\square

Synthesis and biological evaluation of spirocyclic antagonists of CCR2 (chemokine CC receptor subtype 2)

Ann Kathrin Strunz ${ }^{\text {a }}$, Annelien J. M. Zweemer ${ }^{\text {b }}$, Christina Weiss ${ }^{\text {c }}$, Dirk Schepmann ${ }^{\text {a }}$, Anna Junker ${ }^{\text {a }}$, Laura H. Heitman ${ }^{\text {b }}$, Michael Koch ${ }^{\text {c }}$, Bernhard Wünsch ${ }^{\text {a,d,* }}$
${ }^{\text {a }}$ Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
${ }^{\mathrm{b}}$ Leiden Academic Centre for Drug Research (LACDR), Leiden University, Division of Medicinal Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
${ }^{\text {c }}$ Bayer Pharma AG, Global Drug Discovery-Lead Discovery Wuppertal, Aprather Weg 18a, Gebäude 456, D-42096 Wuppertal, Germany
${ }^{\text {d }}$ Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster, Germany

A R T I C L E I N F O

Article history:

Received 13 November 2014
Revised 6 February 2015
Accepted 10 February 2015
Available online 18 February 2015

Keywords:

Chemokine CC receptor subtype 2 (CCR2)
antagonists
Oxa-Pictet-Spengler reaction
Ethylene sulfate
Appel reaction
Polymer-bound triphenylphosphine
Spirocyclic piperidines
Receptor binding studies
Ca^{2+} flux
β-Arrestin recruitment
Structure-activity-relationships

Abstract

Activation of chemokine CC receptors subtype 2 (CCR2) plays an important role in chronic inflammatory processes such as atherosclerosis, multiple sclerosis and rheumatoid arthritis. A diverse set of spirocyclic butanamides 4 (N-benzyl-4-(3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)butanamides) was prepared by different combination of spirocyclic piperidines 8 (3,4-dihydrospiro[[2]benzopyran-1,4'piperidines]) and γ-halobutanamides 11. A key step in the synthesis of spirocyclic piperidines 8 was an Oxa-Pictet-Spengler reaction of β-phenylethanols 5 with piperidone acetal 6 . The substituted γ-hydroxybutanamides 11c-e were prepared by hydroxyethylation of methyl acetates 13 with ethylene sulfate giving the γ-lactones $\mathbf{1 4 c}$ and $\mathbf{1 4 e}$. Aminolysis of the γ-lactones $\mathbf{1 4 c}$ and $\mathbf{1 4 e}$ with benzylamines provided the γ hydroxybutanamides $\mathbf{1 5 c} \mathbf{c}$ e, which were converted into the bromides $\mathbf{1 1 c} \mathbf{c} \mathbf{e}$ by an Appel reaction using polymer-bound PPh_{3}. In radioligand binding assays the spirocyclic butanamides 4 did not displace the iodinated radioligand ${ }^{125} \mathrm{I}$-CCL2 from the human CCR2. However, in the Ca^{2+}-flux assay using human CCR2 strong antagonistic activity of butanamides 4 was detected. Analysis of the IC_{50}-values led to clear relationships between the structure and the inhibition of the Ca^{2+}-flux. $\mathbf{4 g}$ (4-(3,4-dihydrospiro[[2]ben-zopyran- $1,4^{\prime}$-piperidin]-1'-yl)- N-[3,5-bis(trifluoromethylbenzyl)]-2-(4-fluorophenyl)butanamide) and 40 (N-[3,5-bis(trifluoromethyl)benzyl]-2-cyclopropyl-4-(3,4-dihydrospiro[[2]benzopyran-1,4'-piperid-in]-1'-yl)butanamide) represent the most potent CCR2 antagonists with IC_{50}-values of 89 and 17 nM , respectively. Micromolar activities were found in the β-arrestin recruitment assay with murine CCR2, but the structure-activity-relationships detected in the Ca^{2+}-flux assay were confirmed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The class of chemokines (=chemotactic cytokines) consists of several chemoattractant proteins with 70-130 amino acids (814 kDa). Depending on the position of four conserved cysteine residues forming disulfide bonds, chemokines are divided into two major (CC and CXC chemokines) and two minor (C and $\mathrm{CX}_{3} \mathrm{C}$ chemokines) groups. These chemokines interact with the corresponding CC, CXC, C , and $\mathrm{CX}_{3} \mathrm{C}$ receptors belonging to class A (rhodopsin class) of G protein-coupled receptors. Chemokines and their receptors form a network, regulating the activation and migration of immune cells in the organism. ${ }^{1}$ During the last years 26 chemokine receptors and more than 45 endogenous ligands have been

[^0]identified. ${ }^{2}$ Among those, the chemokine CC receptor subtype 2 (CCR2), mainly expressed on monocytes, T lymphocytes, dendritic cells and endothelial cells, is of high interest as a key target in the therapy of chronic inflammatory diseases including atherosclerosis, asthma, Morbus Crohn, rheumatoid arthritis, and multiple sclerosis. ${ }^{3}$

In the therapy of atherosclerosis CCR2 has become a promising target because of the interaction with its selective endogenous ligand monocyte chemotactic protein 1 (MCP1). In addition to MCP1 CCR2 binds CCL7, CCL8, and CCL13 as agonists, whereas CCL11 and CCL26 are antagonists at CCR2. ${ }^{4}$ MCP1, systematically termed CCL2, plays an important role in the recruitment of monocytes from the blood into the subendothelial tissue, which is known to be an early key step in the formation of atherosclerotic plaques. Mechanic injury and toxins cause lesions of the arterial wall and lead to migration of monocytes, mediated by several
adhesion molecules and chemokine receptors. In the arterial wall monocytes develop to macrophages, which turn into foam cells by the uptake of blood lipids. ${ }^{5-7}$ Advanced plaques become unstable and can suddenly rupture. Plaques release their content to the blood, resulting in platelet aggregation and occlusion of the affected artery. On a long-term basis stroke, myocardial infarction and thrombosis can occur as serious complications.

Since the late 1990s, CCR2 antagonists with diverse structural elements have been reported. ${ }^{8-10}$ In 2006 Butora et al. published a new series of promising spiro[indene-1,4'-piperidines] (Fig. 1). Whereas the butanamide $\mathbf{1}$ without a substituent at the linear alkyl chain shows an IC_{50} value of 570 nM , the introduction of a p-fluorophenyl- (2) or cyclopropyl moiety (3) in α-position of the central butanamide increased the CCR2 affinity considerably. In case of α-substituted butanamides 2 and $\mathbf{3}$ (S)-configured enantiomers seem to show higher CCR2 affinity than their (R)-enantiomers. ${ }^{11}$

Starting from the lead compounds 1-3 we developed a new series of CCR2 antagonists 4 based on the spiro[[2]benzopyran-$1,4^{\prime}$-piperidine] system. The 0 -atom within the ring system of 4 together with the substituent in 3 -position should increase the polarity of the rather lipophilic spiro[indene-piperidines] 1-3. Moreover the synthetic strategy allows the introduction of various substituents in the 2-benzopyran system. In particular the introduction of a phenolic hydroxy moiety in position 6 is envisaged resulting in a precursor for the development of [$\left.{ }^{11} \mathrm{C}\right]$ - and [$\left.{ }^{18} \mathrm{~F}\right]$ labeled tracers for positron emission tomography (PET). In addition to variations in the 2 -benzopyran system, p-fluorophenyl and cyclopropyl substituents should be introduced into the α-position of the butanamide $\left(\mathrm{R}^{3}\right)$ and fluoro and trifluoromethyl groups (R^{4}) were planned as substituents of the benzyl ring. ${ }^{1-13}$

2. Synthesis

For the synthesis of the designed spirocyclic butanamides 4 a building block system was envisaged. At first the spirocyclic piperidines 8 and the γ-halobutanamides 11 were prepared and subsequently these building blocks were combined to generate differently substituted CCR2 ligands 4.

The key step in the synthesis of the spirocyclic piperidines $\mathbf{8}$ was an Oxa-Pictet-Spengler reaction. ${ }^{14}$ Since 1 -acetylpiperidin-4one did not react with β-phenylethanol 5a, the dimethyl acetal $\mathbf{6}$ was employed. p-Toluenesulfonic acid in boiling acetonitrile did not catalyze the reaction of phenylethanol $\mathbf{5 a}$ with dimethyl acetal 6, so that the Lewis acid $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was used. At room temperature the transformation stopped at the intermediate mixed acetal. However microwave irradiation of the reaction mixture and addition of $\mathrm{Bi}(\mathrm{OTf})_{3}$ provided the spirocyclic piperidines $7 \mathbf{7 a - d}$ in 24-64\% yields ${ }^{15}$ (Scheme 1).

For the connection of the spirocyclic building blocks with the γ halobutanamide building blocks $\mathbf{1 1}$ the secondary amines $\mathbf{8}$ were prepared by hydrolysis of the acetamides 7 with NaOH . Whereas the secondary amines 8a-c were isolated in $82-99 \%$ yields, the
hydroxy substituted derivative $\mathbf{8 d}$ was isolated in only 12% yield. The low yield of $\mathbf{8 d}$ was due to incomplete extraction of the zwitterionic aminophenol from the water layer during work-up. Therefore the phenol 7d was protected with a benzyl protective group (7e) before hydrolysis, which should be removed at the end of the synthesis. Hydrolysis of the acetamide $\mathbf{7 e}$ with NaOH in dioxane led to a clean conversion and the benzyl ether $\mathbf{8 e}$ was isolated in 34\% yield.

The γ-chlorobutanamides 11a and 11b without a further substituent in α-position of the butanoyl chain were obtained by acylation of benzylamines 10a and 10b with γ-chlorobutanoyl chloride (9) ${ }^{16}$ (Scheme 2).

The synthesis of the butanamides 11c and 11d with an α (4fluorophenyl) substituent started with hydroxyethylation of ester 13c, which was obtained by esterification of the acid 12c with $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{SO}_{4}$. For this purpose ester 13 c was deprotonated with LiHMDS and the enolate was then trapped with ethylene sulfate. After hydrolysis of the resulting monoester of sulfuric acid with NaOH, γ-lactone $\mathbf{1 4 c}$ was isolated in 52% yield. The cyclopropyl substituted γ-lactone $\mathbf{1 4 e}$ was prepared in the same manner starting with cyclopropylacetic acid (12e). In order to achieve high yields the volatility of the γ-lactone $\mathbf{1 4 e}$ during evaporation of solvents has to be taken into account.

The aminolysis of the γ-lactone $\mathbf{1 4 c}$ with benzylamines 10a,b turned out to be very problematic, since the transformations were not complete. However after addition of the Lewis acid AlCl_{3} the butanamides $\mathbf{1 5 c}$ and $\mathbf{1 5 d}$ were isolated in pure form. For the aminolysis of the cyclopropyl substituted γ-lactone $\mathbf{1 4 e}$ with benzylamine 10a the acyl transfer catalyst 1,2,4-triazole had to be added to obtain the butanamide 15e. ${ }^{17}$

Unexpectedly all attempts to activate the alcohols $\mathbf{1 5 c} \mathbf{c} \mathbf{e}$ with methanesulfonyl chloride or p-toluenesulfonyl chloride failed to give the corresponding sulfonates. Therefore the alcohol $\mathbf{1 5 c}$ was oxidized with Dess-Martin-Periodinane. Instead of the expected aldehyde the cyclic hemiaminal 16c was obtained in 73% yield. The same product has already been obtained by ozonolysis of the corresponding allyl derivative. ${ }^{18}$ However, the hemiaminal did not react with the spirocyclic piperidines $\mathbf{8}$ under reductive amination conditions $\left(\mathrm{NaBH}(\mathrm{OAc})_{3}\right)$ via opening of the hemiaminal. Therefore activation of the alcohols $\mathbf{1 5 c} \mathbf{c} \mathbf{e}$ by conversion into the bromides 11c-e was considered next. The Appel reaction of the alcohol 15c with CBr_{4} and PPh_{3} led to a clean conversion. The ${ }^{1} \mathrm{H}$ NMR spectrum of the non-purified bromide 11c indicated complete and clean conversion. However all attempts to remove PPh_{3} and/or $\mathrm{PPh}_{3} \mathrm{O}$ from the bromide 11c or from the alkylation product $\mathbf{4 g}$ failed. Therefore polymer-bound PPh_{3} was used instead of soluble PPh_{3} in the Appel reaction. Simple filtration provided the pure bromides 11c-e in 73-99\% yields.

In the final step the piperidines $\mathbf{8}$ were alkylated with the γ-halobutanamides $\mathbf{1 1}$ to give a diverse set of spirocyclic butanamides 4. In order to optimize the conversion various reaction conditions were applied for different combinations

4

Figure 1. Spirocyclic CCR2 antagonists 1-3 serve as lead compounds.

Scheme 1. Synthesis of the spirocyclic piperidines 8a-e. Reagents and reaction conditions: (a) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Bi}(\mathrm{OTf})_{3}, \mathrm{CH}_{3} \mathrm{CN}$, microwave irradiation $2 \mathrm{~h}, 150{ }^{\circ} \mathrm{C}, 400 \mathrm{~W}, 24-64 \%$; (b) benzyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, $16 \mathrm{~h}, 60 \%$; (c) NaOH 2 M , reflux, $16 \mathrm{~h}, \mathbf{8 a - c} 82-99 \%$; $\mathbf{8 d} 12 \%$; NaOH 2 M , dioxane, reflux, $16 \mathrm{~h}, \mathbf{8 e} 34 \%$.

Scheme 2. Synthesis of γ-halobutanamides 11a-e. Reagents and reaction conditions: (a) $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}, 16 \mathrm{~h}, 89-96 \%$; (b) concd $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{reflux}, 16 \mathrm{~h}, 45-75 \%$; (c) (1) LiHMDS, ethylene sulfate, THF, $-15^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (2) ethanolic NaOH , reflux, $16 \mathrm{~h}, 52-59 \%$; (d) 10a,b, $\mathrm{AlCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 16 \mathrm{~h}, \mathbf{1 5 c}, \mathrm{~d} 23 \%$; $\mathbf{1 0 a}, 1,2,4$-triazole, diazabicycloundecene, $\mathrm{CDCl}_{3}, \mathrm{rt}, 48 \mathrm{~h}$, 15e 7.1\%; (e) Dess-Martin-Periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}, 73 \%$; (f) CBr_{4}, polymer-bound triphenylphosphine, $\mathrm{CH}_{3} \mathrm{CN}, 0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 48 \mathrm{~h}, 73-$ 99%.

Scheme 3. Synthesis of final test compounds 4a-o. Reagents and reaction conditions: (a) $\mathrm{K}_{2} \mathrm{CO}_{3}$, THF, reflux, $16 \mathrm{~h}, 4 \mathbf{4}-\mathbf{c}, \mathbf{e}, \mathrm{f} 3.5-43 \%$; THF, $0^{\circ} \mathrm{C} \rightarrow 40^{\circ} \mathrm{C}, 48 \mathrm{~h}$, 4d,g-l 3-44\%; diisopropylethylamine, BuNI, DMF, microwave irradiation, 1 h , $203^{\circ} \mathrm{C}, 150 \mathrm{~W}, 4 \mathrm{~m}, \mathrm{o} 27-34 \%$; (b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, 1$ bar, $\mathrm{CH}_{3} \mathrm{OH}, 1 \mathrm{~h}, 48 \%$. Definition of the residues $\mathrm{R}^{1}-\mathrm{R}^{4}$ is given in Table 1 .
(Scheme 3). The benzyl protective group of the benzyl ether $\mathbf{4 m}$ was removed hydrogenolytically to afford the phenol 4n. According to our standard HPLC method the purity of the final test compounds had to be higher than 95%. To achieve this quality criterion different purification methods including preparative HPLC had to be used. The extensive purification procedures reduced the yields.

3. CCR2 affinity and antagonistic activity

The CCR2 affinity of the spirocyclic butanamides 4 was determined in radioligand displacement assays with membranes of U2OS cells stably expressing the human CCR2 (U2OS-CCR2) and the iodinated endogenous agonist ${ }^{125}$ I-CCL2 as radioligand. ${ }^{19}$ Moreover the antagonistic activity of the compounds 4 at the CCR2 was analyzed in two complementary functional assays. An intracellular Ca^{2+}-flux assay employing the Chem- 1 cell line stably transfected with human CCR2B and recombinant human CCL2 was performed. Inhibition of β-arrestin recruitment was determined using the U2OS β-arrestin cell line transfected with murine CCR2. It should be noted that human and murine CCR2 share 80% sequence identity. ${ }^{20}$ This species difference accounts for different effects in the Ca^{2+}-flux and β-arrestin recruitment assay. The CCR2 affinities and the CCR2 antagonistic activities of the spirocyclic compounds $\mathbf{4}$ are summarized in Table 1.

Table 1
CCR2 affinity and antagonistic activity of spirocyclic butanamides 4

4

Compd	R^{1}	R^{2}	R^{3}	R^{4}	${ }^{125}$ I-CCL2 displacement ${ }^{\text {a }}$ (\%)	IC_{50} human CCR2 ${ }^{\text {b }}(\mu \mathrm{M})$ (Ca ${ }^{2+}$ flux)	IC_{50} murine CCR2 ${ }^{\text {b }}(\mu \mathrm{M})$ (β-arrestin)
4a	H	H	H	CF_{3}	10	0.684	24
4b	H	CH_{3}	H	CF_{3}	-12	7.54	7.9
4c	OCH_{3}	H	H	CF_{3}	1	1.24	18
4d	H	H	H	F	4	0.18	>30
4e	H	CH_{3}	H	F	-10	12.0	>30
4f	OCH_{3}	H	H	F	-1	0.318	>30
$\mathbf{4 g}_{(\text {WMS-46-12) }}$	H	H	4-F-C6 H_{4}	CF_{3}	25	0.089	11.2
4h	H	CH_{3}	4-F-C6 H_{4}	CF_{3}	0	0.462	3.67
$4 i$ (WMS-46-09)	OCH_{3}	H	$4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	CF_{3}	nd	0.163	4.16
4j	H	H	4-F-C6 H_{4}	F	7	0.173	3.63
4k	H	CH_{3}	$4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	F	9	1.60	8.01
41	OCH_{3}	H	$4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	F	-7	0.353	4.63
4n	OH	H	$4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$	F	nd	6.10	>30
40 (WMS-46-14)	H	H	c- $\mathrm{C}_{3} \mathrm{H}_{5}$	CF_{3}	nd	0.017	3.3
TAK779					$K_{\mathrm{i}}=2.0 \pm 0.7 \mathrm{nM}^{\mathrm{c}}$	0.95 nM	23

nd = not determined.
${ }^{\text {a }}$ Displacement of the radioligand ${ }^{125} \mathrm{I}-\mathrm{CCL} 2$ from human CCR2 (\%), measured at a concentration of $1 \mu \mathrm{M}$ of the test compound.
 CCL2 was added in 5 nM concentration, in the β-arrestin recruitment assay the CCL2 concentration was 3 nM .
${ }^{\text {c }}$ For TAK779 the exact K_{i}-value was determined. In literature an IC_{50}-value of 27 nM is given for TAK779. ${ }^{21,22}$

At a concentration of $1 \mu \mathrm{M}$ the test compounds 4 could not significantly displace the radioligand ${ }^{125} \mathrm{I}$-CCL2 (concn 0.1 nM) from human CCR2.

However, in the Ca^{2+}-flux assay considerable effects of the spirocyclic butanamides 4 were detected, which allows the discussion of structure-activity relationships. Concerning the substitution pattern of the 2-benzopyran system, the compounds 4a, 4d, $\mathbf{4 g}$, and $\mathbf{4 j}$ without a further substituent show the highest activity, respectively. A methoxy moiety in position 6 leads to slight reduction of the activity (compare $\mathbf{4 d} / \mathbf{4 f}, \mathbf{4 g} / \mathbf{4 i}$), whereas a methyl moiety in 3-position reduces the activity considerably (compare 4d/4e, $\mathbf{4 g} / \mathbf{4 h}$).

Introduction of the 4-fluorophenyl moiety into the butanamide chain increased the antagonistic activity remarkably (compare 4a\mathbf{f} with $\mathbf{4 g}-\mathbf{l}$). A cyclopropyl ring in α-position to the amide (compound $\mathbf{4 0}$) led to a further increase in the CCR2 antagonistic activity (Table 1, Fig. 2).

Compounds with two CF_{3}-groups at the benzyl moiety show generally higher inhibition of Ca^{2+}-flux than their analogs with one CF_{3} moiety and one fluorine atom ((compare $\mathbf{4 g}-\mathbf{4 i}$ with $\mathbf{4 j}-\mathbf{4 l}$).

The phenol $4 n$ does not inhibit the Ca^{2+}-flux. However the corresponding methyl ether 41 showed a promising IC_{50}-value of 353 nM indicating that modification of the phenolic OH group could result in potent CCR2 antagonists. In particular the introduction of fluoroalkyl substituents with the aim to develop a fluorinated PET tracer is considered.

Finally the 4 -fluorophenyl and the cyclopropyl derivatives $\mathbf{4 g}$ and $\mathbf{4 0}$ without further substituents in the 2-benzopyran system and with two CF_{3}-moieties at the benzylamine part represent the most potent ligands of this series of compounds with IC_{50}-values
of 89 and 17 nM , respectively. Figure 2 shows full inhibitory activity of $\mathbf{4 g}, \mathbf{4 i}$ and $\mathbf{4 o}$ in the Ca^{2+}-flux assay.

