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We have rigorously analyzed the stability of the efficient cell dynamics simulations (CDS) method by making
use of the special properties of the local averaging operator 〈〈∗〉〉 − ∗ in matrix form. Besides resolving a
theoretical issue that has puzzled many over the past three decades, this analysis has considerable practical value:
It relates CDS directly to finite-difference approximations of the Cahn-Hilliard-Cook equations and provides a
straightforward recipe for replacing the original two- or three-dimensional (2D or 3D) averaging operators in CDS
by an equivalent (in terms of stability) discrete Laplacian with superior isotropy and scaling behavior. As such, we
open up a route to suppress the unphysical reflection of the computational grid in CDS results (grid artifacts). We
found that proper rescaling of discrete Laplacians, needed to employ them in CDS, is equivalent to introducing a
well-chosen time step in CDS. In turn, our analysis provides stability conditions for phase-field simulations based
on the Cahn-Hilliard-Cook equations. Subsequently, we have quantitatively compared the isotropy and scaling
behavior of several discrete 2D or 3D Laplacians, thereby extending the significance of this work to general
field-based methodology. We found that all considered discrete Laplacians have equivalent scaling behavior
along the Cartesian directions. In addition, and somewhat surprisingly, known “isotropic” discrete Laplacians,
i.e., isotropic up to fourth order in |k|, become quite anisotropic for larger wave vectors, whereas “less isotropic”
discrete Laplacians (second order) are only slightly anisotropic on the whole |k| range. We identified a hard
limit to the accuracy with which the discrete Laplacian can emulate the two important properties of the optimal
(continuum) Laplacian, as an improvement of the isotropy, by introducing additional points to the stencil, will
negatively affect the scaling behavior. Within this limitation, the discrete compact Laplacians in the DnQm class
known from lattice hydrodynamics, D2Q9 in 2D and D3Q19 in 3D, are found to be optimal in terms of isotropy.
However, by being only slightly anisotropic on the whole range and enabling larger time steps, the discrete
Laplacians that relate to the local averaging operator of Oono and Puri (2D) and Shinozaki and Oono (3D) as
well as the less familiar 3D discrete BvV Laplacian developed for dynamic density functional theory are valid
alternatives.
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I. INTRODUCTION

The phenomenon of spinodal decomposition in systems
with only one scalar order parameter, i.e., binary mixtures, like
metal alloys and polymer blends, or diblock copolymers, has
been intensively studied by experiment, theory, and simulation.
One may therefore be tempted to conclude that the technolog-
ically relevant fundamental information on both the kinetics
and the resulting morphologies is sufficiently known. Although
this is certainly partially true, the study of the growth of order
through domain coarsening (or phase ordering dynamics) [1]
remains challenged by a number of issues, two of which we
discuss in more detail. First, phase ordering in experiments
is often a process of hours or days and it is uncertain if
true equilibrium is ever reached, since the driving forces for
coarsening are usually minute. An illustrative example of such
“slow” dynamics is the annihilation of topological defects
in diblock copolymers, with a defect density that decays
only algebraically as tν , with t the experimental time and ν

a small negative factor depending on structure connectivity
[2]. While theoretical study of such processes relies on a
“simple” model and often concentrates on limiting (at or
near equilibrium) behavior [1], computational methods can
provide direct insight in detailed dynamic properties and
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nonequilibrium morphologies. Nevertheless, these approaches
should be able to simulate, in addition to trajectories long
enough for capturing slow phenomena, large volumes to ensure
proper statistics and minimize the role of (periodic) boundary
conditions, ruling out most methodologies that are directed
to the microscopic time and length scales. As a result, there
is still a considerable computational challenge in directly
relating experimental emergent behavior to simulation results,
in particular if one is also interested in including or elucidating
more detailed (molecular) information. Second, spinodal de-
composition often competes with several internal—impurities
(in alloys) [3] and symmetry breaking by confinement in thin
films [4] and/or reactions if present [5]—and external factors,
including fields that are applied to accelerate defect demoval
and tailor the overall structure and/or structure orientation
(see, for instance, Ref. [6]). These factors pose new theoretical
challenges, as they should be appropriately accounted for in
a model description, and provide new insights. We therefore
conclude that computational study of such systems is still of
considerable importance.

The standard model for phase ordering kinetics on a coarse-
grained continuum level is the time-dependent Ginzburg
Landau (TDGL, nonconserved) or Cahn-Hilliard-Cook (CHC,
conserved) equation, which provides a model for the diffusion
of a scalar order parameter field ψ(r,t) given an appropri-
ate free-energy functional F [ψ], which implicitly acknowl-
edges the underlying molecular or microscopic detail [1].

1539-3755/2015/91(5)/053309(14) 053309-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.053309


G. J. A. SEVINK PHYSICAL REVIEW E 91, 053309 (2015)

Computational studies based on finite-difference approxi-
mations of these partial differential equations (PDEs) have
elucidated many aspects of phase separation for a whole
range of systems [7]. In 1987, Oono and Puri proposed an
alternative approach, a cellular automaton called cell dynamics
simulations (CDS) [8], driven by the conviction that modeling
spinodal decomposition by PDEs is not more fundamental
than discrete modeling [9]. Although the initial idea was to
grasp a deeper mathematical meaning of phase ordering by
disregarding a microscopic reality, a more practical goal was to
open up an efficient route to include hydrodynamic interactions
in a description of spinodal decomposition. Although this
promise was never fulfilled, CDS is considerably more
efficient than discretized TDGL-CHC in describing the phase
separation dynamics in many “soft” systems, which effectively
undergo purely diffusive dynamics. Starting from a scalar order
parameter ψ , CDS relies on a one-to-one map f : R → Rwith
two hyperbolic sinks and one hyperbolic source and discrete
dynamics,

ψ(n,t + 1) = F[ψ(n,t)] = f [ψ(n,t)]

+D [〈〈ψ(n,t)〉〉 − ψ(n,t)] , (1)

where the first term represents the flow due to the map and
the second term, with 〈〈∗〉〉 an isotropic local average over
the neighborhood except for the center cell n, introduces the
intercell coupling with D a rate constant [10]. The choice of
the latter was based on the idea that capturing the spherical
mean value theorem for harmonic functions was the right way
for averaging [9]. Since the net gain of the order parameter
by the center cell n is F[ψ] − ψ , the discrete model for the
conserved case reads

ψ(n,t + 1) = F[ψ(n,t)] − 〈〈F[ψ(n,t)] − ψ(n,t)〉〉. (2)

As discussed in detail by Oono and Puri [8], the map only
has to satisfy the previously mentioned properties and does
not necessarily have to relate to an underlying free-energy
functional. Several maps were tried, without much effect on the
simulation results, after which they selected a simple f (ψ) =
A tanh(ψ) map, where A (A = 1.3 [8] and A = 1.5 [11]) can
be matched for particular systems. The CDS methodology has
been applied to study the diffusive structure evolution in binary
blends of both polymers and alloys [5,8,10–12] and diblock
copolymers [13] as well as reaction-diffusion systems of the
Fischer type for studying chemical reactions and population
dynamics [14]. More recently, CDS has gained popularity as
an efficient model for studying phase separation in diblock
copolymers that is modulated by additional factors, such as
confinement, shear, and electric fields, see the recent review
in Ref. [6] and references therein. A favorable comparison
between a molecular field theory and CDS, for a lamella-
forming diblock copolymer melt under an electric field, was
also recently published [15].

