k is a smooth, projective, geometrically integral
surface S over k with ample anticanonical divisor −KS ; the degree of S is defined to
be the self-intersection number d = K2

S � 1. A del Pezzo surface is minimal if and only
if there is no birational morphism over its ground field to a del Pezzo surface of higher
degree. Every del Pezzo surface of degree d is geometrically isomorphic to P2 blown up at
9−d points in general position, or to P1×P1 if d = 8. Conversely, every smooth, projective
surface that is geometrically birationally equivalent to P2 is birationally equivalent over
the ground field to a del Pezzo surface or a conic bundle (see [12]).

A surface S over a field k is unirational if there is a dominant rational map P2 ��� S

over k. Segre and Manin proved that every del Pezzo surface S of degree d � 2 over a
field k with a k-rational point is unirational, at least if one assumes that the point is
in general position in the case d = 2. For references, see [29,30] for d = 3 and k = Q,
see [20, Theorems 29.4 and 30.1] for d = 2 and d � 5, as well as d = 3, 4 under the
assumption that k is large enough, and see [16, Theorem 1.1] and [28, Proposition 5.19]
for d = 3 and d = 4 in general. On the other hand, even though del Pezzo surfaces of
degree 1 always have a rational point, we do not know whether any minimal del Pezzo
surface of degree 1 that is not birationally equivalent to a conic bundle is unirational
over its ground field. If k is infinite, then unirationality of S implies that the set S(k) of
k-rational points on S is Zariski dense. The following question asks whether this weaker
property may hold for all del Pezzo surfaces of degree 1.

Question 1.1. If S is a del Pezzo surface of degree 1 over an infinite field k, is the set
S(k) of k-rational points Zariski dense in S?

Over number fields, a positive answer to this question is implied by the conjecture by
Colliot-Thélène and Sansuc that the Brauer–Manin obstruction to weak approximation is
the only one for geometrically rational varieties [3, Conjecture d), p. 319]. This conjecture
may in fact hold more generally for geometrically rationally connected varieties over
global fields (see [4, p. 3] for number fields).

The primary goal of this paper is to state conditions under which the answer to
Question 1.1 is positive.

Let k be a field of characteristic not equal to 2 or 3, and S a del Pezzo surface of
degree 1 over k with a canonical divisor KS . Then the linear system |−3KS | induces an
embedding of S in the weighted projective space P(2, 3, 1, 1) with coordinates x, y, z, w.
More precisely, there are homogeneous polynomials f, g ∈ k[z, w] of degrees 4 and 6,
respectively, such that S is isomorphic to the smooth sextic in P(2, 3, 1, 1) given by

y2 = x3 + f(z, w)x + g(z, w). (1)

For some special families of del Pezzo surfaces of degree 1 it is known that the set of
rational points is Zariski dense. Examples that are minimal and have no conic bundle
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structure include those given by A. Várilly-Alvarado. He proves in [40, Theorem 2.1]
that if we have k = Q, while f is zero and g satisfies some technical conditions, then
the set of Q-rational points on the surface S given by (1) is Zariski dense if one also
assumes that Tate–Shafarevich groups of elliptic curves over Q with j-invariant 0 are
finite (cf. Example 7.3). These technical conditions are satisfied if g = az6 + bw6 for
nonzero integers a, b ∈ Z with 3ab not a square, or with a and b relatively prime and
9 � ab [40, Theorem 1.1].

M. Ulas [36,37], as well as M. Ulas and A. Togbé [38, Theorem 2.1], also give various
conditions on the homogeneous polynomials f, g ∈ Q[z, w] for the set of rational points on
the surface S ⊂ P(2, 3, 1, 1) over Q given by (1) to be Zariski dense. Besides hypotheses
that imply that S is not smooth or not minimal, all their conditions imply that either
(i) f = 0 and g(t, 1) is monic, or (ii) g(t, 1) has degree at most 4, or (iii) f = 0 and g

vanishes on a rational point of P1. E. Jabara generalizes Ulas’ work on case (iii) in [14,
Theorems C and D] and treats the case over Q with g(t, 1) monic and the pair (f, g)
sufficiently general.

The techniques in this paper are a generalization of a geometric interpretation of
Ulas’ work on case (iii); they are independent of the work of Jabara (see Remark 2.7).
The projection ϕ:P(2, 3, 1, 1) ��� P1 onto the last two coordinates is a morphism on the
complement U of the line given by z = w = 0 in P(2, 3, 1, 1). For any point Q ∈ S(k)
not equal to O = (1 : 1 : 0 : 0), we let CQ(5) denote the family of sections of U → P1

that meet S at Q with multiplicity at least 5; we will see that CQ(5) has the struc-
ture of an affine curve, the components of which have genus at most 1 (see paragraph
containing (8)).

The restriction ϕ|S :S ��� P1 corresponds to the linear system |−KS | and has a unique
base point O ∈ S. This map ϕ|S induces an elliptic fibration π: E → P1 of the blow-up
E of S at O. The exceptional curve on E above O is a section, also denoted by O.
For any t = (z0 : w0) ∈ P1, the fiber Et is isomorphic to the intersection of S with
the plane Ht given by w0z = z0w; the set Ens

t (k) of smooth k-points on Et naturally
carries a group structure characterized by the property that three points in Ht ∩ S

sum to the identity O if and only if they are collinear. Our first main result is the
following.

Theorem 1.2. Let k be an infinite field of characteristic not equal to 2 or 3. Let S ⊂
P(2, 3, 1, 1) be a del Pezzo surface given by (1) with f, g ∈ k[z, w], and π: E → P1 the
elliptic fibration induced by the anticanonical map S ��� P1. Let Q ∈ S(k) be a point that
is not fixed by the automorphism of S that changes the sign of y. Let CQ(5) be the curve
of those sections of the projection U → P1 that meet S at the point Q with multiplicity
at least 5. Set t = π(Q). Suppose that the following statements hold.

• The order of Q in Ens
t (k) is at least 3.

• If the order of Q in Ens
t (k) is at least 4, then CQ(5) has infinitely many k-points.
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• If the characteristic of k equals 5, then the order of Q in Ens
t (k) is not 5.

• If the order of Q in Ens
t (k) is 3 or 5, then Q does not lie on six (−1)-curves of S.

Then the set S(k) of k-points on S is Zariski dense in S.

Note that all four assumptions of Theorem 1.2 are hypotheses on the point Q. Given S,
we provide an explicit zero-dimensional scheme of which the points correspond to the
(−1)-curves of S going through Q (cf. Remark 2.6), so the first and the last two conditions
of Theorem 1.2 are easy to check. If the set S(k) is indeed Zariski dense in S, then
the subset of those points Q ∈ S(k) that satisfy these three conditions is also dense;
Theorem 1.2 provides a proof of Zariski density of S(k) as soon as CQ(5)(k) is infinite for
one of these points Q. If the answer to Question 1.1 is positive, then it may be true that
for every del Pezzo surface S of degree 1, there exists such a point. Theorem 1.2 is the
first result that states sufficient conditions for the set of rational points on an arbitrary
del Pezzo surface of degree 1 to be Zariski dense.

Moreover, if k is an infinite field that is finitely generated over its ground field, then
CQ(5)(k) is infinite if and only if the curve CQ(5) has a component that is birationally
equivalent to P1 or a component of genus 1 whose Jacobian has a point of infinite order.
The fact that the order of a point on an elliptic curve over such a field k is infinite is
effectively verifiable by applying the theorem of Nagell–Lutz to sufficiently many mul-
tiples of the point. This means that for such fields k, independent of Question 1.1, if
S(k) contains a point Q satisfying the conditions of Theorem 1.2, then we can find such
a point, thus reducing the verification of Zariski density of S(k) to a finite computa-
tion.

Note that if the order of Q in Ens
0 (k) is 3 and Q does not lie on six (−1)-curves of S,

then the assumptions in Theorem 1.2 are automatically satisfied without any further
condition on CQ(5). Besides verifying Zariski density of rational points on explicit sur-
faces, Theorem 1.2 also implies the following two results. Note that both show that our
criterion is strong enough to prove Zariski density of the set of rational points on a set
of del Pezzo surfaces of degree 1 over Q that is dense in the real analytic topology on
the moduli space of such surfaces.

Theorem 1.3. Let f0, . . . , f4, g0, . . . , g6 ∈ Q be such that the surface S ∈ P(2, 3, 1, 1) given
by

y2 = x3 +
( 4∑

i=0
fiz

iw4−i

)
x +

6∑
j=0

gjz
jw6−j = 0 (2)

is smooth. Then for each � ∈ {0, . . . , 4}, m ∈ {0, . . . , 6}, and ε > 0, there exist λ, μ ∈ Q

with |λ − f�| < ε and |μ − gm| < ε such that the surface S′ ∈ P(2, 3, 1, 1) given by (2)
with the two values f� and gm replaced by λ and μ, respectively, is smooth and the set
S′(Q) is Zariski dense in S′.
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Theorem 1.4. Suppose k is an infinite field of characteristic not equal to 2 or 3. If S is
a del Pezzo surface of degree 1 and the associated elliptic fibration E → P1 has a nodal
fiber over a rational point in P1, then S(k) is Zariski dense in S.

Our strategy to prove Theorem 1.2 is to exhibit a rational map σ: CQ(5) ��� S such
that its image has a component whose strict transform on E is a multisection of π of
infinite order (cf. [1]). In the next section, we will construct σ. To show that the image
σ(CQ(5)) always has a horizontal component under the conditions in Theorem 1.2, we
first choose a completion CQ(5) of the affine curve CQ(5) and show that the added points
correspond naturally to limits of the sections in CQ(5), which allows us to show that σ

extends to the extra points in CQ(5) − CQ(5), sending them to −4Q or −5Q on the
fiber of π containing Q (Section 3). This allows us to characterize all cases where no
component of CQ(5) has a horizontal image under σ in Sections 4 and 5. In Section 6,
we show that the base change of π: E → P1 by a curve of genus at most 1 has no nonzero
torsion sections. Finally, we apply this to a horizontal component of σ(CQ(5)) to prove
all our main results in Section 7.

Remark 1.5. For any explicit surface S with a point Q, it is easy to check whether
σ(CQ(5)) has a horizontal component, and if so, whether that component is a multisection
of infinite order. Since this is indeed the case for some specific examples, we may already
conclude that it is true for S and Q sufficiently general.

While we consider only surfaces given by (1) that are smooth, i.e., del Pezzo surfaces
of degree 1, one could also consider generalized del Pezzo surfaces of degree 1, which
have a birational model given by (1) that may have isolated rational double points. As
for del Pezzo surfaces, there is a natural elliptic fibration on the blow-up of a generalized
del Pezzo surface at the point corresponding to O. All our results up to and including
Section 5 also hold for generalized del Pezzo surfaces of degree 1, as long as we assume
that the point Q does not lie on a reducible fiber, with the exception of Proposition 5.3.
The proof of Proposition 5.3 shows that there is one more singular surface that we should
add to the list of examples where σ(CQ(5)) is not horizontal. One can actually generalize
many of our results to the case that Q lies on a reducible fiber, but given the significant
amount of additional computations required, this is not included in this paper.

In the proof of Theorem 1.4, we will view the family of the curves CQ(5) as Q runs
through the points on the nodal fiber as an elliptic surface. We may also consider the
family of all curves CQ(5) as an elliptic threefold over S, possibly adding some extra com-
ponent in some fibers to achieve flatness. This threefold has real points for any surface S

over R; it would be interesting to study the Hasse principle and weak approximation for
this elliptic threefold.

All computations were done using Magma [2]. We thank Peter Bruin, Jean-Louis
Colliot-Thélène, Bas Edixhoven, Marc Hindry, Christian Liedtke, Bjorn Poonen, Alexei
Skorobogatov, Damiano Testa, Anthony Várilly-Alvarado, and Bianca Viray for useful
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discussions. We thank the anonymous referee for their useful comments and suggestions.
The first author thanks Universiteit Leiden and the Max-Planck-Institut in Bonn and
the second author the Centre Interfacultaire Bernoulli in Lausanne for their hospitality
and support.

2. A family of sections

By a variety over a field we mean a separated scheme of finite type over that field. In
particular, we do not assume that varieties are irreducible or reduced. By a component
we always mean an irreducible component. Curves are varieties whose components all
have dimension 1 and surfaces are varieties whose components all have dimension 2.

Let k be a field of characteristic not equal to 2 or 3 and let P denote the weighted
projective space P(2, 3, 1, 1) over k with coordinates x, y, z, w. Let P1 be the projective
line over k with coordinates z, w. The subset Z ⊂ P given by z = w = 0 contains the
two singular points (1 : 0 : 0 : 0) and (0 : 1 : 0 : 0) of P, so the complement U = P − Z

is nonsingular. The projection ϕ:P ��� P1 onto the last two coordinates is well defined
on U . For each field extension � of k, let C(�) denote the family of all curves C in U�,
defined over �, for which the restriction ϕ|C :C → P1

� is an isomorphism, that is, C(�) is
the family of sections of ϕ:U� → P1

� . Whenever convenient, we will freely switch between
viewing the elements of C(�) as curves and viewing them as morphisms P1

� → U�. The
following lemma shows that there is an algebraic variety whose �-points are naturally in
bijection with the curves in C(�).

Lemma 2.1. For every field extension � of k, there is a bijection A7(�) → C(�) sending
the point (x0, y0, a, b, c, p, q) to the curve defined by

x = qz2 + pzw + x0w
2 and y = cz3 + bz2w + azw2 + y0w

3. (3)

Proof. Without loss of generality, we assume � = k. Clearly, the described map is well
defined and injective. To show surjectivity, let σ:P1 → U be a section of ϕ:U → P1. If
we set t = z/w, then there are polynomials r1, r2, s1, s2 ∈ k[t] such that σ is given on
A1 ⊂ P1 − {(1 : 0)} by

t �→
[
r1(t)
s1(t)

: r2(t)
s2(t)

: t : 1
]
.

The fact that the image C of σ is contained in U implies that s1 and s2 are constant
and the degrees of r1 and r2 bounded by 2 and 3 respectively. This shows that indeed
there are x0, y0, a, b, c, p, q ∈ k such that C is given by (3). �

Let f, g ∈ k[z, w] be homogeneous of degree 4 and 6, respectively, and let S ⊂ P be the
surface given by (1). The number of (−1)-curves on S is finite. Over a separable closure
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ksep of k there are 240 such curves; those that are defined over k are characterized by
the following lemma.

Lemma 2.2. The curves in C(k) that are contained in S are exactly the (−1)-curves of S
that are defined over k.

Proof. The (−1)-curves are defined over a separable extension of k by [5, Theorem 1].
This shows that the assumption that k be perfect is not necessary in [39, Theorem 1.2],
which therefore implies that the (−1)-curves on Sksep are exactly the curves given by (3)
for some x0, y0, a, b, c, p, q ∈ ksep, which also follows from [32, Lemma 10.9]. The lemma
follows from taking Galois invariants. �
Proposition 2.3. For each curve C ∈ C(ksep) that is not contained in S, we have C ·S = 6.

Proof. Eqs. (3) show that C has degree 6. Also, C is contained in U , so the intersection
C ∩S with the hypersurface S of degree 6 is contained in U , which is smooth. Therefore,
intersection multiplicities are defined as usual, and the weighted analogue of Bézout’s
Theorem gives C · S = μ−1(degC) · (degS), where μ = 6 is the product of the weights
of P. The statement follows. �

The intersection S ∩ Z consists of the single point O = (1 : 1 : 0 : 0). For any point
Q ∈ S(k) − {O}, and for 1 � n � 6, we let CQ(n) ⊂ A7 denote the subvariety of all
points whose associated curve, through the bijection of Lemma 2.1, intersects S at Q

with multiplicity at least n. Note that for n = 5 this coincides with the definition of
CQ(5) in the introduction.