In the β-arrestin recruitment assay using murine CCR2 IC $_{50}$-values in the micromolar range were found. The most potent antagonists in this assay are the 4-fluorophenyl substituted derivatives $\mathbf{4 h}, \mathbf{4 i}, \mathbf{4 j}$, and $\mathbf{4 1}$ and the cyclopropyl derivative $\mathbf{4 o}$ with IC_{50}-values between 3 and $5 \mu \mathrm{M}$. Although the IC_{50}-values in this assay are considerably higher than in the Ca^{2+}-flux assay, the tendency of increased antagonistic activity of 4-fluorophenyl and, moreover, cyclopropyl derivatives is confirmed herein. With exception of $\mathbf{4 g}$, the IC_{50}-values of bis(trifluoromethyl)benzylamides are lower than the IC_{50}-values of the corresponding 3-fluoro-5-(trifluoromethyl)benzyl analogs.

4. Conclusion

A diverse set of spirocyclic butanamides $\mathbf{4}$ has been synthesized by combination of various building blocks 8 and 11. Whereas the spirocyclic butanamides 4 cannot compete with the radioligand ${ }^{125}$ I-CCL2, the Ca^{2+}-flux was inhibited depending on the structure and concentration of the ligands. It is assumed that the spirocyclic butanamides 4 are able to interact with the human CCR2 protein and inhibit the intracellular mobilization of Ca^{2+}-ions. Interestingly, this class of compounds does not disturb the interaction of the human CCR2 with its large endogenous ligand CCL2, but inhibits the Ca^{2+} flux. The inhibition of the murine CCR2 coupled with β-arrestin recruitment is much lower compared with inhibition of the human CCR2. It is assumed that the different sequences of the receptor proteins are responsible for the different effects of the ligands. In previous studies ${ }^{19}$ it has been shown that different

Figure 2. Dose response curves of the most potent CCR2 antagonists in the Ca^{2+}-flux assay.
small molecule CCR2 inhibitors interact with different binding sites (orthosteric and allosteric binding sites) resulting in different modes of inhibition. Therefore it is postulated that the CCR2 antagonists of type 4 block the Ca^{2+}-flux via interaction with an allosteric binding site, whilst not disturbing the interaction of the large endogenous ligand CCL2. Altogether, the described compounds represent a novel class of negative allosteric modulators of CCR2.

5. Experimental

5.1. Chemistry

5.1.1. General

Unless otherwise noted, moisture sensitive reactions were conducted under dry nitrogen. Acetonitrile and dimethylformamide were dried over molecular sieves. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2}, methanol was distilled from magnesium methanolate and tetrahydrofuran was distilled from sodium/benzophenone. Thin layer chromatography (tlc): Silica gel 60 F254 plates (Merck). Flash chromatography (fc): Silica gel 60, 40-64 $\mu \mathrm{m}$ (Merck); parentheses include: diameter of the column, length, fraction size, R_{f} value, eluent. Melting point: Melting point apparatus SMP3 (Stuart Scientific), uncorrected. Microwave assisted reactions were carried out in a single mode cavity CEM Discover LabMate Synthesiser with Discover-PC-Software (CEM Corporation) or a multi mode system MARS (CEM Corporation). MS: microTOF-Q II (Bruker Daltronics); APCI, atmospheric pressure chemical ionization. IR: FT-IR-480 plus (Jasco) or FT-IR Prestige 21 (Shimadzu) equipped with ATR technique. Nuclear magnetic resonance (NMR) spectra were recorded on Agilent $600-\mathrm{MR}$ (600 MHz for ${ }^{1} \mathrm{H}, 151 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$), Agilent $400-\mathrm{MR}$ spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 101 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) or Varian AS 400 Mercury Plus NMR spectrometer; δ in ppm related to tetramethylsilane and measured referring to CDCl_{3} $\left(\delta=7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right.\right.$ NMR $)$ and $\left.\delta=77.2 \mathrm{ppm}\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)\right)$ and $\mathrm{CD}_{3} \mathrm{OD}$ ($\delta=3.31 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right.$ NMR) and $\delta=49.0 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right.$ NMR)); coupling constants are given with 0.5 Hz resolution. Analytical HPLC: Merck Hitachi Equipment; UV detector: L-7400; autosampler: L7200; pump: L-7100; interface: D-7000; column: LiChrospher ${ }^{\circledR}$ 60 RP-select B ($5 \mu \mathrm{~m}$); LiChroCART ${ }^{\circledR} 250-4 \mathrm{~mm}$ cartridge; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; injection volume: $5.0 \mu \mathrm{~L}$; detection at $\lambda=210 \mathrm{~nm}$; solvents: A: water with $0.05 \%(\mathrm{v} / \mathrm{v})$ trifluoroacetic acid; B: acetonitrile with $0.05 \%(\mathrm{v} / \mathrm{v})$ trifluoroacetic acid: gradient elution: (A\%): 0-4 min: $90 \%, 4-29 \mathrm{~min}: 90 \rightarrow 0 \%, 29-31 \mathrm{~min}: 0 \%$, $31-31.5 \mathrm{~min}: 0 \rightarrow 90 \%, 31.5-40 \mathrm{~min}: 90 \%$. The purity of all compounds was determined by this method. The purity of all test compounds is higher than 95\%. Preparative HPLC: Merck Hitachi Equipment; UV detector: L-7400; autosampler: L-7200; pump: L7150; interface: D-7000; column: Phenomenex Gemini C18 110 A $250-21.2 \mathrm{~mm}$ ($5 \mu \mathrm{~m}$; flow rate: $20.00 \mathrm{~mL} / \mathrm{min}$; injection volume:
$200.0 \mu \mathrm{~L}$; detection at $\lambda=254 \mathrm{~nm}$; solvent: acetonitrile/water 70:30 with $0.05 \%(v / v) \mathrm{NH}_{3}$.

5.1.2. 1-(4,4-Dimethoxypiperidin-1-yl)ethan-1-one (6) ${ }^{23}$

1-Acetylpiperidin-4-one ($8.52 \mathrm{~g}, 60 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(12 \mathrm{~mL})$. Trimethyl orthoformate ($32.34 \mathrm{~g}, 0.3 \mathrm{~mol}$) and p toluenesulfonic acid ($521 \mathrm{mg}, 3.0 \mathrm{mmol}$) were added quickly and the solution was stirred overnight at rt. The transformation was terminated by addition of 10% aqueous NaHCO_{3} and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude product was used in the next reaction step without further purification. Pale yellow oil, yield 11.0 g (98%). $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{3}$ ($187.2 \mathrm{~g} / \mathrm{mol}$). MS (APCI): $m / z=188.1291$ (calcd 188.1281 for $\left.\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{3} \quad\left[\mathrm{MH}^{+}\right]\right) .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta \quad[\mathrm{ppm}]=1.57 \quad(\mathrm{t}$, $\left.J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 1.67\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, $1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCOCH}_{3}\right), 3.10\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.34-3.42(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right): \delta[\mathrm{ppm}]=21.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 32.3$ (1C, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 33.1\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 38.4\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, $43.3\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 47.6\left(2 \mathrm{C}, \mathrm{OCH}_{3}\right), 98.5\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{2}\right)$, $168.5(1 \mathrm{C}, \mathrm{C}=\mathrm{O})$. IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2943(\mathrm{C}-\mathrm{H}), 1639(\mathrm{C}=\mathrm{O}), 1107$, 1045 (C-O).

5.1.3. 1-(3,4-Dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)ethan-1-one (7a)

2-Phenylethanol $\mathbf{5 a}$ ($2.48 \mathrm{~g}, 20.3 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ $(40 \mathrm{~mL})$ under nitrogen flow and the solution was given into 8 microwave vials, 5 mL each. A solution of piperidone acetal 6 ($4.49 \mathrm{~g}, 24.0 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3.2 \mathrm{~mL}$) was prepared. 0.4 mL of this solution were added to each mixture and the mixtures were stirred at rt for $30 \mathrm{~min} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.8 \mathrm{~mL})$ was added to each vial dropwise under ice cooling and the mixtures were stirred at rt overnight. After addition of $\mathrm{Bi}(\mathrm{OTf})_{3}(16 \mathrm{mg}, 0.02 \mathrm{mmol})$ to each vial, the reaction mixtures were heated under microwave irradiation for 120 min at $150^{\circ} \mathrm{C}$ and 400 W , respectively. The transformation was terminated by addition of 10% aqueous NaHCO_{3} to the combined mixtures. Layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. Combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was coated on silica gel and then purified by flash column chromatography ($\varnothing 8 \mathrm{~cm}$, length 12 cm , cyclohexane/EtOAc $1: 4 \rightarrow$ EtOAc, fraction size 65 mL , $\left.R_{f}=0.19\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 96: 4\right)\right)$. The isolated product was recrystallized from diisopropyl ether. Colorless solid, $\mathrm{mp} 152^{\circ} \mathrm{C}$, yield 1.53 g (31\%). Purity (HPLC): $96.4 \%, t_{\mathrm{R}}=16.95 \mathrm{~min} . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$ $(245.3 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=1.88$ (dd, $J=11.0 /$ $\left.4.6 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), \quad 1.99 \quad(\mathrm{td}, \quad J=13.3 / 4.7 \mathrm{~Hz}, \quad 2 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCOCH}_{3}\right), 2.82(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$, PhCH CH_{2}), 3.01 ($\left.\mathrm{td}, \mathrm{J}=12.0 / 4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.51$ (td, $\left.J=13.1 / 3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.76-3.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, $3.93\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 4.41-4.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$,
7.08-7.19 (m, 4H, $\left.H_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=19.8(1 \mathrm{C}$, $\left.\mathrm{COCH}_{3}\right), 29.1\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 35.9\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 36.6(1 \mathrm{C}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 37.5\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 42.4\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 58.8$ (1C, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 72.9 (1C, ArCO), 124.9 (1C, $\mathrm{C}-8$ arom $), 125.96$ and 126.04 (2C, C-5 arom, C-6 arom), 128.5 (1C, C-7 arom), 133.5 (1C, C$\left.4 \mathrm{a}_{\text {arom }}\right), 140.8\left(1 \mathrm{C}, C-8 \mathrm{a}_{\text {arom }}\right), 170.1(1 \mathrm{C}, \mathrm{C}=0) . \operatorname{MS}(\mathrm{APCI})$: $m / z=246.1487$ (calcd 246.1489 for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}$ [MH $\left.{ }^{+}\right]$). IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=1643(\mathrm{C}=\mathrm{O}), 1088(\mathrm{C}-\mathrm{O}), 760,694\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.4. 1-(3-Methyl-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)ethanone (7b)

1-Phenylpropan-2-ol 5b ($2.80 \mathrm{~g}, 20.4 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{~mL})$ under nitrogen flow and the solution was given into 8 microwave vials, 5 mL each. Acetal 6 ($4.62 \mathrm{~g}, 24.7 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(3.2 \mathrm{~mL}) .0 .4 \mathrm{~mL}$ of this solution were added to each mixture and the mixtures were stirred at rt for $30 \mathrm{~min} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.8 \mathrm{~mL})$ was added dropwise to each vial under ice cooling and the mixture was stirred at rt overnight. The reaction mixtures were heated under microwave irradiation for 120 min at $150^{\circ} \mathrm{C}$ and 400 W , respectively. The transformation was terminated by addition of 10% aqueous NaHCO_{3} to the combined mixtures. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was coated on silica gel and then purified by flash column chromatography ($\varnothing 8 \mathrm{~cm}$, length 17 cm , cyclohexane: EtOAc $20: 80 \rightarrow$ EtOAc, fraction size 65 mL , $\left.R_{f}=0.18\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 96: 4\right)\right)$. Colorless solid, mp $128^{\circ} \mathrm{C}$, yield 4.42 g (64\%). Purity (HPLC): $98.6 \%, t_{\mathrm{R}}=18.43 \mathrm{~min} . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}$ $(259.3 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \times$ $\left.0.5 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \times 0.5 \mathrm{H}, \mathrm{CH}_{3}\right), 1.61-1.76(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 1.83\left(\mathrm{td}, J=13.8 / 4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.03$ (td, $\left.J=13.3 / 4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.08-2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, $2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCOCH}_{3}\right), 2.67-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 3.01$ (td, $\left.J=13.1 / 2.9 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.10(\mathrm{td}, J=13.1 / 2.9 \mathrm{~Hz}, 0.5 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.52\left(\mathrm{td}, \mathrm{J}=13.2 / 2.8 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.62$ (td, $\left.J=13.1 / 2.8 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.75-3.84(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.89-3.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 4.40-4.49(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 7.05-7.21\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ [ppm] $=19.83\left(0.5 \mathrm{C}, \mathrm{COCH}_{3}\right), 19.85\left(0.5 \mathrm{C}, \mathrm{COCH}_{3}\right), 20.62(0.5 \mathrm{C}$, $\left.\mathrm{CH}_{3}\right), 20.63\left(0.5 \mathrm{C}, \mathrm{CH}_{3}\right), 29.3\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CHO}\right), 34.0$ and $34.6(1 \mathrm{C}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 37.4$ and $37.6\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 38.4$ and $39.1(1 \mathrm{C}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 42.3$ and $42.4\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 64.3$ and $64.4(1 \mathrm{C}$, $\mathrm{CH}_{2} \mathrm{CHO}$), 73.60 and 73.62 ($1 \mathrm{C}, \mathrm{ArCO}$), 124.65 and 124.66 (1C, C 8 arom), 125.92 and 125.93 (2C, $\left.C-5_{\text {arom }}, C-6_{\text {arom }}\right), 128.36$ and 128.37 ($1 \mathrm{C}, C-7$ arom $), 133.7$ (1C, C- $4 \mathrm{a}_{\text {arom }}$), 140.56 and 140.57 (1C, $\left.C-8 \mathrm{a}_{\text {arom }}\right), \quad 170.09$ and $170.13(1 \mathrm{C}, \mathrm{C}=\mathrm{O}) . \mathrm{MS}$ (APCI): m/ $z=260.1634$ (calcd 260.1645 for $\left.\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2} \quad\left[\mathrm{MH}^{+}\right]\right)$. IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=1628(\mathrm{C}=\mathrm{O}), 1064(\mathrm{C}-\mathrm{O}), 756,702\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.5. 1-(6-Methoxy-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin-1'-yl])ethan-1-one (7c)

2-(3-Methoxyphenyl)ethanol 5 a ($3.16 \mathrm{~g}, 20.8 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{~mL})$ under nitrogen flow and the solution was given into 8 microwave vials, 5 mL each. A solution of piperidone acetal $6(4.57 \mathrm{~g}, 24.4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3.2 \mathrm{~mL})$ was prepared. 0.4 mL of this solution were added to each mixture and the mixtures were stirred at rt for $30 \mathrm{~min} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.8 \mathrm{~mL})$ was added to each vial dropwise under ice cooling and the mixtures were stirred at rt overnight. After addition of $\mathrm{Bi}(\mathrm{OTf})_{3}(16 \mathrm{mg}, 0.02 \mathrm{mmol})$ to each vial, reaction mixtures were heated under microwave irradiation for 120 min at $150^{\circ} \mathrm{C}$ and 400 W , respectively. The transformation was terminated by addition of 10% aqueous NaHCO_{3} to the combined mixtures. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic
layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was coated on silica gel and then purified by flash column chromatography ($\varnothing 8 \mathrm{~cm}$, length 15 cm , cyclohexane/EtOAc 20:80, fraction size 65 mL , $\left.R_{f}=0.20\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 96: 4\right)\right)$. The isolated product was recrystallized from $\mathrm{iPr}_{2} \mathrm{O}$. Colorless solid, mp $110^{\circ} \mathrm{C}$, yield 1.56 g (27\%). Purity (HPLC): $93.7 \%, t_{\mathrm{R}}=17.74 \mathrm{~min} . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}(275.3 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=1.82-1.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.15(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NCOCH}_{3}$), $2.79\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.99$ (td, $J=12.4 /$ $\left.4.6 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), \quad 3.51 \quad(\mathrm{td}, \quad J=12.7 / 3.4 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), \quad 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \quad \mathrm{OCH}_{3}\right), 3.92(\mathrm{t}, J=5.5 \mathrm{~Hz}, \quad 2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 4.14-4.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 4.41-4.47(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 6.66\left(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-H_{\text {arom }}\right), 6.75$ (dd, $J=8.6 /$ $\left.2.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\text {arom }}\right), 7.05\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=19.8\left(1 \mathrm{C}, \mathrm{COCH}_{3}\right), 29.4\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 36.0$ (1C, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 36.8\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 37.5\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, $42.4\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 54.2\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 58.7\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 72.7$ (1C, ArCO), 112.3 (1C, $\mathrm{C}-7_{\text {arom }}$), 112.8 (1C, C-5 arom), 126.1 (1C, C$8_{\text {arom }}$), 133.0 ($1 \mathrm{C}, C-4 \mathrm{a}_{\text {arom }}$), 134.9 (1C, C-8 $\mathrm{a}_{\text {arom }}$), 158.0 (1C, C$6_{\text {arom }}$), $170.1 \quad(1 \mathrm{C}, \mathrm{C}=\mathrm{O})$. MS (APCI): $m / z=276.1610$ (calcd 276.1594 for $\left.\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}\left[\mathrm{MH}^{+}\right]\right) . \mathrm{IR}: \tilde{v}\left[\mathrm{~cm}^{-1}\right]=1640(\mathrm{C}=\mathrm{O}), 1501$ $\left(\mathrm{OCH}_{3}\right), 1085(\mathrm{C}-\mathrm{O}), 822,683\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.6. 1-(6-Hydroxy-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]]-1'-yl))ethan-1-one (7d)

2-(3-Hydroxyphenyl)ethanol 5d ($2.23 \mathrm{~g}, 16.2 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{~mL})$ under nitrogen flow and the solution was given into 8 microwave vials, 5 mL each. A solution of piperidone acetal $6(3.70 \mathrm{~g}, 19.8 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3.2 \mathrm{~mL})$ was prepared. 0.4 mL of this solution were added to each mixture and the mixtures were stirred at rt for $30 \mathrm{~min} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.8 \mathrm{~mL})$ was added to each vial dropwise under ice cooling and the mixture was stirred at rt overnight. After addition of $\mathrm{Bi}(\mathrm{OTf})_{3}(16 \mathrm{mg}, 0.02 \mathrm{mmol})$ to each vial, the reaction mixtures were heated under microwave irradiation for 120 min at $150^{\circ} \mathrm{C}$ and 400 W , respectively. Then 10% aqueous NaHCO_{3} was added to the combined mixtures. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was coated on silica gel and then purified by flash column chromatography ($\emptyset 8 \mathrm{~cm}$, length 10 cm , cyclohexane/ EtOAc 20:80 \rightarrow EtOAc/ $\mathrm{CH}_{3} \mathrm{OH}$ 80:20, fraction size $65 \mathrm{~mL}, R_{f}=0.1$ $\left.\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 96: 4\right)\right)$. The isolated product was recrystallized from diisopropyl ether. Colorless solid, mp $239^{\circ} \mathrm{C}$, yield 1.01 g (24\%). Purity (HPLC): 92.6\%, $t_{\mathrm{R}}=14.57 \mathrm{~min} . \quad \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}$ $(261.3 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=1.76-2.02(\mathrm{~m}, 4 \mathrm{H}$, $\left.\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.14(\mathrm{~s}, 3 \mathrm{H}, \quad \mathrm{NCOCH})_{3}\right), 2.73(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 2.98 (td, $\left.J=12.4 / 4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.50$ (td, $\left.J=12.9 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.73-3.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, $3.89\left(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 4.38-4.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, $6.49-6.53\left(\mathrm{~m}, 1 \mathrm{H}, 5-H_{\text {arom }}\right), 6.62$ (dd, $\left.J=8.5 / 2.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-H_{\text {arom }}\right)$, $6.94\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-H_{\text {arom }}\right)$, a signal for the OH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=19.8(1 \mathrm{C}$, $\left.\mathrm{NCOCH}_{3}\right), 29.3\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 36.1\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 36.8(1 \mathrm{C}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 37.6\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 42.4\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 58.7$ (1C, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 72.7 (1C, ArCO), $113.4(1 \mathrm{C}, \mathrm{C}-7$ arom $), 114.3$ (1C, C$5_{\text {arom }}$), 126.0 ($1 \mathrm{C}, C-8_{\text {arom }}$), 131.8 (1C, C-4a arom), 134.8 (1C, C$8 \mathrm{a}_{\text {arom }}$), 155.3 (1C, $\left.C-6_{\text {arom }}\right), 170.1(1 \mathrm{C}, \mathrm{C}=\mathrm{O}) . \mathrm{MS}(\mathrm{APCI}): \mathrm{m} /$ $z=262.1433$ (calcd 262.1438 for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}$ [MH $\left.{ }^{+}\right]$). IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=2978(\mathrm{C}-\mathrm{H}), 1585(\mathrm{C}=\mathrm{O}), 1450(\mathrm{O}-\mathrm{H}), 1088(\mathrm{C}-\mathrm{O})$.