Despite the conceptually different roots, CDS is usually
discussed in close relation to the TDGL-CHC equations,
starting from the earliest publications [10]. Because the
differences are quite subtle, many later authors have simply
presented CDS as an efficient finite-difference approximation
of these PDEs. Nevertheless, a rigorous derivation of such a
relation, in the spirit of those that relate lattice Boltzmann

to a finite-difference approximation of the Navier-Stokes
equation [16,17], is lacking. Moreover, studies that assume
this relation have failed to explain the remarkable stability of
CDS for large (effective) time steps [18]. This is somewhat
worrisome, as it is particularly the large time step that renders
CDS most efficient for studying spinodal decomposition [19].
Consequently, the CDS methodology has come to somewhat
of a standstill in terms of further development, since it cannot
benefit from improved finite-difference Laplacians (in short:
stencils) that have been developed more recently in other
areas of computational research. Here, we analyze and proof
the stability of (conserved) CDS. Moreover, we highlight the
actual role of the original 〈〈∗〉〉 − ∗ operation in CDS and
show how it can be replaced by a finite-difference Laplacian,
thereby embedding CDS in the CHC framework and enabling
an inspired choice of the stencil and the associated stable
time step. In the second part of the paper, we evaluate the
properties of a number of often-used stencils in detail, focusing
on the scaling behavior and isotropy. For completeness,
we start with a historic overview of the CDS develop-
ment and illustrate the background of currently unresolved
issues.

A. Relating CDS to time-dependent Ginzburg Landau?

After introducing the CDS method in a short paper in Phys-
ical Review Letters [8], the same authors published a separate
paper containing a more detailed analysis of CDS [10]. There
they directly related the Euler-discretized deterministic TDGL
equation, based on a Ginzburg-Landau-Wilson φ4 free energy
for critical systems, given by [10]

ψ(n,t + 1) = Āψ(n,t) − (Ā − 1)ψ(n,t)3

+D [〈〈ψ(n,t)〉〉 − ψ(n,t)] , (3)

to the discretized equation obtained from the deterministic
TDGL equation using a semigroup map,

ψ(n,t + 1) = A(ψ(n,t))

[1 + ψ(n,t)2(A2 − 1)]
1
2

+D [〈〈ψ(n,t)〉〉 − ψ(n,t)] . (4)

For completeness, we note that both expressions were ob-
tained by rescaling, i.e., 2Lτ�t → �t ,

√
g/τψ → ψ , and

�t/(τ�x2) → D, with g and τ positive constants in the free
energy and Ā = 1 + �t/2 (for details, see Ref. [10]). For
clarity, we have used the original notation, but in the remainder
we feel free to reuse symbols. One finds that (4) is the CDS
equation for the nonconserved order parameter (1), since
differences between the map f (ψ) = A tanh(ψ) and the first
term in (4) are irrelevant. For small ψ , both expressions can
be matched by setting Ā = A, providing �t = 0.6 (A = 1.3)
and �t = 1.0 (A = 1.5), respectively. From the observation
that these time increments are rather extreme for a Euler
scheme, Oono and Puri concluded that CDS should not be
justified in terms of a (Euler) discretized deterministic TDGL
equation. The conserved case can be obtained after application
of the discrete Laplacian 〈〈∗〉〉 − ∗ to (4), where they note that
this operation should be interpreted as mere local averaging
[10]. Numerical simulations were employed to empirically
determine a proper range of A and D values (see Fig. 21 in
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Oono and Puri), and unphysical checkerboard patterns were
found in a small region cramped between F , i.e., patterns
that freeze into metastable states, and ∞, where there is
an arithmetic overflow. Based on a comparison of results
of (linear) stability analysis and these numerical results, the
nonlinear term was found to have a stabilizing effect.

B. Linear stability analysis using TDGL

Later contributions disregarded these early remarks of
Oono and Puri. Teixeira and Mulder, for instance, exploited
the apparent relation between CDS and the Euler-discretized
deterministic TDGL-CHC equations, based on the recognition
that the CDS method has essentially the same dynamical scal-
ing properties as the CHC equation [18]. They concentrated on
the properties of the operator 〈〈∗〉〉 − ∗ for local averaging in
an attempt to explain the puzzling stability of CDS. Defining
ψ(n,t + 1) − ψ(n,t) as a discrete representation of ∂ψ/∂t

and 〈〈∗〉〉 − ∗ as the discrete Laplacian ∇2∗, one can write the
discrete CDS equation (2) in the dimensionless form of the
deterministic Cahn-Hilliard-Cook equation [20,21],

∂ψ

∂t
= ∇2

[
−(A − 1)ψ + A

3
ψ3 − D∇2ψ

]

= 1

2
∇2(−ψ + ψ3 − ∇2ψ) (5)

after expanding f (ψ) = A tanh(ψ) ≈ Aψ − A/3ψ3 and tak-
ing the usual values D = 1/2 and A = 3/2 (note the condition
A > 1). Linear stability analysis can be used to determine
stable time increments by considering the linearized equation
(5) about the homogeneous fixed point, i.e., ψ(n) = ψ0 or
ψk = ψ0δk,0 in Fourier space, corresponding to the single
phase state of the system [20]. With the discrete Laplacian
L(k) yet unspecified, Teixeira and Mulder obtain in the Fourier
domain (using ∂ψ/∂t = [ψ(t + 1) − ψ(t)]/�t instead) [18]

ψk(t + �t) = [1 − (A − 1)�tL(k) − D�tL2(k)]ψk(t)

= Hkψk(t), (6)

meaning that, for the critical quench (ψ0 = 0), a small
perturbation δψk is amplified by a factor Hk. Linearizing the
original deterministic TDGL [see (3)] will provide the same
expression but for a restricted set of values for A, D, and �x.
For Hk > 1, i.e., −L(k) < (A − 1)/D, tangential bifuraction
leads to the growth of small k modes, while for Hk < −1, or

H ′
k = −(A − 1)�tL(k) − D�tL2(k) < −2, (7)

subharmonic bifurcations lead to the growth of large-k modes.
One should note that H ′

k is quadratic in L(k); moreover, since
L(0) = 0 and L(k) ∼ −k2 � 0 ∀ k, it is easy to see that H ′

k >

−2 ∀ k if H ′
k > −2 for a k vector for which L(k) is minimal.

Teixeira and Mulder considered several discrete Laplacians
L(k) and found the largest time increment,

�t <
�x4

18D − 3(A − 1)�x2
, (8)

for the original discrete Laplacian of Oono and Puri [further
denoted by L(k)OPs] [8] or, for the usual values of A = 3/2,
D = 1/2 and �x = 1, �t < 0.12. In terms of isotropy,
L(k)OPs was shown only to be isotropic up to second order

in k (from an expansion around k = 0), but Teixeira and
Mulder concluded that the use of the Oono-Puri Laplacian
is desired because it leads to the least severe violation of
the stability conditions. Clearly, for the (implicit) choice
�t = 1, the conclusion should be that the CDS scheme is
unstable for L(k)OPs and all other discrete two-dimensional
(2D) Laplacians considered by Teixeira and Mulder [18].

II. DETERMINING STABILITY VIA
AN ALTERNATIVE APPROACH

An alternative conclusion, in line with the observation
of Oono and Puri and the numerically confirmed stability
of CDS [10], is that this analysis is simply not applicable
for the CDS method. Moreover, we note that the maximum
time increment derived by this analysis does not provide
much useful information about the quality of the discrete
Laplacian in terms of isotropy and scaling behavior. If we
assume that a “perfect” isotropic discrete 2D Laplacian Lp(n)
exists on a grid of dimensions Nx×Ny , i.e., Lp(k) = −k2

for ki ∈ {2π/Ni, . . . ,π} (all in units 1/�x), we obtain from
mink Lp(k) = −π2/�x2 and (7) (for the usual values of A,
D, and �x)

�tp <
4

π4 − π2
≈ 0.05, (9)

resulting in classification as a less “convenient” discrete
Laplacian, despite the fact that it provides a superior physical
description. To better understand stability, it makes sense to
rewrite the CDS equations in a matrix-vector notation [after
expanding f (ψ)],

�ψt+1 = �ψt + L

[
(1 − A) �ψt + A

3

2 �ψt − DL �ψt

]
, (10)

with n = NxNyNz the dimension of the state space, �ψ =
(ψ0, . . . ,ψn) ∈ Rn and 
,L ∈ Rn×n are n×n matrices. To
avoid confusion, we note that the order parameter ψ remains
scalar and that (10) is just an alternative way of writing the
expression (2) for all cells. The matrix 
 is diagonal with 
ii =
ψi and L represents the discrete Laplacian in the terminology
of Teixeira and Mulder, although it actually represents the
averaging operator. Moreover, 
 and L do not commute. We
may assume that the matrix L is real and symmetric, meaning
that D = QT LQ is a diagonal matrix containing eigenvalues
and Q is a unitary matrix containing the eigenvectors (as
columns). We can therefore use the n eigenvectors or states
�ψj (j = 1, . . . ,n), i.e., with L �ψj = λj

�ψj , as a basis for Rn.
Writing �ψt = ∑n

j=1 aj
�ψj and �ψ ′

t = 
2 �ψt = ∑n
j=1 bj

�ψj ,

�ψt+1 =
n∑

j=1

aj

[
1 + λj

(
1 − A + A

3

bj

aj

)
− λ2

jD

]
�ψj

=
n∑

j=1

ajpj
�ψj , (11)

with pj the multiplication factor, which depends on λj .
Without the nonlinear term in (10), the iterative scheme is
stable for ∣∣1 + λj (1 − A) − λ2

jD
∣∣ = ∣∣pl

j

∣∣ � 1 ∀j, (12)
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with pl
j the multiplication factor for the linearized case.

