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Metabolomics in Medicinal Chemistry
Metabolomics is a high throughput analytical technique

used to globally measure low molecular weight metab-

olites, allowing simultaneous metabolic comparison of

different biological samples and thus highlighting differ-

entially produced compounds as potential biomarkers.

Although microbes are renowned as prolific sources of

antibiotics, the traditional approach for new anti-infec-

tives discovery is time-consuming and labor-intensive. In

this review, the use of NMR- or MS-based metabolomics

is proposed as an efficient approach to find antimicro-

bials in microbial single- or co-cultures.

Introduction

The number of multi-drug resistant bacteria is rising alarm-

ingly and the treatment of infections caused by these

microbes is extremely challenging [1]. Actinomycetes and

filamentous fungi are the major source of the natural anti-

biotics. The traditional methods used for drug discovery is

time- and labor-intensive and the rediscovery rates became

increasingly demotivating [2,3]. Yet, genome sequencing

revealed many previously unsuspected biosynthetic clusters

for natural products in long-studied model strains [4–6]. A

major challenge lies in finding the appropriate chemical

triggers or ecological cues to elicit the production of cryptic

antibiotics [7,8].

Metabolomics is a high throughput analytical technique

used to globally measure low molecular weight metabolites in
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biological samples. Combination of chemical profiles built by

LC–HRMS or NMR with multivariate data analysis (MDA)

allows scientists to compare and detect differential metabo-

lites in active/inactive biological samples, narrowing the

search to potential biomarkers and avoiding chemical redun-

dancy in an early stage. In this paper, we have reviewed

examples of the use of metabolomics as an effective tool to

increase the efficiency of antibiotic discovery from microbial

sources.

Metabolomics-guided discovery of new antibiotics

Metabolomics methodology, either NMR- or MS-based, is an

ideal tool for the chemical screening and subsequent detailed

comparison of the secondary metabolomes of a set of bacte-

rial fermentations, rapidly revealing the differences/biomark-

ers among experimental groups. The next question is how to

handle the compounds responsible for the separation in the

score plot of supervised and/or unsupervised MDA. Because

NMR and MS techniques can give structural information of

compounds in an early stage, there are three possibilities for

the identification of valuable biomarkers. Firstly, it is possible

to compare the structural information provided by NMR (1H

NMR chemical shifts) and/or high-resolution mass spectrom-

etry (molecular formula and isotopic pattern) with literature

and/or databases. If known structures, discriminators can be

identified without the need for time-consuming isolation

process and thus metabolomics serves as an approach for
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dereplication; alternatively, new compounds may possess

known structural core but unknown functional groups –

‘known unknowns’. In this case, their structural characteri-

zation can be done within the context of the crude biological

matrix with the aid of various 2D NMR techniques as

reviewed in [9,10]. Besides this, the fragmentation patterns

observed in the MS/MS spectra in conjunction with molecu-

lar networking evaluation can enable the identification of

previously unknown close relatives within the same chemical

families through spectral correlations [11,12]. Finally, if the

compounds have unprecedented nuclei, chromatographic

isolation is inevitable for full de novo NMR structural charac-

terization, but at the same time are the most promising in

terms of truly new antimicrobials discovery. For this step, the

discriminating signals generated in the comparative analysis

(MDA) could be used as probes to track the target of interest

(‘star antibiotic’) throughout the chromatographic isolation,

which is referred to as NMR- [13,14] and/or MS-guided [15,16]

separation method. This can prevent losing track of the target

that is unfortunately quite common in conventional TLC-

guided isolation. Furthermore, some degree of structure iden-

tification, albeit incomplete, can be achieved beforehand

with the 2D NMR measurements because they allow a partial

prediction of the novel compounds. This can also provide

information on chemical characteristics and help optimize

isolation procedure, which makes senses for minimizing the

loss of compounds (e.g. ruling out the use of bare silica gel for

polyphenolic polyketides due to their practically irreversible

adsorption as in the case of clostrubin [17]). Taken together,

the strategy of metabolomics-guided discovery of new anti-

biotics is illustrated in Scheme 1.