5.1.7. 1-[6-(Benzyloxy)-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'yl]ethan-1-one (7e)

$7 \mathbf{d}$ ($499 \mathrm{mg}, 1.9 \mathrm{mmol}$) and benzyl bromide ($479 \mathrm{mg}, 2.8 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL})$. After addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.08 \mathrm{~g}$,
7.8 mmol) the solution was heated to reflux overnight. Cooled to rt, $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and $\mathrm{CH}_{3} \mathrm{CN}$ was removed under reduced pressure. The residue was recrystallized from diisopropyl ether, $R_{f}=0.92$, $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}\right.$ 95:4.5:0.5). Colorless solid, mp $183^{\circ} \mathrm{C}$, yield $443 \mathrm{mg}(60 \%)$. Purity (HPLC): $96.3 \%, t_{\mathrm{R}}=22.50 \mathrm{~min}$. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3}(351.4 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.77-1.94$ ($\left.\mathrm{m}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCOCH}_{3}\right), 2.81(\mathrm{q}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}$, PhCH CH_{2}), 2.96 (td, $\left.J=12.9 / 3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.51$ (td, $\left.J=12.8 / 3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.62-3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, 3.91 ($\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$), $4.50-4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, 5.03 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), $5.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 6.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $5-H_{\text {arom }}$), $6.84\left(\mathrm{td}, J=8.6 / 2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\text {arom }}\right), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 8-\mathrm{H}_{\text {arom }}\right), 7.32-7.44\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $[\mathrm{ppm}]=21.9\left(1 \mathrm{C}, \mathrm{NCOCH}_{3}\right), 29.8\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 36.3$ (1C, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 37.5\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 37.8\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 42.6$ $\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 59.0\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 70.0\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{O}\right), 72.9$ (1C, ArCO), 113.4 (1C, C-7 arom), 114.4 (1C, C-5 arom), 126.4 (1C, C$8_{\text {arom }}$), 127.4 and 128.6 (4C, C- $2^{\prime}{ }_{\text {arom }}, C-3^{\prime}{ }_{\text {arom }}, C-5^{\prime}{ }_{\text {arom }}, C-6^{\prime}{ }_{\text {arom }}$), 133.5 (1C, C-4a arom), 135.1 (1C, C-8a arom), 128.0 and 136.9 (2C, C1^{\prime} arom, $C-4{ }^{\prime}{ }_{\text {arom }}$), 157.1 ($1 \mathrm{C}, \mathrm{C}-6_{\text {arom }}$), 168.9 (1C, $C=0$). MS (APCI): $m / z=352.1918$ (calcd 352.1907 for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{3}\left[\mathrm{MH}^{+}\right]$). IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=2928 \quad(\mathrm{C}-\mathrm{H}), 1632 \quad(\mathrm{C}=\mathrm{O}), 1119 \quad(\mathrm{C}-\mathrm{O}), \quad 764,694$ ($\mathrm{C}-\mathrm{H}_{\text {arom }}$).

5.1.8. 3,4-Dihydrospiro[[2]benzopyran-1,4'-piperidine] (8a)

A solution of $7 \mathrm{a}(619 \mathrm{mg}, 2.5 \mathrm{mmol})$ in $2 \mathrm{M} \mathrm{NaOH}(40 \mathrm{~mL})$ was heated to reflux overnight. The reaction mixture was cooled to rt and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated under reduced pressure. The product was used in the next reaction step without further purification, $R_{f}=0.22\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 70: 30+1 \%\right.$ ethyldimethylamine). Colorless solid, $\mathrm{mp} 95^{\circ} \mathrm{C}$, yield 418 mg (82\%). Purity (HPLC): 97.0\%, $\quad t_{R}=12.03 \mathrm{~min} . \quad \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$ ($203.3 \mathrm{~g} / \mathrm{mol}$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=1.84$ (dd, $J=15.7 /$ $\left.1.8 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), \quad 1.93 \quad(\mathrm{td}, \quad J=12.6 / 4.6 \mathrm{~Hz}, \quad 2 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.80\left(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.86(\mathrm{dd}, \mathrm{J}=11.9 /$ $\left.4.1 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), \quad 3.04 \quad(\mathrm{td}, \quad J=12.5 / 3.1 \mathrm{~Hz}, \quad 2 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.91\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 7.07-7.20(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}_{\text {arom }}$), a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=29.1\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 35.4$ (2C, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 40.8\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 58.7\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 72.5$ (1C, ArCO), 124.8 ($1 \mathrm{C}, \mathrm{C}-8_{\text {arom }}$), 126.0 and 126.1 (2C, C- $5_{\text {arom }}$, C$6_{\text {arom }}$), 128.5 (1C, C- $7_{\text {arom }}$), 133.4 ($1 \mathrm{C}, ~ C-4 \mathrm{a}_{\text {arom }}$), 141.1 (1C, C$8 \mathrm{a}_{\text {arom }}$). MS (APCI): $m / z=204.1422$ (calcd 204.1383 for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}$ $\left.\left[\mathrm{MH}^{+}\right]\right)$. IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=1085(\mathrm{C}-\mathrm{O}), 760,690\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.9. 3-Methyl-3,4-dihydrospiro[[2]benzopyran-1,4'piperidine] (8b)

A solution of $\mathbf{7 b}$ ($503 \mathrm{mg}, 1.9 \mathrm{mmol}$) in $2 \mathrm{M} \mathrm{NaOH}(33 \mathrm{~mL})$ was heated to reflux overnight. The reaction mixture was cooled to rt and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated under reduced pressure. The crude product was used in the next reaction step without further purification, $R_{f}=0.11 \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right.$ $70: 30+1 \%$ ethyldimethylamine). Colorless solid, $\mathrm{mp} 99^{\circ} \mathrm{C}$, yield 421 mg (99\%). Purity (HPLC): $97.6 \%, t_{\mathrm{R}}=14.49 \mathrm{~min} . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$ $(217.3 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta(\mathrm{ppm})=1.32(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), 1.58 (dd, $\left.J=13.8 / 2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 1.74(\mathrm{td}, J=14.1 /$ $\left.4.1 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), \quad 2.02 \quad(\mathrm{dd}, \quad J=14.7 / 2.0 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.09\left(\mathrm{td}, \mathrm{J}=13.3 / 4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.58-2.68$ (m, $2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}$), $2.80-2.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.02$ (td, $\left.J=12.6 / 2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.12$ (td, $J=12.6 / 2.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.84-3.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 7.02-7.22(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{\text {arom }}$), a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=20.7\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 30.2\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CHO}\right)$,
34.3 (1C, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 35.5\left(0.5 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 36.7$ (0.5 C , $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 38.8\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.0\left(0.5 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.2$ ($\left.0.5 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 64.0\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CHO}\right), 73.7$ (1C, ArCO), 124.8 ($1 \mathrm{C}, \mathrm{C}-8_{\text {arom }}$), 125.85 and 125.88 (2C, $C-5_{\text {arom }}, C-6_{\text {arom }}$), 128.3 (1C, C- $7_{\text {arom }}$), 133.6 ($1 \mathrm{C}, C-4 \mathrm{a}_{\text {arom }}$), 141.6 ($1 \mathrm{C}, \mathrm{C}-8 \mathrm{a}_{\text {arom }}$). MS (APCI): 218.1535 (calcd 218.1539 for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO} \quad\left[\mathrm{MH}^{+}\right]$). IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=2924(\mathrm{C}-\mathrm{H}), 1643(\mathrm{C}=\mathrm{O}), 1064(\mathrm{C}-\mathrm{O}), 760\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.10. 6-Methoxy-3,4-dihydrospiro[[2]benzopyran-1,4'piperidine] (8c)

A solution of $7 \mathbf{c}$ ($233 \mathrm{mg}, 0.85 \mathrm{mmol}$) in $2 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ was heated to reflux overnight. The reaction mixture was cooled to rt and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated under reduced pressure. The crude product was used in the next reaction step without further purification, $R_{f}=0.11 \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right.$ $70: 30+1 \%$ ethyldimethylamine). Colorless solid, mp $136^{\circ} \mathrm{C}$, yield 193 mg (98\%). $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}(233.3 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): δ [ppm] $=1.86\left(\mathrm{dd}, \quad J=15.5 / 2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 1.95$ (td, $J=13.9 / 4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}, 2.78\left(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right)$, 2.94 (dd, $\left.J=12.2 / 3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.09$ (td, $J=12.4 /$ $\left.3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 6.66 (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\text {arom }}$), 6.77 (dd, $J=8.7 /$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\text {arom }}$), 7.09 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}_{\text {arom }}$), a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ $[\mathrm{ppm}]=29.4\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 35.2\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 38.2(1 \mathrm{C}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 40.7\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 54.2\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 58.7(1 \mathrm{C}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 72.0 ($1 \mathrm{C}, \mathrm{ArCO}$), 112.4 ($1 \mathrm{C}, \mathrm{C}-7$ arom), 112.8 ($1 \mathrm{C}, \mathrm{C}-5_{\text {arom }}$), 125.9 (1C, C-8 arom), 134.8 (1C, C-8a arom $), 158.0$ (1C, C- $6_{\text {arom }}$), a signal for the C-atom of $C-4$ is not seen in the spectrum. MS (APCI): $m /$ $z=234.1529$ (calcd 234.1489 for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2} \quad\left[\mathrm{MH}^{+}\right]$). IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=1501\left(\mathrm{OCH}_{3}\right), 1085(\mathrm{C}-\mathrm{O}), 810,606\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.11. 3,4-Dihydrospiro[[2]benzopyran-1,4'-piperidin]-6-ol (8d)

A solution of $\mathbf{7 d}$ ($391 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $2 \mathrm{M} \mathrm{NaOH}(25 \mathrm{~mL}$) was heated to reflux overnight. The reaction mixture was cooled to rt. The pH value was adjusted to $\mathrm{pH} 8-10$ and the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated under reduced pressure. Colorless oil, yield 40 mg (12\%). $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$ $(219.3 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=1.77-1.96(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.71\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.88(\mathrm{dd}, J=11.2 /$ $\left.3.4 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), \quad 3.05 \quad(\mathrm{td}, \quad J=11.9 / 2.7 \mathrm{~Hz}, \quad 2 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.86\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 6.50(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{H}_{\text {arom }}$), 6.58-6.68 (m, 1H, 7-Harom), 6.98 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, $8-H_{\text {arom }}$), a signal for the NH proton is not seen in the spectrum.

5.1.12. 6-(Benzyloxy)-3,4-dihydrospiro[[2]benzopyran-1,4'piperidin] (8e)

$7 \mathbf{e}(495 \mathrm{mg}, 1.4 \mathrm{mmol})$ was suspended in dioxane (24 mL). 2 M $\mathrm{NaOH}(52 \mathrm{~mL})$ was added and the mixture was heated to reflux overnight. The reaction mixture was then cooled to rt and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and the filtrate was concentrated under reduced pressure. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and a saturated solution of HCl in $\mathrm{Et}_{2} \mathrm{O}$ was added. Resulting crystals were filtered, washed and dissolved in water. The pH value was adjusted to pH 10 with 2 M NaOH and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. Combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo, $R_{f}=0.20\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 95:4.5:0.5). Colorless solid, $\mathrm{mp} 136^{\circ} \mathrm{C}$, yield 150.1 mg (34\%). Purity (HPLC): $95.6 \%, t_{\mathrm{R}}=17.86 \mathrm{~min} \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$ $(309.4 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta \quad[\mathrm{ppm}]=1.89$ (d, broad, $\left.J=12.5 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), \quad 1.98 \quad(\mathrm{td}, \quad J=13.6 / 4.6 \mathrm{~Hz}, \quad 2 \mathrm{H}$,
$\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.80\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.89$ (d, broad, $\left.J=11.1 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.13 \quad(\mathrm{td}, \quad J=12.1 / 2.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.89\left(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 5.03(\mathrm{~s}, 2 \mathrm{H}$, PhCH ${ }_{2} \mathrm{O}$), 6.71 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\text {arom }}$), 6.85 (dd, $J=8.3 / 3.0 \mathrm{~Hz}$, $1 \mathrm{H}, 7-H_{\text {arom }}$), $7.11\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-H_{\text {arom }}\right), 7.30-7.46(\mathrm{~m}, 5 \mathrm{H}$, H^{\prime} arom), a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=30.1$ ($1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 37.8 (2C, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 42.3\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 58.8\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 70.1$ ($1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{O}$), 73.5 (1C, ArCO), 113.4 (1C, $\mathrm{C}-\mathrm{T}_{\text {arom }}$), 114.4 (1C, C$5_{\text {arom }}$), 126.8 ($1 \mathrm{C}, \mathrm{C}-8_{\text {arom }}$), 127.6 and 128.1 (4C, C- $\mathbf{2}^{\prime}{ }_{\text {arom, }}{ }^{\prime} C-3^{\prime}{ }_{\text {arom }}$, $C-5^{\prime}$ arom, $\left.C-6^{\prime}{ }_{\text {arom }}\right), 135.07$ and 135.12 (2C, $C-4 \mathrm{a}_{\text {arom }}, C-8 \mathrm{a}_{\text {arom }}$), 128.7 and 137.2 ($2 \mathrm{C}, C-1^{\prime}{ }_{\text {arom }}, C-4^{\prime}{ }_{\text {arom }}$), 157.0 ($1 \mathrm{C}, C-6_{\text {arom }}$). MS (APCI): $m / z=310.1801$ (calcd 310.1802 for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}\left[\mathrm{MH}^{+}\right]$). IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2936(\mathrm{C}-\mathrm{H}), 1088(\mathrm{C}-\mathrm{O}), 737,698\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.13. N-[3,5-Bis(trifluoromethyl)benzyl]-4-chlorobutanamide (11a)

3,5-Bis(trifluoromethyl)benzylamine $\mathbf{1 0 a}$ ($172 \mathrm{mg}, 0.7 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($78 \mathrm{mg}, 0.7 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and 4 -chlorobutanoyl chloride 9 ($107 \mathrm{mg}, 0.8 \mathrm{mmol}$) was added dropwise. The solution was stirred overnight at rt. The pH value was adjusted to pH 7 with saturated aqueous NaHCO_{3} to stop the transformation and the mixture was extracted with EtOAc $(3 \times)$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The product was used in the next reaction step without further purification, $R_{f}=0.58$ (cyclohexane/EtOAc 40:60). Colorless solid, $\mathrm{mp} 79{ }^{\circ} \mathrm{C}$, yield 236 mg (96\%). Purity (HPLC): 95.6\%, $t_{\mathrm{R}}=20.59 \mathrm{~min} . \quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClF}_{6} \mathrm{NO}$ $(347.7 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.16$ (quint, $J=6.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.46\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.61(\mathrm{t}$, $\left.J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.56\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right)$, 6.00 (s, broad, $1 \mathrm{H}, \mathrm{NH}$), 7.72 (s, 2H, 2-Harom, 6- $\mathrm{H}_{\text {arom }}$), 7.78 (s, 1H, $\left.4-\mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=27.8\left(1 \mathrm{C}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $32.9\left(1 \mathrm{C}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 42.7\left(1 \mathrm{C}, \quad \mathrm{PhCH}_{2} \mathrm{NH}\right), 44.3(1 \mathrm{C}$, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 121.5 (hept, $J=3.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-4_{\text {arom }}$), 123.1 (q, $J=271.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CF}_{3}$), 127.6 (2C, C-2 arom, $C-6_{\text {arom }}$), $132.0(\mathrm{q}$, $J=33.5 \mathrm{~Hz}, 2 C, C-3_{\text {arom }}, C-5_{\text {arom }}$), 141.0 (1C, $C-1_{\text {arom }}$), 171.9 (1C, $C=0$). MS (APCI): $m / z=348.0594$ (calcd 348.0584 for $\left.\mathrm{C}_{13} \mathrm{H}^{13} \mathrm{ClF}_{6} \mathrm{NO}\left[\mathrm{MH}^{+}\right]\right)$. IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=1644(\mathrm{C}=\mathrm{O}), 1276(\mathrm{C}-\mathrm{F})$, 705, $681\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.14. 4-Chloro-N-[3-fluoro-5-

(trifluoromethyl)benzyl]butanamide (11b)

3-Fluoro-5-(trifluoromethyl)benzylamine 10b (968 mg, 5.0 mmol) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(551 \mathrm{mg}, 5.2 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(33 \mathrm{~mL})$ and 4-chlorobutanoyl chloride 9 (707 mg , 5.0 mmol) was added dropwise. The solution was stirred overnight at rt. The pH value was adjusted to pH 7 with saturated aqueous NaHCO_{3} to stop the transformation and the mixture was extracted with EtOAc $(3 \times)$. The organic layers were combined, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and the solvent was evaporated in vacuum. A further purification of the crude product was not necessary, $R_{f}=0.58$ (cyclohexane/EtOAc 40:60). Colorless solid, mp $60^{\circ} \mathrm{C}$, yield 1334 mg (89\%). Purity (HPLC): $90.8 \%, \quad t_{\mathrm{R}}=19.40 \mathrm{~min}$ $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClF}_{4} \mathrm{NO}(297.7 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta \quad[\mathrm{ppm}]=2.15$ (quint, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \quad \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.45(\mathrm{t}, \quad 7.1 \mathrm{~Hz}, \quad 2 \mathrm{H}$, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.61\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.48(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}$), 6.04 (s, broad, $1 \mathrm{H}, \mathrm{NH}$), $7.16-7.25$ (m, $\left.2 \mathrm{H}, 2-\mathrm{H}_{\text {arom }}, 4-\mathrm{H}_{\text {arom }}\right), 7.31\left(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ [ppm] $=27.9\left(1 \mathrm{C}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 33.0\left(1 \mathrm{C}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 42.7(\mathrm{~d}$, $J=1.5,1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{NH}$), $44.4\left(1 \mathrm{C}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 111.9(\mathrm{dq}, J=24.5 /$ $3.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-4_{\text {arom }}$), 118.0 (d, $J=22.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-2_{\text {arom }}$), 119.9 (quint, $\left.J=3.6 \mathrm{~Hz}, 1 \mathrm{C}, C-6_{\text {arom }}\right), 132.8\left(\mathrm{qd}, J=33.3 / 8.1 \mathrm{~Hz}, 1 \mathrm{C}, C-5_{\text {arom }}\right)$, 142.3 ($\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{C}, C-1_{\text {arom }}$), 162.6 ($\mathrm{d}, J=249.2 \mathrm{~Hz}, 1 \mathrm{C}, C-3_{\text {arom }}$), $171.8(1 \mathrm{C}, \mathrm{C}=\mathrm{O})$, the signal for the C -atom of the CF_{3} group is not
seen in the spectrum. MS (APCI): $m / z=298.0642$ (calcd 298.0616 for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClF}_{4} \mathrm{NO}\left[\mathrm{MH}^{+}\right]$). IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=1639$ (C=O), 1231 (C-F), $1169\left(\mathrm{C}-\mathrm{F}_{\text {arom }}\right), 876,698\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.15. N-[3,5-Bis(trifluoromethyl)benzyl]-4-bromo-2-(4fluorophenyl)butanamide (11c)

15c ($503 \mathrm{mg}, 1.19 \mathrm{mmol}$) and $\mathrm{CBr}_{4}(593 \mathrm{mg}, 1.78 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Then triphenylphosphine (1.85 g , polymer-bound, $1.6 \mathrm{mmol} / \mathrm{g}$) was added, during 30 min at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 2 d . The mixture was filtered over Celite and water was added to the eluent. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$ and the combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was used in the next reaction step without further purification, $R_{f}=0.90\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 40: 60\right)$. Brown oil, yield 419.7 mg (73\%). Purity (HPLC): 62.5\%, $t_{\mathrm{R}}=24.44 \mathrm{~min} \quad \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrF}_{7} \mathrm{NO}$ ($486.2 \mathrm{~g} / \mathrm{mol}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.26$ (dtd, $J=14.8 / 7.5 /$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}, \quad \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 2.66 (dtd, $J=14.9 / 7.5 / 4.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 3.26 (ddd, $J=10.2 / 7.9 / 4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 3.46 (ddd, $\left.J=10.2 / 7.2 / 4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, $3.79(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 4.44 (dd, $J=15.8 / 5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}$), 4.62 (dd, $J=15.8 / 6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}$), 5.95 (s, broad, $1 \mathrm{H}, \mathrm{NH}$), 7.06 (t, $\left.J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {arom }}, 5-\mathrm{H}_{\text {arom }}\right), 7.31(\mathrm{dd}, J=8.7 / 5.2 \mathrm{~Hz}, 2 \mathrm{H}, 2-$ $H_{\text {arom }}, 6-H_{\text {arom }}$), $7.56\left(\mathrm{~s}, 2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}\right), 7.75\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\right.$ $\left.H_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=31.8\left(1 \mathrm{C}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 35.6$ (1C, $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 42.6 ($1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{NH}$), 49.8 ($1 \mathrm{C}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 116.2 (d, $\left.J=21.7 \mathrm{~Hz}, 2 \mathrm{C}, C-3_{\text {arom }}, C-5_{\text {arom }}\right), 121.4$ (hept, $J=3.7 \mathrm{~Hz}$, $1 \mathrm{C}, ~ C-4^{\prime}{ }_{\text {arom }}$), 123.1 (q, $J=274.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CF}_{3}$), 127.2 (q, $J=3.8 \mathrm{~Hz}$, 2C, $C-2^{\prime}$ arom, $C-6_{\text {arom }}^{\prime}$), $129.5\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 C, C-2_{\text {arom }}, C-6_{\text {arom }}\right)$, 131.9 (q, $J=33.3 \mathrm{~Hz}, 2 \mathrm{C}, C-3^{\prime}{ }_{\text {arom }}{ }^{\prime}, C-5^{\prime}{ }_{\text {arom }}$), 133.9 (d, $J=3.4 \mathrm{~Hz}$, $1 \mathrm{C}, \mathrm{C}-1_{\text {arom }}$), 140.9 (1C, C- $1_{\text {arom }}$), 162.4 (d, $J=247.6 \mathrm{~Hz}, 1 \mathrm{C}, C-4_{\text {arom }}$), 172.5 (1C, $C=0$). MS (APCI): $m / z=486.0295$ (calcd 486.0298 for $\left.\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrF}_{7} \mathrm{NO}\left[\mathrm{MH}^{+}\right]\right) . \mathrm{IR}: \mathrm{v}\left[\mathrm{cm}^{-1}\right]=1670(\mathrm{C}=\mathrm{O}), 1277(\mathrm{C}-\mathrm{F})$, $1169\left(\mathrm{C}-\mathrm{F}_{\text {arom }}\right)$, 721, $660\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.16. 4-Bromo-2-(4-fluorophenyl)- N-[3-fluoro-5(trifluoromethyl)benzyl]butanamide (11d)