Moreover, since A > 1 and bj/aj > 0, it is indeed clear that
the nonlinear term stabilizes the iterative scheme [10]. The
two-dimensional discrete Laplacian of Oono and Puri [8] reads
(without a 1/�x2 prefactor [10], which is equal to setting
�x = 1)

〈〈f (n,t)〉〉 − f (n,t) = 1

6

4∑
i=1

f
(1)
i + 1

12

4∑
i=1

f
(2)
i − f (0)

= L(n)OP, (13)

where we used the shorthand notation of Thampi et al. [22],
i.e., f (j )

i = f (n + nj

i ), with nj

i a class of Nj vectors of the same
length (in units of the discretization length �x) in the first shell
surrounding n. In the CDS literature, these points are known as
nearest neighbors (j = 1) and next-nearest neighbors (j = 2).
For a cubic grid, they are N0 = 1 null vector with ‖n0‖ = 0,
N1 = 4 vectors of length ‖n1

i ‖ = 1 and N2 = 4 vectors of
length ‖n2

i ‖ = √
2.

Filling the matrix with the weights given in (13) and
accounting for periodic boundary conditions, where we have
considered Nx = Ny up to Nx = 50, including the 40×40
lattice considered for numerical analysis [10], indeed provides
a symmetric matrix L. Determination of the eigenvectors and
eigenvalues, by a Jacobi method, provides an orthonormal
basis of eigenvectors �ψj . We find −1.333 � λj � 0 ∀j for all
considered lattice sizes (see Fig. 1). From condition (12) for
the linearized case, it is easy to define two domains for the
eigenvalues:

[(1 − A) −
√

(1 − A)2 + 8D]/2D � λj � (1 − A)/D

0 � λj � [(1 − A) +
√

(1 − A)2 + 8D]/2D, (14)

in which the CDS scheme is stable, i.e., the scheme does not
result in an arithmetic overflow. For the usual values (A,D) =
(3/2,1/2), these domains are given by (−1 − √

17)/2 ≈
−2.56 � λj � −1 or 0 � λj � (−1 + √

17)/2 ≈ 1.56. This

1 10 100 1000
index j
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FIG. 1. Numerically determined values of the eigenvalue λj of
the averaging operator L of Oono and Puri for an N×N lattice (N =
10,20,30,40,50).

suggests that coefficients corresponding to eigenvalues λj of
L in the range λj ∈ (−1,0) scale by a factor pl

j > 1 at every
time step (note that pl

j � 1.125). As a result, they will diverge
for t → ∞.

However, one should note that the analysis is based on
the map f (ψ) = Aψ and that the free energy associated with
this map carries minima at ±∞. For the actual map f (ψ) =
Aψ − (A/3)ψ3, we may write �ψt as �ψt = �ψt − �ψr

t + �ψr
t , with

�ψr
t = ∑n

j=1 cj
�ψj a reference state [( �ψr

t )′ = ∑n
j=1 dj

�ψj ] for
which the entries ψi satisfy ψi = f (ψi) = Aψi − (A/3)ψ3

i .
From (10), we can write the update as

�ψt+1 =
n∑

j=1

[(aj − cj )pj + cjp
′
j ] �ψj

= �ψr
t+1 +

n∑
j=1

(aj − cj )pj
�ψj , (15)

with p′
j = (1 − Dλ2

j ), i.e., |p′
j | < 1 for all eigenvalues λj of

L for D � 9/8 (|p′
j | = 1 only for λ = 0), and

pj = 1 + λj

(
1 − A + A

3

bj − dj

aj − cj

)
− λ2

jD. (16)

From ψi = f (ψi), we find that ψi = 0 or ψi =
±√

(3A − 3)/A. Setting ψi = ψr
i + δi , we find ψ3

i ≈ (ψr
i )3 +

3δi(ψr
i )2 when δi is small. Defining �δ = (δ0, . . . ,δn) ∈ Rn and

inserting the relevant values for ψr
i , we thus find that �ψ ′

t =
( �ψr

t )′ + (9 − 9/A)�δ or, with �δ = ∑n
j=1 εj

�ψj , aj = cj + εj

and bj = dj + εj (9 − 9/A). Substitution in (16) provides

pj = 1 + λj (2A − 2) − λ2
jD, (17)

and since A > 1, pj < 1 for all eigenvalues of L except for
λj = 0 (pj = 1). Moreover, the perturbation is not amplified
if pj � −1, leading to the condition

D � 3
8 (7 − 4A). (18)

We thus conclude that the CDS scheme that uses the map
f (ψ) = Aψ − (A/3)ψ3 is stable provided that (18) holds.
Figure 2 shows a direct comparison of the analytical prediction
(18) for the boundary of the “safe” region and numerical
results for a large lattice and many steps. The excellent
agreement between analytic and numerical results shows that
our analytical analysis works very well and explains why
CDS is stable. Clearly, since CDS for the original map
f (ψ) = A tanh(ψ) was numerically found to be stable for
D = 1/2 and A = 3/2, the “safe” region for the original map
is slightly larger. We can understand this intuitively in terms of
a smaller derivative but will not perform the analysis here. We
note that the empirically determined “safe” regions in the A-D
plane, see Fig. 21 in Oono and Puri [10], are for a nonconserved
model (linear in λj ) and for an alternative model.

A. Averaging and the discrete Laplacian

In the previous subsections, we have referred to the
〈〈∗〉〉 − ∗ operator as the discrete Laplacian. Oono and Puri [10]
explicitly noted that this operation facilitates local averaging
rather than an operation that comes from the Laplacian for the
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analytical
stable
unstable

FIG. 2. Comparison of the analytically as determined boundary
of the “safe” region [CDS is stable for combinations (A,D) left of the
line] and stability determined by simulation [50 000 steps of CDS,
100×100 lattice]. Both models are based on f (ψ) = Aψ − (A/3)ψ3

and the averaging operator L of Oono and Puri. Close to the line, there
were a few cases where we did not encounter arithmetic overflow
but instead a clear checkerboard pattern was visible at the end of
simulation. Since the number of steps is finite, we classified such
results as unstable.

continuum field. Using the results of the last subsection, we
can understand this reasoning. If we derive a discretized 2D
Laplacian similar to the one used by Oono and Puri [10], we
have to rescale the weights, i.e.,

〈〈f (n,t)〉〉 − f (n,t) = 1

2

[
4∑

i=1

f
(1)
i + 1

2

4∑
i=1

f
(2)
i − 6f (0)

]

= L(n)OPs, (19)

to obtain proper −k2 scaling in Fourier space. The importance
of this rescaling was already mentioned by Tomita [23], who
introduced a family of properly scaled discrete operators
representing the Laplacian as

L(n)ε = 1

1 + 2ε

[
4∑

i=1

f
(1)
i + ε

4∑
i=1

f
(2)
i − 4(1 + ε)f (0)

]
,

(20)

i.e., containing an additional weight parameter ε. The best
overall isotopy in this family was (rather loosely) considered
and Lε=1/2(=LOPs) was found optimal. However, it is obvious
that the eigenvalue spectrum for the Laplacian matrix LOPs

is −4 � λj � 0, meaning (see the reasoning in the previous
subsection) that the stability region for the CDS scheme in the
A-D plane will shrink considerably.