Let Q ∈ S(k) − {O}. After applying an automorphism of P1 (and the corresponding
automorphism of P), we assume without loss of generality that ϕ(Q) = 0 = (0 : 1), say
Q = (x0 : y0 : 0 : 1) for some x0, y0 ∈ k. The variety CQ(1) ⊂ A7 consists of the points
of A7 whose first two coordinates equal x0 and y0, respectively, so the projection onto
the last five coordinates gives an isomorphism CQ(1) → A5. From now on we will freely
use this isomorphism to identify CQ(1) and A5 with coordinates a, b, c, p, q.

As in the introduction, we let E denote the blow-up of S at O and π: E → P1 the elliptic
fibration induced by the anticanonical map ϕ|S :S ��� P1. We will sometimes identify the
fiber Et above t = (z0 : w0) with its isomorphic image on S, equal to the intersection of S
with the hyperplane Ht given by w0z = z0w and denoted by St. The intersection Ht ∩S

is given by a Weierstrass equation; in particular, all fibers are irreducible, and therefore
all singular fibers have type I1 or II . Whenever we speak of vertical or horizontal curves
or of fibers on S or E , we refer to this fibration. We write

f = f4z
4 + f3z

3w + · · · + f0w
4,

g = g6z
6 + g5z

5w + · · · + g0w
6,

so the fiber E0 above t = 0, containing Q, is given by y2 = x3 + f0x + g0.
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We can give equations for CQ(n) inside CQ(1) = A5 as follows. Note that t = z/w is
a local parameter at the point (0 : 1) on P1. Hence, around Q, the curve associated to
(a, b, c, p, q) ∈ CQ(1) is parametrized by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = qt2 + pt + x0,

y = ct3 + bt2 + at + y0,

z = t,

w = 1.

(4)

For 0 � i � 6, let Fi ∈ k[a, b, c, p, q] be the coefficient of ti in

−y2 + x3 + f(t, 1)x + g(t, 1), (5)

with x and y as in (4). Then we have

F0 = 0,

F1 = −2y0a +
(
3x2

0 + f0
)
p + f1x0 + g1,

F2 = −a2 − 2y0b + 3x0p
2 + f1p +

(
3x2

0 + f0
)
q + f2x0 + g2,

F3 = −2ab− 2y0c + p3 + 6x0pq + f2p + f1q + f3x0 + g3,

F4 = −2ac− b2 + 3p2q + f3p + 3x0q
2 + f2q + f4x0 + g4,

F5 = −2bc + 3pq2 + f4p + f3q + g5,

F6 = −c2 + q3 + f4q + g6, (6)

and the variety CQ(n) ⊂ CQ(1) = A5 is given by the equations F1 = F2 = . . . = Fn−1 = 0.
We define the polynomials

Φ2 = 4
(
x3 + f0x + g0

)
, Φ4 = ΨΦ3 − Φ2

2,

Ψ = 1
2

d
dxΦ2, Φ5 = Φ2

2Φ4 − Φ3
3,

Φ3 = 3xΦ2 −
1
4Ψ

2, Φ6 = Φ5 − Φ2
4, (7)

in k[x]. For every integer j with 2 � j � 6, the polynomial Φj is the factor of the j-th
division polynomial of the fiber E0 that corresponds to the primitive j-torsion. In par-
ticular, the polynomials Φ2, Φ3, Φ2Φ4, Φ5, and Φ2Φ3Φ6 are the j-th division polynomials
for j = 2, 3, 4, 5, 6, respectively. For notational convenience, we set φj = Φj(x0) for all
j � 2, as well as

ψ = Ψ(x0), hi = (fix0 + gi)φi−1
2 , li = fiφ

i
2 − hiψ,

for 1 � i � 6, where we set f5 = f6 = 0.
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Lemma 2.4. If y0 �= 0, then the projection of CQ(1) = A5 onto its last two coordinates
restricts to an isomorphism CQ(4) → A2. The inverse is given by (p, q) �→ (a, b, c, p, q)
with

a = ψp + 2h1

4y0
,

b = ψφ2q + 2φ3p
2 + 2l1p + 2h2 − 2h2

1
4y0φ2

,

c = ζq + η

2y0φ2
2
, with

ζ = φ2(2φ3p + l1),

η = −φ4p
3 − (2h1φ3 + l1ψ)p2 +

(
l2 − 2h1l1 + h2

1ψ
)
p + h3 − 2h1h2 + 2h3

1.

Proof. Since F1 is linear in a, the projection of CQ(1) = A5 along the a-axis induces
an isomorphism ρ1 from CQ(2) to A4 with coordinates (b, c, p, q), of which the inverse
is determined by the given expression for a. The image ρ1(CQ(3)) ⊂ A4 has a defining
equation that is linear in b, as F2 is linear b and F1 is independent of b. Therefore,
the projection from ρ1(CQ(2)) = A4 along the b-axis restricts to an isomorphism ρ2 from
ρ1(CQ(3)) to A3 with coordinates (c, p, q), of which the inverse is determined by the given
expression for b. Finally, the defining equation of the image ρ2(ρ1(CQ(4))) ⊂ A3 is linear
in c, as F3 is linear in c and F1 and F2 are independent of c. Therefore, the projection of
ρ2(ρ1(CQ(3))) = A3 along the c-axis restricts to an isomorphism ρ3 from ρ2(ρ1(CQ(4)))
to A2 with coordinates (p, q), of which the inverse determined by the given expression
for c. The composition ρ3 ◦ ρ2 ◦ ρ1: CQ(4) → A2 is the isomorphism of the lemma. �

From now on we will assume y0 �= 0, or equivalently φ2 �= 0, and we identify CQ(4) and
A2 with coordinates (p, q) through the isomorphism of Lemma 2.4. We may eliminate
the variables a, b, c from the equation F4 = 0; after multiplying all coefficients by φ3

2, we
find that the variety CQ(5) ⊂ CQ(4) = A2 is defined by

c1q
2 +

(
c2p

2 + c3p + c4
)
q = c5p

4 + c6p
3 + c7p

2 + c8p + c9 (8)

with

c1 = φ2
2φ3,

c2 = −3φ2φ4,

c3 = −2φ2(l1ψ + 2h1φ3),

c4 = φ2
(
h2

1ψ − 2l1h1 + l2
)
,

c5 = φ2
3 − φ4ψ,

c6 = 2l1φ3 − 2h1φ
2
2 − 4h1φ4 − l1ψ

2,
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c7 = h2
1ψ

2 − 2
(
3h2

1 − h2
)
φ3 − (4l1h1 − l2)ψ + l21,

c8 =
(
4h3

1 − 2h1h2
)
ψ − 6l1h2

1 + 2l1h2 + 2l2h1 − l3,

c9 = 5h4
1 − 6h2

1h2 + 2h1h3 + h2
2 − h4.

As we assumed that y0, φ2 are nonzero and that the characteristic of k is not 2 or 3,
the vanishing of φ3 and φ4 would imply that Q has both order 3 and 4 in Ens

0 (k), which
is a contradiction, so the coefficients c1 and c2 do not both vanish, and CQ(5) is a curve,
though not necessarily reduced or irreducible. We will identify CQ(5) with its image
in A2 and we view the coordinates a, b, and c as functions on CQ(4) or CQ(5), as given
in Lemma 2.4.

Remark 2.5. The functions F4, F5, and F6 are regular on CQ(4) ∼= A2 and can therefore
be identified with polynomials in k[p, q].

Remark 2.6. The (−1)-curves on S going through Q correspond to the points of the
subscheme in CQ(4) ∼= A2 given by F4 = F5 = F6 = 0.

Remark 2.7. A special case of Theorem 1.2 is Theorem 2.1(2) of [37]; indeed, when f = 0
and g vanishes at (1 : 0) ∈ P1, and Q = (1 : 1 : 1 : 0), then the curve CQ(5) is isomorphic
to the curve given in Theorem 2.1(2) of [37]. The generalizations of this theorem given
in [14, Theorems C and D] are also a special case of our Theorem 1.2, where one uses
Q = (0 : 1 : 1 : 0), which has order 3 in its fiber in the case of Theorem C. The proofs
of Theorems C and D in [14] are incomplete, but they do work for surfaces S that are
sufficiently general. More precisely, it is not shown that the rational function T (�) in the
proof of Theorem C (and its implicit equivalent for Theorem D) is always nonconstant.
In our geometric interpretation, this is equivalent to σ(CQ(5)) having a horizontal com-
ponent. Also, there is no proof of the claim that X(2 · P�) is never contained in Q[�] in
the proof of Theorem C (and its implicit equivalent for Theorem D), which is crucial for
the argument that the point P� has infinite order on the elliptic curve E ′

�.

Every curve C ∈ C(k) corresponding to a point P ∈ CQ(5)(k) and not contained in S,
intersects S with multiplicity at least 5 at Q, so by Proposition 2.3, there is a unique
sixth point of intersection, which is also defined over k. We define a rational map

σ: CQ(5) ��� S

by sending P to the sixth intersection point of C with S. The map σ is defined over k.
By Proposition 2.3, it is well defined at each point P ∈ CQ(5) whose corresponding curve
is not contained in S, and thus there are at most 240 points P ∈ CQ(5) where σ is not
well defined (see Lemma 2.2 and the sentences before). Every horizontal component of
the image of σ, or its strict transform on E , yields a multisection of the elliptic fibration
π: E → P1.
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We can describe the map σ very explicitly. The curve C corresponding to (a, b, c, p, q) ∈
CQ(5) is parametrized by (4). When we substitute the expressions of (4) into Eq. (5),
we obtain t5(F5 + F6t), so the sixth intersection point of C ∩ S is given by (4) with
t = −F5/F6.

3. A completion of the family of sections

We keep the notation of the previous section. In particular, the field k, the weighted
projective space P = P(2, 3, 1, 1) over k with coordinates x, y, z, w, the projective line P1

over k with coordinates z, w, the surface S ⊂ P, and the points O, Q ∈ S(k) are as before,
and so are the objects that depend on them, including the elliptic fibration π: E → P1,
the elements ψ, φj , ci ∈ k, the curve CQ(5) ⊂ A2, the coordinates p, q of A2, the functions
a, b, c, Fi on CQ(5), and the map σ: CQ(5) ��� S.

We will see in Theorem 6.4 that when the closure of the image σ(CQ(5)) ⊂ S contains
a horizontal component with respect to the natural elliptic fibration π: E → P1, then we
can use such a component to construct a base change of π with a section of infinite order.
Unfortunately, in some cases the image σ(CQ(5)) does not contain such a component. In
order to investigate when this happens, we extend the map σ: CQ(5) ��� S to a projective
completion CQ(5) of the affine curve CQ(5) and first determine the image of the limit
points in Ω = CQ(5) − CQ(5) (see Proposition 3.9).

For every extension � of k, the points in CQ(5)(�) correspond to elements of C(�),
which are curves in U�. So the curve CQ(5) parametrizes a family of curves in U ⊂ P.
The elements of Ω correspond to the limit curves of this family. Viewing the elements
of C(�) as sections P1

� → U� of ϕ, we define the morphism

γ: CQ(5) × P1 → P

by γ(P,R) = χ(R), where χ ∈ C(�) is the section of ϕ corresponding to P ∈ CQ(5)(�).
The morphism γ is defined over k. In terms of the coordinates (p, q) on CQ(5) ⊂ A2,
the map γ sends ((p, q), (z : w)) to (x : y : z : w) with x and y as in (3) and a, b, c

as in Lemma 2.4. For each point P ∈ CQ(5)(�) with corresponding section χ ∈ C(�),
the image χ(P1

�) ⊂ U� ⊂ P� is the image under γ of the fiber of the trivial P1-bundle
CQ(5) × P1 over P . Therefore, we may find an appropriate completion CQ(5), as well as
the limit curves corresponding to the elements in CQ(5) − CQ(5) as follows. Start with
an arbitrary completion C0

Q(5) of CQ(5) and the trivial P1-bundle Γ 0 = C0
Q(5) × P1 over

it. Now γ is defined on an open subset of Γ 0. After an appropriate sequence of blow-ups
and blow-downs, we obtain a surface Γ that is birational to Γ 0 to which γ extends
as a morphism, as well as a new completion CQ(5) such that the P1-bundle structure
CQ(5)× P1 → CQ(5) extends to a conic bundle structure Γ → CQ(5). Note that it is not
necessary to require that CQ(5) be smooth. The limit curves are then the images under γ
of the fibers of Γ → CQ(5) over the points in Ω = CQ(5) − CQ(5).
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The problem with the process above, in which we construct CQ(5) and Γ , is that we
are not working with a single del Pezzo surface of degree 1, but with all of them, and
we have to distinguish several cases of monoidal transformations, based on the types of
singularities at the points in C0

Q(5)−CQ(5). Therefore, instead of presenting this process
here, we will immediately introduce the result: a completion CQ(5) together with a conic
bundle Γ → CQ(5) that works in all cases, in the sense that γ extends to it.

3.1. Compactifying CQ(5)

Let p, q, r be the coordinates of the weighted projective space P(1, 2, 1), and let H →
P(1, 2, 1) be the blow-up at the singular point (0 : 1 : 0). Since P(1, 2, 1) is isomorphic
to a cone in P3, the surface H is smooth; it is in fact a Hirzebruch surface. By sending
(p, q) to (p : q : 1), we identify A2 with an open subset of P(1, 2, 1) and hence with an
open subset of H. In doing so, we also identify the function field k(p, q) of A2 with that
of H.

Let CQ(5) denote the completion of CQ(5) inside H. Note that the completion of CQ(5)
inside P(1, 2, 1) contains the singular point (0 : 1 : 0) if and only if the coefficient c1 of q2

in (8) vanishes, i.e., if and only if Q has order 3 in Ens
0 (k). Hence, if Q does not have

order 3, we may identify CQ(5) with the completion of CQ(5) inside P(1, 2, 1); as c1, c2,
and c5 do not all vanish, this completion is given by

c1q
2 +

(
c2p

2 + c3pr + c4r
2)q = c5p

4 + c6p
3r + c7p

2r2 + c8pr
3 + c9r

4. (9)

We identify H with the variety in P(1, 2, 1) × P1(s, t) given by pt = rs. Denoting the
zeroset in H of a doubly homogeneous polynomial h in k[p, q, r][s, t] by Z(h), we define
the open subsets

H1 = H− Z(r), H2 = H− Z(p), H3 = H− Z(qt), H4 = H− Z(qs)

of H. In the function field of H, we have p = s
t = p

r and q = q
r2 . We define the functions

λ1 = p, λ2 = p−1, λ3 = p, λ4 = p−1,

μ1 = q, μ2 = qp−2, μ3 = q−1, μ4 = p2q−1

a1 = a, a2 = aλ2, a3 = a, a4 = aλ4,

b1 = b, b2 = bλ2
2, b3 = bμ3, b4 = bλ2

4μ4,

c1 = c, c2 = cλ3
2, c3 = cμ3, c4 = cλ3

4μ4 (10)

in the function field k(p, q) of H.

Lemma 3.1. For each i ∈ {1, 2, 3, 4}, the functions λi, μi, ai, bi, ci are regular on Hi and
the map Hi → A2 sending R to (λi(R), μi(R)) is an isomorphism. The sets H1, H2, H3,
and H4 cover H.
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Proof. Suppose i ∈ {1, 2, 3, 4}. The fact that λi and μi are regular on Hi and define an
isomorphism to A2 is a standard computation. So is the last statement. Using Lemma 2.4,
one can express ai, bi, ci as polynomials in λi and μi, which shows that ai, bi, ci are regular
as well. �

For each i ∈ {1, 2, 3, 4}, set Ci
Q(5) = CQ(5) ∩ Hi. The union of the four affine

curves Ci
Q(5), with 1 � i � 4, is CQ(5). Note that H1 = A2(p, q) and C1

Q(5) = CQ(5). The
affine curve C2

Q(5) coincides with the affine part with p �= 0 of the curve in P(1, 2, 1) given
by (9); the affine coordinates (λ2, μ2) correspond with (r/p, q/p2). By abuse of notation,
we will denote the restrictions of λi, μi, ai, bi, and ci to Ci

Q(5) by the same symbol.