15d ($796 \mathrm{mg}, 2.13 \mathrm{mmol}$) and $\mathrm{CBr}_{4}(761 \mathrm{mg}, 2.29 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Then triphenylphosphine (3.33 g , polymer-bound, $1.6 \mathrm{mmol} / \mathrm{g}$) was added during 30 min at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt overnight. The mixture was filtered over Celite ${ }^{\circledR}$ and water was added. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$, the combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was used in the next reaction step without further purification, $R_{f}=0.60\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 40: 60\right)$. Brown oil, yield 920 mg (99\%). Purity (HPLC): $47.25 \%, \quad t_{\mathrm{R}}=23.51 \mathrm{~min} \quad \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BrF}_{5} \mathrm{NO}$ $(436.2 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.26$ (dtd, $J=12.2 / 7.4 /$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \quad \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 2.66 (dtd, $J=12.3 / 7.4 / 4.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 3.25 (ddd, $J=10.3 / 8.0 / 4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 3.46 (ddd, $J=10.3 / 7.1 / 4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $3.76(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 4.41 (dd, $J=15.7 / 5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}$), 4.51 (dd, $J=15.6 / 6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}$), 5.86 (s, broad, $1 \mathrm{H}, \mathrm{NH}$), 7.03 (d, $\left.J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-H_{\text {arom }}\right), 7.06\left(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}_{\text {arom }}, 5-\right.$ $\left.H_{\text {arom }}\right), 7.16\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime}-H_{\text {arom }}\right), 7.20\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-H_{\text {arom }}\right)$, 7.32 (dd, $\left.J=8.7 / 5.3 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {arom }}, 6-\mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $[\mathrm{ppm}]=31.8\left(1 \mathrm{C}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 35.6\left(1 \mathrm{C}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 42.7(1 \mathrm{C}$, $\left.\mathrm{PhCH}_{2} \mathrm{NH}\right), 49.9\left(1 \mathrm{C}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 111.9(\mathrm{dq}, J=24.4 / 3.8 \mathrm{~Hz}, 1 \mathrm{C}$, C-4'arom), 116.2 (d, J=21.7 Hz, 2C, C- $3_{\text {arom }}, C-5_{\text {arom }}$), 117.7 (d, $J=20.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}^{\prime}{ }^{\prime}{ }_{\text {arom }}$), 119.5 (quint, $J=3.7 \mathrm{~Hz}, 1 \mathrm{C}, C-6^{\prime}{ }_{\text {arom }}{ }^{\text {(}}$), 129.5 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{C}, C-2_{\text {arom }}, C-6_{\text {arom }}$), 133.9 (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{C}$, $\left.C-1_{\text {arom }}\right), 142.1\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}^{\prime} 1^{\prime}{ }_{\text {arom }}\right), 162.4(\mathrm{~d}, J=247.6 \mathrm{~Hz}$, $1 \mathrm{C}, C^{\prime} 3^{\prime}{ }_{\text {arom }}$), 162.6 (d, $J=249.9 \mathrm{~Hz}, 1 \mathrm{C}, C-4_{\text {arom }}$), 172.4 ($1 \mathrm{C}, \mathrm{C}=0$),
signals for the C -atom of the CF_{3} group and for $\mathrm{C}-5^{\prime}$ are not seen in the spectrum. MS (APCI): $m / z=436.0301$ (calcd 436.0330 for $\left.\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrF}_{5} \mathrm{NO}\left[\mathrm{MH}^{+}\right]\right)$. IR: $v\left[\mathrm{~cm}^{-1}\right]=1651$ ($\mathrm{C}=\mathrm{O}$), 1227 ($\left.\mathrm{C}-\mathrm{F}\right)$, 1169 ($\mathrm{C}-\mathrm{F}_{\text {arom }}$), 664 ($\mathrm{C}-\mathrm{Br}$).

5.1.17. N-[3,5-Bis(trifluoromethyl)benzyl]-4-bromo-2cyclopropylbutanamide (11e)

15e ($60 \mathrm{mg}, 0.16 \mathrm{mmol}$) and $\mathrm{CBr}_{4}(100 \mathrm{mg}, 0.30 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Then triphenylphosphine (266 mg , polymer-bound, $1.6 \mathrm{mmol} / \mathrm{g}$) was added during 30 min at $0^{\circ} \mathrm{C}$. The mixture war stirred at rt overnight. The mixture was filtered over Celite ${ }^{\circledR}$ and water was added to the eluent. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$, the combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was used in the next reaction step without further purification, $R_{f}=0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3} 95: 4.5: 0.5\right)$. Brown oil, yield 33 mg (47%). Purity (HPLC): $54 \%, t_{\mathrm{R}}=23.32 \mathrm{~min} . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrF}_{6} \mathrm{NO}$ $(432.2 \mathrm{~g} / \mathrm{mol})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.25-0.33(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2 \text { cycloprop }}$), 0.59-0.71 (m, 2H, CH cycloprop $^{\text {) }}$, 0.95-1.05 (m, 1H, CH cycloprop), 1.74 (td, $J=9.2 / 5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $2.08-2.16$ ($\mathrm{m}, \quad 1 \mathrm{H}, \quad \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $2.42 \quad(\mathrm{ddt}, \quad J=14.3 / 8.8 / 5.3 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 3.43 (ddd, $J=10.2 / 9.2 / 4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $3.56-3.66 \mathrm{~m}, 1 \mathrm{H}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 4.53 (dd, $J=15.8 / 6.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{NH}$), 4.70 (dd, $\left.J=15.8 / 6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 6.19$ (s, broad, $1 \mathrm{H}, \mathrm{NH}$), 7.75 (s, 2H, 2- $\mathrm{H}_{\text {arom }}, 6-\mathrm{H}_{\text {arom }}$), 7.79 (s, $1 \mathrm{H}, 4-\mathrm{H}_{\text {arom }}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.9\left(1 \mathrm{C}, \mathrm{CH}_{2 \text { cycloprop }}\right), 4.5\left(1 \mathrm{C}, \mathrm{CH}_{2 \text { cycloprop }}\right)$, 13.7 (1C, $\mathrm{CH}_{\text {cycloprop }}$), 32.2 (1C, $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 35.0 (1C, $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 42.5 (1C, $\mathrm{PhCH}_{2} \mathrm{NH}$), 50.0 ($1 \mathrm{C}, \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 121.4 (hept, $\left.J=3.9 \mathrm{~Hz}, 1 \mathrm{C}, C-4_{\text {arom }}\right), 123.2\left(\mathrm{q}, J=272.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CF}_{3}\right)$, $127.3\left(\mathrm{q}, J=3.1 \mathrm{~Hz}, 2 \mathrm{C}, ~ C-2_{\text {arom }}, C-6_{\text {arom }}\right), 132.0(\mathrm{q}, J=33.2 \mathrm{~Hz}, 2 \mathrm{C}$, $C-3_{\text {arom }}, C-5_{\text {arom }}$) 141.2 (1C, $\left.C-1_{\text {arom }}\right), 174.3$ (1C, $C=0$). MS (APCI): $m / z=432.0436$ (calcd 432.0392 for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrF}_{6} \mathrm{NO}\left[\mathrm{MH}^{+}\right]$). IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=2924(\mathrm{C}-\mathrm{H}), 1647(\mathrm{C}=\mathrm{O}), 1277(\mathrm{C}-\mathrm{F})$.

5.1.18. Methyl 2-(4-fluorophenyl)acetate (13c) ${ }^{24}$

2-(4-Fluorophenyl)acetic acid $\mathbf{1 2 c}(5.00 \mathrm{~g}, 32.4 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(6.5 \mathrm{~mL})$. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.3 \mathrm{~mL})$ was added and the mixture was headed to reflux overnight. Water was added, the organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The combined organic layers were washed with saturated aqueous NaHCO_{3} and water to remove the acid. Then the organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure, $R_{f}=0.23\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 40: 60\right)$. Colorless oil, yield $4.07 \mathrm{~g}(75 \%) . \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2}(168.2 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 6.96-7.05 (m, 2H, 3- $\mathrm{H}_{\text {arom }}, 5-\mathrm{H}_{\text {arom }}$), 7.19-7.28 (m, 2H, 2- $\mathrm{H}_{\text {arom }}, 4-$ $\left.H_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=40.3\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 52.1(1 \mathrm{C}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), $115.4\left(\mathrm{~d}, J=21.3 \mathrm{~Hz}, 2 \mathrm{C}, \quad \mathrm{C}-3_{\text {arom }}, C-5_{\text {arom }}\right), 129.6$ (d, $\left.J=3.4 \mathrm{~Hz}, 1 \mathrm{C}, ~ C-1_{\text {arom }}\right), 130.8\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{C}, C-2_{\text {arom }}, C-6_{\text {arom }}\right)$, 162.0 (d, $J=241.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-4_{\text {arom }}$), 174.9 (1C, $\mathrm{C}=0$). MS (APCI): $m / z=169.0654$ (calcd 169.0659 for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{FO}_{2}$ [$\left.\mathrm{MH}^{+}\right]$). IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=2955(\mathrm{C}-\mathrm{H}), 1736(\mathrm{C}=\mathrm{O}), 1153\left(\mathrm{C}-\mathrm{F}_{\text {arom }}\right), 822\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.19. Methyl 2-cyclopropylacetate (13e) ${ }^{25}$

2-(Cyclopropyl)acetic acid $12 \mathrm{e}(2.43 \mathrm{~g}, 24.2 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(4 \mathrm{~mL})$. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.15 \mathrm{~mL})$ was added and the mixture was heated to reflux overnight. Water was added, the organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The combined organic layers were washed with saturated aqueous NaHCO_{3} and water. Then the organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was used in the next reaction step without further purification. Pale yellow oil, yield 1.23 g (45\%). $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2}(114.1 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.14-$
0.19 (m, 2H, CH 2 cycloprop), $0.52-0.57$ (m, 2H, CH 2 cycloprop), $1.02-$ $1.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cycloprop }}\right), 2.22\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.69(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=4.4\left(2 \mathrm{C}, \mathrm{CH}_{2 \text { cycloprop }}\right), 6.9$ ($1 \mathrm{C}, \mathrm{CH}_{\text {cycloprop }}$), $39.2\left(1 \mathrm{C}, \mathrm{CH}_{2}\right), 51.5\left(1 \mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 173.7(1 \mathrm{C}$, $\mathrm{C}=\mathrm{O}$). MS (APCI): $m / z=115.0772$ (calcd 115.0754 for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}$ $\left.\left[\mathrm{MH}^{+}\right]\right)$. IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2951(\mathrm{C}-\mathrm{H}), 1736(\mathrm{C}=0), 1169(\mathrm{C}-\mathrm{O})$.

5.1.20. 3-(4-Fluorophenyl)-4,5-dihydrofuran-2(3H)-one (14c)

Ester ${ }^{13} \mathrm{C}(2.72 \mathrm{~g}, 16.2 \mathrm{mmol})$ was dissolved in THF (146 mL) and the solution was cooled down to $-15^{\circ} \mathrm{C}$ (acetone/dry ice). 0.1 M LiHMDS (in THF, 18.4 mL) was added and the mixture was stirred at $-15^{\circ} \mathrm{C}$ for 30 min . Cyclic sulfate ($5.06 \mathrm{~g}, 40.7 \mathrm{mmol}$) was dissolved in THF (57 mL) and cooled to $-15^{\circ} \mathrm{C}$ simultaneously. The solution of the enolate of ${ }^{13} \mathrm{C}$ was transferred to the THF solution of cyclic sulfate via canula and the mixture was stirred for 2 h at $-15^{\circ} \mathrm{C}$. The mixture was warmed to rt , the solvent was removed in vacuo and ethanolic NaOH (146 mL ethanol/water $2: 1,3.27 \mathrm{~g}$ $\mathrm{NaOH})$ was added. The resulting solution was heated to reflux overnight. The pH value of the reaction mixture was then adjusted to pH 3 with $1 / 4$ concd $\mathrm{H}_{2} \mathrm{SO}_{4}$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (\varnothing 4.5 cm , length $14 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 90: 10$, fraction size 30 mL , $R_{f}=0.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 40: 60\right)$). Brown oil, yield 1.51 g (52\%). $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FO}_{2}(180.2 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.41$ (dddd, $J=12.8 / 10.7 / 9.6 / 8.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-H), 2.72$ (dddd, $J=12.8 / 9.0 / 6.6 /$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-H), 3.79$ (dd, $J=10.6 / 8.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-H), 4.34$ (td, $J=9.4 / 6.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-H), 4.48(\mathrm{td}, J=8.7 / 3.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.02-$ 7.07 (m, 2H, 3-Harom, 5-Harom), 7.24-7.28 (m, 2H, 2-Harom, 6$H_{\text {arom }}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=31.6(1 \mathrm{C}, \mathrm{C}-4), 44.7(1 \mathrm{C}, \mathrm{C}-3)$, 66.4 (1C, C-5), 115.5 and 115.8 (d, each $J=21.5 \mathrm{~Hz}, 2 \mathrm{C}, C-3_{\text {arom }}$, $C-5_{\text {arom }}$), 129.5 and 130.9 (d, each $J=8.1 \mathrm{~Hz}, 2 C, C-2_{\text {arom }}, C-6_{\text {arom }}$), 132.2 ($\mathrm{d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{C}, C-1_{\text {arom }}$), 162.2 ($\mathrm{d}, J=246.7 \mathrm{~Hz}, 1 \mathrm{C}, C-4_{\text {arom }}$), 177.1 ($1 \mathrm{C}, \mathrm{C}=\mathrm{O}$). MS (APCI): $m / z=181.0653$ (calcd 181.0659 for $\left.\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FO}_{2}\left[\mathrm{MH}^{+}\right]\right) . \mathrm{IR}: \tilde{v}\left[\mathrm{~cm}^{-1}\right]=1762(\mathrm{C}=\mathrm{O}), 1219\left(\mathrm{C}-\mathrm{F}_{\text {arom }}\right)$, 1150 (C-O), 814 (C-H ${ }_{\text {arom }}$).

5.1.21. 3-Cyclopropyl-4,5-dihydrofuran-2(3H)-one (14e)

13e ($1.02 \mathrm{~g}, 8.9 \mathrm{mmol}$) was dissolved in THF (70 mL) and cooled down to $-15^{\circ} \mathrm{C}$ (acetone/dry ice). 1 M LiHMDS solution (in THF, 10.5 mL) was added and the mixture was stirred at $-15^{\circ} \mathrm{C}$ for 30 min . Cyclic sulfate ($2.88 \mathrm{~g}, 23.2 \mathrm{mmol}$) was dissolved in THF (36 mL) and cooled to $-15^{\circ} \mathrm{C}$ simultaneously. Deprotonated 13e was then transferred to the solution of cyclic sulfate in THF via canula and the mixture was stirred for 2 h at $-15^{\circ} \mathrm{C}$. After warming to rt, THF was removed in vacuum and ethanolic NaOH (76 mL ethanol/water $2: 1,1.75 \mathrm{~g} \mathrm{NaOH}$) was added. The mixture was heated to reflux overnight. The pH value of the reaction mixture was adjusted to pH 3 by addition of $1 / 4$ concd $\mathrm{H}_{2} \mathrm{SO}_{4}$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude product was immediately (!) used in the next reaction step without further purification. Brown oil, yield 665.5 mg (59\%). $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2}$ $(126.2 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.21-0.34(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2 \text { cycloprop }}$), $0.37-0.47$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2 \text { cycloprop }}$), $0.50-0.56$ ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{CH}_{2 \text { cycloprop }}$), $0.64-0.72$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2 \text { cycloprop }}$), $1.17-1.28$ ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{CH}_{\text {cycloprop }}$), 2.01-2.08 (m, 1H, 4-H), 2.10-2.21 (m, 1H, 4-H), 2.24-2.33 (m, 1H, 3-H), 4.14-4.23 (m, 1H, 5-H), 4.29-4.40 (m, $1 \mathrm{H}, 5-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.3\left(1 \mathrm{C}, \mathrm{CH}_{2 \text { cycloprop }}\right), 3.6$ (1C, $\mathrm{CH}_{\text {2cycloprop }}$), 11.3 (1C, $\mathrm{CH}_{\text {cycloprop }}$), 28.4 (1C, C-4), 61.9 (1C, $\mathrm{C}-5), \quad 66.4(1 \mathrm{C}, \quad \mathrm{C}-3), 178.6(1 \mathrm{C}, \quad \mathrm{C}=0$). MS (APCI): m/ $z=127.0766$ (calcd 127.0754 for $\left.\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{2} \quad\left[\mathrm{MH}^{+}\right]\right)$. IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=2970(\mathrm{C}-\mathrm{H}), 1709(\mathrm{C}=\mathrm{O}), 1184(\mathrm{C}-\mathrm{O})$.
5.1.22. N-[3,5-Bis(trifluoromethyl)benzyl]-2-(4-fluorophenyl)-4-hydroxybutanamide (15c)

14c ($1.05 \mathrm{~g}, 0.6 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{AlCl}_{3}(1.51 \mathrm{~g}, 1.1 \mathrm{mmol})$ was added. The mixture was cooled to $0^{\circ} \mathrm{C}$ and 3,5-bis(trifluoromethyl)benzylamine $\mathbf{1 0 a} \quad(4.10 \mathrm{~g}$, 16.8 mmol) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise. The reaction mixture was then stirred at rt overnight. The transformation was stopped by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Then water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. Combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography ($\emptyset 2 \mathrm{~cm}$, length $14 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ EtOAc $40: 60$, fraction size $10 \mathrm{~mL}, R_{f}=0.27\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 40: 60\right)$). Colorless solid, mp $91^{\circ} \mathrm{C}$, yield 565 mg (23\%). Purity (HPLC): $91.0 \%, t_{\mathrm{R}}=19.53 \mathrm{~min}$. $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{7} \mathrm{NO}_{2}(423.3 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.99$ (dtd, $\left.J=14.3 / 6.5 / 4.5 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), \quad 2.34-2.47 \quad(\mathrm{~m}, \quad 1 \mathrm{H}$, $\left.\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.57-3.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.66-3.76(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 4.46 (dd $J=15.8 / 6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}$), 4.59 (dd $J=15.8 / 6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}$), 6.06 (s, broad, $1 \mathrm{H}, \mathrm{NH}$), $7.04(\mathrm{t}$, $\left.J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, 3-H_{\text {arom }}, 5-H_{\text {arom }}\right), 7.30(\mathrm{dd}, J=8.6 / 5.3 \mathrm{~Hz}, 2 \mathrm{H}, 2-$ $H_{\text {arom }}, 6-H_{\text {arom }}$), $7.57\left(\mathrm{~s}, 2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}\right), 7.74$ (s, 1H, 4'$\left.H_{\text {arom }}\right)$, a signal for the OH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=35.8\left(1 \mathrm{C}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 42.6(1 \mathrm{C}$, $\left.\mathrm{PhCH}_{2} \mathrm{NH}\right), 49.0\left(1 \mathrm{C}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 60.4\left(1 \mathrm{C}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, 116.0 (d, $\left.J=21.6 \mathrm{~Hz}, 2 \mathrm{C}, C-3_{\text {arom }}, C-5_{\text {arom }}\right), 121.3$ (hept, $J=3.9 \mathrm{~Hz}$, $1 \mathrm{C}, C-4_{\text {arom }}^{\prime}$), 123.1 (q, $J=272.8 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CF}_{3}$), 127.2 (2C, C-2' ${ }_{\text {arom }}$, $\left.C-6^{\prime}{ }_{\text {arom }}\right), 129.4\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{C}, ~ C-2_{\text {arom }}, C-6_{\text {arom }}\right), 131.9(\mathrm{q}$, $\left.J=33.8 \mathrm{~Hz}, 2 C, C-3^{\prime}{ }_{\text {arom }}, C-5^{\prime}{ }_{\text {arom }}\right), 135.1\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{C}, C-1_{\text {arom }}\right)$, 141.0 (1C, C-1 ${ }_{\text {arom }}^{\prime}$), 161.2 (d, $\left.J=241.5 \mathrm{~Hz}, 1 \mathrm{C}, C-4_{\text {arom }}\right), 173.9$ (1C, $\mathrm{C}=\mathrm{O}$). MS (APCI): $m / z=424.1169$ (calcd 424.1142 for $\left.\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{7} \mathrm{NO}_{2}\left[\mathrm{MH}^{+}\right]\right)$. IR: $\tilde{v} \quad\left[\mathrm{~cm}^{-1}\right]=3294(\mathrm{O}-\mathrm{H}), 1651 \quad(\mathrm{C}=\mathrm{O})$, 1277 ($\mathrm{C}-\mathrm{F}_{\text {arom }}$), 1169 (C-O).