There are two options to deal with this issue. Since all
discrete Laplacians carry a prefactor 1/�x2 (set to unity by the
implicit choice �x = �xOP = 1 by Oono and Puri), the first
option is to select �x = √

λL,min/λOP,min instead, with λmin

the lowest eigenvalue of the considered L. This choice would
lead to a method that employs an actual discrete Laplacian

and carries the same stability region as the original scheme.
For LOPs, we would thus find �x2 = 3�x2

OP = 3, leading to
a scaling of L by a factor 1/3. Indeed, in a 3D CDS study
of Shinozaki and Oono [11], the parameter D in the Cahn-
Hilliard-Cook model and DCDS, the equivalent parameter in
CDS, were said to be “roughly” related as D = sDCDS, from
looking at the small-|k| behavior, with s = 1/3 (2D) and s =
11/40 (3D). We find that these factors are exact (see Sec. V on
3D discrete Laplacians) and that they originate from the factor
needed for optimal −k2 scaling or, equivalent, from rescaling
the eigenvalue spectrum of the discrete Laplacian to that of the
equivalent averaging operator. Moreover, we find that the same
relation holds between M and MCDS. The second, alternative,
option is to introduce a time increment �t � 1, leading to the
update scheme

�ψt+1 = �ψt + �tL

[
(1 − A) �ψt + A

3

2 �ψt − DL �ψt

]
. (21)

A proper choice, providing a stability region in parameter
space that is similar to that of the original scheme, is �t =
(λOP,min/λL,min)2 = 1/�x4. For LOPs, we would therefore find
�t = 1/9. We conclude that both options are related through
the diffusion constant D, since it is the proportionality constant
for the distance over which a field diffuses over a given time
interval. In the remainder, we will discuss the best choice given
these two options.

It is not completely surprising that the second option,
the introduction of a time increment, embeds CDS into the
standard continuum phase field framework. In fact, expression
(21) is equal to the Euler-discretized Cahn-Hilliard-Cook
equation (5), provided that the (yet unspecified) matrix L is a
finite-difference Laplacian instead of an averaging operation.
Moreover, since we recover (10) for �t = 1, the original
CDS can be seen as a special case of the Euler-discretized
Cahn-Hilliard-Cook equation, i.e., for L = LOP, meaning that
it is this specific choice that makes CDS such an efficient
model. This insight gives us the tools to replace the original
averaging operation by a finite-difference Laplacian of choice.
Meanwhile, for any such L, its minimal eigenvalue, relative to
the reference LOP, gives us a time step �t for which the CDS-
based stability region in the A-D plane is conserved. We can
use this information to make an inspired choice of L by weigh-
ing the advantage of a large stable time step against the prop-
erties of discrete Laplacian, like proper scaling and isotropy.

Discrete Laplacians with good isotropy and scaling be-
havior are of general significance for grid-based simulation
methodology. Most derivations concentrate on the isotropy of
the discrete Laplacian, which is a necessity for avoiding grid-
related artifacts. Proper structure factors in field methods for
block copolymers as well as correct hydrodynamics behavior
in lattice-gas and lattice-Boltzmann (LB) simulations rely on
proper isotropy of the discretized Laplacian. Proper scaling
behavior, especially for smaller wave vectors, is important for
the correct emergence and dynamics of larger scale structure.
Computational efficiency favors a choice for the most compact
computational cell or stencil, as a restriction to neighboring
points in the evaluation of an operator (one stride) is efficient
compared to methods that consider also point further away
(more strides). Several grid-based discrete Laplacians have
been proposed in the literature, primarily in the context of LB,
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like the early ones of Junk and Van der Sman [16,17]. Here,
we will consider the most frequent choices and discuss their
properties in detail.

III. THE DISCRETE LAPLACIAN IN TWO DIMENSIONS

The scaling behavior and isotropy of the discrete Laplacians
considered in this paper are best assessed in Fourier space.
On a grid, cells labeled by n = nx i + nyj, with nx(ny) =
0, . . . ,Lx(Ly), give rise to a position r = �x · n, whereas in re-
ciprocal Fourier space k = (kx,ky) = 2π/�x(nx/Lx,ny/Ly),
since �k�x = 2π . The Fourier domain counterpart of the
rescaled Laplacian of Oono and Puri (19) reads

L(k)OPs = 1

2(�x)2
{2 cos(kx�x) + 2 cos(ky�x)

+ cos[(kx + ky)�x] + cos[(kx − ky)�x] − 6},
(22)

where the prefactor is determined from Taylor expansions
of the function around n in normal space. Expanding cos(x)
around x = 0 provides

L(k)OPs = −(
k2
x + k2

y

) + �x2

12

(
k2
x + k2

y

)2

+ �x2

12
k2
xk

2
y + O(k6), (23)

which shows that this discrete Laplacian is only isotropic up
to second order in k. As mentioned before, the eigenvalue
spectrum of the matrix LOPs is −4 � λj � 0. Other considered
one-stride stencils, the five-point star Laplacian of Rogers et al.
[20] shares the property of being isotropic up to second order.
Only a Laplacian defined on a triangular lattice was identified
to be isotropic up to fourth order [18].

The question arises if we can obtain a more isotropic
discrete Laplacian on a standard cubic grid. Starting from the
general compact Laplacian

L(n)2D = c1

4∑
i=1

f
(1)
i + c2

4∑
i=1

f
(2)
i + c0f

(0),

with cj (j ∈ {0,1,2}) the weight corresponding to a vector
class labeled by j , we can derive a general expression in the
Fourier domain,

L(k)2D = a0 − a2
(
k2
x + k2

y

) + a4�x2

12

(
k2
x + k2

y

)2

+ a42�x2

12
k2
xk

2
y + O

(
k6
α

)
, (24)

with

a0 = c0 + 4c1 + 4c2

a2 = c1 + 2c2

a4 = c1 + 2c2 = a2

a42 = 8c2 − 2c1. (25)

The weights ci should be chosen to satisfy the necessary
conditions a0 = 0 and a2 = 1. In particular, weights {ci} are
required to be positive for reasons of numerical accuracy.

We see that isotropy up to fourth order in k is obtained by
an additional condition a42 = 0. The resulting 3×3 matrix
equation can be solved to yield a unique solution (c0,c1,c2) =
(−20/6,4/6,1/6) and we thus find

L(r) = 1

6

(
4

4∑
i=1

f
(1)
i +

4∑
i=1

f
(2)
i − 20f (0)

)

= L(r)D2Q9, (26)

which is the 2D Laplacian from the familiar DnQm family in
lattice hydrodynamics [22]. Expanding up to order eight in k

provides

L(k)D2Q9 = −k2 + �x2

12
k4 − a6�x4

360
k6

− a64�x4

360

(
k4
xk

2
y + k2

xk
4
y

) + O
(
k8
α

)
, (27)

with a6 = 1 and a64 = 24c2 − 3c1 = 2, showing that the
discrete Laplacian is indeed isotropic only up to order 4. The
eigenvalue spectrum of the matrix LD2Q9 is −5.333 � λj � 0.
Consequently, �x2 = 4�x2

OP and �t = 1/16.
To compare the properties of these discrete Laplacians on

the relevant k range, we considered the scaling behavior (along
the kx direction) and a measure of the isotropy for the two 2D
discrete Laplacians, see Fig. 3. Isotropy is considered, after
introducing cylindrical coordinates (r,φ) in reciprocal k space,
by plotting

d(r) = max
φ

L(r,φ) − min
φ

L(r,φ) (28)

or the difference between the maximum and minimum value
of L(k) for (constant) radius r . From Fig. 3, it is clear that the
scaling behavior along the kx direction is equivalent for the
two considered discrete Laplacians. The earlier determined
isotropy up to fourth order of the D2Q9 stencil is reflected in
d(r) = 0 up to r ≈ π/2 (all values in Fourier space are in units
of 1/�x). However, for larger r , the stencil becomes rather
anisotropic. The scaled Oono-Puri stencil is less isotropic
than the D2Q9 stencil for 1.5 < r < 2.5 but more isotropic
for r > 2.5. Depending on the objective, one could conclude
that the isotropy of LOPs is even better than that of LD2Q9,
which is a surprise. We note, however, that the anisotropy
for large wave vectors of LD2Q9 will usually not show up in
simulations of phase separation, where the important structure
is associated with smaller wave vectors, whereas LOPs may be
slightly anisotropic in this range.