3.2. Extending γ

We define the conic bundles

Δ1 = H1 × P1(z, w),

Δ2 = H2 × P1(z′, w′),
Δ3 ⊂ H3 × P2(u0, u1, u2) given by r2u0u2 = qu2

1, and

Δ4 ⊂ H4 × P2(u′
0, u

′
1, u

′
2
)

given by p2u′
0u

′
2 = qu′

1
2

over H1, H2, H3, and H4, respectively. We glue these conic bundles to a conic bundle Δ
over H as follows. We glue Δ1 and Δ2 above the intersection H1 ∩ H2 by identifying
(z : w) ∈ P1(z, w) with (pz : rw) ∈ P1(z′, w′). We also glue Δ1 and Δ3 above the inter-
section H1∩H3 by identifying (z : w) ∈ P1(z, w) with (qz2 : r2zw : r2w2) ∈ P2(u0, u1, u2).
We glue Δ3 and Δ4 above H3 ∩ H4 by identifying (u0 : u1 : u2) ∈ P2(u0, u1, u2) with
(tu0 : su1 : tu2) ∈ P2(u′

0, u
′
1, u

′
2). One easily checks that these identifications also induce

an isomorphism between the parts of Δi and Δj above the intersection Hi ∩Hj for the
remaining pairs (i, j) ∈ {(1, 4), (2, 3), (2, 4)}.

The map γ: CQ(5) × P1 → P extends to CQ(4) × P1 = A2 × P1 = H1 × P1 = Δ1 by
setting γ(P,R) = χ(R) where, for any field extension � of k, we have R ∈ P1(�), and
the section χ ∈ C(�) of ϕ corresponds to P ∈ CQ(4)(�). The extended map, also denoted
by γ, sends (P, (z : w)) ∈ CQ(4) × P1 to (x : y : z : w) with x and y as in (3), with
(p, q) = (p(P ), q(P )) = (λ1(P ), μ1(P )), and with a, b, c as in Lemma 2.4. The following
proposition shows that γ extends to a morphism Δ → P.

Proposition 3.2. The map γ extends to a morphism Δ → P that is given on Δ2 by sending
(P, (z′ : w′)) to

(
μ2(P )z′ 2 + z′w′ + x0w

′ 2 : c2(P )z′ 3 + b2(P )z′ 2w′

+ a2(P )z′w′ 2 + y0w
′ 3 : λ2(P )z′ : w′),
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on Δ3 by sending (P, (u0 : u1 : u2)) to

(
u2

(
u0 + λ3(P )u1 + x0u2

)
: u2

(
c3(P )u0u1 + b3(P )u0u2 + a3(P )u1u2 + y0u

2
2
)

: u1 : u2
)
,

and on Δ4 by sending (P, (u′
0 : u′

1 : u′
2)) to

(
u′

2
(
u′

0 + u′
1 + x0u

′
2
)

: u′
2
(
c4(P )u′

0u
′
1 + b4(P )u′

0u
′
2 + a4(P )u′

1u
′
2 + y0u

′
2
2) : λ4(P )u′

1 : u′
2
)
.

Proof. It is easy to check that the given maps coincide with γ wherever they are well
defined. Hence, it suffices to show that they are well defined on the claimed subsets.

Suppose the first map is not well defined at a point (P, (z′ : w′)) ∈ Δ2. By Lemma 3.1,
the functions λ2, μ2, a2, b2, c2 are all regular at P , so the fact that the map is not well
defined at (P, (z′ : w′)) implies that the four given polynomials that are claimed to define
the map on Δ2 vanish. This yields w′ = 0, so z′ �= 0, and thus λ2, μ2, and c2 all vanish
at P . From Lemma 2.4 and λ2(P ) = μ2(P ) = 0, we obtain c2(P ) = −φ4/(2y0φ

2
2), so the

vanishing of c2 at P gives φ4 = 0. From λ2(P ) = μ2(P ) = 0 and Eq. (9), we find c5 = 0,
so we also have φ2

3 = φ4ψ = 0. This is a contradiction as Q cannot have both order 3
and 4 on Ens

0 (k). Hence, the first map is well defined on Δ2.
It is clear that the second map is well defined at any point (P, (u0 : u1 : u2)) ∈ Δ3

with u1 �= 0 or u2 �= 0. To see that it is also well defined at points with (u0 : u1 : u2) =
(1 : 0 : 0), we identify P with its image under the closed immersion to P22 corresponding
to O(6) on P. Substituting the expressions for the second map into the 23 monomials
of weighted degree 6 in the variables x, y, z, and w gives 23 polynomials of total de-
gree 6 in u0, u1, u2, which after replacing u2

1 by μ3u0u2 (the conic bundle Δ3 is given by
μ3u0u2 = u2

1) are all divisible by u3
2. The composition Δ3 → P → P22 is given by these

23 polynomials, each divided by u3
2. The coordinate corresponding to the monomial x3 is

given by (u0+λ3u1+x0u2)3, which does not vanish at (P, (1 : 0 : 0)), so this composition,
and thus the map Δ3 → P, is well defined.

The third map is well defined whenever u′
2 �= 0. On the other hand, if u′

2 = 0, then
also u′

1 = 0, and one uses the composition Δ4 → P → P22 to check that the map Δ4 → P

is well defined at points with (u′
0 : u′

1 : u′
2) = (1 : 0 : 0), as in the previous case. �

Let Γ be the inverse image of CQ(5) under the map Δ → H. We denote the restriction
Γ → CQ(5) of the conic bundle Δ → H by τ . By abuse of notation, we denote the
restriction Γ → P of the map γ: Δ → P by γ as well.

3.3. The limit curves and their images

Set Ω = CQ(5) − CQ(5). Then the limit curves described in the beginning of this
section are the images under γ of the fibers of τ above the points in Ω. These images
are described in Lemmas 3.3, 3.4, 3.5, and 3.6. Recall that C2

Q(5) can be identified with
the open subset of P(1, 2, 1) given by p �= 0.
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Lemma 3.3. Each point P ∈ C2
Q(5) − CQ(5) corresponds to (p : q : r) = (1 : α : 0) for

some α ∈ k satisfying c1α
2 +c2α−c5; the map γ sends (P, (z′ : w′)) ∈ Γ to (x : y : z : w)

with ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = αz′ 2 + z′w′ + x0w
′ 2,

y = y0

(
4αφ2φ3 − 2φ4

φ3
2

z′ 3 + αψφ2 + 2φ3

φ2
2

z′ 2w′ + ψ

φ2
z′w′ 2 + w′ 3

)
,

z = 0,

w = w′,

and the image of the fiber τ−1(P ) ⊂ Γ under γ is a curve in P of degree 6 that intersects S
at Q with multiplicity at least 5.

Proof. Let P ∈ C2
Q(5) − CQ(5). The first part of the statement is obvious. We have

λ2(P ) = 0 and μ2(P ) = α. From Lemma 2.4 we deduce

a2(P ) = ψ

4y0
, b2(C) = ψφ2α + 2φ3

4y0φ2
, c2(P ) = 2φ2φ3α− φ4

2y0φ2
2

.

Hence, according to Proposition 3.2, the map γ sends (P, (z′ : w′)) ∈ Δ2 to (x : y : 0 : w′)
with x = αz′ 2 + z′w′ + x0w

′ 2 and y = c2(P )z′ 3 + b2(P )z′ 2w′ + a2(P )z′w′ 2 + y0w
′ 3.

From 4y2
0 = φ2, it follows that the latter equals the expression given for y in the lemma.

The curve D = γ(τ−1(P )) in P lies inside the hyperplane given by z = 0, which is
isomorphic to the weighted projective space P(2, 3, 1). The intersection of D with the
curve D′ in this hyperplane given by y = λxw + μw3 yields three intersection points for
general λ and μ. Bézout’s Theorem tells us that the product of the weights (2, 3, 1) times
this intersection number 3 equals (degD)(degD′), so we find degD = 18/ degD′ = 6.

Since the degree of D is 6, it is a full limit of images under γ of fibers of τ : CQ(5)×P1 →
CQ(5), all of which intersect S at Q with multiplicity at least 5, so D does this as well.
This can also be checked computationally by substituting the parametrization given in
the lemma into the polynomial

−y2 + x3 + f(z, w)x + g(z, w),

and checking that the coefficients of z′ iw′ 6−i vanish for 0 � i � 4. �
Recall that S0 is the image of E0 on S, which is the intersection of S with the plane

given by z = 0. The following two lemmas give more information about the image under
γ of the fibers of τ above points in C2

Q(5) − CQ(5) in the case that S0 is singular. In
particular, they show that S0 is one of the limit curves in this case.

Lemma 3.4. Suppose E0 has a node. Then C2
Q(5) − CQ(5) contains the point P1 =

(1 : α1 : 0) ∈ P(1, 2, 1) with

α1 = f0
.
4(f0x0 − 3g0)
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The map γ restricts to a birational morphism from the fiber τ−1(P1) to S0. If φ3 = 0,
then P1 is the only point in C2

Q(5) − CQ(5). If φ3 �= 0, then C2
Q(5) − CQ(5) contains a

unique second point P2 = (1 : α2 : 0) ∈ P(1, 2, 1) with

α2 = f0(2f0x0 − 21g0)
4(f0x0 − 3g0)(2f0x0 − 9g0)

;

the image under γ of the fiber τ−1(P2) is not contained in S.

Proof. Since E0 has a node, we have 4f3
0 + 27g2

0 = 0 with f0, g0 �= 0, so for d = −3g0
2f0

we
have f0 = −3d2 and g0 = 2d3. The curve E0 ∼= S0 is given by y2 = (x− d)2(x+ 2d), and
we have

Φ2 = 4(x− d)2(x + 2d),

Φ3 = 3(x− d)3(x + 3d),

Φ4 = 2(x− d)5(x + 5d),

Φ5 = (x− d)10
(
5x2 + 50dx + 89d2).

If φ3 �= 0, then c1 �= 0 and the polynomial c1T 2 + c2T − c5 factors as c1(T −α1)(T −α2)
with α1 = 1

4 (x0 + 2d)−1 and α2 = 1
4 (x0 + 7d)(x0 + 2d)−1(x0 + 3d)−1, which equal the

expressions given in the proposition. If φ3 = 0, then c1 = 0 and x0 = −3d, so the only
root of c1T 2 + c2T − c5 is α1 = c5/c2 = −1

4d
−1, which equals the expression for α1 given

in the proposition. It follows from Lemma 3.3 that the points in C2
Q(5) − CQ(5) are as

claimed.
It follows from Lemma 3.3 and the identities above that the restriction of γ to

τ−1(P1) = {P1} × P1(z′, w′) factors as the composition of the isomorphism

{P1} × P1(z′, w′) → P1,
(
P1,

(
z′ : w′)) �→ (

(x0 − d)
(
z′ + 2(x0 + 2d)w′) : 2y0w

′)
and the birational morphism

P1 → S0, (s : 1) �→
(
s2 − 2d : s3 − 3ds : 0 : 1

)
.

This proves the second statement.
For the last statement, we assume φ3 �= 0, take α = α2 and substitute the correspond-

ing parametrization of Lemma 3.3 in the equation

−y2 + x3 + f(z, w)x + g(z, w) = 0,

which defines S. The obtained equation in z′ and w′, multiplied by

−16d−3(x0 − d)10(x0 + 2d)5(x0 + 3d)3,
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is

z′ 5
(
φ5 · z′ + (x0 − d)6φ2φ3 · w′) = 0.

As the left-hand side does not vanish identically, the curve γ(τ−1(P2)) is not contained
in S. �
Lemma 3.5. Suppose that E0 has a cusp. Then CQ(5) equals CQ(5)∪C2

Q(5) = C1
Q(5)∪C2

Q(5)
and C2

Q(5)−CQ(5) contains exactly one point, namely P = (2 : x−1
0 : 0) ∈ P(1, 2, 1). The

map γ restricts to a birational morphism from the fiber τ−1(P ) to S0.

Proof. Since E0, or equivalently S0, has a cusp, we have f0 = g0 = 0. The cusp
(0 : 0 : 0 : 1) is the only point on S0 with x-coordinate 0, so from y0 �= 0 we find x0 �= 0.
The Φi are as in the proof of Lemma 3.4 with d = 0. From c1 = 48x10

0 �= 0 we get
CQ(5) = CQ(5) ∪ C2

Q(5). The polynomial c1T 2 + c2T − c5 factors as 3x8
0(4x0T − 1)2 with

the unique root α = (4x0)−1, which implies by Lemma 3.3 that P = (2 : x−1
0 : 0)

is the only point in C2
Q(5) − CQ(5). One checks by a computation that it also follows

from Lemma 3.3 that the restriction of γ to τ−1(P ) = {P} × P1(z′, w′) factors as the
composition of the isomorphism

{P} × P1(z′, w′) → P1,
(
P,

(
z′ : w′)) �→ (

z′ + 2x0w
′ : 2x0w

′)
and the birational morphism P1 → S0 that sends (s : 1) to (x0s

2 : y0s
3 : 0 : 1). This

proves the second statement. �
The points of CQ(5) − CQ(5) that are not handled by the previous lemmas are the

points in CQ(5)− (C1
Q(5)∪ C2

Q(5)), that is, the points above the singular point (0 : 1 : 0)
in P(1, 2, 1). The next lemma takes care of these points.

Lemma 3.6. For each point P ∈ CQ(5) − (C1
Q(5) ∪ C2

Q(5)), the map γ sends the fiber
τ−1(P ) to the curve in P given by z = 0 and 4y0y = ψxw + (φ2 − ψx0)w3; this curve
intersects S with multiplicity 3 at Q and nowhere else.

Proof. By Lemma 3.1, the open subset H3 has affine coordinates (λ3, μ3). If P lies in
C3
Q(5) − (C1

Q(5) ∪ C2
Q(5)), then it corresponds with a point with (λ3, μ3) = (p, 0) for

some p ∈ k and the fiber τ−1(P ) is given by u2
1 = 0 in P2(u0, u1, u2). The map γ sends

(P, (u : 0 : 1)) ∈ Δ3 to (u+x0 : b3(P )u+y0 : 0 : 1) by Proposition 3.2. From Lemma 2.4,
we find 4y0b3(P ) = ψ. It follows that the image of the fiber is the claimed curve. In the
affine plane given by z = 0 and w = 1, this curve is a line going through Q with slope
b3(P ) = (3x2

0+f0)/(2y0), so it is exactly the tangent line to the curve S0 at Q. Note that
the existence of P implies that Q has order 3 on Sns

0 (k), so this tangent line intersects S0
with multiplicity 3 at Q and nowhere else. As the curve intersects the surface S only in
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the curve S0, the lemma follows. If P lies in C4
Q(5)− (C1

Q(5)∪C2
Q(5)), then the argument

is analogous. �
Remark 3.7. Scheme theoretically, the image under γ of the fiber of τ above P in
Lemma 3.6 is not reduced, but given by z2 = 0 and 4y0y = ψxw + (φ2 − ψx0)w3.
This nonreduced curve is also a limit curve as mentioned in the beginning of the section,
and it intersects S with multiplicity 6 at Q.

Remark 3.8. Let T be the image of γ:Γ → P. Then T is the union of all curves C ⊂ U

corresponding to points P ∈ CQ(5) and the limit curves corresponding to points P ∈ Ω.
The closure of the image σ(CQ(5)) in S is contained in the intersection S ∩ T . This
intersection also contains all (−1)-curves on S that go through Q. See also Remarks 5.7
and 5.8.

The rational map σ: CQ(5) ��� S from the end of Section 2 factors as σ = γ ◦ρ, where
ρ: CQ(5) ��� CQ(5)×P1(z, w) is a rational section of τ :Γ → CQ(5) that sends P ∈ CQ(5)
to (P, (−F5(P ) : F6(P ))). Here, for 0 � i � 6, we view Fi as in (6) as a function on CQ(5).
We use this in Proposition 3.9 to show that σ extends to a map that is well defined at
every point in Ω = CQ(5) − CQ(5).