5.1.23. 2-(4-Fluorophenyl)- N -[3-fluoro-5-
 (trifluoromethyl)benzyl]-4-hydroxybutanamide (15d)

$\mathbf{1 4 c}(313 \mathrm{mg}, 1.7 \mathrm{mmol})$ and 3-fluoro-5-(trifluoromethyl)benzylamine 10b $(340 \mathrm{mg}, 1.8 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ $(15 \mathrm{~mL}) . \mathrm{Na}_{2} \mathrm{CO}_{3}(184 \mathrm{mg}, 1.7 \mathrm{mmol})$ was added and the mixture was heated to reflux overnight. After cooling to rt , water was added and the pH value was adjusted to pH 3 with 1 M aqueous HCl . The separated aqueous layer was extracted with EtOAc ($3 \times$). Combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography ($\varnothing 4 \mathrm{~cm}$, length $15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 40: 60$, fraction size $30 \mathrm{~mL}, \quad R_{f}=0.23$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ EtOAc 40:60)). Colorless solid, mp $98^{\circ} \mathrm{C}$, yield 147 mg (23\%). Purity (HPLC): 93.6\%, $t_{\mathrm{R}}=20.2 \mathrm{~min} . \quad \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{5} \mathrm{NO}_{2}$ $(373.3 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.92-2.01(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.33-2.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.54-3.61(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.65-3.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 4.36-4.49$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}$), 5.93 (s , broad, $1 \mathrm{H}, \mathrm{NH}$), 7.03 ($\mathrm{t}, J=8.6 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 3-H_{\text {arom }}, 5-H_{\text {arom }}\right), 7.13-7.19\left(\mathrm{~m}, 3 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 4^{\prime}-H_{\text {arom }}, 6^{\prime}-\right.$ $H_{\text {arom }}$), 7.28 (dd, $\left.J=8.7 / 5.3 \mathrm{~Hz}, 2 \mathrm{H}, 2-H_{\text {arom }}, 6-H_{\text {arom }}\right)$, a signal for the OH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=35.9\left(1 \mathrm{C}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 42.7\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{NH}\right)$, $49.11\left(1 \mathrm{C}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 60.5\left(1 \mathrm{C}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 111.8$ (1C, $C-4^{\prime}$ arom) 116.0 (d, $\left.J=21.4 \mathrm{~Hz}, 2 \mathrm{C}, C-3_{\text {arom }}, C-5_{\text {arom }}\right), 117.7$ (d, $J=22.0 \mathrm{~Hz}, \quad 1 \mathrm{C}, \quad C-2^{\prime}{ }_{\text {arom }}$), $119.5 \quad$ (quint, $J=4.5 \mathrm{~Hz}, 1 \mathrm{C}, \quad C-$ 6^{\prime} arom $), 129.5$ (d, $\left.J=8.1 \mathrm{~Hz}, 2 \mathrm{C}, \quad C-2_{\text {arom }}, C-6_{\text {arom }}\right), 135.1$ (d, $\left.J=3.4 \mathrm{~Hz}, 1 \mathrm{C}, C-1_{\text {arom }}\right), 142.2\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{C}, C-1^{\prime}\right.$ arom), 162.2 (d, $J=246.8 \mathrm{~Hz}, 1 \mathrm{C}, C-3^{\prime}{ }_{\text {arom }}$), $173.8(1 \mathrm{C}, C=0)$, signals for C-atom of the $C F_{3}$ group, for $C-4$ and $C-5^{\prime}$ are not seen in the spectrum. MS (APCI): $m / z=374.1177$ (calcd 374.1174 for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{5} \mathrm{NO}_{2}$
$\left.\left[\mathrm{MH}^{+}\right]\right)$. IR: $\mathrm{v}\left[\mathrm{cm}^{-1}\right]=3298(\mathrm{O}-\mathrm{H}), 1643(\mathrm{C}=\mathrm{O}), 1223(\mathrm{C}-\mathrm{F})$, $1169\left(\mathrm{C}-\mathrm{F}_{\text {arom }}\right)$.

5.1.24. N-[3,5-Bis(trifluoromethyl)benzyl]-2-cyclopropyl-4hydroxybutanamide (15e)

$\mathbf{1 4 e}(303 \mathrm{mg}, 2.4 \mathrm{mmol})$ and (3,5-bis(trifluoromethyl)benzylamine $10 \mathbf{a}(500 \mathrm{mg}, 2.1 \mathrm{mmol})$ were dissolved in deuterochloroform (3 mL); 1,2,4-triazole ($34 \mathrm{mg}, \quad 0.5 \mathrm{mmol}$) and diazabicycloundecene ($62 \mathrm{mg}, 0.4 \mathrm{mmol}$) were added and the mixture was stirred at rt for 2 d . Afterwards the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography ($\square 4 \mathrm{~cm}$, length $17 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ $40: 60 \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ EtOAc $25: 75$, fraction size $30 \mathrm{~mL}, \quad R_{f}=0.25$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 40: 60\right)$). Pale yellow solid, mp $92^{\circ} \mathrm{C}$, yield 54 mg (7.1\%). Purity (HPLC): 90.1\%, $t_{\mathrm{R}}=19.95 \mathrm{~min} . \quad \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{NO}_{2}$ $(369.3 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.24-0.30(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2 \text { cycloprop }}\right), 0.63-0.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \text { cycloprop }}\right), 0.97-1.07(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{\text {cycloprop }}$), 1.62-1.73 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 1.95-2.06 (m, 2H, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 3.76 ($\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 4.56 (dd, $\left.J=15.7 / 6.0 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{PhCH}_{2} \mathrm{NH}\right), \quad 4.66(\mathrm{dd}, J=15.8 / 6.0 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{NH}$), 6.43 (s , broad, $1 \mathrm{H}, \mathrm{NH}$), $7.75\left(\mathrm{~s}, 2 \mathrm{H}, 2-\mathrm{H}_{\text {arom }}, 6-\mathrm{H}_{\text {arom }}\right)$, $7.79\left(1 \mathrm{H}, 4-\mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta \quad[\mathrm{ppm}]=4.4 \quad(1 \mathrm{C}$, $\left.\mathrm{CH}_{2 \text { cycloprop }}\right), 4.6\left(1 \mathrm{C}, \mathrm{CH}_{2 \text { cycloprop }}\right), 13.7\left(1 \mathrm{C}, \mathrm{CH}_{\text {cycloprop }}\right), 34.7(1 \mathrm{C}$, $\left.\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 42.5\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 49.4\left(1 \mathrm{C}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 60.7$ $\left(1 \mathrm{C}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right.$), 121.3 (hept, $J=3.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-4_{\text {arom }}$), $127.2-$ 127.5 (m, 2C, C- $\left.2_{\text {arom }}, C-6_{\text {arom }}\right), 131.9$ (q, $J=33.4 \mathrm{~Hz}, 2 \mathrm{C}, C-3_{\text {arom }}$, $\left.C-5_{\text {arom }}\right), 141.3\left(1 \mathrm{C}, C-1_{\text {arom }}\right), 175.9(1 \mathrm{C}, C=0)$, signals for the two C-atoms of the $C F_{3}$ groups are not seen in the spectrum. MS (APCI): $m / z=370.1252$ (calcd 370.1236 for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{NO}_{2}\left[\mathrm{MH}^{+}\right]$). IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3306(\mathrm{O}-\mathrm{H}), 2931(\mathrm{C}-\mathrm{H}), 1647(\mathrm{C}=\mathrm{O}), 1281$ $\left(\mathrm{C}-\mathrm{F}_{\text {arom }}\right), 1122(\mathrm{C}-\mathrm{O})$.

5.1.25. 1-[3,5-Bis(trifluoromethyl)benzyl]-3-(4-fluorophenyl)-5-hydroxy-pyrrolidin-2-one (16c) ${ }^{18}$

15c ($104 \mathrm{mg}, 0.3 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and Dess-Martin-periodinane ($118 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added. The reaction mixture was stirred at rt for 60 min . The transformation was stopped by addition of diethyl ether (5 mL) and 1.3 M NaOH (2 mL) and the mixture was stirred for 10 min . The organic layer was separated, washed with 1.3 M NaOH and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography ($\emptyset 2 \mathrm{~cm}$, length $12 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ EtOAc 40:60, fraction size $\left.10 \mathrm{~mL}, R_{f}=0.81\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 40: 60\right)\right)$. Colorless solid, yield 75 mg (73%). $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{7} \mathrm{NO}_{2}$ ($421.3 \mathrm{~g} / \mathrm{mol}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ [ppm] $=2.35-2.50\left(\mathrm{~m}, 1 \mathrm{H}, \quad \mathrm{NCH}(\mathrm{OH}) \mathrm{CH}_{2}\right), 2.87-2.97(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCH}(\mathrm{OH}) \mathrm{CH}_{2}\right), 3.72$ (dd, $J=9.8 / 6.4 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{NCOCHPh}$), 3.98 (dd, $J=9.2 / 8.1 \mathrm{~Hz}, \quad 0.5 \mathrm{H}, \mathrm{NCOCHPh}), 4.42(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 0.5 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 4.51\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 4.84(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $\left.0.5 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 4.93\left(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 5.17-5.21(\mathrm{~m}$, $\left.\left.0.5 \mathrm{H}, \mathrm{NCH}(\mathrm{OH}) \mathrm{CH}_{2}\right)\right), 5.21-5.24\left(\mathrm{~m}, 0.5 \mathrm{H}, \mathrm{NCH}(\mathrm{OH}) \mathrm{CH}_{2}\right), 7.03(\mathrm{t}$, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 3-H_{\text {arom }}, 5-H_{\text {arom }}\right), 7.16(\mathrm{dd}, J=8.7 / 5.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ $\left.H_{\text {arom }}, 6-H_{\text {arom }}\right), 7.32\left(\mathrm{dd}, J=8.5 / 5.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-H_{\text {arom }}, 6-H_{\text {arom }}\right)$, 7.75-7-83 (m, $\left.3 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 4^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}\right)$, a signal for the OH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ [ppm] $=37.5\left(0.5 \mathrm{C}, \mathrm{NCH}(\mathrm{OH}) \mathrm{CH}_{2}\right), 38.3\left(0.5 \mathrm{C}, \mathrm{NCH}(\mathrm{OH}) \mathrm{CH}_{2}\right), 43.5$ (1C, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 44.9$ ($0.5 \mathrm{C}, \mathrm{NCOCHPh}$), 46.1 ($0.5 \mathrm{C}, \mathrm{NCOCHPh}$), 81.0 ($\left.0.5 \mathrm{C}, \mathrm{NCH}(\mathrm{OH}) \mathrm{CH}_{2}\right), 81.2\left(0.5 \mathrm{C}, \mathrm{NCH}(\mathrm{OH}) \mathrm{CH}_{2}\right), 115.7$ and 115.9 (d, each $J=8.8 \mathrm{~Hz}, 2 \mathrm{C}, C-3_{\text {arom }}, C-5_{\text {arom }}$), 121.6-121.9 (m, 1C, C4^{\prime} arom $), 128.3$ and 128.4 (q , each $J=3.7 \mathrm{~Hz}, 2 \mathrm{C}, C-2_{\text {arom }}, C-6_{\text {arom }}$), 129.3 and 129.5 (d, each $J=8.4 \mathrm{~Hz}, 2 C, C-2^{\prime}$ arom, $C-6^{\prime}{ }_{\text {arom }}$), 132.1 (q, $J=33.4 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{\prime} 3^{\prime}{ }_{\text {arom }}, C-5^{\prime}{ }_{\text {arom }}$), 134.2 (d, $J=3.1 \mathrm{~Hz}, 0.5 \mathrm{C}, C-$ $1_{\text {arom }}$), 134.5 (d, $\left.J=3.1 \mathrm{~Hz}, 0.5 \mathrm{C}, C-1_{\text {arom }}\right), 139.4(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{C}$, $C-1^{\prime}{ }_{\text {arom }}$), 162.1 (d, $\left.J=245.3 \mathrm{~Hz}, 1 \mathrm{C}, C-4_{\text {arom }}\right), 174.6(\mathrm{~d}, J=91.2 \mathrm{~Hz}$,

1 C , NCOCHPh), signals for the C -atoms of the CF_{3} groups are not seen in the spectrum.
5.1.26. N-[3,5-Bis(trifluoromethyl)benzyl]-4-(3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)butanamide (4a)

8a ($108 \mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved in THF (20 mL) and 11a ($312 \mathrm{mg}, 0.9 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(874 \mathrm{mg}, 6.3 \mathrm{mmol})$ were added. The mixture was heated to reflux overnight. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and the solvent was removed under reduced pressure. The crude product was coated on silica gel and then purified by flash column chromatography twice ($\emptyset 4 \mathrm{~cm}$, length $14 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) EtOAc $\quad 50: 50+1 \% \quad$ ethyldimethylamine \rightarrow EtOAc $\quad 100+1 \%$ ethyldimethylamine \rightarrow acetone $100+1 \%$ ethyldimethylamine, fraction size 30 mL ; $\emptyset 4 \mathrm{~cm}$, length $15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ 94.2:5:0.8, fraction size 30 mL ; $R_{f}=0.17\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}\right.$ 95:4.5:0.5)). Yellow oil, yield 118 mg (43\%). Purity (HPLC): 97.6\%, $t_{\mathrm{R}}=20.00 \mathrm{~min} . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}(514.5 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ [ppm] $=1.85-1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.91-1.96$ (m, 2H, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.06\left(\mathrm{td}, \mathrm{J}=13.8 / 4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.35(\mathrm{t}$, $\left.J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.47-2.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.54-2.58$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), $2.80\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right.$), 2.82-2.88 (m, $2 \mathrm{H}, \mathrm{NCH}_{2}$), $3.89\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 4.53(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{NH}$), 7.07-7.19 (m, 4H, $\mathrm{H}_{\text {arom }}$), 7.87 ($\mathrm{s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{\text {arom }}$), 7.90 (s, $2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}$), a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta \quad[\mathrm{ppm}]=22.2$ (1C, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 29.1 (1C, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 33.3 (1C, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 35.7 (2C, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.8(1 \mathrm{C}, \mathrm{PhCH} 2 \mathrm{NH}), 48.8\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, 57.6 ($1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 58.5 ($1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 72.4 (1C, ArCO), $120.5\left(\mathrm{~m}, 1 \mathrm{C}, \mathrm{C}-4_{\text {arom }}^{\prime}\right), 124.8$ ($1 \mathrm{C}, \mathrm{C}-8_{\text {arom }}$), 125.88 and 125.94 (2C, C-5 arom, $C-6_{\text {arom }}$), 127.7 ($\mathrm{m}, 2 \mathrm{C}, C-2^{\prime}{ }_{\text {arom }}, C-6^{\prime}{ }_{\text {arom }}$), 128.5 (1C, $C-7$ arom $), 131.4\left(\mathrm{q}, J=33.2 \mathrm{~Hz}, 2 \mathrm{C}, C-3^{\prime}{ }_{\text {arom }}, C-5^{\prime}{ }_{\text {arom }}\right.$), 133.6 (1C, C$4 \mathrm{a}_{\text {arom }}$), 141.2 ($1 \mathrm{C}, \mathrm{C}-8 \mathrm{a}_{\text {arom }}$), 142.4 (1C, $\mathrm{C}^{-1}{ }^{\prime}$ arom), 174.3 (1C, $C=0$), signals for the C-atoms of the C_{3} groups are not seen in the spectrum. MS (APCI): $m / z=515.2161$ (calcd 515.2155 for $\left.\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]\right) . \mathrm{IR}: \tilde{v}\left[\mathrm{~cm}^{-1}\right]=1651(\mathrm{C}=\mathrm{O}), 1277(\mathrm{C}-\mathrm{F})$, 756, $683\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.
5.1.27. N-[3,5-Bis(trifluoromethyl)benzyl]-4-(3-methyl-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)butanamide (4b)

Spiropiperidine 8b ($410 \mathrm{mg}, 1.9 \mathrm{mmol}$) was dissolved in THF $(56 \mathrm{~mL})$ and $11 \mathrm{a}(787 \mathrm{mg}, 2.3 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.09 \mathrm{~g}$, 14.9 mmol) were added. The mixture was heated to reflux overnight. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and the solvent was removed under reduced pressure. The crude product was coated on silica gel and then purified by flash column chromatography twice ($\varnothing 4 \mathrm{~cm}$, length $14 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 50: 50+1 \%$ dimethylethylamine \rightarrow EtOAc $\quad 100+1 \% \quad$ ethyldimethylamine \rightarrow acetone $\quad 100+1 \%$ ethyldimethylamine, fraction size $30 \mathrm{~mL} ; R_{f}=0.17\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\left.\mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3} 95: 4.5: 0.5\right)$). The isolated product was recrystallized from methyl tert-butyl ether/diisopropyl ether 50:50. Pale yellow solid, mp $125^{\circ} \mathrm{C}$, yield 86 mg (9%). Purity (HPLC): 98%, $t_{\mathrm{R}}=21.35 \mathrm{~min} . \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}(528.5 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ [ppm] = $1.31\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.62(\mathrm{dd}, J=13.6 / 4.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 1.84\left(\mathrm{td}, J=13.5 / 4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 1.87-1.93$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.07 (dd, $J=14.3 / 2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$), $2.20\left(\mathrm{td}, J=13.2 / 4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.40-2.45 (m, 3H, NCH_{2}), 2.53 ($\mathrm{td}, \mathrm{J}=12.3 / 2.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCH}_{2}$), 2.60-2.69 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 2.72-2.81 ($\mathrm{m}, 2 \mathrm{H}$, NCH_{2}), 3.84-3.93 (m, 1H, $\mathrm{PhCH}_{2} \mathrm{CH}$), 4.53 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}$), 7.037.17 (m, 4H, $H_{\text {arom }}$), 7.87 (s, broad, $1 \mathrm{H}, 4^{\prime}-H_{\text {arom }}$), 7.88 (s, 2 H , $2^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}$), a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=20.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 22.5(1 \mathrm{C}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 33.5\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 34.0\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$,
36.6 (1C, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 38.3$ (2C, $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}, 41.8(1 \mathrm{C}, \mathrm{PhCH} 2 \mathrm{CH})$, $48.8\left(0.5 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 48.9 \quad\left(0.5 \mathrm{C}, ~ \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 57.7$ (1C, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 64.0 ($1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}$), 73.3 (1C, ArCO), 120.5 (hept, $J=3.9,1 \mathrm{C}, \mathrm{C}-4^{\prime}$ arom), 123.4 ($\mathrm{q}, J=270.6 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CF}_{3}$), 124.6 (1C, C$8_{\text {arom }}$), 125.8 and 125.9 (2C, C-5 arom, $C-6_{\text {arom }}$), 127.5-127.8 (m, 2C, $C-2^{\prime}{ }_{\text {arom }}, C-6^{\prime}{ }_{\text {arom }}$), 128.3 (1C, C-7 ${ }_{\text {arom }}$), 131.4 (q, J $=33.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}-$ $3^{\prime}{ }_{\text {arom, }}$ C-5 ${ }^{\prime}$ arom), 133.9 (1C, C-4a ${ }_{\text {arom }}$), 141.2 (1C, C- $1^{\prime}{ }_{\text {arom }}$), 142.5 (1C, $C-8 \mathrm{a}_{\text {arom }}$), 174.4 (1C, $C=0$). MS (APCI): $m / z=529.2268$ (calcd 529.2284 for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]$). IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=1643(\mathrm{C}=\mathrm{O})$, 1281 (C-F), 1120 (C-O), 756, 679 (C-H arom).