The use of metabolomics as a methodology for de-replica-

tion of known microbial secondary metabolites and prioriti-

zation of promising candidates is exemplified in the

following cases. The LC–MS metabolome profiling of nine

Myxococcus species allowed the rapid identification of known

myxobacterial metabolites and the subsequent compound-

based principal component analysis (PCA) was successfully

highlighted the putative novel compound determined by its

exact mass and isotopic pattern [18]. Tim Bugni and collea-

gues [19] used UHPLC–HRMS-based metabolomics to dere-

plicate known structures and predict novel compounds in

microbial crude extract. They then applied MS-guided sepa-

ration approach to target the molecules highlighted by meta-

bolomics analysis, and successfully discovered a series of

antibiotics with novel skeletons, such as microtermolides

[20], bottromycin D [21] and more recently forazoline A

[22]. Forazoline A (Fig. 1) is a potent polyketide with a highly

unusual skeleton, exhibiting in vivo antifungal efficacy

against Candida albicans (MIC 16 mg/mL) – comparable to

that of amphotericin B in a mouse model of C. albicans and no

obvious cytotoxicity [22]. Furthermore, they utilized a LC–

MS–SPE–NMR hyphenation system that integrates MS-guided
12 www.drugdiscoverytoday.com
separation and de novo NMR structure elucidation [23] to

facilitate rapid structure elucidation of rare phenyl-acetyl-

desferrioxamines indicated by metabolomics analysis [19]. In

case of lowly abundant compounds, targeted LC–MS micro-

isolation strategy reported by Jean-Luc Wolfender and col-

leagues [24,25] for the purification of novel metabolites is

necessary for full structure determination by means of micro-

flow NMR analysis that just requires micrograms of com-

pounds [26,27].

Metabolomics applied to microbial cocultivation

Conventionally, scientists isolate pure strains of microbes

collected from various biological samples, such as soil, ma-

rine sediments, symbionts of plants or sponges. Fermenta-

tions are then scaled up to accumulate sufficient material for

the next-stage systematical or bioassay-guided isolation.

However, the isolation of novel antibiotics from microbes

by means of this well-established routine is difficult. One of

the reasons is many putative gene clusters remain silent

under standard laboratory growth conditions when microbes

are cultivated singly. Thus, it might be fruitful to consider not

only single microorganism but more complex biological

systems consisting of different organisms. This novel ap-

proach in which microbes are grown together (co-culture

or confrontation experiments) has received increasing inter-

est for its potential to produce new leads, and to decipher

specific biosynthetic pathways mainly related to defense [28].

The focus should be set on antagonistic interactions among

the different microbes (fungi and/or bacteria) coexisting in

the same defined environment, because they use chemical

warfare consisting generally of small organic compounds for

defense. In some cases, clear long-distance growth inhibition

can be observed during pairwise co-culture on solid media.

This phenomena is also expected to be linked to the produc-

tion of antimicrobial compounds as a defense mechanism by

one of the two co-inhabiting microorganisms [25,29]. Cocul-

turing the fungal endophyte Fusarium tricinctum with the

bacterium Bacillus subtilis 168 trpC2 on solid rice medium

resulted in up to 78 times the production of enniatins A1 and

B1 [30]. Microbial cocultivation is also effective for the in-

duction of new molecules with antimicrobial effect, as veri-

fied by the discovery of the new antibiotics pestalone [31],

emericellamides A and B [32], O-methylmellein [33]. It is

quite probably that one microbe produce molecules that

could be precursors for biotransformation into other final

products by its partner, which can increase the chemodiver-

sity of induced metabolites and thus the chance of finding

novel antibiotic [34].