CQ(5) Γ
τ γ

P S

CQ(5)

σ

ρ

CQ(5) × P1 γ
U S − {O}

Proposition 3.9. The rational map σ extends to a rational map CQ(5) ��� S that is well
defined at the points in Ω. For every P ∈ Ω, we have σ(P ) = −4Q ∈ Sns

0 (k) ⊂ S if S0
has a cusp or S0 has a node and P = P1 as in Lemma 3.4, and we have σ(P ) = −5Q ∈
Sns

0 (k) ⊂ S otherwise.

Proof. Let P ∈ Ω. Then by Lemmas 3.3, 3.4, 3.5, 3.6, and Remark 3.7, the scheme-
theoretic image of τ−1(P ) under γ is a curve of degree 6 in the plane given by z = 0
in P. We denote this curve by C. A parametrization of C is given in Lemma 3.3 if
P ∈ C2

Q(5) − CQ(5); the curve C is nonreduced if P ∈ CQ(5) − (C1
Q(5) ∪ C2

Q(5)). The
intersection C ∩ S is the same as the intersection of C with S0 = S ∩ {z = 0}, and C

intersects S0 with multiplicity at least 5 at Q.
If S0 is smooth, then S0 has genus 1, so C has no components in common with S0. The

curves S0 and C also have no components in common if P ∈ CQ(5) − (C1
Q(5) ∪ C2

Q(5))
(Lemma 3.6 and Remark 3.7) or P = P2 as in Lemma 3.4. Hence, in all these cases
there is a unique sixth intersection point in C ∩ S = C ∩ S0, and we can extend σ to P
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by sending P to this sixth intersection point, say R; the divisor 5(Q) + (R) on S0 is a
hypersurface section inside the plane given by z = 0, so it is linearly equivalent to a
multiple of 3(O ∩ S0) on S0, and we find R = −5Q in Sns

0 (k).
We are left with the case that S0 has a cusp (Lemma 3.5), or S0 has a node and P = P1

as in Lemma 3.4. In both cases, there is a d ∈ k such that f0 = −3d2 and g0 = 2d3 and,
in terms of the coordinates (p : q : r) on P(1, 2, 1), we have P = (1 : α : 0) ∈ C2

Q(5)
with α = 1

4 (x0 + 2d)−1. By Lemma 3.1, the functions λ2 = r/p and μ2 = q/p2 are affine
coordinates for H2, with P corresponding to (λ2, μ2) = (0, α), and the functions a2, b2,
and c2 are regular on H2. As before, we denote the restrictions of λ2, μ2, a2, b2, and c2
to C2

Q(5) by the same symbols.
Using (6) and (10), we can express, for each i, the function F ′

i = λi
2Fi on CQ(5) as a

polynomial in terms of λ2, μ2, a2, b2, and c2, which shows that F ′
i is regular on C2

Q(5).
In particular, we have

F ′
5 = −2b2c2 + 3μ2

2 + f4λ
4
2 + f3λ

3
2μ2 + g5λ

5
2,

F ′
6 = −c22 + μ3

2 + f4λ
4
2μ2 + g6λ

6
2.

Recall from Section 3.2 that Δ1 and Δ2 are glued by setting (z′ : w′) = (pz : rw) =
(z : λ2w). Hence, on C2

Q(5), the rational map ρ: C2
Q(5) ��� C2

Q(5)×P1(z′, w′) ⊂ Γ is given
by

ρ(P ) =
(
P,

(
−F5(P ) : λ2(P )F6(P )

))
=

(
P,

(
−F ′

5(P ) : F ′
6(P )

))
.

The functions λ2 and μ2 − α are local parameters for H2 at P , so their restrictions
generate the maximal ideal m of the local ring AP of C2

Q(5) at P . From (9), we find that
in AP we have

c1μ2
2 + c2μ2 − c5 ≡ (c6 − c3μ2)λ2 (11)

modulo λ2
2.

Now suppose φ3 �= 0. Then c1 �= 0 and the left-hand side of (11) factors as
c1(μ2 − α)(μ2 − α′) with α′ = 1

4 (x0 + 7d)(x0 + 2d)−1(x0 + 3d)−1. In fact, α and α′

correspond to α1 and α2 of Lemma 3.4. Modulo m2, the left- and right-hand side of (11)
are congruent to c1(μ2−α)(α−α′) and (c6− c3α)λ2, respectively. Assume d �= 0 as well.
Then α′ �= α, so we find that modulo m2 we have μ2 − α ≡ δλ2 with

δ = c6 − c3α

c1(α− α′) .

Hence, m is generated by λ2 and one checks, preferably with the help of a computer,
that we have

F ′
5 ≡ (f1d + g1)φ5

10 2 · λ2 and F ′
6 ≡ (f1d + g1)φ4

5 2 · λ2 (mod λ2m). (12)
(x0 − d) φ2 (x0 − d) φ2
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We claim that (12) also holds when d = 0 or φ3 = 0. Indeed, if φ3 = 0, then one uses
x0 = −3d, while c1 = 0 and c2 �= 0, so (11) yields μ2 − α ≡ c−1

2 (c6 − αc3)λ2 (mod m2);
it follows that λ2 generates m, and one checks (12) again by computer. If d = 0, then m

may not be principal, so being congruent modulo λ2m is potentially stronger than being
congruent modulo m2; but using that modulo λ2m we have (11) and μ2λ2 ≡ αλ2, one
can again check that (12) holds. Hence, (12) holds in all cases.

Now f1d + g1 is nonzero because the surface S is smooth at the singular point of S0.
Also, since Q is not the singular point of S0, we have x0 �= d and φ4 and φ5 do not
both vanish. We conclude that ρ: C2

Q(5) ��� C2
Q(5) × P1(z′, w′) is well defined at P ,

sending P to (P, (−F ′
5(P ) : F ′

6(P ))) = (P, (−φ5 : (x0 − d)5φ4)). Substituting this into
the parametrization of Lemma 3.3, we find σ(P ) = γ(ρ(P )) = (x1 : y1 : 0 : 1), with

x1 = d + (x0 − d)4

16(x0 + 2d)(x0 + 5d)2 and y1 = − (x0 − d)3(x2
0 + 22dx0 + 49d2)y0

64(x0 + 2d)2(x0 + 5d)3 .

It is easy to check that this point equals −4Q in the group Sns
0 (k), using the fact

that the tangent line to S0 at Q intersects S0 also in −2Q, the tangent line to S0

at −2Q intersects S0 also in 4Q, and the inverse of a point is obtained by negating the
y-coordinate. �
Corollary 3.10. The following statements hold. The multiples of Q are taken in the
group Sns

0 (k).

(1) We have σ(Ω) = {−5Q} if and only if S0 is smooth.
(2) If σ(Ω) = {−4Q,−5Q}, then S0 is nodal. The converse holds if 3Q �= O.
(3) If S0 is cuspidal, then σ(Ω) = {−4Q}. The converse holds if 3Q �= O.
(4) If 4Q �= O and 5Q �= O, then σ(Ω) ⊂ Sns

0 (k) − {O} and ϕ(σ(Ω)) = {(0 : 1)}.

Proof. The ‘if’-part of (1) follows immediately from Proposition 3.9. For the ‘only if’-
part, note that if S0 is singular, then by Proposition 3.9 there exists a P ∈ Ω with
σ(P ) = −4Q: when S0 is cuspidal, this holds for any P ∈ Ω and when S0 is nodal, we
can take P = P1 as in Lemma 3.4.

The first part of (3) follows directly from Proposition 3.9. Together with (1), this also
implies the first part of (2). If 3Q �= O and S0 is nodal, then for the points P1 and P2

as in Lemma 3.4, we have σ(P1) = −4Q and σ(P2) = −5Q by Proposition 3.9, which
proves the second part of (2). The second part of (3) now follows from (1) and (2).

Statement (4) follows immediately from Proposition 3.9. �
The next two sections investigate the conditions under which σ: CQ(5) ��� S sends

an irreducible component of CQ(5) to a fiber of ϕ|S :S ��� P1. The following lemma
shows that if this is the fiber that contains Q, then σ is the constant map to Q on the
component.
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Lemma 3.11. Let C0 be a component of CQ(5) for which ϕ(σ(C0)) = (0 : 1). Then
σ(C0) = Q.

Proof. Without loss of generality, we assume k is algebraically closed. Let P ∈ C0∩CQ(5)
be such that the associated section C ∈ C(k) is not entirely contained in S. Then σ is
well defined at P and σ(P ) is the unique sixth intersection point of C with S. Since C

is a section of ϕ:U ��� P1, it intersects the fiber S0 only once, namely in Q, and as this
sixth intersection point lies in S0 as well, we conclude σ(P ) = Q. Thus all but finitely
many points of C0 map to Q under σ, so σ(C0) = Q. �
4. Examples

In this section, k still denotes a field of characteristic not equal to 2 or 3. We will give
examples of surfaces S ⊂ P over k given by (1), together with a point Q ∈ S(k) for which
the map σ: CQ(5) ��� S sends at least one irreducible component of CQ(5) to a fiber of
ϕ|S :S ��� P1. In the next section we will see that, at least outside characteristic 5, these
examples include all cases where every component of CQ(5) is sent to a fiber on S.

In view of Theorem 1.2, it is important to note that in all examples, there are at least
six (−1)-curves on S going through Q. Recall from Remark 2.6 that these correspond to
the points of A2 ∼= CQ(4) with F4 = F5 = F6 = 0. Recall also, from the last paragraph
of Section 2, that the map ϕ ◦ σ: CQ(5) → P1 is given by [−F5 : F6].

Example 4.1. Let β, δ ∈ k∗ and assume the characteristic of k is not 5. Set

x0 = 3
(
β2 + 6β + 1

)
, f0 = −27

(
β4 + 12β3 + 14β2 − 12β + 1

)
,

y0 = 108β, g0 = 54
(
β2 + 1

)(
β4 + 18β3 + 74β2 − 18β + 1

)
,

and let S ⊂ P be the surface given by (1) with f = f0w
4 and g = δz5w + g0w

6, and
with point Q = (x0 : y0 : 0 : 1). Assume that S is smooth, so that it is a del Pezzo
surface. The curve S0 is nonsingular if and only if β(β2 + 11β− 1) �= 0. The point Q has
order 5 in Sns

0 (k). Generically, in particular over a field in which β and δ are independent
transcendentals, the surface S is smooth and the fibration π: E → P1 has 10 nodal fibers
(type I1) and one cuspidal fiber (type II ) above (z : w) = (1 : 0).

Let α be an element in a field extension of k satisfying α2 = α + 1. Then CQ(5)
splits over k(α) into two components. The function F6 vanishes on CQ(5) and the map
σ: CQ(5) ��� S sends each component birationally to the cuspidal fiber. The conic bundle
Γ splits into two components as well. Both components of the image T of γ:Γ → P (cf.
Remark 3.8) intersect S in the cuspidal fiber and, over an extension of k(α) of degree at
most 5, five (−1)-curves; the surface T intersects S doubly in the cuspidal curve, as well
as in ten (−1)-curves going through Q, corresponding to the points on the affine part
CQ(5) where F5 vanishes. Indeed, if α, ε in an extension of k satisfy

α2 = α + 1 and δ = −6
(
β + α5)ε5,
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then we have a section over k(α, ε) going through Q with

x = ε2z2 + 6αεzw + x0w
2,

y = −ε3z3 + 3(β + 2α + 3)ε2z2w + 18α(β + 1)εzw2 + y0w
3.

Example 4.2. Let k be a field of characteristic 5 containing elements α, β ∈ k. Let S ⊂ P

be the surface given by (1) with f = αz4 and g = βz6 + (3α + 1)z5w + zw5, and with
point Q = (1 : 1 : 0 : 1). Assume that S is smooth, so that it is a del Pezzo surface.
Generically, and in particular when α and β are independent transcendentals, this is the
case, and the fibration π: E → P1 has 10 nodal fibers (type I1) and one cuspidal fiber
(type II ), namely S0. The curve CQ(5) is given by

q2 +
(
2p2 − 1

)
q + p4 − p2 + 3α = 0,

and F5 vanishes on CQ(5). By Lemma 3.11, the map σ is constant and sends CQ(5)
to Q. Generically, the curve CQ(5) is geometrically irreducible. There are at least ten
(−1)-curves going through Q.

Example 4.3. For any β �= 0, the point (x0, y0) = (3, β) has order 3 on the Weierstrass
curve given by y2 = x3 + f0x+ g0 with f0 = 6β − 27 and g0 = β2 − 18β + 54; this curve
is nonsingular if and only if β �= 4.

Subexample (i). For any α1, α2, α3 ∈ k we consider the surface S ⊂ P given by (1) with

f = −3α2
1z

4 + 3α2z
3w + (18 − 3β)α1z

2w2 + f0w
4,

g = α3z
6 + 3α1α2z

5w + (18 − 6β)α2
1z

4w2 + (β − 9)α2z
3w3

+ (15β − 54)α1z
2w4 + g0w

6,

and with Q = (3 : β : 0 : 1), so that Q has order 3 on Sns
0 (k). Assume S is smooth, so

that it is a del Pezzo surface. The affine part CQ(5) of the curve CQ(5) is given by

(
p2 − βα1

)(
βq − p2 + 2βα1

)
= 0.

The function F5 = 3β−1p(q + α1)(βq − p2 + 2βα1) vanishes on the component given by
the vanishing of the second factor; by Lemma 3.11, this component is contracted by the
map σ: CQ(5) ��� S, which sends it to Q. There are at least six (−1)-curves on S going
through Q.

Subexample (ii). For any α4, α5, α6 ∈ k we consider the surface S ⊂ P given by (1) with

f = 3α4z
3w + f0w

4,

g = α6z
6 + α5z

3w3 + g0w
6,
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and with Q = (3 : β : 0 : 1). Assume S is smooth, so that it is a del Pezzo surface. The
affine part CQ(5) of the curve CQ(5) is given by

p
(
βpq − p3 + (β − 9)α4 − α5

)
= 0.

Again, the function F5 = 3β−1q(βpq − p3 + (β − 9)α4 − α5) vanishes on the component
given by the vanishing of the second factor; again by Lemma 3.11, this component is
contracted by the map σ: CQ(5) ��� S, which sends it to Q. There are at least nine
(−1)-curves on S going through Q.

Subexample (iii). Let S be any smooth surface that fits in both families of these examples,
i.e., with α1 = 0, α4 = α2, α5 = (β − 9)α2, and α6 = α3. Writing ε = α2 and δ = α3, we
have

f = 3εz3w + f0w
4,

g = δz6 + (β − 9)εz3w3 + g0w
6.

Generically, say over a field in which β, δ, and ε are independent transcendentals, the
surface S is smooth and the fibration π: E → P1 has twelve nodal fibers. Suppose S is
indeed smooth. Then β /∈ {0, 4}. The affine part CQ(5) of the curve CQ(5) is given by

p2(βq − p2) = 0,

so it consists of two components. The function F5 vanishes on both components, so
by Lemma 3.11, they are contracted to Q by σ: CQ(5) ��� S. There are at least nine
(−1)-curves on S going through Q.

Example 4.4. For any β ∈ k∗, the point (0, β) has order 3 on the elliptic curve given by
y2 = x3 + β2. In the following three subexamples, we take g = εz6 + δz3w3 + β2w6 for
some δ, ε ∈ k and the point Q = (0 : β : 0 : 1) ∈ P, which in all cases has order 3 on S0.

Subexample (i). Let S be the surface given by (1) with f = αz2w2 for some α ∈ k

and assume that S is smooth. The affine part CQ(5) of the curve CQ(5) is given by
(3p2 + α)q = 0. The function F5 = 3pq2 vanishes on the component given by q = 0; by
Lemma 3.11, this component is contracted by the map σ: CQ(5) ��� S, which sends it
to Q. There are at least six (−1)-curves on S going through Q. Generically, there are
twelve nodal fibers.