5.1.28. N-[3,5-Bis(trifluoromethyl)benzyl]-4-(6-methoxy-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)butanamide (4c)

Spiropiperidine 8c ($596 \mathrm{mg}, 2.6 \mathrm{mmol}$) was dissolved in THF $(88 \mathrm{~mL})$ and chlorobutanamide 11a ($1.05 \mathrm{~g}, 3.0 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($2.92 \mathrm{~g}, 21.0 \mathrm{mmol}$) were added. The mixture was heated to reflux overnight. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and the solvent was removed under reduced pressure. The crude product was coated on silica gel and then purified by flash column chromatography three times (\varnothing 3 cm , length 10 cm , cyclohexane/EtOAc 50:50 + 1\% ethyldimethylamine, fraction size 65 mL ; $\emptyset 4 \mathrm{~cm}$, length $15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} /$ NH_{3} 94.2:5:0.8, fraction size 30 mL ; $\emptyset 2 \mathrm{~cm}$, length $15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 94.2:5:0.8, fraction size $10 \mathrm{~mL} ; R_{f}=0.20,\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 95:4.5:0.5)). Pale yellow oil, yield 383 mg (28\%). Purity (HPLC): $96.3 \%, t_{\mathrm{R}}=21.70 \mathrm{~min} . \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}(544.5 \mathrm{~g} / \mathrm{mol})$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=1.84-1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.90-1.95 (m, 2H, N($\left.\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.03$ (td, $J=13.6 / 4.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.36\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.49-2.56(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.56-2.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.77(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.82-2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.87(\mathrm{t}$, $\left.J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \quad \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 4.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 6.65$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\text {arom }}$), 6.76 (dd, $J=8.7 / 2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\text {arom }}$), 7.06 (d, $\left.J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}_{\text {arom }}\right), 7.87\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{\text {arom }}\right), 7.90(\mathrm{~s}, 2 \mathrm{H}$, $\left.2^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}\right)$, a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=22.0\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 29.4 (1C, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 33.3 (1C, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 35.7 (2C, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.9\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 48.9\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 54.2\right.$ $\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 57.5\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 58.5\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 72.1(1 \mathrm{C}$, ArCO), 112.3 ($1 \mathrm{C}, \mathrm{C}-\mathrm{7}_{\text {arom }}$), 112.8 ($1 \mathrm{C}, \mathrm{C}-5_{\text {arom }}$), 120.5 (hept, $J=3.7 \mathrm{~Hz}, 1 \mathrm{C}, ~ C-4^{\prime}{ }_{\text {arom }}$), 123.4 (q, $\left.J=271.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CF}_{3}\right), 125.9$ (1C, C-8 arom), 127.6-127.9 (m, 2C, C-2' arom, C-6' ${ }_{\text {arom }}$), 131.4 (q, $J=33.6 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}-3^{\prime}{ }_{\text {arom }}, C^{\prime} 5^{\prime}{ }_{\text {arom }}$), 133.2 ($1 \mathrm{C}, \mathrm{C}-4 \mathrm{a}_{\text {arom }}$), 135.0 (1C, $C-8 \mathrm{a}_{\text {arom }}$), 142.4 ($1 \mathrm{C}, \mathrm{C}^{\prime} \mathbf{1}^{\prime}{ }_{\text {arom }}$), 158.0 ($1 \mathrm{C}, \mathrm{C}-6_{\text {arom }}$), 174.3 (1C, $C=0$). MS (APCI): $m / z=545.2258$ (calcd 545.2233 for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$ $\left.\left[\mathrm{MH}^{+}\right]\right) . \mathrm{IR}: \tilde{v}\left[\mathrm{~cm}^{-1}\right]=1651(\mathrm{C}=\mathrm{O}), 1277(\mathrm{C}-\mathrm{F}), 737,683\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.29. 4-(3,4-Dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)- N -[3-fluoro-5-(trifluoromethyl)benzyl]butanamide (4d)

Spiropiperidine 8a ($264 \mathrm{mg}, 1.3 \mathrm{mmol}$) was dissolved in THF (3 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. Then $\mathbf{1 1 b}$ (134 mg , 0.5 mmol) was added dropwise over 30 min and the mixture was warmed to rt and stirred for 2 d at $40^{\circ} \mathrm{C}$. Water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude product was coated on silica gel and then purified by flash column chromatography twice ($\varnothing 2 \mathrm{~cm}$, length 22 cm , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 84.2:15:0.8, fraction size 10 mL ; $\emptyset 2 \mathrm{~cm}$, length $14 \mathrm{~cm}, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 84.2:15:0.8, fraction size 10 mL ; $R_{f}=0.17\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}\right.$ 95:4.5:0.5)). Pale yellow oil, yield 19.3 mg (9.3\%). Purity (HPLC): 97.1\%, $t_{\mathrm{R}}=18.48 \mathrm{~min}$. $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}(464.5 \mathrm{~g} / \mathrm{mol})$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=1.83-$ $1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.91-1.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.05$ (td, $\left.J=13.5 / 4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.48-2.58 (m, 4H, NCH_{2}), $2.79(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$,

PhCH CH_{2}), 2.84 (d, broad, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$), 3.88 (t, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$), $4.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 7.06-7.20(\mathrm{~m}$, $4 \mathrm{H}, H_{\text {arom }}$), 7.34 (d, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 4^{\prime}-H_{\text {arom }}$), $7.45(\mathrm{~s}, 1 \mathrm{H}$, $\left.6^{\prime}-H_{\text {arom }}\right)$, a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=22.2\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.1(1 \mathrm{C}$, PhCH CH_{2}), $33.4\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 35.7\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.8$ (d, $\left.J=1.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 48.8\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 57.6(1 \mathrm{C}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $58.5\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 72.4$ (1C, ArCO), 111.0 (dq, $\left.J=25.2 / 3.9 \mathrm{~Hz}, \quad 1 \mathrm{C}, \quad C-4^{\prime}{ }_{\text {arom }}\right), 111.0 \quad\left(1 \mathrm{C}, \quad C-6_{\text {arom }}\right), 117.8$ (d, $J=22.3 \mathrm{~Hz}, 1 \mathrm{C}, ~ C-2^{\prime}{ }_{\text {arom) }}$) 119.7 (quint, $J=3.9 \mathrm{~Hz}, 1 \mathrm{C}, C-6^{\prime}{ }_{\text {arom }}{ }^{\text {(}}$), 124.8 ($1 \mathrm{C}, C-8_{\text {arom }}$), 125.9 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{C}, C-5_{\text {arom }}$), 128.5 (1C, C-7 arom), 133.6 ($1 \mathrm{C}, ~ C-4 \mathrm{a}_{\text {arom }}$), 141.2 ($1 \mathrm{C}, ~ C-8 \mathrm{a}_{\text {arom }}$), 143.7 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-1^{\prime}{ }_{\text {arom }}$), 162.6 (d, $J=247.1 \mathrm{~Hz}, 1 \mathrm{C}, ~ C-3^{\prime}{ }_{\text {arom }}$), 174.3 $\left(1 \mathrm{C}, \mathrm{C}=0\right.$), signals for the C -atom of the CF_{3} group and for $\mathrm{C}-5^{\prime}$ are not seen in the spectrum. MS (APCI): $m / z=465.2193$ (calcd 465.2160 for $\left.\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]\right)$. IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2924(\mathrm{C}-\mathrm{H})$, 1651 ($\mathrm{C}=\mathrm{O}$), 1230 ($\mathrm{C}-\mathrm{F}$), 1126 ($\mathrm{C}-\mathrm{F}_{\text {arom }}$), 1085 (C-O), 760, 698 ($\mathrm{C}-\mathrm{H}_{\text {arom }}$).

5.1.30. N-[3-Fluoro-5-(trifluoromethyl)benzyl]-4-(3-methyl-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)butanamide (4e)

Spiropiperidine $\mathbf{8 b}$ ($379 \mathrm{mg}, 1.7 \mathrm{mmol}$) was dissolved in THF $(55 \mathrm{~mL})$ and $\mathbf{1 1 b}(631 \mathrm{mg}, 2.1 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.99 \mathrm{~g}$, 14.5 mmol) were added. The mixture was heated to reflux overnight. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and the solvent was removed under reduced pressure. The crude product was coated on silica gel and then purified by flash column chromatography ($\varnothing 4 \mathrm{~cm}$, length $15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 50: 50+1 \%$ ethyldimethylamine, fraction size $30 \mathrm{~mL} ; R_{f}=0.21\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}\right.$ 95:4.5:0.5)). Colorless oil, yield 30 mg (3.5\%). Purity (HPLC): 97.7\%, $t_{\mathrm{R}}=19.84 \mathrm{~min}$. $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}(478.5 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=1.33$ (d, $\left.J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.67$ (dd, $\left.J=13.8 / 2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, 1.88 (td, $\left.J=11.5 / 2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 1.92-1.99$ ($\mathrm{m}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.13\left(\mathrm{dd}, \mathrm{J}=14.5 / 2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.24$ (td, $\left.J=13.3 / 4.5 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), \quad 2.37 \quad(\mathrm{t}, \quad J=7.2 \mathrm{~Hz}, \quad 2 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.52-2.63 (m, 4H, N($\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$), 2.64-2.73 (m, 2H, PhCH ${ }_{2} \mathrm{CH}$), 2.83-2.96 (m, 2H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.86-3.93 (m, 1H, $\left.\mathrm{PhCH}_{2} \mathrm{CH}\right), 4.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 7.04-7.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.35$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 4^{\prime}-H_{\text {arom }}$), $7.47\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime}-H_{\text {arom }}\right.$), a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: δ $[\mathrm{ppm}]=20.8 \quad\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 22.1 \quad\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.2 \quad(1 \mathrm{C}$, PhCH ${ }_{2} \mathrm{CH}$), $33.3\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 33.8\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 36.6$ (1C, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 38.1\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.8(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{C}$, $\left.\mathrm{PhCH}_{2} \mathrm{NH}\right), 48.8\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 57.6\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 64.1$ (1C, $\mathrm{PhCH}_{2} \mathrm{CH}$), 73.1 (1C, ArCO), 110.9 (dq, $J=25.3 / 4.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-$ 4^{\prime} arom $), 117.8\left(\mathrm{~d}, J=22.5 \mathrm{~Hz}, 1 \mathrm{C}, C-2^{\prime}{ }_{\text {arom }}\right.$), 119.7 (quint, $J=3.7,1 \mathrm{C}$, C- 6^{\prime} arom $), 124.5$ ($1 \mathrm{C}, \mathrm{C}-8_{\text {arom }}$), 125.9 and 126.0 ($2 \mathrm{C}, \mathrm{C}-5_{\text {arom }}, \mathrm{C}-6_{\text {arom }}$), 128.4 (1C, $C-7$ arom), 132.2 (qd, $J=33.0 / 8.2 \mathrm{~Hz}, C-5^{\prime}{ }_{\text {arom }}$), 133.9 (1C, $C-4 \mathrm{a}_{\text {arom }}$), 140.9 ($1 \mathrm{C}, C-8 \mathrm{a}_{\text {arom }}$), 143.7 ($\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{C}, C-1_{\text {arom }}^{\prime}$), 162.6 (d, $J=245.6 \mathrm{~Hz}, 1 \mathrm{C}, ~ C-3^{\prime}$), 174.2 ($1 \mathrm{C}, \mathrm{C}=0$), the signal for the C -atom of the CF_{3} group is not seen in the spectrum. MS (APCI): $m / z=479.2299$ (calcd 479.2316 for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]$). IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3245(\mathrm{~N}-\mathrm{H}), 2928(\mathrm{C}-\mathrm{H}), 1651(\mathrm{C}=\mathrm{O}), 1230(\mathrm{C}-\mathrm{F})$, 1169 ($\mathrm{C}-\mathrm{F}_{\text {arom }}$), 1085 ($\mathrm{C}-\mathrm{O}$), 756, $698\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.31. N-[3-Fluoro-5-(trifluoromethyl)benzyl]-4-(6-methoxy-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'yl)butanamide (4f)

Spiropiperidine 8c ($625 \mathrm{mg}, 2.7 \mathrm{mmol}$) was dissolved in THF $(92 \mathrm{~mL})$ and $\mathbf{1 1 b}(959 \mathrm{mg}, 3.2 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.99 \mathrm{~g}$, 21.7 mmol) were added. The mixture was heated to reflux overnight. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and the solvent was removed under reduced pressure. The crude product was coated on silica gel and then purified by flash column chromatography ($\varnothing 8 \mathrm{~cm}$, length
$10 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 50: 50+1 \%$ ethyldimethylamine fraction size $65 \mathrm{~mL} ; R_{f}=0.17\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}\right.$ 95:4.5:0.5)). Colorless oil, yield 356 mg (27\%). Purity (HPLC): $96.5 \%, t_{\mathrm{R}}=18.99 \mathrm{~min}$ $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}(494.5 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=1.68-$ $1.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.77-1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 1.90$ (td, $\left.J=13.8 / 4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.31-2.44\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.65(\mathrm{t}$, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 2.67-2.75 (m, 2H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.65 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.76\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 4.35(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{NH}$), 6.54 (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\text {arom }}$), 6.65 (dd, $J=8.7$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\text {arom }}$), 6.96 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}_{\text {arom }}$), 7.24 (d, $\left.J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 4^{\prime}-H_{\text {arom }}\right), 7.36\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime}-H_{\text {arom }}\right)$, a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta[\mathrm{ppm}]=22.2\left(1 \mathrm{C}, \quad \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.3(\mathrm{~d}, \quad J=20.3 \mathrm{~Hz}, 1 \mathrm{C}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 33.4\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 35.9\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.8$ $\left(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 48.9\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 54.2$ (1C, $\left.\mathrm{OCH}_{3}\right), 57.8\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 58.4\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 72.3(1 \mathrm{C}$, ArCO), 110.7 (dq, $J=24.8 / 3.7 \mathrm{~Hz}, 1 \mathrm{C}, ~ C-4{ }^{\prime}{ }_{\text {arom }}$), 112.2 ($1 \mathrm{C}, \mathrm{C}^{\prime} 7_{\text {arom }}$), 112.8 (1C, $C-5_{\text {arom }}$), 117.8 (d, $J=22.4 \mathrm{~Hz}, 1 \mathrm{C}, ~ C-2^{\prime}{ }_{\text {arom }}$), 119.7 (quint, $J=3.7 \mathrm{~Hz}, 1 \mathrm{C}, ~ C-6{ }_{\text {arom }}$), 125.9 (1C, C- garam), 133.4 (1C, C-4a arom), 134.9 (1C, C-8a arom), 143.7 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{C}, C-1^{\prime}{ }_{\text {arom }}$), 158.0 (1C, C- $6_{\text {arom }}$), 162.6 ($\mathrm{d}, \mathrm{J}=245.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}^{-3}{ }^{\prime}{ }_{\text {arom }}$), 174.3 (1C, C=0), signals for the C -atom of the CF_{3} group and for $\mathrm{C}-5^{\prime}$ are not seen in the spectrum. MS (APCI): $m / z=495.2254$ (calcd 495.2265 for $\left.\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{MH}^{+}\right]\right)$. IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3245(\mathrm{~N}-\mathrm{H}), 2924(\mathrm{C}-\mathrm{H})$, $1651(\mathrm{C}=\mathrm{O}), 1501\left(\mathrm{OCH}_{3}\right), 1230(\mathrm{C}-\mathrm{F}), 1169\left(\mathrm{C}-\mathrm{F}_{\text {arom }}\right), 1085$ (C-O), 810, $698\left(\mathrm{C}-\mathrm{H}_{\text {arom }}\right)$.

5.1.32. 4-(3,4-Dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)- N-[3,5-bis(trifluoromethylbenzyl)]-2-(4fluorophenyl)butanamide ($\mathbf{4 g}$, WMS-46-12)

$8 \mathbf{8}(224 \mathrm{mg}, 1.1 \mathrm{mmol})$ was dissolved in THF (6 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. 11c ($195 \mathrm{mg}, 0.40 \mathrm{mmol}$) solved in THF $(4 \mathrm{~mL})$ was added dropwise over 30 min . Then the mixture was warmed to rt and stirred for 2 d at $40^{\circ} \mathrm{C}$. Then water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude product was coated on silica gel and then purified by flash column chromatography ($\varnothing 2 \mathrm{~cm}$, length $15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3} 95: 4.5: 0.5$, fraction size $10 \mathrm{~mL}, R_{f}=0.11$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3} 95: 4.5: 0.5\right)$). Pale yellow solid, $\mathrm{mp} 85^{\circ} \mathrm{C}$, yield 104.5 mg (43%). Purity (HPLC): $96.8 \%, t_{\mathrm{R}}=21.24 \mathrm{~min} . \mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}$ $(608.6 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=1.94-1.99(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.00-2.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.11$ (td, $J=13.13 /$ 4.07, $\left.2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.36-2.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.60-2.77$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{NCH}_{2}$), $2.80\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right.$), 3.04 (t , broad, $\left.J=14.0 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), \quad 3.65 \quad(\mathrm{dd}, \quad J=8.5 / 6.4 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.89\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 4.41(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 4.59\left(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 7.06(\mathrm{t}$, $\left.J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-H_{\text {arom }}, 5^{\prime}-H_{\text {arom }}\right), 7.09-7.20\left(\mathrm{~m}, 4 \mathrm{H}, 5-\mathrm{H}_{\text {arom }}, 6-\right.$ $H_{\text {arom }}, 7-H_{\text {arom }}, 8-H_{\text {arom }}$), 7.39 (dd, $J=8.7 / 5.3 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 6^{\prime}-$ $H_{\text {arom }}$), $7.70\left(\mathrm{~s}, 2 \mathrm{H}, 2^{\prime \prime}-H_{\text {arom }}, 6^{\prime \prime}-H_{\text {arom }}\right), 7.80\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}_{\text {arom }}\right)$, a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ $[\mathrm{ppm}]=28.8\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 29.0\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 35.0(2 \mathrm{C}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.7\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 48.7\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 48.9(1 \mathrm{C}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.2\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 55.6\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 58.7$ ($1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 71.6 ($1 \mathrm{C}, \mathrm{ArCO}$), 115.2 (d, $J=10.7 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}-3^{\prime}{ }_{\text {arom }}$, $C-5^{\prime}{ }_{\text {arom }}$), 120.4 (hept, $J=4.0 \mathrm{~Hz}, 1 \mathrm{C}, \quad C-4^{\prime \prime}{ }_{\text {arom }}$), 123.3 (q, $J=273.3 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CF}_{3}$), 124.6 ($1 \mathrm{C}, \mathrm{C}-8_{\text {arom }}$), 126.0 and 126.2 ($2 \mathrm{C}, \mathrm{C}-$ $5_{\text {arom }}, C-6_{\text {arom }}$), $127.1-127.3$ ($\mathrm{m}, 2 \mathrm{C}, C-2^{\prime \prime}{ }_{\text {arom, }} C-6^{\prime \prime}{ }_{\text {arom }}$), 128.6 (1 C , $C-7$ arom $), 129.1$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{\prime} \mathbf{2}^{\prime}$ arom, $C-6^{\prime}{ }^{\prime}{ }_{\text {arom }}$), 131.3 (q, $J=33.3 \mathrm{~Hz}, 2 \mathrm{C}, ~ C-3^{\prime \prime}{ }_{\text {arom }}, C-5^{\prime \prime}{ }_{\text {arom }}$), 133.6 (1C, C-4a $\mathrm{a}_{\text {arom }}$), 135.3 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{C}, ~ C-1^{\prime}{ }_{\text {arom }}$), 140.3 (1C, C- $1^{\prime \prime}$ arom $), 142.3$ ($1 \mathrm{C}, ~ C-8 \mathrm{a}_{\text {arom }}$), 162.3 ($\mathrm{d}, \mathrm{J}=244.3 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-4^{\prime}{ }_{\text {arom }}$), 174.0 (1C, $\mathrm{C}=\mathrm{O}$). MS (APCI): $\mathrm{m} /$ $z=609.2361$ (calcd 609.2347 for $\left.\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]\right)$. IR: \tilde{v}
$\left[\mathrm{cm}^{-1}\right]=1655(\mathrm{C}=\mathrm{O}), 1277(\mathrm{C}-\mathrm{F}), 1130\left(\mathrm{C}-\mathrm{F}_{\text {arom }}\right), 756,683$ ($\mathrm{C}-\mathrm{H}_{\text {arom }}$).
5.1.33. N-[3,5-Bis(trifluoromethylbenzyl]-2-(4-fluorophenyl)-4-(3-methyl-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'yl)butanamide (4h)

8b ($246 \mathrm{mg}, 1.3 \mathrm{mmol}$) was dissolved in THF (6 mL) and the solution was cooled to $0^{\circ} \mathrm{C} .11 \mathrm{c}(180 \mathrm{mg}, 0.37 \mathrm{mmol})$ dissolved in THF (4 mL) was added dropwise over 30 min . Then the mixture was warmed to rt and stirred for 2 d at $40^{\circ} \mathrm{C}$. Then water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude product was coated on silica gel and then purified by flash column chromatography ($\varnothing 2 \mathrm{~cm}$, length $15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 95:4.5:0.5, fraction size 10 mL ; $R_{f}=0.09\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}\right.$ 95:4.5:0.5). Pale yellow solid, mp $85^{\circ} \mathrm{C}$, yield 102 mg (44\%). Purity (HPLC): $97.3 \%, t_{\mathrm{R}}=22.21 \mathrm{~min}$. $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}(622.6 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=1.31$ (d, $\left.J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64-1.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 1.92$ (td, $\left.J=13.9 / 4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 1.99-2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, 2.09-2.19 (m, 1H, N($\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$), 2.25 (td, $J=13.5 / 4.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.35-2.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.55-2.63(\mathrm{~m}, 2 \mathrm{H}$, NCH_{2}), 2.61-2.71 (m, 2H, PhCH 2 CH), 2.72-2.86 (m, 2H, NCH $)_{2}$, 2.90-3.06 (m, 2H, NCH_{2}), 3.64 (dd, $J=8.5 / 6.4 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 3.84-3.93 (m, $1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}$), 4.43 (d, $J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}$), 4.58 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}$), $7.03-7.09$ (m, $2 \mathrm{H}, 3^{\prime}-\mathrm{H}_{\text {arom }}, 5^{\prime}-\mathrm{H}_{\text {arom }}$), 7.09-7.19 (m, 4H, 5- $\mathrm{H}_{\text {arom }}, 6-\mathrm{H}_{\text {arom }}$, 7$H_{\text {arom }}, 8-H_{\text {arom }}$), $7.40\left(d d, J=8.8 / 5.3 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}\right)$, 7.70 (s, 2H, $\left.2^{\prime \prime}-H_{\text {arom }}, 6^{\prime \prime}-H_{\text {arom }}\right), 7.80\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime \prime}-H_{\text {arom }}\right)$, a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ $[p p m]=20.6\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 29.1\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 33.3(1 \mathrm{C}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 36.5\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 37.6\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.7$ (1C, $\left.\mathrm{PhCH}_{2} \mathrm{NH}\right), 48.7\left(0.5 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 48.8\left(0.5 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, $49.0\left(0.5 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.1\left(0.5 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.3$ (1C, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $55.8\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 64.3\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 72.6$ (1C, ArCO), 115.1 (d, J=20.2 Hz, 2C, C-3 ${ }^{\prime}{ }_{\text {arom }}, C-5^{\prime}{ }_{\text {arom }}$), 120.4 (hept, $\left.J=3.9 \mathrm{~Hz}, 1 \mathrm{C}, C^{\prime \prime}{ }^{\prime \prime}{ }_{\text {arom }}\right), 123.3\left(\mathrm{q}, J=273.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CF}_{3}\right), 124.4(1 \mathrm{C}$, $\left.C-8_{\text {arom }}\right), 125.9$ and 126.1 (2C, C-5 arom, $C-6_{\text {arom }}$), 127.2 (2C, C-2" arom, $C-6^{\prime \prime}{ }_{\text {arom }}$), 128.4 (1C, C-7 arom), 129.0 (d, J=8.0 Hz, 2C, C-2 ${ }_{\text {arom }}{ }^{\prime}$, C $6^{\prime}{ }_{\text {arom }}$), 131.3 ($\mathrm{q}, J=33.0 \mathrm{~Hz}, 2 \mathrm{C}, C-3^{\prime \prime}{ }_{\text {arom }}, C-5^{\prime \prime}{ }_{\text {arom }}$), 133.9 (1C, C$4 \mathrm{a}_{\text {arom }}$), 136.4 ($\mathrm{d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}^{\prime} 1_{\text {arom }}$), 140.4 (1C, C-8a $\mathrm{a}_{\text {arom }}$), 142.3 (1C, $C-1^{\prime \prime}{ }_{\text {arom }}$), 162.2 (d, $J=250.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-4^{\prime}{ }_{\text {arom }}$), 174.0 (1C, $C=0$). MS (APCI): $m / z=623.2498$ (calcd 623.2503 for $\left.\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]\right)$. IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2978(\mathrm{C}-\mathrm{H}), 1651(\mathrm{C}=\mathrm{O})$, 1277 (C-F), 1172 ($\mathrm{C}-\mathrm{F}_{\text {arom }}$), 1130 (C—O).