Considering the great potential of cocultivation as a fertile

source for new antibiotics, it is necessary to develop effective

methods for their detection and identification of induced

metabolites. Metabolomics is particularly appropriate for

this purpose as indicated in [29]. Untargeted generic
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Scheme 1. Metabolomics-guided discovery of new antibiotics.
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Figure 1. Structurally novel antibiotics discovered through the framework of metabolomics methodology.
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fingerprinting using 1H NMR, but more by hyphenated MS

methods (considered by some to be more powerful because of

their sensitivity) is aimed to capture metabolites compre-

hensively. The comparison of the metabolome of the cocul-

ture with that of the individual microorganisms can

highlight the induced metabolites present in coculture but

absent in monocultures, because these de novo-produced

molecules have high chances of being new compounds (or

even new skeletons) with antimicrobial activity. However, it

is important to bear in mind that the conventional chemo-

metric methods, such as PCA and (O)PLS-DA, are not abso-

lutely ideal for coculture metabolomics studies, because they

might not effectively filter the up-regulated metabolites in

monocultures and thus not always highlight the coculture-

induced metabolites specifically. A novel data mining ap-

proach referred to as projected orthogonalized chemical

encounter monitoring (POChEMon) was recently developed

and has proved to be more appropriate for this purpose [28].

The detection of antibiotics using the microbial cocultiva-

tion strategy may be further revolutionized by the application

of advanced analytical technologies introduced into meta-

bolic profiling, one of which is imaging mass spectrometry

(IMS) [35–37]. This technique can provide distinct chemical/

structural data on the spatial distributions of metabolites

directly on the agar Petri dishes avoiding complex sample

pre-treatment [38–41]. For this, the antagonistic interaction

between tested microorganisms is favored. After the antago-

nistic phenotypes are observed, the inhibition regions are

subjected to IMS screening to visualize the metabolites. The

microbial metabolites with a spatial distribution that is super-

imposed with the zone of inhibition are considered to be

potential anti-infective candidates. The exact mass and iso-

tope pattern provided by high resolution instruments such as

MALDI-TOF-IMS, in combination with MS/MS network anal-

ysis can help estimate the structural novelty of the induced

metabolites [11,42]. This technique was applied in individual

co-cultures of the pathogens Staphylococcus aureus and Staph-

ylococcus epidermidis with Streptomyces roseosporus NRRL

15998. Using matrix-assisted laser desorption ionization

(MALDI) imaging mass spectrometry, it was possible to ob-

serve three molecules (m/z 863, 877 and 891) that were

responsible for the inhibition of both Staphylococcus patho-

gens. These stress-induced ions were subsequently identified

as arylomycins, a class of broad-spectrum antibiotics that

target type I signal peptidases [43].

Metabolomics reveals naturally occurring microbial

interactions

Throughout thousands of years of evolution and survival

adaptation, microorganisms have established all types of

close relationships, including symbiosis, parasitism, compe-

tition and antagonism. Revealing the underlying molecular

mechanisms involved in these ‘invisible’ interactions would
14 www.drugdiscoverytoday.com
presumably contribute to the discovery of new chemical

entities with antibiotic activity, because virulence factors

in their natural contexts might turn out to have beneficial

applications in human anti-infective therapy [44]. Particular-

ly, deciphering the microbial pathogenesis of some ecolog-

ically relevant systems, such as associations with plants,

mushrooms, insects and sponges [45], opens new perspec-

tives for the exploration for new antimicrobials, as exempli-

fied by the discovery of the novel antibiotics, rhizoxin [46]

and desoxyhavannahine [47] (Fig. 2). A very promising but

yet quite unexplored reservoir for new antibiotics discovery is

the insect-associated microbiome. As reviewed by Helge Bode

[48], insects could be true pioneers as providers of anti-

infectives for human beings. Paenilamicins (Fig. 2), a class

of novel hybrid nonribosomal peptide/polyketide antibiotics,

were discovered in the bee pathogen, Paenibacillus larvae. Bee

larval co-infection assays revealed that the paenilamicins are

employed by P. larvae to fight ecological niche competitors

and are not directly involved in mortality of the bee larvae

[49].

For cultivable symbionts, secondary metabolites produced

in a natural context are probably different from those in a

standard laboratory setting, because the growth condition

considerably influences microbial secondary metabolism.