Subexample (ii). Let S be the surface given by (1) with f = αz3w for some α ∈ k

and assume that S is smooth. The affine part CQ(5) of the curve CQ(5) is given by
p(3pq + α) = 0. The function F5 = q(3pq + α) vanishes on one of the components; by
Lemma 3.11, this component is contracted by the map σ: CQ(5) ��� S, which sends it
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to Q. There are at least nine (−1)-curves on S going through Q. Generically, there are
twelve nodal fibers.

Subexample (iii). Let S be the surface given by (1) with f = 0 and assume that S is
smooth. The affine part CQ(5) of the curve CQ(5) is given by p2q = 0. The function F5
vanishes on both components, so we have σ(CQ(5)) = Q by Lemma 3.11. The surface is
isotrivial; all fibers have j-invariant 0. There are at least nine (−1)-curves on S going
through Q, and there are six cuspidal fibers.

5. A multisection

We continue the notation of Sections 2 and 3. In particular, the field k with charac-
teristic not equal to 2 or 3, the surface S, and the point Q are fixed as before, as are all
the objects that depend on them.

As we have seen in the previous section, not every component of CQ(5) necessarily has
its image under σ: CQ(5) ��� S map dominantly to P1 under the projection ϕ|S :S ��� P1.
Proposition 5.1 states that this does hold for every component if the order of Q is larger
than 6. Moreover, Proposition 5.1 is sharp in the sense that there are examples where
the order of Q is 6 and CQ(5) has a component that maps under σ to Q.

Proposition 5.1. Suppose the order of Q in Sns
0 (k) is larger than 5 and CQ(5) has a

component C0 that maps under σ: CQ(5) ��� S to a fiber of ϕ. Then Q has order 6 and
σ(C0) = Q. The curve CQ(5) has a unique second component, which is sent under σ to
a horizontal curve on S.

Proof. Since C0 is projective, it contains a point in Ω = CQ(5) − CQ(5), say R. By
Corollary 3.10, part (4), we have ϕ(σ(R)) = (0 : 1) ∈ P1. Suppose σ does not send C0
to a horizontal curve. Then the composition ϕ ◦ σ sends C0 to (0 : 1). From Lemma 3.11
we find σ(C0) = Q and we obtain Q = σ(R) = −4Q or Q = σ(R) = −5Q from
Proposition 3.9. As the order of Q is larger than 5, we find that the order is 6 and
σ(R) = −5Q.

We have c22 + 4c1c5 = φ2
2(9φ2

4 − 4φ3φ4ψ + 4φ3
3). From Eqs. (7) we find

φ3φ4ψ − φ3
3 = φ4

(
φ4 + φ2

2
)
− φ3

3 = φ2
4 + φ5 = 2φ2

4 + φ6, (13)

so the factor 9φ2
4 − 4φ3φ4ψ + 4φ3

3 equals

9φ2
4 − 4φ3φ4ψ + 4φ3

3 = 9φ2
4 − 4

(
2φ2

4 + φ6
)

= φ2
4 − 4φ6. (14)

As φ6 = 0 (together with y0 �= 0) implies φ4 �= 0, we get c22 + 4c1c5 �= 0, which in turn,
together with c1 �= 0, implies that CQ(5) is reduced. Suppose that each component of
CQ(5) maps under σ to a fiber of ϕ. Then as above, we find (ϕ ◦ σ)(CQ(5)) = (0 : 1)
and as the composition ϕ ◦ σ is given by (−F5 : F6), we find that F5 vanishes on CQ(5);
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as CQ(5) is reduced, this implies that if we view F4 and F5 as polynomials in k[p, q] (cf.
Remark 2.5), then F5 is a multiple of F4. Viewing F4 and F5 as quadratic polynomials
in q over k[p], and comparing the coefficients in k[p] of q2 in

φ3
2F4 = φ2

2φ3q
2 +

(
−3φ2φ4p

2 + . . .
)
q + . . . ,

φ3
2F5 = φ2

((
φ2

2 − 2φ4
)
p− ψl1

)
q2 +

((
φ4ψ − 4φ2

3
)
p3 + . . .

)
q + . . . ,

we find

φ2φ3F5 =
((
φ2

2 − 2φ4
)
p− ψl1

)
F4.

Comparing the coefficient of p3q in this equality gives

φ3
(
φ4ψ − 4φ2

3
)

= −3φ4
(
φ2

2 − 2φ4
)
. (15)

Since φ4 − ψφ3 + φ2
2 = 0 by Eqs. (7), we find from (14) that the difference of the two

sides in (15) equals

−3φ4
(
φ2

2 − 2φ4
)
− φ3

(
φ4ψ − 4φ2

3
)

+ 3φ4
(
φ4 − ψφ3 + φ2

2
)

= 9φ2
4 − 4φ3φ4ψ + 4φ3

3 = φ2
4 − 4φ6.

Hence, the equality (15) is equivalent to 4φ6 = φ2
4, so we obtain φ4 = φ6 = 0, a contra-

diction from which we conclude that not all components map to a vertical component. It
follows that there is a second component, which is unique as c1 �= 0 implies that there are
at most two components. This second component maps to a horizontal curve on S. �

We say that two pairs (X1, Q1) and (X2, Q2) of a variety with a point on it are
isomorphic if there is an isomorphism from X1 to X2 that maps Q1 to Q2. For example,
the involution ι:P → P that sends (x : y : z : w) ∈ P to (x : y : −z : w − z) fixes Q, so
it induces an isomorphism, also denoted ι, from the pair (S,Q) to (ι(S), Q); the surface
ι(S) is given by y2 = x3 + f̃(z, w)x + g̃(z, w), with

f̃(z, w) = f(−z, w − z) = f0w
4 + (−4f0 − f1)w3z + . . . ,

g̃(z, w) = g(−z, w − z) = g0w
6 + (−6g0 − g1)w5z + . . . .

Note that ι fixes the points in the fiber above (0 : 1) and it switches the fibers above
(1 : 1) and (1 : 0). It also fixes f0 and g0 and it replaces f1 and g1 by −4f0 − f1 and
−6g0 − g1, respectively.

The following lemma is well known (see [6, Proposition 8.2.8] for n = 5, [10, p. 457]
for n = 3, and [17, Table 3] for characteristic 0). The lemma is used in Propositions 5.3
and 5.5.
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Lemma 5.2. Let E be an elliptic curve over k and n ∈ {3, 5} an integer. Let P ∈ E(k)
be a point of order n. Then there exist elements β ∈ k and e ∈ {0, 1} such that the pair
(E,P ) is isomorphic to the pair (E′, (0, 0)), with E′ given by

{
y2 + exy + βy = x3 if n = 3,

y2 + (β + 1)xy + βy = x3 + βx2 if n = 5.

Proof. After choosing an initial Weierstrass model for E, we may apply a linear change
of variables to obtain a model E′ in which P corresponds to (0, 0). Given that the
order of P is not 2, we may also assume that the tangent line to the model E′ at P

is given by y = 0. Then there are a1, a2, a3 ∈ k with a3 �= 0 such that E′ is given by
y2 + a1xy + a3y = x3 + a2x

2. We have −2P = (−a2, 0), so 3P = 0, or, equivalently,
P = −2P , holds if and only if a2 = 0.

If n = 3, so 3P = 0, then either a1 = 0 or a1 �= 0, and in the latter case, we may scale
x and y such that we have a1 = 1. These two cases are exactly the claimed cases, with
β = a3 and e = a1.

If n = 5, then we have a2 �= 0 and a3 �= 0, so we may scale x and y such that we
have a2 = a3. Then we have 3P = (−a1 + 1, a1 − a2 − 1), so the property 5P = 0,
or, equivalently, 3P = −2P , yields a1 = a2 + 1, which yields the claimed case with
β = a2. �
Proposition 5.3. Suppose that the characteristic of k is not 5, and 5Q = O in Sns

0 (k).
If no component of CQ(5) maps under σ to a horizontal curve on S, then there exist
β, δ ∈ k such that the pair (S,Q) is isomorphic to the pair of Example 4.1.

Proof. If E is an elliptic curve over k with a point P of order 5, then by Lemma 5.2, there
exists a β ∈ k such that E is isomorphic to the elliptic curve given by y2+(β+1)xy+βy =
x3 + βx2, with P corresponding to the point (0, 0). A short Weierstrass model for this
curve is given by v2 = u3 +Au+B, with the point (0, 0) corresponding to (u0, v0), where

u0 = 3
(
β2 + 6β + 1

)
,

v0 = 108β,

A = −27
(
β4 + 12β3 + 14β2 − 12β + 1

)
,

B = 54
(
β2 + 1

)(
β4 + 18β3 + 74β2 − 18β + 1

)
.

If S0 is smooth, then, as Q has order 5 on S0 and isomorphisms between short Weierstrass
models are all given by appropriate scaling of the coordinates, there are β, η ∈ k such
that

(x0, y0, f0, g0) =
(
u0η

2, v0η
3, Aη4, Bη6). (16)
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Another way to phrase this is that (16) gives a parametrization of the quadruples
(x0, y0, f0, g0) with y2

0 = x3
0 + f0x0 + g0 for which the associated fifth division poly-

nomial Φ5 ∈ k[f0, g0][x] vanishes at x0. Hence, also in the case that S0 is singular, there
exist β, η ∈ k for which (16) holds. From y0 �= 0, we get β, η �= 0. Without loss of gen-
erality, we assume η = 1. The fiber S0 is singular if and only if D = β(β2 + 11β − 1) is
zero, and in this case S0 is nodal. Note that because Q has order 5, we have φ5 = 0 and
φ3, c1 �= 0.

We first state two claims, both with a computational proof.

Claim 1. If D = 0 and F4 divides F5F6, then S is singular.

Proof. Since the main coefficient c1 of F4 as a polynomial in q over k[p] is invertible, we
can compute (by computer, with x0, f0, . . . , f4, g0, . . . , g6 independent transcendentals)
the remainder of F5F6 upon division by F4, which is a polynomial L = μq + ν, with
μ, ν ∈ k[p] of degree 9 and 11, respectively. Our special values of x0, f0, g0 already imply
that the coefficients of p11 and p9q in L specialize to 0, and the fact that F4 divides F5F6
implies that L specializes to 0. We consider two cases, based on the characteristic of k.

Case 1: the characteristic of k is not 11, 17, 23, or 29.

In this case, the vanishing of the (specialization of the) coefficients of p8q, p7q, p6q, and
p5q in L determine, in that order, the values of f1, f2, f3, and f4 in terms of g0, . . . , g6.
The vanishing of the coefficient of p8 then implies that we have one of two subcases:
(a) g1 = 0 or (b) g2 = λg2

1 for some specific constant λ.
Assume we are in subcase (a), i.e., g1 = 0. The vanishing of the coefficient of p7 yields

g2 = 0; then the vanishing of the coefficients of p5 and p3q implies g3 = g6 = 0, and
finally the vanishing of the coefficients of p3 gives g4 = 0, which shows that the pair
(S,Q) is isomorphic to the pair in Example 4.1, with δ = g5, though F6 vanishes on both
components C0 and C1, and S is singular.

Assume we are in subcase (b), i.e., g2 = λg2
1 . We may assume g1 �= 0, and the vanishing

of the coefficients of p7, p6, p5, and finally p3q, express g3, g4, g6, g5, in that order, in terms
of the remaining unknown coefficients of g, which in the end yields a surface S that is
singular.

Case 2: the characteristic of k is not 7, 13, or 19.

As in case 1, we similarly solve for the parameters f1, . . . , f4 and g1, . . . , g6, except
that we start by expressing g1, . . . , g4 in terms of f1, . . . , f4. We conclude also in these
characteristics that S is singular, thus proving the claim. �
Claim 2. If D �= 0 and CQ(5) is reduced and F4 divides (F5 + F6)F6, then either S is
singular, or there exists a δ ∈ k, such that the pair (S,Q) is isomorphic to the pair of
Example 4.1.
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Proof. Since CQ(5) is reduced, i.e., F4 has no multiple factors, the condition that F4
divides (F5 + F6)F6 is equivalent to all components of CQ(5) being sent under the map
ϕ ◦ σ to (1 : 1) or (1 : 0). As the isomorphism ι described before Lemma 5.2 switches
the fibers above these two points, the hypotheses of this claim hold for the pair (S,Q)
if and only if they hold for the pair (ι(S), Q). Hence, without loss of generality we may
apply ι at some point.

Viewing F4, F5, F6 as polynomials in q over k[p], we find that generically, say over
a field in which x0, f0, . . . , f4, g0, . . . , g6 are independent transcendentals, there are
d0, . . . , d10 and e0, . . . , e12, in terms of these transcendentals, such that

(F5 + F6)F6 ≡
(
d10p

10 + · · · + d1p + d0
)
q + e12p

12 + · · · + e1p + e0 (mod F4).

The fact that Q has order 5 implies that d10, d9, e12, e11 specialize to 0. In our case, the
other coefficients d0, . . . , d8, e0, . . . , e10 specialize to 0 as well. We claim that from the
fact that e10 and d8 specialize to 0, it follows that

{
f1 = 0,

g1 = 0
or

{
f1 = −4f0,

g1 = −6g0
or

{
f1 = −2f0 − 54γ−1λ,

g1 = −3g0 + 54γ−1μ
(17)

for some element γ ∈ k with γ2 = 5 and with

λ =
(
β2 + 1

)(
β2 + 10β − 1

)
,

μ = 3
(
β6 + 16β5 + 49β4 − 40β3 − 49β2 + 16β − 1

)
.

Indeed, for any γ in an extension of k with γ2 = 5 and ω = 1
2 (3 − γ), the linear

combinations

1
2533φ

4
2
(
(3β − 1)(7β + 1)d8 + 180β(11β − 2)e10

)
= (3g0f1 − 2f0g1) ·

(
(f1 + 2f0)μ + (g1 + 3g0)λ

)
and

1
4φ

4
2
(
ω4β2 + (2γ − 4)β + ω−1)(d8 + 36ωe10)

=
(
γ(3g0f1 − 2f0g1) − 54(g1λ + f1μ)

)
·
(
γ(3g0f1 − 2f0g1) − 54

(
(g1 + 6g0)λ + (f1 + 4f0)μ

))
of d8 and e10 factor into two linear factors. Therefore, the vanishing of d8 and e10
implies the vanishing of one of the first two factors and one of the second two. The four
combinations give four systems of two linear equations in the two variables f1 and g1.
For each combination, the determinant of the system is a nonzero multiple of D and
therefore nonzero itself. The systems yield exactly the four claimed pairs for (f1, g1)
in (17).
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Note that as the isomorphism ι replaces f1 and g1 by −4f0 − f1 and −6g0 − g1,
respectively, it switches the first two cases in (17), as well as the last two cases given by
the third pair for ±γ. Therefore, after applying the isomorphism ι if necessary, we may
assume we have only two subcases.

Case 1: We have (f1, g1) = (0, 0).

The equations d7 = e9 = 0 determine a system of two linear equations in f2 and g2,
of which the determinant is a nonzero multiple of D and therefore nonzero itself. The
unique solution is f2 = g2 = 0. Subsequently, the system d6 = e8 = 0 gives f3 = g3 = 0
and then the system d5 = e7 = 0 yields f4 = g4 = 0. At this point, the coefficients d4
and e6 specialize to 0 automatically, and the equation d3 = 0 determines g6 = 0. With
g5 = δ, we obtain exactly the surface of Example 4.1.

Case 2: We have (f1, g1) = (−2f0 − 54γ−1λ,−3g0 + 54γ−1μ).