In addition to data for LOPs and LD2Q9, we have also plotted
data for another stencil, denoted by a 13-point star, which is
isotropic up to sixth order in k. In particular, we considered a
discrete Laplacian of the form

L(n)13p = c1

4∑
i=1

f
(1)
i + c2

4∑
i=1

f
(2)
i + c4

4∑
i=1

f
(4)
i + c0f

(0),

where we have added N4 = 4 vectors of length ‖n2
i ‖ = √

4 =
2, i.e., the next-next-neighbors along the two Cartesian direc-
tions, and used the expansion in Fourier space to determine
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FIG. 3. (Color online) Left: Comparison of −k2 (solid line) and the considered 2D discrete Laplacians along the kx/�x ∈ [0,π ] axis.
Right: The value of a measure of the isotropy d(r) for the actual Laplacian (thin base line) and the considered discrete Laplacians, LOPs (solid
black line), LD2Q9 (red dashed line), and LD2Q13 (blue long-dashed line), with r the radius in units of 1/�x.

optimal ci . The prefactors up to eighth order are now given by

a0 = c0 + 4c1 + 4c2 + 4c4

a2 = c1 + 2c2 + 4c4

a4 = c1 + 2c2 + 16c4 = a2 + 12c4

a42 = 8c2 − 2c1 − 32c4

a6 = c1 + 2c2 + 64c4 = a4 + 48c4

a64 = 24c2 − 3c1 − 192c4. (29)

Since we have now four unknowns, we can use four conditions
a0 = a42 = a64 = 0 and a2 = 1 to obtain an expression that is
isotropic up to order six. The unique solution is (c0,c1,c2,c4) =
(−180/60,32/60,12/60,1/60) and the scaling behavior and
isotropy measure d for the resulting D2Q13 stencil are also
shown in Fig. 3. Comparing the isotropy measure for all
discrete Laplacians, it is clear that LD2Q13 is the most isotropic
discrete 2D Laplacian. However, this improved isotropy comes
with a penalty. If we focus on the scaling behavior, the two
9-point stencils clearly perform better than the 13-point stencil
for larger |k|. Since c4 > 0, this can also be seen from

LD2Q9(k) − LD2Q13(k) = −12c4�x2

12
k4 + O

(
k6
α

)
. (30)

We note that this is a standard property for larger stencils, i.e.,
more than 9 points in 2D or 27 points in 3D, if the weights
ci � 0, as is required for reasons of numerical accuracy.

We thus conclude that the scaling behavior provides a good
argument to concentrate on the most compact stencils in two
and three dimensions, besides efficiency. In general, the scaling
behavior of the discrete Laplacian deviates considerably from
−k2 for larger |k| and cannot be improved upon. This is a direct
consequence of approximating this quadratic function by a
sum of cosines with positive coefficients and the requirement
of proper scaling in the vicinity to the origin.

IV. NUMERICAL EVALUATION IN TWO DIMENSIONS

To test our predictions and to study the options for
scaling, we performed 2D cell dynamics simulations with
the map f (ψ) = Aψ − (A/3)ψ3 for a 100×100 lattice. The
parameters A = 1.3 and D = 0.5 are well within the “safe” or
stable region. Since droplets are ideal to challenge the isotropy
of the discrete Laplacian, the initial �ψ0 is filled with ψi =
−0.3 ± 0.01, where the random part is taken from a Gaussian
distribution. The results of simulation are shown in Figs. 4–6.
We note that the range of ψ values, from ψ = 0.86 (red,
minority phase) to −0.83 (blue, majority phase), respectively,
is the same. Figure 4 shows the results of 105 steps of CDS
for different L. Apart from the original averaging operator
of Oono and Puri [10], LOP, we have considered the discrete
Laplacians LOPs and LD2Q9 and scaled the latter two by 1/�x2,
with �x2 = 3 (OPS) or 4 (D3Q9), respectively. Although
LD2Q9 was found to be isotropic up to fourth order in k,
independent of the grid spacing �x, it is obvious from (27) that
introducing a grid spacing �x > 1 amplifies the contribution
of the higher-order terms in k. Although the (relative) isotropy
[determined via d(r)] can be seen to improve, this results in

FIG. 4. (Color online) Two-dimensional snapshots for all consid-
ered L, obtained from CDS with an adaptive grid spacing, after
105 steps of CDS. From left to right: L = LOP, L = (1/3)LOPs

(�x = √
3), and L = (1/4)LD2Q9 (�x = 2). Most clearly visible are

the white interfacial regions, which separate domains that are rich of
one of the components in the binary blend.
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FIG. 5. (Color online) Two-dimensional snapshots obtained by using CDS with an adaptive time step. To simplify a comparison, all stages
are counted by the associated number of CDS steps. Panel on the left: L = LOPs (�t = 1/9) after 104 and 105 steps. Two panel on the right:
L = LD2Q9 (�t = 1/16) after 104 and 105 steps. Most clearly visible are the white interfacial regions, which separate domains that are rich of
one of the components in the binary blend.

a deteriorating scaling behavior of all considered L on the
whole |k| range and considerable anisotropy effects, even up
to the smaller |k| range where the effect is visible in the
snapshots in Fig. 4. Also for the other two operators, LOP

and LOPs, anisotropy is apparent in the somewhat cubic shape
of the droplets, although this effect is weaker, as a result of the
properties of the particular L and a smaller scaling factor.

If we, instead of scaling by the grid spacing, introduce
scaling in the form of a time step �t in CDS, see Fig. 5, as
discussed previously, we find spherical droplets for both LOPs

and LD2Q9. A difference, in terms of isotropy, between the
two discrete Laplacians is not apparent from these results and
both simulation results deviate from those obtained using the
original LOP in the interfaces being more diffuse, despite an
equivalent degree of demixing. Considering the late stage, after
106 steps of CDS, see Fig. 6, the simulation using LOPs has
reached the stage of one perfectly round droplet, as dictated
by minimization of the interfacial energy. For LD2Q9, instead
of one, two large round droplets are found, but we note that,
while the number of CDS steps is the same, the time step �t for
LD2Q9 is smaller and the system can be seen to be at an earlier
stage in the coarsening process. Finally, for LOP, the stage
after 106 steps of CDS is that of a single droplet. However,
the droplet is cubic, signaling that simulations based on the
original L of Oono and Puri [10] suffer from grid artifacts.
Comparing the results for LOP and LOPs, we find an equivalent
structure apart from the droplet shape, and we conclude that
improper scaling behavior, in combination with anisotropy in
the large-|k| range, gives rise to grid related artifacts. Overall,

we conclude that the introduction of a time step, as discussed
above, is the best option for including discrete Laplacians in
CDS with proper isotropy.