Many cryptic biosynthetic gene clusters encoding molecules,

remain silent in the laboratory setting due to the lack of

appropriate environmental stimuli, and it is extremely chal-

lenging to activate their expression in the laboratory. More

so, many symbiotic microbes are not even amenable to

artificial cultivation. In other words, antibiotics that would

occur due to in situ microbial interactions are impossible to be

discovered in a traditional culture-dependent approach.

Therefore, we need to mimic the natural setting to activate

‘cryptic’ antibiotics. The advances in metabolomics provide

an opportunity to make what appeared to be impossible

possible, using for example the above described IMS meta-

bolome profiling techniques. The motile Gram-negative bac-

terium Janthinobacterium agaricidamnosum causes soft rot

disease in the cultured button mushroom Agaricus bisporus.

Driven by the hypothesis that the pathobiology of this

mushroom pathogen was potentially correlated to antifungal

search, MALDI-IMS was used for in situ profiling of the

secondary metabolites harbored in the mushroom-associated

ecological system of A. bisporus vs. J. agaricidamnosum. The

visualization of a unique ion of m/z 1181 [M+H]+ in the

diseased region of the mushroom prompted the efforts to

determine the structure of this compound and it was identi-

fied as an unprecedented cyclic lipopeptide product, jagaricin

(Fig. 2). Jagaricin turned out to be a fungicide that is highly

active against human pathogenic fungi including C. albicans,

Aspergillus fumigatus and Aspergillus terreus at submicromolar

concentrations. Notably, jagaricin production by the bacte-

rium J. agaricidamnosum tended to occur exclusively in the
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Figure 2. Structures of several novel antibiotics discovered through the investigation of microbial interactions.
mushroom (A. bisporus) and was otherwise impaired under a

variety of laboratory cultivation conditions [50]. This exam-

ple serves as a strong support for our arguments that under-

standing naturally occuring microbial pathogenesis is

beneficial for antibiotic search; and that IMS-based metabo-

lomics can be applied to reveal the cryptic antibiotics that are

only produced in a particular natural environment.

Revealing cryptic new antibiotics in environmental sam-

ples might benefit from single cell metabolomics, a newly

developed tool for metabolic analysis at cellular and subcel-

lular level (recently reviewed in [51–53]). Our focus is onits

potential use in unveiling the metabolic communication
between symbionts and hosts. Based on the morphological

phenotypes or other properties such as fluorescence, the

selective metabolic analysis of certain microbial cells in en-

vironmental samples could be used to view the unique sec-

ondary metabolites generated by microorganisms during the

naturally occuring interspecies interactions. For instance,

halogen in situ hybridization-secondary ion mass spectrosco-

py (HISH-SIMS) has allowed the simultaneous identification

and quantitation of metabolic activities of environmental

microbial assemblage at single-cell level without the need for

traditional microbial separation and laboratory cultivation

[54]. Single-cell mass spectrometry (SCMS) is a rapidly
www.drugdiscoverytoday.com 15
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growing field in analytical chemistry, and there are several

examples of its applicability to different cells [51]. In this case,

the possibility of accurate mass measurement and acquiring

structural information as provided by tandem MS, facilitate

the identification of numerous metabolites from a single cell.

Conclusion

Metabolomics methods provide an effective strategy for the

discovery of new antibiotics from microbial sources. Allowing

the comprehensive chemometric comparison of secondary

metabolomes, it makes finding the proverbial needle in a

haystack more realistic. The ability to measure the entire

microbial metabolomes during symbiotic interactions can

be crucial for the exploitation of these untapped reservoirs

of anti-infectives [55]. Correlating gene expression profiles to

fluctuations in the metabolome allows rapid identification of

the gene cluster for the (known or unknown) bioactive

molecule [56]. Thus, metabolomics complements (meta-)ge-

nomics methodology in accessing previously inaccessible

natural products [57], and has the added advantage of delving

into the biosynthetic potential of unculturable microorgan-

isms when applied to in situ analysis of live, undamaged

biological samples.
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