As in the previous subcase, the linear systems d9−i = e11−i = 0 determine fi and gi
inductively for i = 2, 3, 4. Again, the coefficients d4 and e6 then specialize to 0 automat-
ically. Finally, the system d3 = e6 = 0 is linear in g5 and g6 and determines these two
parameters uniquely. However, this yields a surface S that is singular. More specifically,
the associated minimal elliptic surface has two singular fibers of type I5. This proves the
claim. �

We continue the proof of the proposition. Suppose no component of CQ(5) maps
under σ to a horizontal curve on S, so ϕ ◦ σ has finite image. If we had ϕ(σ(CQ(5))) =
(0 : 1), then we would have σ(CQ(5)) = Q = −4Q by Lemma 3.11, so by Corollary 3.10,
part (3), the fiber S0 would be cuspidal. From this contradiction we conclude that there
is a component C1 with ϕ(σ(C1)) �= (0 : 1). Without loss of generality, we assume
ϕ(σ(C1)) = (1 : 0) =: ∞ and we write S∞ = ϕ−1(∞).

We will distinguish the following three cases.

(A) There is a component C0 of CQ(5) with ϕ(σ(C0)) = (0 : 1).
(B) There is a component C0 of CQ(5) with ϕ(σ(C0)) �= (0 : 1), (1 : 0).
(C) There is no component C0 of CQ(5) with ϕ(σ(C0)) �= (1 : 0).

Since c1 �= 0, the curve CQ(5) has at most two components and both are reduced if there
are two, so in cases (A) and (B), the components are C0 and C1, and CQ(5) is reduced.

We start with case (A). Assume that there is a component C0 of CQ(5) with ϕ(σ(C0)) =
(0 : 1). From Lemma 3.11 we find σ(C0) = Q = −4Q, and as C0 contains points of Ω,
we conclude that S0 is singular from Corollary 3.10, part (1), so β2 + 11β − 1 = 0. If we
consider F4, F5, and F6 as polynomials in q over k[p] (cf. Remark 2.5), then F5 and F6
vanish on C0 and C1, respectively, so F4 divides F5F6. Claim 1 implies that S is singular,
a contradiction.
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We continue with case (B). Assume that there is a component C0 of CQ(5) with
ϕ(σ(C0)) �= (0 : 1), (1 : 0). After applying an automorphism of the base curve P1 that
fixes (0 : 1) and (1 : 0), we may assume ϕ(σ(C0)) = (1 : 1), so that F5 + F6 and F6
vanish on C0 and C1, respectively, and the product (F5 + F6)F6 is divisible by F4. Since
the points in Ω = CQ(5) − CQ(5) map under σ to S0, and ϕ(S0 − {O}) = (0 : 1), the
points in Ω map under σ to O = −5Q; it follows from Corollary 3.10, part (1), that S0
is smooth, so we find D �= 0. Hence, we are done by Claim 2.

We finish with case (C). In that case, we have σ(CQ(5)) ⊂ S∞, so F6 vanishes on CQ(5),
and also σ(Ω) ⊂ S∞. From Proposition 3.9 we conclude σ(Ω) ⊂ S0 ∩ S∞ = {O} =
{−5Q}; it follows from Corollary 3.10, part (1), that S0 is smooth, so we find D �= 0.
From (13) we obtain

c22 + 4c1c5 = φ2
2
(
9φ2

4 − 4φ3φ4ψ + 4φ3
3
)

= φ2
2
(
9φ2

4 − 4
(
φ2

4 + φ5
))

= φ2
2
(
5φ2

4 − 4φ5
)
.

As φ5 = 0 (together with y0 �= 0) implies φ4 �= 0, we get c22 + 4c1c5 �= 0, which in turn,
together with c1 �= 0, implies that CQ(5) is reduced. Therefore, F6 is a multiple of F4, so
we are done by Claim 2. �

Indeed, in characteristic 5, there are other examples than those mentioned in Propo-
sition 5.3 where Q has order 5 and no component of CQ(5) maps under σ to a horizontal
curve on S (see Example 4.2). It takes less computational force to deal with the case
that Q has order 4.

Proposition 5.4. Suppose 4Q = O in Sns
0 (k). Then CQ(5) has a component that maps

under σ: CQ(5) ��� S to a horizontal curve on S.

Proof. First note that the fiber S0 does not have a cusp, as the additive reduction
together with the identity 4Q = O would imply that the characteristic of k is 2, which it
is not by assumption. Therefore, by Corollary 3.10, parts (1) and (2), at least one of the
points in Ω maps to −5Q = −Q. Let R be such a point and let C0 be a component of
CQ(5) that contains R. Suppose that C0 is sent by σ to a fiber on S, so that ϕ(σ(C0)) is
a point on P1. From σ(R) = −Q ∈ S0 we conclude ϕ(σ(C0)) = (0 : 1), and Lemma 3.11
implies σ(C0) = Q, which contradicts σ(R) = −Q, so C0 is sent to a horizontal curve
on S. �

Finally, we deal with the case that Q has order 3.

Proposition 5.5. Suppose 3Q = O in Sns
0 (k). Then CQ(5) ⊂ A2(p, q) has a unique com-

ponent that projects birationally to A1(p). If this component maps under σ: CQ(5) ��� S

to a vertical curve on S, then the pair (S,Q) is isomorphic to one of the pairs described
in Examples 4.3 and 4.4. Moreover, if another component of CQ(5) maps to a vertical
curve on S as well, then the pair (S,Q) is isomorphic to one of the pairs described in
Examples 4.3(iii) and 4.4(iii).



184 C. Salgado, R. van Luijk / Advances in Mathematics 261 (2014) 154–199
Proof. If E is an elliptic curve over k with a point P ∈ E(k) of order 3, then by
Lemma 5.2, there exist elements β′ ∈ k and e ∈ {0, 1} such that E is isomorphic to
the elliptic curve given by y2 + exy + β′y = x3, with the point P corresponding to
(0, 0). Associated short Weierstrass models are given by v2 = u3 + Aeu + Be, with the
point (0, 0) corresponding to (ue, ve), where

ue = 3e,

ve = β,

Ae = (6β − 27)e,

Be = β2 − 18(β − 3)e,

and where β = 108β′. We also simplified these expressions using e2 = e. Since Q has
order 3 in Sns(k), we find, as in the proof of Proposition 5.3, that there are β, η ∈ k∗

and e ∈ {0, 1}, such that

(x0, y0, f0, g0) =
(
ueη

2, veη
3, Aeη

4, Beη
6),

also in the case that S0 is singular; the property β �= 0 follows from the assumption
y0 �= 0. Without loss of generality we assume η = 1.

Any component C0 of CQ(5) contains a point R ∈ Ω = CQ(5) − CQ(5), which satisfies
ϕ(σ(R)) = (0 : 1) by Corollary 3.10, part (4), so if σ(C0) is contained in a fiber of
S ��� P1, then F5 vanishes on C0.

As the order of Q is 3, we have φ3 = 0 and thus φ2φ4 �= 0, so c1 = 0 and c2 �= 0, and
the curve CQ(5) is given by mq = n with

m = c2p
2 + c3p + c4 and n = c5p

4 + c6p
3 + c7p

2 + c8p + c9.

From c2 �= 0, we find that m is not identically 0, so indeed, there is a unique component
of CQ(5), say C1, that projects birationally to A1(p). Assume that σ(C1) is contained in a
fiber on S. Then F5 vanishes on C1 by the above. If we write F5 as F5 = δ1q

2 + δ2q + δ3,
with δj ∈ k[p] of degree 2j − 1, then we find that

L = δ1n
2 + δ2mn + δ3m

2

vanishes.
In the case e = 1, so (x0, y0, f0, g0) = (u1, v1, A1, B1), we claim that the pair (S,Q)

is isomorphic to one of the pairs of Example 4.3. We sketch a sequence of computations
that proves the claim.

A priori, say over a field in which the elements x0, f0, . . . , f4, g0, . . . , g6 are independent
transcendentals, the polynomial L ∈ k[p] has degree 9, but from φ3 = 0, it already
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follows that the degree is at most 8. We will use the vanishing of all coefficients to
identify the pair (S,Q).

The vanishing of the coefficient of p8 in L gives 3f1g0 = 2f0g1. Since f0 and g0 do
not both vanish, there is a δ ∈ k such that f1 = 2δf0 and g1 = 3δg0. After applying an
automorphism of P1 given by (z : w) �→ (2z : δz+2w), we may assume without loss of
generality that δ = 0, so f1 = g1 = 0. Then the vanishing of the coefficient of p7 in L

shows that there is an α1 ∈ k such that f2 = (18− 3β)α1 and g2 = (15β− 54)α1. The
coefficient of p6 now vanishes automatically and the vanishing of the coefficient of p5

yields g4 = (β−3)(f4−3α2
1). Subsequently, the vanishing of the coefficient of p4 gives

g5 = ((2β − 9)f3 − 3g3)α1β
−1. Then the coefficient of p3 vanishes automatically. The

vanishing of the coefficient of p2 yields f4 = −3α2
1 or 3g3 = (β−9)f3, but in the latter

case, the vanishing of the coefficient of p yields the former, so we have f4 = −3α2
1 in

any case. Finally, the vanishing of the coefficient of p gives 3g3 = (β− 9)f3 or α1 = 0;
the former case yields Example 4.3(i) with α2 = 1

3f3 and α3 = g6, while the latter
case yields Example 4.3(ii) with α4 = 1

3f3, α5 = g3 and α6 = g6. This proves the
claim.

We continue (still) with e = 1. Suppose we are in the case of Example 4.3(i). If σ

sends one of the components of CQ(5) given by p2 − βα1 = 0 to a fiber of ϕ, then the
first argument of this proof shows that 1

3βF5 = p(q + α1)(βq − p2 + 2βα1) vanishes
on this component, which implies α1 = 0, so the pair (S,Q) belongs to the family
described in Example 4.3(iii). Now suppose we are in the case of Example 4.3(ii). If
σ sends the component of CQ(5) given by p = 0 to a fiber of ϕ, then similarly F5 =
3β−1q(βpq−p3+(β−9)α4−α5) vanishes on this component, which implies α5 = (β−9)α4,
so again the pair (S,Q) belongs to the family described in Example 4.3(iii). This finishes
the case e = 1.

We now consider the case e = 0, so (x0, y0, f0, g0) = (0, β, 0, β2). We claim that the
pair (S,Q) is isomorphic to one of the pairs of Example 4.4. We sketch a sequence of
computations that proves the claim.

Since g0 �= 0, we may apply an automorphism of P1(z, w) given by (z : w) �→
(6g0z : g1z + 6g0w) to reduce to the case g1 = 0. As in the case e = 1, we will
use the vanishing of all coefficients in L to identify the pair (S,Q). The vanishing of
the coefficients of p8, p7, p5, and p4 yields f1 = g2 = f4 = g5 = 0. Then the vanishing
of the coefficient of p2 yields f3g4 = 0; if f3 = 0, then the vanishing of the coefficient
of p in L gives g4 = 0, so we have g4 = 0 in any case. Then the vanishing of the
coefficient of p gives f2 = 0 or f3 = 0 and these cases correspond to Examples 4.4(ii)
and 4.4(i), respectively. This proves the claim.

Suppose we are in the case of Example 4.4(i), so f3 = 0 and f2 = α. If σ sends one of
the components of CQ(5) given by 3p2 + α = 0 to a fiber of ϕ, then the first argument
of this proof shows that F5 = 3pq2 vanishes on this component, which implies α = 0,



186 C. Salgado, R. van Luijk / Advances in Mathematics 261 (2014) 154–199
so the pair (S,Q) belongs to the family described in Example 4.4(iii). Now suppose we
are in the case of Example 4.4(ii), so f2 = 0 and f3 = α. If σ sends the component of
CQ(5) given by p = 0 to a fiber of ϕ, then similarly F5 = q(3pq + α) vanishes on this
component, which implies α = 0, so again the pair (S,Q) belongs to the family described
in Example 4.4(iii). This finishes the case e = 0 and thus the proof. �
Corollary 5.6. Let k, S, and Q be as before. Assume that the pair (S,Q) is not isomorphic
to the one of the pairs described in Examples 4.1, 4.3(iii), and 4.4(iii). If the order of Q
in Sns

0 (k) is 5, then also assume that the characteristic of k is not equal to 5. Then the
rational map σ: CQ(5) ��� S sends at least one component of CQ(5) to a horizontal curve
on S.

Proof. From the assumption y0 �= 0, it follows that the order of Q is at least 3. The
statement now follows immediately from Propositions 5.1, 5.3, 5.4, and 5.5. �
Remark 5.7. In Remark 3.8, we have seen that the closure of the image σ(CQ(5)) in S

is contained in the intersection S ∩ T , where T is the image of γ:Γ → P. Generically,
this containment is in fact an equality, but if there are any (−1)-curves of S going
through Q, then these are components of the intersection S ∩ T as well. In degenerate
cases, the intersection S∩T may contain even more components (see Remark 5.8). When
studying our del Pezzo surfaces of degree one in families, it is more natural to look at
the divisor S ∩ T on S than at the closure of the image σ(CQ(5)).

We will now describe this intersection S ∩ T and its arithmetic genus in terms of the
Picard group of S, at least in the generic case. Generically, the Picard group PicS of S
is generated by the divisor class of −KS . Also generically, the surface T has degree 12
and the intersection S ∩ T is irreducible and reduced, so σ(CQ(5)) = S ∩ T is linearly
equivalent with −12KS . The arithmetic genus of σ(CQ(5)) is 67 in this case, and σ(CQ(5))
has multiplicity 10 at the point Q, multiplicity 2 at −5Q, and is also singular at 20 more
points, which agrees with the fact that the geometric genus of the normalization equals

67 − 1
2 · 10 · (10 − 1) − 1

2 · 2 · (2 − 1) − 20
(

1
2 · 2 · (2 − 1)

)
= 1.

These 22 singular points of σ(CQ(5)) are the intersection points of S with the singular
locus of T , which is a curve with an embedded point at Q.

Conversely, the family of intersections of S with a hypersurface of degree 12 has
dimension 78, as can be seen from the fact that the space of polynomials in x, y, z, w of
weighted degree 12 modulo the multiples of the defining equation of S has dimension
102− 23 = 79 or from the fact that the linear system of curves in P2 of degree 3d having
multiplicity at least d at each of 8 given points has dimension

(3d+2
2

)
− 1 − 8 ·

(
d+1
2
)

=(
d+1
2
)
, which equals 78 for d = 12. Hence, the subfamily of those intersections that have

multiplicity 10 at Q, multiplicity 2 at −5Q, and 20 more singularities, has dimension
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78 − 1
2 · 10 · (10 + 1) − 1

2 · 2 · (2 + 1) − 20 = 0,

so there are only finitely many curves satisfying these conditions.
We now give yet another description of σ(CQ(5)) that narrows it down to one of only

finitely many curves. Note that the projection ν:S → P(2, 1, 1) from S to the weighted
projective space with coordinates x, z, w, gives S the structure of a double cover of a cone
that is ramified at the singular point O (corresponding to the vertex of the cone), as well
as over the curve given by x3+fx+g = 0, i.e., the locus of nontrivial 2-torsion points. The
involution induced by this double cover is multiplication by −1 on the elliptic fibration. If
we let −σ(CQ(5)) ⊂ S denote the image of σ(CQ(5)) under this involution, then σ(CQ(5))
and −σ(CQ(5)) intersect each other in 36 points on the ramification locus of ν, as well as
108 points off the ramification locus. The image ν(σ(CQ(5))) = ν(−σ(CQ(5))) ⊂ P(2, 1, 1)
is a curve of degree 24 that intersects the branch locus of ν at 36 points, being tangent
at each, that has multiplicity 10 at ν(Q) = (x0 : 0 : 1), multiplicity 2 at ν(−5Q), and
that is singular at 74 more points (namely the 20 images under ν of the remaining
singular points of σ(CQ(5)), and the 54 images of the intersection points of σ(CQ(5))
and −σ(CQ(5))). These properties narrow down the 168-dimensional family of curves in
P(2, 1, 1) of degree 24 to only finitely many curves.