V. THE DISCRETE LAPLACIAN IN THREE DIMENSIONS

In three dimensions, the CDS scheme of Shinozaki and
Oono is equivalent to (2), apart from a mobility constant M

which was absent in the two-dimensional case [11]. Their 3D
averaging operator 〈〈∗〉〉 − ∗ is given by

L(n)SO = 6

80

6∑
i=1

f
(1)
i + 3

80

12∑
i=1

f
(2)
i + 1

80

8∑
i=1

f
(3)
i − f (0),

(31)
where �x2 is again assumed to be unity. In this notation,
we have N0 = 1 null vector with ‖n0‖ = 0, N1 = 6 vectors
of length ‖n1

i ‖ = 1, N2 = 12 vectors of length ‖n2
i ‖ = √

2
and N3 = 8 vectors of length ‖n3

i ‖ = √
3. For the operator

defined by (31) we find the eigenvalue spectrum of the
associated real and symmetric matrix L as −1.2 � λj � 0.
In the remainder, we will use this operator as a reference
for all considered discrete 3D Laplacians, in the spirit that
we previously discussed in detail. In particular, we define the
factor �x2 that can be used to scale the eigenvalue spectrum
onto the one associated with of the original (3D) operator
LSO, such that the stability conditions will be equivalent. After
rescaling the weights in (31) to obtain proper −k2 behavior,
i.e.,

L(n)SOs = 1

22

[
6

6∑
i=1

f
(1)
i + 3

12∑
i=1

f
(2)
i +

8∑
i=1

f
(3)
i − 80f (0)

]
, (32)

in units of 1/�x2, we find the following expression in the Fourier domain:

L(k)SOs = 1

22�x2
[12 cos(kx�x) + 12 cos(ky�y) + 12 cos(kz�z) + 12 cos(kx�x) cos(ky�y)

+ 12 cos(kx�x) cos(kz�x) + 12 cos(ky�x) cos(kz�x) + 8 cos(kx�x) cos(ky�x) cos(kz�x) − 80]

= −k2 + �x2

[
k4

12
+ 2

(
k2
xk

2
y + k2

xk
2
z + k2

yk
2
z

)
33

]
+ O

(
k6
α

)
, (33)

showing that this discrete Laplacian L(k)SOs is isotropic up to second order in k. The eigenvalue spectrum of the matrix LSOs is
−4.3636 � λj � 0. We thus obtain �x2 = 40/11�x2

SO.
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FIG. 6. (Color online) Two-dimensional CDS snapshots for all
considered L at late stages. We used an adaptive time step �t , given
in brackets, but all results are for the same amount of steps (106)
of CDS. From left to right: L = LOP (�t = 1.0), L = LOPs (�t =
1/9), and L = LD2Q9 (�t = 1/16). Most clearly visible are the white
interfacial regions, which separate domains that are rich of one of the
components in the binary blend.

From the general compact Laplacian in three dimensions

L(n)3D = c1

6∑
i=1

f
(1)
i + c2

12∑
i=1

f
(2)
i + c3

8∑
i=1

f
(3)
i + c0f

(0)

(34)

with cj (j ∈ {0,1,2,3}) the weight corresponding to a vector
class labeled by j , we can derive a general expression in the
Fourier domain,

L(k)3D = a0 − a2k2 + a4�x2

12
k4

+ a42�x2

12

(
k2
xk

2
y + k2

xk
2
z + k2

yk
2
z

) + O
(
k6
α

)
, (35)

with

a0 = c0 + 6c1 + 12c2 + 8c3

a2 = c1 + 4c2 + 4c3

a4 = a2

a42 = 4c2 + 16c3 − 2c1. (36)

The three conditions used for the two-dimensional case, a0 =
0, a2 = 1, and a42 = 0, are insufficient, since there are now
four unknowns. However, by selecting a value for one of the
weights, c0, we do find a unique solution given by (c1,c2,c3) =
(−c0/2 − 5/3,c0/4 + 7/6, − c0/8 − 1/2). The additional re-
quirement that all weights ci � 0 sets the value of c0 to the
range [−14/3,−4]. Indeed, for c0 equal to −4,−14/3, and
−38/9, we obtain the 3D discrete Laplacians:

L(n)D3Q19 = 1

6

[
2

6∑
i=1

f
(1)
i +

12∑
i=1

f
(2)
i − 24f (0)

]

L(n)D3Q15 = 1

12

[
8

6∑
i=1

f
(1)
i +

8∑
i=1

f
(3)
i − 56f (0)

]

L(n)D3Q27 = 1

36

[
16

6∑
i=1

f
(1)
i + 4

12∑
i=1

f
(2)
i

+
8∑

i=1

f
(3)
i − 152f (0)

]
,

respectively, belonging to the well-known DnQm class used
in lattice hydrodynamics [22]. In addition, for c0 = −128/30
and c0 = −200/48, we obtain the discrete Laplacians of Patra-
Kartunnen and Kumar:

L(n)PK = 1

30

[
14

6∑
i=1

f
(1)
i + 3

12∑
i=1

f
(2)
i +

8∑
i=1

f
(3)
i − 128f (0)

]

L(n)KU = 1

48

[
20

6∑
i=1

f
(1)
i + 6

12∑
i=1

f
(2)
i +

8∑
i=1

f
(3)
i − 200f (0)

]
.

The first, L(r)PK [24], has been systematically derived by
imposing rotational invariance and isotropy, while L(r)KU

is selected based on the absence of a directional bias [25].
Indeed, all discrete Laplacians in this class are isotropic at
fourth order with

L(k) = −k2 + k4

12
+ O

(
k6
α

)
, (37)

but none of them is isotropic up to sixth order. In particular,
the sixth-order term is given by

−�x4

360

[
a6 · k6 + a64

(
k4
xk

2
y + k2

xk
4
y + k4

xk
2
z

+ k2
xk

4
z + k4

yk
2
z + k2

yk
4
z

) + a62k
2
xk

2
yk

2
z

]
, (38)

with a6 = a4 = a2, a64 = 3(16c3 + 6c2 − c1), and a62 =
6(56c3 − 4c2 − c1). We may be tempted to set a fourth condi-
tion, a64 = 0, but for that case a unique solution does not exist,
as we obtain a matrix with det = 0, meaning that the fourth
condition is linearly dependent on the other three. In particular,
filling in the previous solution in terms of c0 provides a64 = 2,
i.e., independent of c0, and a62 = −45c0 − 186. The eigen-
value spectrum of the matrices L associated with these stencils
was again determined numerically using a Jacobi method. All
spectra take the form λmin � λj � 0, with λmin as in Table I.
The appropriate scaling factor �x2 for each of the discrete 3D
Laplacians (with respect to the reference) is added as well.

The isotropy of these discrete Laplacians was recently
considered by Thampi et al. [22] in analogy with the analysis in
the original study of Shinozaki and Oono [11], via isocontour
plots along the kz = 0 and kz = π planes, so we refer to that
study for details. However, we note that these isocontour plots
only provide qualitative information. Plotting L(k) along the
kx axis (see Fig. 7, left) shows proper scaling behavior for small
k vectors, corresponding to structure at a larger scale. We find

TABLE I. The minimal value λmin of the eigenvalue spectrum
of the matrix L ∈ Rn×n, as determined for a 10×10×10 lattice
(n = 1000), and the resulting scaling factor s in �x2 = s�x2

SO. All
considered Laplacians that are isotropic up to order four are listed. A
good value for the time step �t is 1/s2.

Name λmin s

D3Q19 −5.3333 40/9
D3Q15 −9.3333 70/9
D3Q27 −5.7777 130/27
KU −5.3333 40/9
PK −6.1333 46/9
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FIG. 7. (Color online) Left: Comparison of L(k) = −k2 (solid line) and all discrete 3D Laplacians considered in this study (they all fall
onto a single line, dashed) along the kx/�x ∈ [0,π ] axis. Right: The value of a measure of the isotropy d(r) in (39) for the actual Laplacian
(thin base line) and the considered discrete Laplacians, LD3Q15 (solid black line), LD3Q27 (red dotted line), LPK (blue dashed line), LKU, and
LD3Q19 (green long dashed line), from the class that are isotropic up to fourth order in k, with r the radius in units of 1/�x. As the radial plots
for LKU and LD3Q19 almost overlap, they have been combined into a single graph.

that, along this direction, all discrete 3D Laplacians considered
in this study fall onto a single curve. For larger k vectors,
we again observe that the −k2 scaling of the Laplacian is not
very well reproduced for reasons that we explained previously.
Isotropy may again be assessed more quantitatively by the
measure d, after introducing spherical coordinates (r,θ,φ) in
reciprocal k space, given by

d(r) = max
θ,φ

L(r,θ,φ) − min
θ,φ

L(r,θ,φ). (39)

The results for LD3Qi (i = 15,19,27), LKU, and LPK are
shown in Fig. 7 (right). From the observation that d(r) = 0
for r ≈ 1 (in units of 1/�x), we indeed find proper isotropy
for small r , in agreement with (37), which is obtained
by expanding cos(x) around the origin. Nevertheless, with
increasing r , the discrete Laplacians become increasingly
anisotropic. Moreover, we conclude that LKU and LD3Q19 are
the most isotropic Laplacians on the 0 < |k| < π range (in
units of 1/�x), showing that, although all Laplacians belong
to the same class, there are optimal choices.