5.1.34. N -[3,5-Bis(trifluoromethyl)benzyl]-2-(4-fluorophenyl)-4-(6-methoxy-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)butanamide (4i, WMS-46-09)

8c ($200 \mathrm{mg}, 0.86 \mathrm{mmol}$) was dissolved in THF (6 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. 11c ($147 \mathrm{mg}, 0.30 \mathrm{mmol}$) dissolved in THF (4 mL) was added dropwise over 30 min . Then the mixture was warmed to r and stirred for 2 d at $40^{\circ} \mathrm{C}$. Then water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude product was coated on silica gel and then purified by flash column chromatography ($\varnothing 2 \mathrm{~cm}$, length $17 \mathrm{~cm}, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 95:4.5:0.5, fraction size 10 mL ; $R_{f}=0.14\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3} 95: 4.5: 0.5\right)$. The product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then purified by preparative HPLC (Method 2). Yellow solid, $\mathrm{mp} 88^{\circ} \mathrm{C}$, yield 6.2 mg (3.2\%). Purity (HPLC): $95.4 \%, t_{\mathrm{R}}=21.18 \mathrm{~min} . \mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{3}(638.6 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=1.92-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.04-$ $2.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.38-2.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.66-$ $2.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.78\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.80-$
2.95 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{NCH}_{2}$), 3.03-3.17 (m, 3H, NCH2), 3.66 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.87\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right)$, $4.40\left(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 4.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{NH}\right), 6.66\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\text {arom }}\right), 6.77(\mathrm{dd}, J=8.7 / 2.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 7-H_{\text {arom }}\right), 7.01-7.12\left(\mathrm{~m}, 3 \mathrm{H}, 8-\mathrm{H}_{\text {arom }}, 3^{\prime}-H_{\text {arom }}, 5^{\prime}-H_{\text {arom }}\right), 7.39$ (dd, $J=8.6 / 5.4 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}$), $7.69\left(\mathrm{~s}, 2 \mathrm{H}, 2^{\prime \prime}-H_{\text {arom }}, 6^{\prime \prime}-\right.$ $\left.H_{\text {arom }}\right), 7.80\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime \prime}-H_{\text {arom }}\right)$, a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=28.6$ (1C, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 29.2 ($1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$), $34.9\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.7$ (1C, $\left.\mathrm{PhCH}_{2} \mathrm{NH}\right), 48.8\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.0\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.1$ (1C, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $54.2\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 55.5\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 58.7$ ($1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 71.3 (1C, ArCO), 112.4 (1C, $\mathrm{C}-7$ arom $), 113.0$ ($1 \mathrm{C}, \mathrm{C}-$ $5_{\text {arom }}$), 115.2 (d, J = $21.9 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}-3^{\prime}{ }_{\text {arom }}, C-5^{\prime}{ }_{\text {arom }}$), 120.2-120.6 (m, $1 \mathrm{C}, \mathrm{C}-4^{\prime \prime}$ arom $), 123.3$ ($\mathrm{q}, J=269.4 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{CF}_{3}$), 125.7 (1C, $\mathrm{C}-8_{\text {arom }}$), $127.2\left(\mathrm{q}, J=3.4 \mathrm{~Hz}, 2 \mathrm{C}, C-2^{\prime \prime}{ }_{\text {arom }}, C-6^{\prime \prime}\right.$ arom $), 129.1(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{C}$, $C-2^{\prime}{ }_{\text {arom }}, C-6^{\prime}{ }_{\text {arom }}$), 131.3 (q, J=33.2 Hz, 2C, C-3" ${ }_{\text {arom, }}{ }^{\prime} C-5^{\prime \prime}{ }_{\text {arom }}$), 135.1 (1C, C-1 ${ }_{\text {arom }}$), 142.3 ($1 \mathrm{C}, \mathrm{C}-1^{\prime \prime}{ }^{\text {arom }}$), 158.2 ($1 \mathrm{C}, \mathrm{C}-6_{\text {arom }}$), 162.3 ($\mathrm{d}, J=243.5 \mathrm{~Hz}, 1 \mathrm{C}, C-4^{\prime}{ }_{\text {arom }}$), $173.8(1 \mathrm{C}, \mathrm{C}=0$), signals for the $\mathrm{C}-$ atoms $C-4 \mathrm{a}$ and C -8a are not seen in the spectrum. MS (APCI): $\mathrm{m} /$ $z=639.2463$ (calcd 639.2452 for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{MH}^{+}\right]$). IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=2932(\mathrm{C}-\mathrm{H}), 1659(\mathrm{C}=\mathrm{O}), 1277(\mathrm{C}-\mathrm{F}), 1169\left(\mathrm{C}-\mathrm{F}_{\text {arom }}\right)$, 1126 (C-O).

5.1.35. 4-(3,4-Dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)-N-2-(4-fluorophenyl)-[3-fluoro-5-
 (trifluoromethylbenzyl)]butanamide (4j)

8a ($300 \mathrm{mg}, 1.48 \mathrm{mmol}$) was dissolved in THF (6 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. 11d ($247 \mathrm{mg}, 0.57 \mathrm{mmol}$) dissolved in THF (4 mL) was added dropwise over 30 min . Then the mixture was warmed to rt and stirred for 2 d at $40^{\circ} \mathrm{C}$. Then water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude product was coated on silica gel and then purified by flash column chromatography ($\varnothing 2 \mathrm{~cm}$, length $15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3} 95: 4.5: 0.5$, fraction size $10 \mathrm{~mL}, R_{f}=0.16$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3} 95: 4.5: 0.5\right)$). The product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and finally purified by preparative HPLC (Method 2). Pale yellow oil, yield 9.7 mg (3.0\%). Purity (HPLC): 97.9\%, $t_{\mathrm{R}}=20.53 \mathrm{~min} . \mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}(558.6 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ [ppm] = 1.91-2.01 (m, 2H, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.00-2.08(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 2.11 ($\left.\mathrm{td}, \mathrm{J}=13.8 / 4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.35-2.46$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 2.62-2.76 (m, 2H, NCH_{2}), $2.80(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{PhCH} \mathrm{CH}_{2}\right), 2.81-2.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.05(\mathrm{t}$, broad, $J=13.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.64\left(\mathrm{dd}, \mathrm{J}=8.4 / 6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.89(\mathrm{t}$, $\left.J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 4.36\left(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 4.49$ (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}$), $7.07\left(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}_{\text {arom }}, 5^{\prime}-\right.$ $H_{\text {arom }}$), 7.08-7.20 (m,5H, 5- $H_{\text {arom }}, 6-H_{\text {arom }}, 7-H_{\text {arom }}, 8-H_{\text {arom }}, 2^{\prime \prime}-$ $H_{\text {arom }}$), 7.25 (s, 1H, $6^{\prime \prime}-H_{\text {arom }}$), 7.29 (d, $\left.J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime \prime}-H_{\text {arom }}\right), 7.40$ (dd, $J=8.8 / 5.3 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\text {arom }}, 6^{\prime}-\mathrm{H}_{\text {arom }}$), a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=28.8(1 \mathrm{C}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $29.0\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 35.0\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.7$ (1C, $\left.\mathrm{PhCH}_{2} \mathrm{NH}\right), 48.8\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 48.9\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.2$ (1C, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $55.6\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 58.7\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right)$, 71.8 (1C, ArCO), 110.8 (dd, $J=25.2 / 3.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-4^{\prime \prime}{ }_{\text {arom }}$), 115.1 (d, $\left.J=21.6 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}-3^{\prime}{ }_{\text {arom }}, C-5^{\prime}{ }_{\text {arom }}\right), 117.5\left(\mathrm{~d}, J=22.9 \mathrm{~Hz}, 1 \mathrm{C}, C-2^{\prime \prime}{ }_{\text {arom }}\right.$), 119.3 (quint, $J=4.1 \mathrm{~Hz}, 1 \mathrm{C}, C-6{ }^{\prime \prime}{ }_{\text {arom }}$), 124.6 (1C, $C-8$ arom), 126.0 (1C, C- $6_{\text {arom }}$), 126.3 ($1 \mathrm{C}, ~ C-5_{\text {arom }}$), 128.6 (1C, C- $7_{\text {arom }}$), 129.1 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{C}, C-2^{\prime}{ }_{\text {arom }}, C-6^{\prime}{ }_{\text {arom }}$), 132.2 (qd, $J=26.1 / 8.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-$ $5^{\prime \prime}{ }_{\text {arom }}$), 133.7 ($1 \mathrm{C}, C-4 \mathrm{a}_{\text {arom }}$), 136.3 ($1 \mathrm{C}, \mathrm{C}^{\prime} 1^{\prime}{ }_{\text {arom }}$), 141.0 (1C, C$8 \mathrm{a}_{\text {arom }}$), 143.5 ($\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{C}, C-1^{\prime \prime}{ }_{\text {arom }}$), 162.3 (d, $J=244.9 \mathrm{~Hz}, 1 \mathrm{C}$, $C-3^{\prime \prime}{ }_{\text {arom }}$), 162.5 ($\mathrm{d}, J=247.6 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-4^{\prime}{ }_{\text {arom }}$), 173.9 (1C, $\mathrm{C}=0$), the signal for the C -atom of the CF_{3} group is not seen in the spectrum. MS (APCI): $m / z=559.2392$ (calcd 559.2378 for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}$ $\left.\left[\mathrm{MH}^{+}\right]\right)$. IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2970(\mathrm{C}-\mathrm{H}), 1651(\mathrm{C}=\mathrm{O}), 1227(\mathrm{C}-\mathrm{F}), 1169$ ($\mathrm{C}-\mathrm{F}_{\text {arom }}$), 1126 ($\mathrm{C}-\mathrm{O}$).
5.1.36. 2-(4-Fluorophenyl)- N-[3-fluoro-5-trifluoromethylbenzyl]-4-(3-methyl-3,4-dihydrospiro[[2] benzopyran-1,4'-piperidin]-1'-yl)butanamide (4k)
$\mathbf{8 b}(260 \mathrm{mg}, 1.19 \mathrm{mmol})$ was dissolved in THF (6 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. 11d ($176 \mathrm{mg}, 0.40 \mathrm{mmol}$) dissolved in THF (4 mL) was added dropwise over 30 min . Then the mixture was warmed to rt and stirred for 2 d at $40^{\circ} \mathrm{C}$. Then water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude product was coated on silica gel and then purified by flash column chromatography ($\square 2 \mathrm{~cm}$, length $15 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 95:4.5:0.5, fraction size 10 mL ; $\left.R_{f}=0.16\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3} 95: 4.5: 0.5\right)\right)$. Pale yellow solid, mp $92^{\circ} \mathrm{C}$, yield 43 mg (19\%). Purity (HPLC): $91.1 \%, t_{\mathrm{R}}=21.19 \mathrm{~min}$ $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}(572.6 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=1.33(\mathrm{~d}$, $\left.J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.71-1.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 1.98$ (td, $\left.J=13.9 / 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.05-2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, 2.18-2.25 (m, 1H, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.30(\mathrm{td}, J=13.7 / 4.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.39-2.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.60-2.73(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{CH}\right), 2.74-2.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.89-3.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, 3.10-3.21 (m, 2H, $\left.\mathrm{NCH}_{2}\right), \quad 3.66 \quad(\mathrm{dd}, \quad J=8.5 / 6.4 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 3.85-3.93 (m, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 4.36(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 4.50\left(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 7.02-7.06(\mathrm{~m}$, $\left.1 \mathrm{H}, 7-H_{\text {arom }}\right), 7.05\left(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}_{\text {arom }}, 5^{\prime}-H_{\text {arom }}\right), 7.09-7.14$ $\left(\mathrm{m}, 3 \mathrm{H}, 5-H_{\text {arom }}, 6-H_{\text {arom }}, 8-H_{\text {arom }}\right), 7.16\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\right.$ $\left.H_{\text {arom }}\right), 7.26\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime \prime}-H_{\text {arom }}\right), 7.28\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{~Hz}, 4^{\prime \prime}-H_{\text {arom }}\right)$, 7.39 (dd, $\left.J=8.7 / 5.4 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}\right)$, a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ [ppm] $=20.6 \quad\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 29.2 \quad\left(1 \mathrm{C}, \quad \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 33.8 \quad(1 \mathrm{C}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 36.6\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 38.1\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.7$ (1C, $\left.\mathrm{PhCH}_{2} \mathrm{NH}\right), 48.7\left(0.5 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 48.8\left(0.5 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, $49.0 \quad\left(0.5 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.2 \quad\left(0.5 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.6 \quad(1 \mathrm{C}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 56.2\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 64.1\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}\right), 73.1$ (1C, ArCO), 110.7, (dq, $J=25.1 / 3.9 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-4^{\prime \prime}{ }_{\text {arom }}$), 115.0 (d, $\left.J=22.2 \mathrm{~Hz}, 2 \mathrm{C}, C-3^{\prime}{ }_{\text {arom }}, C-5^{\prime}{ }_{\text {arom }}\right), 117.4(\mathrm{~d}, J=21.3 \mathrm{~Hz}, 1 \mathrm{C}, C-$ $2^{\prime \prime}$ arom), 119.3 (quint, $J=3.9 \mathrm{~Hz}, 1 \mathrm{C}, C-6^{\prime \prime}{ }_{\text {arom }}$), 124.5 (1C, $C-8_{\text {arom }}$), 125.8 and 126.9 (2C, $C-5_{\text {arom }}, C-6_{\text {arom }}$), 128.4 (1C, $\left.C-7_{\text {arom }}\right), 129.1$ (d, J=8.0 Hz, 2C, C-2' ${ }_{\text {arom, }}{ }^{\prime} C^{\prime} 6^{\prime}{ }_{\text {arom }}$), 133.9 (1C, C-4a arom), 135.8 (1C, $C-1^{\prime}{ }_{\text {arom }}$), $141.0\left(1 \mathrm{C}, C-8 \mathrm{a}_{\text {arom }}\right), 143.6$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{C}, C-$ $1^{\prime \prime}{ }_{\text {arom }}$), 162.2 (d, $J=244.4 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}^{2 \prime}{ }^{\prime \prime}{ }_{\text {arom }}$), 162.5 (d, $J=247.5 \mathrm{~Hz}$, $\left.1 \mathrm{C}, C-4_{\text {arom }}^{\prime}\right), 174.3(1 \mathrm{C}, \mathrm{C}=\mathrm{O})$, signals for the C -atom of the CF_{3} group and for $C-5^{\prime \prime}$ are not seen in the spectrum. MS (APCI): m/ $z=573.2558$ (calcd 573.2535 for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]$). IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=2928(\mathrm{C}-\mathrm{H}), 1651(\mathrm{C}=\mathrm{O}), 1227(\mathrm{C}-\mathrm{F}), 1126(\mathrm{C}-\mathrm{O})$.

5.1.37. 2-(4-Fluorophenyl)- N-[3-fluoro-5-(trifluoromethyl)-benzyl]-4-(6-methoxy-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)butanamide (41)

$\mathbf{8 c}(304 \mathrm{mg}, 1.3 \mathrm{mmol})$ was dissolved in THF (6 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. $11 \mathbf{d}(214 \mathrm{mg}, 0.49 \mathrm{mmol})$ dissolved in THF $(4 \mathrm{~mL})$ was added dropwise over 30 min . Then the mixture was warmed to rt and stirred for 2 d at $40^{\circ} \mathrm{C}$. Then water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude product was coated on silica gel and then purified by flash column chromatography ($\varnothing 2 \mathrm{~cm}$, length $15 \mathrm{~cm}, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 95:4.5:0.5, fraction size 10 mL ; $\left.R_{f}=0.23\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3} 95: 4.5: 0.5\right)\right)$ and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yellow oil, yield 44 mg (5.7\%). Purity (HPLC): 82.1%, $t_{\mathrm{R}}=20.52 \mathrm{~min} . \mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}(588.6 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ [ppm] = 1.91-2.00 (m, 2H, N($\left.\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.09(\mathrm{td}, J=13.2 / 4.3 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.36-2.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.65-2.73(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.77\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.78-2.96(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.02-3.14\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.64(\mathrm{t}, J=7.41 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.87\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right)$,
4.35 (d, $\left.J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \quad \mathrm{PhCH}_{2} \mathrm{NH}\right), 4.49$ (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{NH}\right), 6.66\left(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-H_{\text {arom }}\right), 6.77(\mathrm{dd}, J=8.7 / 2.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 7-H_{\text {arom }}\right), 7.04\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-H_{\text {arom }}\right), 7.08(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.3^{\prime}-H_{\text {arom }}, 5^{\prime}-H_{\text {arom }}\right), 7.16\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{\text {arom }}\right), 7.25\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime \prime}-\right.$ $\left.H_{\text {arom }}\right), 7.29\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime \prime}-H_{\text {arom }}\right), 7.40$ (dd, $J=8.6 / 5.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}\right)$, a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=29.2\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 29.4(1 \mathrm{C}$, PhCH CH_{2}), $35.9\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.7\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 48.8(1 \mathrm{C}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.1\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.6\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 54.2$ $\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 56.2\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 58.4\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 72.2(1 \mathrm{C}$, ArCO $), 110.7$ (dq, $J=25.0 / 3.8 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-4^{\prime \prime}$ arom $), 112.2$ (1C, $\mathrm{C}-7$ arom $)$, $112.8\left(1 \mathrm{C}, ~ C-5_{\text {arom }}\right), 115.0\left(\mathrm{~d}, J=22.5 \mathrm{~Hz}, 2 \mathrm{C}, C-3^{\prime}{ }_{\text {arom }}, C-5^{\prime}{ }_{\text {arom }}\right)$, $117.4\left(\mathrm{~d}, J=22.6 \mathrm{~Hz}, 1 \mathrm{C}, C-2^{\prime \prime}\right.$ arom), 119.3 (quint, $J=3.4 \mathrm{~Hz}, 1 \mathrm{C}, C-$ $6^{\prime \prime}$ arom $), 125.9\left(1 \mathrm{C}, C-8_{\text {arom }}\right), 129.1\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{C}, C-2^{\prime}{ }_{\text {arom }}, C-6^{\prime}{ }_{\text {arom }}\right)$, 132.1 (qd, J = 33.2/8.4 Hz, 1C, C-5" ${ }_{\text {arom }}$), 133.4 (1C, C-4a arom), 134.9 (1C, $\left.C-8 \mathrm{a}_{\text {arom }}\right), 135.8\left(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{C}, C-1^{\prime}{ }_{\text {arom }}\right), 143.6(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{C}, C-1^{\prime \prime}$ arom $), 158.0\left(1 \mathrm{C}, C-6_{\text {arom }}\right), 162.1\left(\mathrm{~d}, J=244.5 \mathrm{~Hz}, 1 \mathrm{C}, C-3^{\prime \prime}\right.$ arom $)$, $162.5\left(\mathrm{~d}, J=247.6 \mathrm{~Hz}, 1 \mathrm{C}, C-4^{\prime}{ }_{\text {arom }}\right), 174.3(1 \mathrm{C}, C=0)$, the signal for the C-atom of the CF_{3} group is not seen in the spectrum. MS (APCI): m/ $z=589.2497$ (calcd 589.2484 for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}$ [$\left.\mathrm{MH}^{+}\right]$). IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=2924(\mathrm{C}-\mathrm{H}), 1647(\mathrm{C}=\mathrm{O}), 1226(\mathrm{C}-\mathrm{F}), 1169\left(\mathrm{C}-\mathrm{F}_{\text {arom }}\right)$, 1126 (C-O).