Remark 5.8. Given that for all pairs (S,Q) described in the examples in the previ-
ous section there are at least six (−1)-curves on S going through Q, whenever we
want to exclude any of these examples, it suffices to assume that Q does not lie on
six (−1)-curves.

We will now explain in terms of the image T of γ:Γ → P (cf. Remarks 3.8 and 5.7)
why it is not surprising that the existence of many (−1)-curves on S through Q is related
to the existence of a component of CQ(5) that maps under σ: CQ(5) ��� S to a fiber of
ϕ:S ��� P1.

In Example 4.1, the scheme-theoretic intersection D′ = T ∩ S consists of the ten
(−1)-curves going through Q and the cuspidal fiber S∞ with multiplicity 2. As a divisor
on S, we have that D′ is linearly equivalent to −12KS (cf. Remark 5.7).

In general, the pull-back of S ∩ T under the blow-up E → S is a divisor D on E that
consists of

(i) the components of the strict transform D0 of the image σ(CQ(5)),
(ii) the strict transforms of the (−1)-curves on S through Q,
(iii) the fiber E0, and
(iv) the zero section O

with certain multiplicities. The degree of the restriction of π: E → P1 to D equals the
intersection number of D with any fiber of π. Generically, this degree equals deg T = 12,
the multiplicities of E0 and O are 0, and the multiplicities of the components in (i) and
(ii) are 1; the (−1)-curves on S intersect fibers with multiplicity 1, so the restriction of
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π to D0 has degree 12 − s, where s is the number of (−1)-curves on S through Q. Note
that Example 4.1 is not generic in the sense that the multiplicity of the zero section O
is 2, thus reducing the degree of the restriction of π to D0 to 0.

In general, the multiplicities of the components in (iii) and (iv) seem to depend only
on the order of Q in Ens

0 (k) and the singularity type of E0, but in any case we find that
the more (−1)-curves there are on S that go through Q, the smaller the degree of the
restriction of π to D0, forcing all components of D0 to be vertical in extreme cases.

In fact, a thorough investigation of the degree of T (which may itself be nonreduced) as
well as all multiplicities might yield another proof of Corollary 5.6 under the assumption
that Q not lie on six (−1)-curves of S, but it is not clear that this will require less com-
putational effort than the given proof, especially given that even in the generic case, the
intersection S ∩T does not appear to admit a very elegant description (cf. Remark 5.7).

6. Torsion in a base change

In this section, k is still a field of characteristic not equal to 2 or 3.

Lemma 6.1. Let B be a smooth curve over k and π: E → B a minimal nonsingular elliptic
fibration. Let C be a smooth curve over k and τ :C → B a nonconstant morphism. Let
π′: E ′ → C be the minimal nonsingular model of the base change E ×B C → C of π by τ .
Let c ∈ C(k) be a point and set b = τ(c). Let Eb and E ′

c be the fibers of π and π′ over b

and c, respectively. Let e = ec(τ) be the ramification index of τ at c. Then the following
statements hold.

(1) If Eb has type Id for some integer d, then E ′
c has type Ide.

(2) If Eb has type I∗d for some integer d, then E ′
c has type Ide for even e and type I∗de for

odd e.
(3) If Eb has type IV ∗, then E ′

c has type I0, IV ∗, IV for e ≡ 0, 1, 2 (mod 3), respectively.
(4) If Eb has type II , then E ′

c has type I0, II , IV , I∗0 , IV
∗, II ∗ for e ≡ 0, 1, 2, 3, 4, 5 (mod 6),

respectively.
(5) If Eb has type III , then E ′

c has type I0, III , I∗0 , III
∗ for e ≡ 0, 1, 2, 3 (mod 4), respec-

tively.

Proof. This follows directly from Tate’s algorithm (see [35] and [34, IV.9.4]). See also
[21, Table VI.4.1], which is stated for characteristic zero. �
Lemma 6.2. Suppose k is algebraically closed. Let S be a del Pezzo surface of degree 1
over k and π: E → P1 the associated elliptic fibration. Let M and N denote the number
of singular fibers of π of type I1 and type II , respectively. Then we have M + 2N = 12.
If π is not isotrivial, then we have M � 4.
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Table 1
Singular fibers of υ(n).

n g(X1(n)) Sing. fibers of υ(n)
3 0 IV∗ + I3 + I1
5 0 2I5 + 2I1
7 0 3I7 + 3I1

11 1 5I11 + 5I1

Proof. Let f, g ∈ k[z, w] be such that S is given by (1). The surface E is a minimal non-
singular elliptic surface with fibers that are either nodal (type I1) or cuspidal (type II ).
The discriminant Δ = 4f3 + 27g2 vanishes at points of P1 corresponding to nodal and
cuspidal fibers to order 1 and 2, respectively, so we get M + 2N = deg Δ = 12. For
any t ∈ P1(k) for which π−1(t) has type II , both Δ and the j-invariant j = 2833f3/Δ
vanish at t (see [34, Tate’s Algorithm, IV.9.4]), which implies that f vanishes at t. It
follows that f vanishes at least N points, so if M < 4, i.e, N � 5, then f = 0, so π is
isotrivial. �
Remark 6.3. In characteristic zero, the identity M + 2N = 12 follows from the more
general fact that the Euler number of E , which is 12, equals the sum of the local Euler
numbers, which are 1 and 2 for fibers of type I1 and II , respectively (see [21, Table IV.3.1]
and [21, Lemma IV.3.3]). The inequality M < 4 implies N � 5, which implies N = 6 by
[26, Lemma 1.2], which in turn implies that π is isotrivial.

For n � 3, let E(n) → Y1(n) be the universal elliptic curve over the usual modular
curve Y1(n) over Z[1/n] with a section P that has order n in every fiber. Then every
elliptic curve E over a scheme S over Z[1/n] – with nowhere vanishing j-invariant if n = 3
– with a section that has order n in every fiber, is the base change of E(n)/Y1(n) by a
unique morphism S → Y1(n). Let X1(n) be the usual projective closure of Y1(n), and let
υ(n):E(n) → X1(n) be the minimal nonsingular elliptic fibration over X1(n) associated
to E(n)/Y1(n). From Ogg’s description of the cusps of X1(n) in [25], we conclude that for
each n � 5 and each divisor d of n, the number of fibers of υ(n) of type Id is 1

2ϕ(d)ϕ(n/d)
(see also [17, p. 219], or [17, Table 3] for explicit models for small n, which also show the
types of the singular fibers). Table 1 gives the genus g(X1(n)) of X1(n) (see [24, p. 109])
and describes the singular fibers of υ(n) for several n (see [31, Proposition 4.2]).

To parametrize elliptic curves over a field of characteristic p with a point of order p,
we use Igusa curves instead of the modular curves above. For an extensive treatise of
the subject, we refer the reader to [11] and [15, Chapter 12]. For any prime p � 3,
the smooth affine Igusa curve Ig(p)ord over Fp parametrizes ordinary elliptic curves E

with a point that generates the kernel of the Verschiebung map in the following sense
(see [15, Section 12.3 and Corollary 12.6.3]). For every scheme S over Fp, the absolute
Frobenius S → S is the map that corresponds on affine rings to the map x → xp.
For every elliptic curve E → S, we let E(p) → S denote the base change of E → S

by the absolute Frobenius S → S. By the universal property of the fibered product,
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Table 2
Singular fibers of ω(p).

p g(Ig(p)ord) Sing. fibers of ω(p)
5 0 2I5 + II
7 0 3I7 + III

11 0 5I11 + II + III
13 1 6I13 + I∗

0

the absolute Frobenius E → E factors as the composition of the projection E(p) → E

and a map F = FE/S :E → E(p) that we call the relative Frobenius. The dual isogeny
V = VE/S :E(p) → E of FE/S is called the Verschiebung. There exists an elliptic curve
E(p)◦ over the Igusa curve Ig(p)ord, as well a section P of the associated elliptic curve
E(p)◦(p) → Ig(p)ord, such that all fibers of both fibrations are ordinary and P generates
the kernel of the Verschiebung V :E(p)◦(p) → E(p)◦, and such that for every elliptic
curve E over a scheme S over Fp of which all fibers are ordinary, with a section P of the
associated curve E(p) → S that generates the kernel of the Verschiebung V :E(p) → E,
there is a unique morphism α:S → Ig(p)ord such that E, E(p), and P are the base change
of E◦, E(p)◦(p), and P, respectively, by α.

If k is a field of characteristic p and E′ is an elliptic curve over S = Spec k with
a point P of order p, then there is an elliptic curve E → S such that E(p) → S is
isomorphic to E′ → S and P generates the kernel of Verschiebung; hence E′ → S is a
base change of the universal curve E(p)◦(p) → Ig(p)ord.

Let Ig(p)ord denote the nonsingular projective completion of Ig(p)ord, and let
ω(p):E(p)(p) → Ig(p)ord denote the minimal nonsingular projective model of E(p)◦(p) →
Ig(p)ord.

Table 2 gives the genus g(Ig(p)ord) of Ig(p)ord (see [11, pp. 96 and 99]) and the fiber
types of the singular fibers of ω(p) for several primes p. The fibers at the (p − 1)/2
cusps have type Ip [19, Theorem 10.3] and the type of the fibers above the supersingular
points can be deduced from [19, Theorem 10.1]; for p = 13 it suffices to note that the
only supersingular j-value modulo 13 is 5, while for p ∈ {5, 7, 11}, the fibers are also
given in [13, Proposition 1.3]. This will be used in the proof of Theorem 6.4.

Theorem 6.4. Let S be a del Pezzo surface of degree 1 over k and π: E → P1 the associated
elliptic fibration. Let C be a smooth, connected curve over k of genus at most 1, and
τ :C → P1 a nonconstant morphism. Then the base change E ×P1 C → C of π by τ has
no nonzero section of finite order.

Proof. Without loss of generality, we assume that C is projective and that k is alge-
braically closed. As the curve C is smooth and connected, it is integral, so it has a
unique generic point η that is dense in C. The curve E ×P1 η is an elliptic curve over
the function field κ(C) of C, which is an extension of the function field k(t) of P1 with
t = z/w. Let j ∈ k(t) be the j-invariant of the generic fiber of π. Assume that the
elliptic fibration E ×P1 C → C has a nonzero section of finite order, say order n > 1.
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Then the curve E ×P1 η has a point of order n over κ(C). Without loss of generality, we
assume that n is prime. Let f, g ∈ k[z, w] be homogeneous polynomials such that S is
isomorphic to the surface in P given by (1). Let M and N denote the number of fibers of
π of type I1 (nodal) and II (cuspidal), respectively. Then M + 2N = 12 by Lemma 6.2.
We will show that the genus of C is at least 2 by considering several cases, thus deriving
the contradiction that proves the statement.

(I) We first consider the case n = 2. Note that π itself has no section of order 2, for
if it did, it would be given by y = 0 and x = h(z, w) for some homogeneous polynomial
h ∈ k[z, w] of degree 2, and then S would be singular at the point on this section in the
fibers given by 3h2 + f = 0. Since the locus L ⊂ S of the 2-torsion points has degree 3
over P1(z, w), it follows that L is irreducible. To compute its genus, note that the map
λ:L → P1 ramifies whenever D = 4f3+27g2 vanishes. Moreover, if D vanishes to order 1
at t ∈ P1, which happens if and only if the fiber Et of π has type I1, then there are two
points on L above t with ramification indices 1 and 2, while if D vanishes to order 2,
which happens if and only if the fiber Et has type II , then there is a unique point on L

above t with ramification index 3. It follows that the degree of the ramification divisor
of λ equals M + 2N = 12, so the Riemann–Hurwitz formula applied to λ shows that the
genus of L equals 1 + 1

2 (−2(deg λ) + 12) = 4. If the base change of π by τ has a section
of order 2, then this section would map nontrivially to L, so we get g(C) � 4.

(II) We now consider the case that j is constant, that is j ∈ k, and may assume n �= 2.
Then there are a, b ∈ k and h ∈ k(t), where k(t) denotes an algebraic closure of k(t),
such that f(t, 1) = ah2 and g(t, 1) = bh3. If f, g �= 0, then h = ab−1g(t, 1)f(t, 1)−1 is
contained in k(t) and one checks that S is not smooth. If g = 0, then S is not smooth
either, so we find f = 0 and again from smoothness of S, we find that g(t, 1) is separable
and has degree 5 or 6 in t (cf. [40, Proposition 3.1]). Suppose P = (x1, y1) ∈ E ×P1 η is
a point over κ(C) of order n. Let κ(C) be an algebraic closure of κ(C) and β ∈ κ(C) an
element satisfying β6 = g(t, 1). Then (x1β

−2, y1β
−3) is a point of order n on the curve

given by y2 = x3 + 1, so there are x2, y2 ∈ k such that x1 = x2β
2 and y1 = y2β

3. From
n �= 2, we get y1 �= 0. If x1 �= 0, then β = x2y

−1
2 y1x

−1
1 is contained in κ(C); if x1 = 0,

then y2
1 = g(t, 1), so in any case, g(t, 1) is a square in κ(C), which implies that κ(C)

contains a subfield of genus 2, so C has at least genus 2 itself.
(III) The case n � 3 and j /∈ k. If the characteristic of k is not equal to n, then we set

Y = Y1(n) and X = X1(n) and E = E(n) and υ = υ(n); otherwise, we set Y = Ig(n)ord

and X = Ig(n)ord and E = E(n)(n) and υ = ω(n). In either case, there is a morphism
η → Y ⊂ X such that the elliptic curve E ×P1 η over η is the base change of E over X.
This morphism extends to a morphism χ:C → X, which is nonconstant because j is
not constant. The elliptic surfaces E ×P1 C and E ×X C have isomorphic generic fibers
E ×P1 η ∼= E ×X η, so their minimal nonsingular models are isomorphic as well by [21,
Proposition II.1.2 and Corollary II.1.3]. Let π′: E ′ → C be this minimal nonsingular
elliptic fibration.
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E

π

E ×P1 C E ′

π′π′

E×X C E

υ

P1 C
τ

C
χ

X

Set d = deg τ and let R ∈ DivC denote the ramification divisor of τ . Then the degree
of R is at least

∑
c∈C

(
ec(τ) − 1

)
�

∑
b∈P

1

Eb type I1

( ∑
c∈C

τ(c)=b

(
ec(τ) − 1

))

+
∑
b∈P

1

Eb type II

( ∑
c∈C

τ(c)=b

(
ec(τ) − 1

))
, (18)

where ec(τ) denotes the ramification index of τ at c.
Lemma 6.1 relates the types of the singular fibers of π′ to those of π and the ramifi-

cation of τ on one hand, and to those of υ and the ramification of χ on the other hand.
The remainder of the proof consists of a largely combinatorial argument to give a lower
bound for the degree of R, which then, by the Riemann–Hurwitz formula, yields a lower
bound for the genus of C.

Lemma 6.1 implies that the points c ∈ C for which the fiber Eτ(c) of π above τ(c) has
type I1 are exactly the points for which the fiber E ′

c of π′ above c has type Im for some
integer m � 1, and exactly the points for which the fiber Eχ(c) of υ above χ(c) has type
Ij or I∗j for some integer j � 1; for such points c, and integers m and j, the quotient
� = m/j is a positive integer and we have ec(τ) = j� and ec(χ) = �. For each j � 1, let rj
denote the number of fibers of υ of type Ij or I∗j ; for each � � 1, let sj,� denote the number
of fibers of π′ of type Ij� that lie above a point c ∈ C for which the fiber of υ above χ(c)
has type Ij or I∗j . For every x ∈ X we have

∑
c∈χ−1(x) ec(χ) = degχ. Summing over all

x ∈ X for which the fiber Ex has type Ij , we find
∑

��1 �sj,� = (degχ) · rj for all j � 1.
The same argument applied to τ yields

Md =
∑
j,��1

j�sj,� = (degχ) ·
∑
j�1

jrj .