A. Alternative derivation of a discrete Laplacian

In dynamic density functional theory (DDFT), we have
used a different route to determine a discrete Laplacian with
proper scaling behavior and isotropy. Since the derivation was
never published in detail, we first briefly review. The discrete
Laplace operator L[f ](r) is written as

L[f ](r) =
27∑

α=1

D2
α[f ](r) (40)

with

Dα[f ](r) = eα

f
(
r + rα

2

) − f
(
r − rα

2

)
‖rα‖ ;

D2
α[f ](r) = e2

α

f (r + rα) − 2f (r) + f (r − rα)

‖rα‖2
, (41)

where r = n is the center point and rα (both in units of �x)
are the 27 stencil restricted vectors (in the original notation,
these vectors are denoted by nj

i in the previous sections) and
eα direction-dependent prefactors that need to be determined.
Since this expression is invariant under rα = −rα , we first
reduce the number of grid vectors from 27 to 13. In the Fourier
domain, we find (without the prefactors)

Dα(k) = 2i

‖rα�x‖ sin

(
krα�x

2

)
f (k). (42)

Replacing the prefactors by weights dα and using the condition
of isotropy for the discretized differential operator L[f ](r), it
is easy to see that we can further reduce the number of weights
dα from 13 to 3, one for each of the vector classes denoted by
j . Our purpose is to determine {dα} = {d1,d2,d3} such that

−k2 −
α=13∑
α=1

dαDα(k)Dα(k) (43)

is minimal and isotropic. Writing it as a (least-squares) min-
imization problem will result in an overdetermined problem
and no solution in the strict sense. Consequently, we determine
a linear system of three equations for the three unknowns
d = (d1,d2,d3)T . The conditions that are invoked are such
that the isotropy of L(k) is maximal. On the other hand, the
long length scaling of the discretized derivatives should be
guaranteed identical to the analytical form. The selected three
conditions are

∂2L

∂kx
2 = −2

L(π,0,0) = L(π/
√

2,π/
√

2,0)

L(π,0,0) = L(π/
√

3,π/
√

3,π/
√

3). (44)
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Solving the resulting equations numerically provides prefac-
tors

d =
⎛
⎝d1

d2

d3

⎞
⎠ =

⎛
⎝0.294 725 668 3

0.235 424 872 7
0.175 818 439 8

⎞
⎠ (45)

and, using the equality

sin2(x) = 1
2 − 1

2 cos(2x), (46)

it is easy to see that we can write this Laplacian in the standard
form as

L(n)BvV = d1

6∑
i=1

f
(1)
i + d2

2

12∑
i=1

f
(2)
i + d3

3

8∑
i=1

f
(3)
i

−
(

6d1 + 6d2 + 8

3
d3

)
f (0)

= c1

6∑
i=1

f
(1)
i + c2

12∑
i=1

f
(2)
i + c3

8∑
i=1

f
(3)
i + c0f

(0)

(47)

with coefficients c1 = d1, c2 = d2/2, c3 = d3/3, and c0 =
−6d1 − 6d2 − 8d3/3. Filling in these values in the general
Fourier expression, we find that a0 = 0, a2 = a4 = d1 + 2d2 +
4d3/3 = 1.0, and a42 ≈ 0.82, so L(k)BvV is isotropic only up
to second order in k. Since the coefficients are not in a fractional
form, rounding errors may become problematic, but we note
that they also play a role during numerical implementation of
discrete Laplacians with fractional coefficients. An implemen-
tation of the form

L(n)BvV = d1

6∑
i=1

[
f

(1)
i − f (0)

] + d2

2

12∑
i=1

(
f

(2)
i − f (0)

)

+ d3

3

8∑
i=1

[
f

(3)
i − f (0)

]
is preferable in terms of numerical accuracy.

The eigenvalue spectra of the matrices L associated with
this and other stencils that are isotropic up to second order in k

were again determined numerically using a Jacobi method. All
spectra take the form λmin � λj � 0, with λmin as in Table II.
The appropriate scaling factor �x2 for each of the discrete
3D Laplacians (with respect to the reference) is added as well.
Eigenvalue spectra for all discrete 3D Laplacians considered
in this section are shown in Fig. 8.

TABLE II. The minimal value λmin of the eigenvalue spectrum
of the matrix L ∈ Rn×n, as determined for a 10×10×10 lattice
(n = 1000), and the resulting scaling factor s in �x2 = s�x2

SO. All
considered Laplacians that are isotropic up to order two are listed. A
good value for the time step �t is 1/s2.

Name λmin s

BvV −4.4744 3.73
CD −12.0 10
EW −4.0 10/3
SOs −4.3636 40/11

1 10 100 1000
eigenvalue index

−10

−5

0

va
lu

e

BvV
CD
D3Q15
D3Q19
D3Q27
EW
KU
PK
SOs

FIG. 8. (Color online) Numerically determined values of the
eigenvalue λj of all 3D discrete Laplacians for a 10×10×10 lattice.
Lines are drawn for better visibility. The minimal eigenvalues
provided in Tables I and II can be used to distinguish between the
different discrete Laplacians in a black-and-white plot.

The isotropy of the discrete 3D Laplacian L(k)BvV is
considered in Fig. 9, via the measure d(r). For completeness,
also the isotropy measure d(r) for other discrete 3D Laplacians
that are only isotropic up to second order, i.e., the simplest
central difference (CD), the equally weighted (EW) that is
popular in lattice Boltzmann, and the scaled Shinozaki-Oono
(SOs) discrete Laplacian, are included. Overall, the less
common LBvV and the usual LSOs stencil are only slightly
anisotropic on the complete |k| range, whereas the LBvV

performs slightly better for large r (at the expense of slightly

0 3.1416
radius r

−0.1

0.9

1.9

d(
r)

BvV
CD
EW
SOs

FIG. 9. (Color online) The value of a measure of the isotropy d(r)
in (39) for the actual Laplacian (thin base line), LBvV (solid black
line), and LSOs (green long dashed line), with r the radius in units of
1/�x. The values for other discrete Laplacians that are isotropic up
to second order in k, the central difference [CD with (c0,c1,c2,c3) =
(1,0,0,−6), red dotted line], and the equally weighted stencil used in
lattice Boltzmann [EW with (c0,c1,c2,c3) = (1/9,1/9,1/9,−26/9),
blue dashed line], are shown as a reference.
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performing less than LSOs for smaller r) due to the specific
conditions for which it was derived. The LD3Q19 stencil seems
the best choice of all considered discrete Laplacians. Apart
from being efficient to implement (only 18 directions are
considered), it is isotropic in the low |k| range, up to |k| ≈ π/2,
and the least anisotropic for larger |k| values of all considered
Laplacians in the class that it belong to. Nevertheless, none of
the considered discrete Laplacians is isotropic on the whole
range. We thus conclude again that the choice of a discrete 3D
Laplacian depends on the specific requirements of the modeler.

VI. CDS FOR OTHER FREE ENERGIES

So far, we have concentrated on the original model for
binary systems of Oono and Puri, but also more complicated
systems have been considered, such as block copolymers
[26,27] and phase separation with chemical reactions [5,28].
Focusing on AB diblock copolymers, where the order pa-
rameter is defined by ψ = φA − φB + (1 − 2f ), with φI the
local volume fraction I monomers (I ∈ {A,B}) and f the
volume fraction of A monomers in the diblock, the free-energy
functional F [ψ(r,t)] can be written as a sum of short- and
long-range interactions [6,27]

F [ψ]

kBT
=

∫
dr

{
H [ψ(r)] + D

2
|∇ψ(r)|2

}

+ B

2

∫
dr

∫
dr′G(r − r′)ψ(r)ψ(r′), (48)

with G the Green’s function for the Laplace equation, i.e.,
∇2G(r − r′) = −δ(r − r′), D a positive constant that plays the
role of a diffusion coefficient, B a parameter that introduces a
chain-length dependence of the free energy, and

H [ψ] =
[
−τ

2
+ A

2
(1 − 2f )2

]
ψ2 + v

3
(1 − 2f )ψ3 + u

4
ψ4,

(49)

where τ is related to the temperature and A, v, and u are phe-
nomenological constants. For completeness, we note that we
have adapted our notation to that of earlier publications and that
parameters have been reused. The discrete CDS model for the
evolution of ψ(n,t) at time t and cell n = (nx,ny,nz) becomes

ψ(n,t + 1) = ψ(n,t) − {〈〈�[ψ(n,t)]〉〉
−�[ψ(n,t)] + Bψ(n,t)}, (50)

where noise could be added according to the
fluctuation-dissipation relation, and

�[ψ(n,t)] = g(ψ(n,t)) − ψ(n,t) + D[〈〈ψ(n,t)〉〉 − ψ(n,t)],

(51)

and the so-called (nonlinear) map is given by

g(ψ) = [1 + τ − A(1 − 2f )2]ψ − v(1 − 2f )ψ2 − uψ3.

(52)

Rewriting the CDS equations in a vector-matrix notation
provides

�ψt+1 = (1 − B) �ψt + L([A(1 − 2f )2 − τ ] �ψt

+ v(1 − 2f )
 �ψt + u
2 �ψt − DL �ψt ). (53)

We limit ourselves to a symmetric diblock (f = 0.5) and
usual parameter values and leave the other cases for the
reader. The map is given by g(ψ) = (1 + τ )ψ − 0.5ψ3 for
the usual values u = 0.5, v = 1.5, D = 0.5, B = 0.02, and
A = 1.5 [27], and the CDS equation becomes

�ψt+1 = 0.98 �ψt + L(−τ �ψt + 0.5
2 �ψt − 0.5L �ψt ), (54)

with the parameter τ setting the effective temperature. Writing
�ψt = ∑n

j=1 aj
�ψj and �ψ ′

t = 
2 �ψt = ∑n
j=1 bj

�ψj as before,
we find

�ψt+1 =
n∑

j=1

aj

[
0.98 + λj

(
−τ + 0.5

bj

aj

)
− 0.5λ2

j

]
�ψj .

(55)
Instead of the usual ψi = g(ψi) = (1 + τ )ψi − 1/2ψ3

i ,
we consider (1 + 0.2)ψi = g(ψi) and obtain ψi = 0 or
ψi = ±√

2τ − 0.4 (τ > 0.2). Introducing the same vectors
as before, we can write the update as

�ψt+1 =
n∑

j=1

[(aj − cj )pj + cjp
′
j ] �ψj

= �ψr
t+1 +

n∑
j=1

(aj − cj )pj
�ψj , (56)

with p′
j = (0.98 − 0.2λj − 0.5λ2

j ) (|p′
j | � 1 for all eigenval-

ues of Oono and Puri’s L and p′
j = 1 only for λj = −0.2) and

pj = 0.98 + λj

(
−τ + 1

2

bj − dj

aj − cj

)
− 0.5λ2

j . (57)

We first take ψr
i = 0 ∀i as a reference, i.e., cj = dj = 0.

Setting ψi = ψr
i + δi = δi , with δi a small perturbation, we

obtain ψ3
i = (ψr

i )3 + δ3
i = δ3

i . Neglecting the bj/aj term,
which is minute, we find that −1 < pj < 1 for τ < 0.2,
meaning that �ψ → �ψr = �0 (the fully mixed state) starting
from a small perturbation. For τ � 0.2, pj � 1 in a range
around λj = −τ and the perturbation will be sustained
or amplified. Taking τ > 0.2 and ψr

i = ±√
2τ − 0.4 as a

reference, we find ψ3
i ≈ (ψr

i )3 + 3δi(ψr
i )2 when δi is small.

Defining �δ = (δ0, . . . ,δn) ∈ Rn, we thus find that �ψ ′
t =

( �ψr
t )′ + (6τ − 1.2)�δ or, with �δ = ∑n

j=1 εj
�ψj , aj = cj + εj

and bj = dj + εj (6τ − 1.2). Substitution provides

pj = 0.98 + 2(τ − 0.3)λj − 0.5λ2
j . (58)

We thus find that the perturbation does not amplify
if 0.98 + 2(τ − 0.3)λj − 0.5λ2

j � −1. Using again the
eigenvalue spectrum as determined for the operator L of Oono
and Puri, this leads to the condition τ � 0.7125. We assumed
the standard D = 1/2, but analysis along the same lines can
be applied to determine the stability region for other values of
D. We note that the considered free energy is only appropriate
for weak segregation, which sets a physical limit to the value
of τ . Numerically, i.e. performing 50 000 steps of CDS on
a 100×100 lattice, we encounter checkerboard patterns for
τ � 0.7 and arithmetic overflow for τ � 1.0, so we conclude
that our analysis is rather accurate. We also note that proper
scaling of the selected discrete Laplacian (by 1/�x2 given in
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the tables) will retain the stability range associated with the
standard (LOP or LSO) averaging operators.

VII. CONCLUSION

We have analytically considered the stability of the cell
dynamics scheme (CDS) that was introduced by Oono and
Puri in the late 1980s. CDS has become a popular method
for modeling phase separation dynamics in a wealth of
systems, because it is considerably more efficient than, for
instance, discretized TDGL or CHC, due to a much larger
stable effective time step in CDS. By acknowledging the
grid-restricted nature of the method and writing the CDS
evolution equations in matrix-vector notation, we can use
the specific properties of the averaging operator 〈〈∗〉〉 − ∗
to rationalize the apparent “puzzling” stability of the CDS
scheme. From this analysis, it is clear that the original remarks
of the CDS developers, i.e., that this averaging operator is not
the discrete Laplacian and that the CDS method should not be
analyzed via the TDGL equations, make much sense. However,
one can replace the original averaging operator by a discrete
representation of the continuum Laplacian via the introduction
of a scaling, which conserves the region in parameter space
where the CDS scheme is stable. This opens up a route for
selecting alternative and more isotropic “averaging operators”
(which is now an actual discrete Laplacian) and considerably
reduce grid-related artifacts in CDS results. We found that the
introduction of a time step in CDS is the best option for this
scaling and that a proper time step can be calculated from the
eigenvalues of the discrete Laplacian, which leads to a simple
relation between CDS and the well-known Cahn-Hilliard-
Cook equation. Here we determined the eigenvalue spectra
numerically, by a Jacobi method for a number of well and
lesser-known discrete Laplacians in two and three dimensions.
The results, however, suggest than analytic determination
should be possible for these special matrices L, which have a
zero row sum.

Subsequently, we analyzed the scaling properties and isotropy
of several discrete Laplacians on a more quantitative footing
than previously considered [22]. Evaluating these properties
is of general significance, as they are employed in many
field-based methodologies. The necessity of good scaling for
low |k| values compromises the scaling behavior for large
|k|, and we believe that the consequence of this constraint
is not widely realized. We found that the isotropy of the
(normalized) discrete Laplacian of Oono and Puri (2D) and
Shinozaki and Oono (3D) is surprisingly good, although the
isotropy of a number of familiar Laplacians developed for
lattice hydrodynamics is better at low |k|, i.e., where in many
cases most of the interesting structure develops. For higher
|k|, however, the isotropy of these Laplacians is actually worse
than for Laplacians that are considered to be less isotropic from
an expansion around the origin. Including more points in the
stencils introduces a possibility to improve upon the isotropy
for larger |k|, but it is not a solution for this issue. Besides
being computationally more demanding, isotropy is seen to be
closely linked with scaling behavior, and the latter becomes
worse upon including additional points. The D3Q19, KU, the
normalized discrete operator of Shinozaki and Oono, SOs, and
the less familiar BvV discrete Laplacians, where the latter was
developed for dynamic density functional theory, are among
the best choices in 3D. The real preference will depend on the
requirements of the modeler, taking into account the properties
discussed here.
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