It follows that the first term of the right-hand side of (18) equals
∑
j,��1

(j�− 1)sj,� �
∑
j,��1

(j − 1)�sj,� = (degχ) ·
∑
j�1

(j − 1)rj

=
∑

j�1(j − 1)rj∑
j�1 jrj

·Md. (19)

We consider two subcases.
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(A) The characteristic of k is not equal to n. From g(X) � g(C) � 1 we conclude
n � 12 or n = 14 or n = 15 (see [24, p. 109]), and since n � 3 is prime, we have n ∈
{3, 5, 7, 11}. From Table 1 above, we find that the fraction in the right-most expression
of (19) is at least 1

2 . Since υ = υ(n) has only fibers of type IV ∗, I1, and In, Lemma 6.1
implies that π′ does not have fibers of type II , II ∗, or I∗0 . Again from Lemma 6.1, this
time viewing π′ as the minimal model of the base change of π by τ , we find that for
every c ∈ C for which the fiber of π above τ(c) has type II , the ramification index ec(τ)
is even, so we have ec(τ)−1 � 1

2ec(τ). Therefore, the second term of the right-hand side
of (18) is at least 1

2Nd, so the degree of R is at least 1
2Md+ 1

2Nd � 1
4d(M + 2N) = 3d.

The Riemann–Hurwitz formula applied to τ then yields 2g − 2 = −2d + degR � d > 0,
so g > 1.

(B) The characteristic of k is equal to n. From g(X) � g(C) � 1 we conclude n ∈
{5, 7, 11, 13} (for a formula for the genus of X, see [11, pp. 96 and 99]). From Table 1
above, we find that the fraction in the right-most expression of (19) is at least 4

5 . Also,
from the fact that π is not isotrivial, we get M � 4 by Lemma 6.2, so the degree of R is
at least 4

5Md > 3d. As before, the Riemann–Hurwitz formula yields g > 1. �
7. Proof of the main theorems

In this section, the field k is still of characteristic different from 2 and 3.

Theorem 7.1. Suppose k is infinite. Let S ⊂ P be a del Pezzo surface of degree 1 over k,
given by (1) for some homogeneous f, g ∈ k[z, w] of degree 4 and 6, respectively. Let
Q = (x0 : y0 : 0 : 1) ∈ S(k) be a rational point with y0 �= 0. Suppose that the following
statements hold.

• If the order of Q in Sns
0 (k) is at least 4, then CQ(5) has infinitely many k-points.

• If the characteristic of k equals 5, then the order of Q in Sns
0 (k) is not 5.

• The pair (S,Q) is not isomorphic to a pair described in Example 4.1, 4.3(iii), or
4.4(iii).

• If the pair (S,Q) is isomorphic to a pair described in Example 4.3(i) or 4.4(i), then
the set of k-points on CQ(5) is Zariski dense in CQ(5).

Then the set S(k) of k-points on S is Zariski dense in S.

Proof. Given S and Q, we let the curve CQ(5), its completion CQ(5), the rational map
σ: CQ(5) ��� S, the elliptic fibration π: E → P1, and the element φ3 ∈ k be as in Sections 2
and 3. We claim that there exists an irreducible component C0 of CQ(5) for which σ(C0)
is a horizontal curve on S and C0(k) is infinite. Indeed, if the order of Q in Sns

0 (k) is at
least 4, then φ3 �= 0, so CQ(5) is a double cover of A1(p), the curve CQ(5) has at most two
irreducible components, and if there are two, then there is an involution that switches
them, so the first assumption of the theorem implies that CQ(5)(k) is Zariski dense in
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CQ(5); thus, there exists an irreducible component C0 of CQ(5) that satisfies the claim by
Corollary 5.6. Suppose, for the remainder of this paragraph and the proof of the claim,
that the order of Q is 3. Then for any pair (S,Q) that is not isomorphic to one of the
pairs described in Examples 4.3 and 4.4, the unique component of CQ(5) that projects
birationally to A1(p) satisfies the claim by Proposition 5.5. For any pair (S,Q) that is
isomorphic to one of the pairs described in those examples, the curve CQ(5) contains
a component C0 whose projection to A1(p) is constant; this component C0 satisfies the
claim, as its image is horizontal by Proposition 5.5 (by assumption we are not in the
Example 4.3(iii) or 4.4(iii)) and density of C0(k) follows either automatically in the case
of Subexample (ii) or by assumption in the case of Subexample (i).

Let C0 be a component of CQ(5) as in the claim, and let C̃0 be a normalization of C0,
then the rational map σ: CQ(5) ��� S induces a morphism σ̃: C̃0 → E . The composition
π ◦ σ̃: C̃0 → P1 corresponds on an open subset to the rational map ϕ◦σ: CQ(5) ��� P1, so
it is surjective by the claim. Let θ denote the section id× σ̃: C̃0 → C̃0 ×P1 E of the elliptic
surface C̃0 ×P1 E → C̃0.

C̃0 ×P1 E E

π S

ϕ

C̃0
π◦σ̃

θ
σ̃

P1

The section θ is not the zero section because σ: CQ(5) ��� S sends points P ∈ CQ(5)
whose associated curve C is not contained in S to a point unequal to O ∈ S. The genus of
C̃0 is at most 1, so by Theorem 6.4, the section θ has infinite order. Since C̃0(k) is Zariski
dense in C̃0, it follows that the rational points are dense on the images of all infinitely
many multiples of θ. Thus, the k-rational points are dense in the surface C̃0 ×P1 E and
as this surface maps dominantly to S, we conclude that S(k) is Zariski dense in S. �

Obviously, for any point Q′ ∈ S(k)−{O}, we may apply an automorphism of P1(z, w)
to ensure that we have ϕ(Q′) = (0 : 1), so the implicit assumption in Theorem 7.1 and
related statements that ϕ(Q) = (0 : 1) is not a restriction.

Note that if the order of Q in Sns
0 (k) is 3 and the pair (S,Q) is not isomorphic to

a pair described in Examples 4.3(i) and 4.4(i), then the hypotheses of Theorem 7.1 are
automatically satisfied, without further assumptions on CQ(5).

Example 7.2. We took a small sample of approximately a hundred randomly chosen
del Pezzo surfaces over Q given by (1) with f and g having only coefficients 0, 1, and −1.
For nearly half of the cases, a short point search revealed a rational point Q for which
we could show that it satisfies all conditions of Theorem 7.1, thus proving the rational
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points are Zariski dense. For the remaining cases, we could still find points Q, but the
coefficients of CQ(5) were too large to show that CQ(5) has infinitely many rational points.

Example 7.3. As mentioned in Section 1, A. Várilly-Alvarado proves in [40, Theorem 2.1]
that if we have k = Q and f = 0, and some technical conditions on g, as well as a
finiteness conjecture hold, then the set of rational points is Zariski dense on the surface
given by (1). He also mentions the surface S with f = 0 and g = 243z6 + 16w6 as an
example that would not succumb to his methods, so we took S as a test example for
our method. Unfortunately, the point (0 : 4 : 0 : 1) of order 3 on S0 ⊂ S lies on nine
(−1)-curves (cf. Example 4.4(iii)). It is not hard to find more rational points on this
surface, but we did not succeeded in finding any points on the curve CQ(5) associated to
any of these points Q as the coefficients are rather large: for the second-smallest point
Q = (−63 : 14 : 1 : 5), the conductor of the Jacobian of CQ(5) has 62 digits. N. Elkies
did prove that the points on S are dense with a different method [7].

Proof of Theorem 1.2. The fact that Q is not fixed by the automorphism that changes
the sign of y implies Q �= O. Without loss of generality, we assume ϕ(Q) = (0 : 1), say
Q = (x0 : y0 : 0 : 1), with y0 �= 0. Hence, we may apply Theorem 7.1. The last hypothesis
of Theorem 1.2 implies the last two of Theorem 7.1, which shows that S(k) is indeed
Zariski dense in S. �
Proof of Theorem 1.3. Note that any point (x0, y0) on an elliptic curve given by y2 =
x3 + ax + b has order 3 if and only if (a + 3x2

0)2 = 12x0y
2
0 . Define the polynomials

f =
∑4

i=0 fiu
i and g =

∑6
j=0 gju

j . Suppose we have � ∈ {0, . . . , 4}, m ∈ {0, . . . , 6}, and
ε > 0. Since every elliptic curve over the real numbers R has a nontrivial 3-torsion point,
we may choose a nonzero rational number t ∈ Q∗ and a point Q = (x0 : y0 : t : 1) ∈ S(R)
such that the fiber St given by y2 = x3 + f(t)x+ g(t) is smooth, the point Q has order 3
in St(R), and Q does not lie on six (−1)-curves on S. Set ξ0 = 1

6y
−1
0 (f(t)+3x2

0), so that
Q being 3-torsion implies 3ξ2

0 = x0. Choose ξ1, y1 ∈ Q∗ close to ξ0 and y0, respectively,
and set x1 = 3ξ2

1 and Q′ = (x1 : y1 : t : 1). Also set

λ = f� + t−�
(
6ξ1y1 − 3x2

1 − f(t)
)
,

μ = gm + t−m
(
y2
1 − x3

1 −
(
6ξ1y1 − 3x2

1
)
x1 − g(t)

)
,

f ′ = f − f�u
� + λu�,

g′ = g − gmum + μum,

so that f ′ and g′ are the polynomials obtained from f and g after replacing f� and gm
by λ and μ, respectively. Then we have f ′(t) = 6ξ1y1−3x2

1 and g′(t) = y2
1 −x3

1−f ′(t)x1,
so Q lies on the surface S′ given by (2) with the two values f� and gm replaced by λ

and μ, respectively. If we choose ξ1 and y1 arbitrarily close to ξ0 and y0, then λ and μ

will be arbitrarily close to f� and gm. By choosing them close enough, we also guarantee
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that S′ and S′
t are smooth, and that Q′ does not lie on six (−1)-curves on S′. From the

identity (f ′(t) + 3x2
1)2 = 36ξ2y2

1 = 12x1y
2
1 we conclude that Q′ has order 3 in S′

t(Q), so
we may apply Theorem 1.2, which yields that S′(Q) is Zariski dense in S′. �
Lemma 7.4. Let k be an infinite field and X → P1 an elliptic fibration over k with
a nontorsion section. Then there are infinitely many points t ∈ P1(k) for which the
fiber Xt contains infinitely many k-rational points.

Proof. If k is algebraic over a finite field, then this follows from the Weil conjectures.
Otherwise, we replace k without loss of generality by an infinite subfield that is finitely
generated over its prime subfield, over which everything is defined. Then k is either
a number field or a transcendental extension of its prime field and in all cases, k is
Hilbertian (see [9] for number fields and [8, Theorem 13.4.2] for a modern treatment
of the general case). The lemma now follows immediately from Néron’s Specialization
Theorem [23, Théorème IV.6] (see also [18, Theorem 7.2] and [27, Remark 3.7(1)]). �
Proof of Theorem 1.4. Without loss of generality, we assume that the nodal fiber lies
above (0 : 1). When Q runs over the nodal curve S0, the curves CQ(5) form a family of
genus-one curves. More precisely, the equation in (9) describes a surface X ⊂ A1(x0) ×
P(1, 2, 1), and if Q = (x0 : y0 : 0 : 1) is a point on S0 with y0 �= 0 and not of order 3
in Sns

0 (k), then the fiber of the projection μ:X → A1 above x0 is isomorphic to CQ(5).
The fibered product (S0 − {O}) ×A1 X is the family of curves CQ(5), at least outside
finitely many points Q ∈ S0. Let d ∈ k∗ be such that f0 = −3d2 and g0 = 2d3.
Note that we have two rational maps χi:A1 ��� X, for i = 1, 2, that are rational
sections of μ, namely given by x0 �→ (x0, (1 : αi : 0)) with α1 = 1

4 (x0 + 2d)−1 and
α2 = 1

4 (x0+7d)(x0+2d)−1(x0+3d)−1 as in Lemma 3.4. These maps extend to morphisms
and we choose χ1 to be the zero section, making μ a Jacobian elliptic fibration.

We claim that the section χ2 has infinite order. The model X → A1 is highly singular,
so instead we consider the surface X ′ ⊂ A1(x0)×P(1, 2, 1) that is the image of X under
the birational map

A1 × P(1, 2, 1) ��� A1 × P(1, 2, 1),(
x0, (p : q : r)

)
�→

(
x0,

(
p′ : q′ : r′

))
with

p′ = 8(x0 − d)2p + (x0 − d)(f1d + g1)r,

q′ = 2ϕ−1
2

(
2c1q + c2p

2 + c3pr + c4r
2),

r′ = 8r,

where φ2, c1, c2, c3, c4 depend on x0 (which is now variable instead of fixed) as they did
before. Note that f1d + g1 is nonzero because S is smooth. For x0 /∈ {d,−2d,−3d},
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the fibers of μ:X → A1 and μ′:X ′ → A1 are isomorphic. The model X ′ is given by
q2 = H(p, r), where H ∈ k[x0][p, r] is homogeneous of degree 4. The fiber X ′

d of μ′ above
x0 = d is given by

q2 = 81d4(f1d + g1)p2r
(
p + (f1d + g1)r

)
. (20)

This fiber X ′
d is singular at the point (d, (0 : 0 : 1)), and in fact so is X ′, but the

fiber is smooth everywhere else. The sections χ1 and χ2 correspond to the sections
χ′

1:x0 �→ (x0, (4 : 6d(d−x0) : 0)) and χ′
2:x0 �→ (x0, (4 : 6d(x0−d) : 0)) of μ′, respectively.

These sections intersect in the point (d, (1 : 0 : 0)), which is smooth in its fiber. Therefore,
in a minimal nonsingular projective model μ:X → P1 of the fibration μ, the two sections
intersect as well. Hence, χ′

2 is in the kernel of the reduction X(P1) → Xd(k), where Xd is
the fiber of μ above x0 = d. This kernel is isomorphic to a subgroup of the formal group
associated to μ (or μ′) and the completion of k[x0] at the maximal ideal (x0 −d), cf. [33,
Proposition VII.2.2]. By [33, Proposition IV.3.2(b)], all torsion elements of the formal
group have p-power order, where p is the characteristic of k. This proves the claim for
p = 0 (cf. [22, Theorem 1.1(a)]). We now assume p > 0 and determine the Kodaira type
of the singular fiber Xd of μ. One checks that the discriminant of H equals

Δ = (x0 − d)3(x0 + 2d)8(x0 + 3d)2D(x0),

where D is a polynomial of degree 35 satisfying 211D(d) = −313d11(f1d + g1)12 �= 0.
Hence, the valuation of Δ at x0 = d equals 3; the fiber X ′

d described in (20) is nodal,
so the reduction is multiplicative and we conclude from [34, Tate’s Algorithm IV.9.4]
that Xd has type I3. It follows that the j-invariant of μ is not constant. Suppose that
χ′

2 is torsion. Then μ admits a section of order p, so there is a surjective morphism
ψ:P1 → Ig(p)ord such that the generic fiber of μ is isomorphic to the generic fiber of the
base change of the fibration ω(p):E(p)(p) → Ig(p)ord by ψ (cf. part III of the proof of
Theorem 6.4). This implies that the minimal nonsingular model of this base change is
isomorphic to μ. However, the existence of ψ implies that Ig(p)ord has genus 0, so p � 11,
and from Lemma 6.1 and Table 2 we find that no base change of ω(p) has a minimal
nonsingular model with fibers of type I3. This contradicts the fact that Xd has type I3
and the claim follows.

It follows that the section (S0 − {O}) ��� (S0 − {O}) ×A1 X induced by χ2 also has
infinite order on the elliptic fibration (S0 − {O}) ×A1 X → S0 − {O} with the section
induced by χ1 as zero section. After replacing S0 by its normalization we may apply
Lemma 7.4, which implies that the curve CQ(5) has infinitely many rational points for
infinitely many Q ∈ Sns

0 (k), in particular for some Q of order larger than 5 in Sns
0 (k).

Theorem 1.2 then shows that S(k) is Zariski dense in S. �
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://
dx.doi.org/10.1016/j.aim.2014.03.028.
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