5.1.38. 4-[6-(Benzyloxy)-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl]-2-(4-fluorophenyl)- N -[3-fluoro-5(trifluoromethyl)benzyl)]]butanamide (4m)

$\mathbf{8 e}(59 \mathrm{mg}, 0.19 \mathrm{mmol})$ and bromide $\mathbf{1 1 d}(40 \mathrm{mg}, 0.09 \mathrm{mmol})$ were dissolved in DMF (4 mL). Diisopropylethylamine (21 mg , 0.16 mmol) and tetrabutylammonium iodide ($20 \mathrm{mg}, 0.05 \mathrm{mmol}$) were added and the reaction mixture was heated under microwave irradiation for 60 min at $203^{\circ} \mathrm{C}$, 38 psi and 150 W . Then 10% aqueous NaHCO_{3} was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (\varnothing 2 cm , length $17 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 95:4.5:0.5, fraction size $\left.10 \mathrm{~mL}, R_{f}=0.18\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3} 95: 4.5: 0.5\right)\right)$. Yellow oil, yield 17 mg (27\%). Purity (HPLC): $49.9 \%, t_{\mathrm{R}}=23.67 \mathrm{~min} \mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}$ $(664.7 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=1.90-1.97(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.03-2.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.36-2.44(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.61-2.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.68-2.73(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 2.75\left(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.78-2.85(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 2.99-3.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}), 3.63-3.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, $3.85\left(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \quad \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 4.34(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{NH}\right), 4.48(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} N \mathrm{NH}), 5.04(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 6.73\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\text {arom }}\right), 6.83(\mathrm{dd}, J=8.6 / 2.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 7-\mathrm{H}_{\text {arom }}\right), 7.03-7.04\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}_{\text {arom }}\right), 7.03-7.12\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\right.$ $\left.H_{\text {arom }}, 5^{\prime}-H_{\text {arom }}\right), 7.14\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime \prime}-H_{\text {arom }}\right), 7.24\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime \prime}-H_{\text {arom }}\right)$, 7.27-7.31 (m, 1H, $\left.4^{\prime \prime}-H_{\text {arom }}\right), 7.32-7.36\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}\right)$, 7.35-7.42 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}^{\prime \prime \prime}$ arom $)$, a signal for the NH proton is not seen in the spectrum. MS (APCI): $m / z=665.2766$ (calcd 665.2797 for $\left.\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{MH}^{+}\right]\right)$. IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2924(\mathrm{C}-\mathrm{H}), 1655(\mathrm{C}=\mathrm{O})$, 1227 (C-F), 1126 ($\mathrm{C}-\mathrm{F}_{\text {arom }}$).

5.1.39. 2-(4-Fluorophenyl)- N-[3-fluoro-5-(trifluoromethyl)-benzyl]-4-(6-hydroxy-3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)butanamide (4n)

4 m was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.8 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{w} / \mathrm{w}$, $22 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added. The mixture was stirred under H_{2}-atmosphere in a hydrogenation apparatus (1 bar) for 1 h . The reaction mixture was then filtered over Celite ${ }^{\circledR}$ and the eluent was concentrated in vacuo. The resulting crude product was purified by flash column chromatography ($\square 1 \mathrm{~cm}$, length $18 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 95:4.5:0.5, fraction size $5 \mathrm{~mL}, R_{f}=0.05\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 95:4.5:0.5)). Brown oil, yield 5.2 mg (48\%). Purity
(HPLC): $80.3 \%, t_{\mathrm{R}}=20.39 \mathrm{~min} \mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}(574.6 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=1.79-1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 1.96(\mathrm{td}$, $\left.J=13.4 / 4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.30-2.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, 2.35-2.42 (m, 3H, NCH $), 2.69\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 2.71-$ $2.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.58\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.83(\mathrm{t}$, $\left.J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 4.38\left(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 4.44$ (d, $\left.J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 6.49\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\text {arom }}\right)$, 6.60 (dd, $J=8.5 / 2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-H_{\text {arom }}$), 6.95 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ $\left.H_{\text {arom }}\right), 7.05\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-H_{\text {arom }}, 5^{\prime}-H_{\text {arom }}\right), 7.16$ (d, $\left.J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime \prime}-H_{\text {arom }}\right), 7.25-7.30\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime}-H_{\text {arom }}, 6^{\prime \prime}-H_{\text {arom }}\right)$, 7.39 (dd, $J=8.7 / 5.4 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}$), signals for the NH and OH protons are not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta[\mathrm{ppm}]=29.4\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 29.9\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 36.13(1 \mathrm{C}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 36.14\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.7\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 48.8$ (1C, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.1\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.7\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, $56.4\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 58.4\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 72.5$ (1C, ArCO), 110.7 (dq, $J=24.9 / 4.0 \mathrm{~Hz}, 1 \mathrm{C}, C-4^{\prime \prime}$ arom $), 113.3$ (1C, C-7 arom), 114.3 (1C, $C-5_{\text {arom }}$), 114.9 (d, $\left.J=22.0 \mathrm{~Hz}, 2 \mathrm{C}, C-3^{\prime}{ }_{\text {arom }}, C-5^{\prime}{ }_{\text {arom }}\right), 117.4$ (d, $J=22.5 \mathrm{~Hz}, 1 \mathrm{C}, ~ C-2^{\prime \prime}{ }_{\text {arom }}$), 119.3 (quint, $J=3.9 \mathrm{~Hz}, 1 \mathrm{C}, C-6^{\prime \prime}{ }_{\text {arom }}$), 125.9 ($1 \mathrm{C}, ~ C-8_{\text {arom }}$), 129.1 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{C}, C-2^{\prime}{ }_{\text {arom, }}{ }^{\prime} C-6^{\prime}{ }_{\text {arom }}$), 132.3 (1C, C-4a arom $), 134.8$ (1C, C-8a arom $), 135.9(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{C}$, $C-1^{\prime}{ }_{\text {arom }}$), 143.6 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{C}, C-1^{\prime \prime}{ }_{\text {arom }}$), 155.3 (1C, C-6 arom), 162.1 (d, $J=244.5 \mathrm{~Hz}, 1 \mathrm{C}, ~ C-3^{\prime \prime}{ }_{\text {arom }}$), 162.5 (d, $J=248.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}-$ 4^{\prime} arom $), 174.4(1 \mathrm{C}, \mathrm{C}=\mathrm{O})$, signals for the C -atom of the CF_{3} group and for $\mathrm{C}-5^{\prime \prime}$ are not seen in the spectrum. MS (APCI): m/ $z=575.2336$ (calcd 575.2328 for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}$ [$\left.\mathrm{MH}^{+}\right]$). IR: \tilde{v} $\left[\mathrm{cm}^{-1}\right]=2928(\mathrm{C}-\mathrm{H}), 1643(\mathrm{C}=\mathrm{O}), 1227(\mathrm{C}-\mathrm{F}), 1126\left(\mathrm{C}-\mathrm{F}_{\text {arom }}\right)$.
5.1.40. N-[3,5-Bis(trifluoromethyl)benzyl]-2-cyclopropyl-4-(3,4-dihydrospiro[[2]benzopyran-1,4'-piperidin]-1'-yl)butanamide (40, WMS-46-14)

8a ($70 \mathrm{mg}, 0.34 \mathrm{mmol}$) and bromide $\mathbf{1 5 e}$ ($61 \mathrm{mg}, 0.14 \mathrm{mmol}$) were solved in DMF (6 mL). Diisopropylethylamine (39 mg , 0.30 mmol) and tetrabutylammonium iodide ($27 \mathrm{mg}, 0.07 \mathrm{mmol}$) were added and the reaction mixture was heated under microwave irradiation for 60 min at $203^{\circ} \mathrm{C}$, 38 psi and 150 W . Then 10% aqueous NaHCO_{3} was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography twice ($\emptyset 1 \mathrm{~cm}$, length $28 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3} 96.5: 3: 0.5$, fraction size 5 mL ; Ø 1 cm , length $22 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3}$ 96.5:3:0.5, fraction size $\left.5 \mathrm{~mL} ; R_{f}=0.08\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{3} 96.5: 3: 0.5\right)\right)$. Yellow oil, yield 26 mg (34\%). Purity (HPLC): 93.9\%, $t_{\mathrm{R}}=21.86 \mathrm{~min}$. $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}(554.6 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ [ppm] $=0.25$ (dq, $J=9.4 / 5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 \text { cycloprop }}$), 0.35 (dq, $J=9.9 / 5.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{\text {2cycloprop }}$), 0.54 (tt, $J=9.2 / 4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 \text { cycloprop }}$), 0.65 (tt, $\left.J=9.4 / 4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 \text { cycloprop }}\right), 0.85-0.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, 0.92-1.01 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 0.97-1.04 (m, 1H, CH cycloprop), 1.60 (td, $J=9.3 / 4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $1.93-2.03(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.06-2.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.60-2.70(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 2.81\left(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH} \mathrm{CH}_{2}\right), 2.82-2.90(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 3.02-3.08\left(\mathrm{~m}, 2 \mathrm{H}, \quad \mathrm{NCH}_{2}\right), 3.90(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$), 4.49 (d, J=15.7 Hz, $\left.1 \mathrm{H}, \quad \mathrm{PhCH}_{2} \mathrm{NH}\right), 4.63$ (d, $\left.J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{NH}\right), 7.10-7.21\left(\mathrm{~m}, 4 \mathrm{H}, H_{\text {arom }}\right), 7.86(\mathrm{~s}, 1 \mathrm{H}$, $\left.4^{\prime}-H_{\text {arom }}\right), 7.91\left(\mathrm{~s}, 2 \mathrm{H}, 2^{\prime}-H_{\text {arom }}, 6^{\prime}-H_{\text {arom }}\right)$, a signal for the NH proton is not seen in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=2.7(1 \mathrm{C}$, $\left.\mathrm{CH}_{2 \text { cycloprop }}\right), 3.7$ ($1 \mathrm{C}, \mathrm{CH}_{2 \text { cycloprop }}$), 13.7 (1C, $\left.\mathrm{CH}_{\text {cycloprop }}\right), 29.0$ (1C, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 29.2\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 34.9\left(2 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 41.7$ (1C, $\left.\mathrm{PhCH}_{2} \mathrm{NH}\right), 48.6\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 49.0\left(1 \mathrm{C}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, $55.6\left(1 \mathrm{C}, ~ \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 58.8\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right), 120.5$ (hept, $\left.J=3.9 \mathrm{~Hz}, 1 \mathrm{C}, C-4_{\text {arom }}^{\prime}\right), 124.6\left(1 \mathrm{C}, \mathrm{C}-8_{\text {arom }}\right), 126.0$ and 126.3 (2C, $\left.C-5_{\text {arom }}, C-6_{\text {arom }}\right), 127.3-127.6$ (m, 2C, C- $\left.\mathbf{2}^{\prime}{ }_{\text {arom, }}, C-6^{\prime}{ }_{\text {arom }}\right), 128.6$ (1C, C-7 ${ }_{\text {arom }}$), 133.7 (1C, C-4a arom), 135.5 (1C, C- $1^{\prime}{ }_{\text {arom }}$), 142.5 (1C, $\left.C-8 \mathrm{a}_{\text {arom }}\right), 208.6(1 \mathrm{C}, \mathrm{C}=0$), signals for the C -atoms of the ArCO
group, the $C F_{3}$ groups, for $C-3^{\prime}$ and $C-5^{\prime}$ are not seen in the spectrum. MS (APCI): $m / z=555.2455$ (calcd 555.2441 for $\left.\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{MH}^{+}\right]\right)$. IR: $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2920(\mathrm{C}-\mathrm{H}), 1647(\mathrm{C}=\mathrm{O})$, 1276 (C-F), 1169 (C-F $\mathrm{F}_{\text {arom }}$), 1126 (C-O).

5.2. Pharmacology

5.2.1. Radioligand CCR2 binding assay

5.2.1.1. Materials. $\quad\left[{ }^{125} \mathrm{I}\right]-\mathrm{CCL} 2 \quad(81.4 \mathrm{GBq} / \mu \mathrm{mol}(2200 \mathrm{Ci} / \mathrm{m}-$ mol)) was purchased from Perkin-Elmer (Waltham, MA). INCB3344 was synthesized as described previously. ${ }^{26}$ Tango CCR2-bla U2OS cells stably expressing human CCR2 were obtained from Invitrogen (Carlsbad, CA).
5.2.1.2. Cell culture and membrane preparation. U2OS cells stably expressing the human CCR2 (Invitrogen, Carlsbad, CA) were cultured in McCoys5a medium supplemented with 10% fetal calf serum, 2 mM glutamine, 0.1 mM non-essential amino acids (NEAAs), 25 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 1 mM sodium pyruvate, $100 \mathrm{IU} / \mathrm{mL}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, $100 \mu \mathrm{~g} / \mathrm{mL} \mathrm{G} 418,50 \mu \mathrm{~g} / \mathrm{mL}$ hygromycin, and $125 \mu \mathrm{~g} / \mathrm{mL}$ zeocin in a humidified atmosphere at $37^{\circ} \mathrm{C}$ and 5% CO_{2}. Cell culture and membrane preparation were performed as described previously. ${ }^{19}$
5.2.1.3. ${ }^{125}$ I-CCL2 binding assays. Binding assays were performed in a $100-\mu$ l reaction volume containing 50 mM Tris- HCl buffer (pH 7.4), $5 \mathrm{mM} \mathrm{MgCl}_{2}, 0.1 \%$ 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonic acid (CHAPS) and $15 \mu \mathrm{~g}$ of membrane protein at $37{ }^{\circ} \mathrm{C}$. Nonspecific binding was determined with $10 \mu \mathrm{M}$ INCB3344. Displacement assays were performed with $0.1 \mathrm{nM}{ }^{125} \mathrm{I}-\mathrm{CCL} 2$ using at least 6 concentrations of competing ligand for 150 min of incubation. The HP D300 digital dispenser from Tecan (Männedorf, Switzerland) was used to dispense the compounds in DMSO directly into the assay plate. Incubations were terminated by dilution with ice-cold 50 mM Tris- HCl buffer supplemented with 0.05% CHAPS and 0.5 M NaCl . Separation of bound from free radioligand was performed by rapid filtration through a 96 -well GF/B filter plate precoated with 0.25% polyethylenimine using a PerkinElmer Filtermate-harvester (PerkinElmer, Groningen, The Netherlands). Filters were washed 10 times with ice-cold wash buffer, and $25 \mu \mathrm{~L}$ of Microscint scintillation cocktail (PerkinElmer) was added to each well; the filterbound radioactivity was determined by scintillation spectrometry using the P-E 1450 Microbeta Wallac Trilux scintillation counter (PerkinElmer).
5.2.1.4. Data analysis. All experiments were analyzed using the nonlinear regression curve fitting program Prism 5 (GraphPad, San Diego, CA). For radioligand displacement data, K_{i} values were calculated from IC_{50} values using the Cheng and Prusoff equation. ${ }^{27}$

5.2.2. Functional CCR2 assays

5.2.2.1. Materials. Chem-1 cell line transfected with human CCR2 (ChemiSCREEN ${ }^{\text {тм }}$ CCR2B Calcium-Optimized FLIPR Cell Line, Merck Millipore) was used for the intracellular calcium flux assay. U2OS β-arrestin cell line transfected with murine CCR2 (930543C3, DiscoveRx Corporation, Ltd) was used for the β-arrestin recruitment assay. Chemicals and reagents were purchased from different commercial sources and of analytical grade.
5.2.2.2. Measurement of cellular calcium flux. Chem-1 cells transfected with human CCR2 were cultured in DMEM high glucose medium (supplemented by 10% FCS, 1 mM pyruvate, 15 mM

HEPES, $500 \mu \mathrm{~g} / \mathrm{mL}$ geniticine and non-essential amino acids (NEAA)). The cells were transferred into Optimem (supplemented by 5% FCS, $50 \mathrm{U} / \mathrm{mL}$ penicillin and $50 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin and NEAA) and seeded into 384 -well plates (μ CLEAR/black Greiner Bio One) at a density of 5000 cells $/ 25 \mu \mathrm{~L}$. Cells were incubated for approximately 24 h at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. Before the assay medium was removed and the cells were incubated with Fluo-4 solution ($25 \mu \mathrm{~L}$ Tyrode's solution containing $3 \mu \mathrm{M}$ Fluo- $4 \mathrm{AM}(1 \mathrm{mM}$ DMSO stock solution), $0.4 \mathrm{mg} / \mathrm{mL}$ brilliant black, 2.5 mM probenicid, 0.03% pluronic $\mathrm{F}-127$) for 60 min at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. The compounds were dissolved in DMSO with 10 mM stock concentration followed by further dilution with DMSO in $1 / 3.16$ steps. Required test solutions for the assay were obtained by dilution with Tyrode's solution containing $2 \mathrm{mM} \mathrm{CaCl} 2_{2}$ and $0.05 \% \mathrm{BSA}$. Compounds ($10 \mu \mathrm{~L}$ per well) were added and cells were incubated for 10 min at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. Then $20 \mu \mathrm{~L}$ of agonist solution (recombinant human CCL2 (PeproTech, 300-04) in Tyrode's solution with $0.05 \% \mathrm{BSA}$) were added. CCL2 was applied at EC_{50}, which was determined in an experiment prior to compound testing (approximately 5 nM). Fluorescence intensity (excitation: 485 nm , emission: 520 nm) was measured for 120 s in 1.0 s intervals by a proprietary fluorescence measuring device. The effect of each concentration was recorded four times. The mean values of the four experiments were used to generate one sigmoidal curve. IC_{50} values were fitted using a 4 parameter logistic function (Hill function).
5.2.2.3. $\boldsymbol{\beta}$-Arrestin recruitment assay. $\quad U 2 O S \beta$-arrestin cell line transfected with murine CCR2 were cultured in MEM Eagle medium (supplemented by 10% FCS, $50 \mathrm{U} / \mathrm{mL}$ penicilline, $50 \mu \mathrm{~g}$ / mL streptomycine, $250 \mu \mathrm{~g} / \mathrm{mL}$ hygromycine and $500 \mu \mathrm{~g} / \mathrm{mL}$ geniticine). The cells were transferred into Optimem (supplemented by 1% FCS, $50 \mathrm{U} / \mathrm{mL}$ penicilline and $50 \mu \mathrm{~g} / \mathrm{mL}$ streptomycine) and seeded into 384 -well plates (μ CLEAR/black Greiner Bio One) at a density of 2000 cells $/ 25 \mu \mathrm{~L}$. Cells were incubated for approximately 24 h at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. The compounds were dissolved in DMSO with 10 mM stock concentration followed by further dilution with DMSO in $1 / 3.16$ steps. Required test solutions for the assay were obtained by dilution with Tyrode's solution containing 2 mM CaCl_{2} and $0,05 \%$ BSA. Compounds ($10 \mu \mathrm{~L}$ per well) were added and cells were incubated for 10 min at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. Then $20 \mu \mathrm{~L}$ of agonist solution (recombinant murine CCL2 (PeproTech, 25010) in Tyrodés solution with 0.05% BSA) were added. CCL2 was applied at EC_{50}, which was determined in an experiment prior to compound testing (approximately 3 nM).

After 90 min of incubation at room temperature, $50 \mu \mathrm{~L}$ of detection reagent (93-001, DiscoveRx Corporation, Ltd) per well were added. After additional 60 min of incubation at room temperature luminescent signal was detected by a proprietary luminescencemeasuring device. The effect of each concentration was recorded four times. The mean values of the four experiments were used to generate one sigmoidal curve. IC_{50} values were fitted using a 4 parameter logistic function (Hill function).

Acknowledgements

This work was performed within the framework of the International Research Training Group 'Complex Functional Systems in Chemistry: Design, Synthesis and Applications' in collaboration with Nagoya University, Japan. Financial support of the IRTG and this project by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmc.2015.02.019.

References and notes

1. Rot, A.; von Andrian, U. H. Annu. Rev. Immunol. 2004, 22, 891.
2. Scholten, D. J.; Canals, M.; Maussang, D.; Roumen, L.; Smit, M. J.; Wijtmans, M.; de Graaf, C.; Vischer, H. F.; Leurs, R. Br. J. Pharmacol. 2012, 165, 1617.
3. Feria, M.; Díaz-González, F. Expert. Opin. Ther. Pat. 2006, 16, 49.
4. Ogilvie, P.; Bardi, G. F.; Clark-Lewis, I. F.; Baggiolini, M. F.; Uguccioni, M. Blood 2001, 97, 1920.
5. Galkina, E.; Ley, K. Annu. Rev. Immunol. 2009, 27, 165.
6. Hansson, G. K. Br. Heart J. 1993, 69, S38.
7. Hansson, G. K. J. Atheroscler. Thromb. 1994, 5, S6.
8. Struthers, M.; Pasternak, A. Curr. Top. Med. Chem. 2010, 10, 1278.
9. Xia, M.; Sui, Z. Expert Opin. Ther. Pat. 2009, 19, 295.
10. Carter, P. H. Expert Opin. Ther. Pat. 2013, 23, 549.
11. Butora, G.; Morriello, G. J.; Kothandaraman, S.; Guiadeen, D.; Pasternak, A.; Parsons, W. H.; MacCoss, M.; Vicario, P. P.; Cascieri, M. A.; Yang, L. Bioorg. Med. Chem. Lett. 2006, 16, 4715.
12. Butora, G.; Jiao, R.; Parsons, W. H.; Vicario, P. P.; Jin, H.; Ayala, J. M.; Cascieri, M. A.; Yang, L. Bioorg. Med. Chem. Lett. 2007, 17, 3636.
13. Pasternak, A.; Goble, S. D.; Doss, G. A.; Tsou, N. N.; Butora, G.; Vicario, P. P.; Ayala, J. M.; Struthers, M.; Demartino, J. A.; Mills, S. G.; Yang, L. Bioorg. Med. Chem. Lett. 2008, 18, 1374.
14. Larghi, E. L.; Kaufman, T. S. Eur. J. Org. Chem. 2011, 5195.
15. Lherbet, C.; Soupaya, D.; Baudoin-Dehoux, C.; André, C.; Blonski, C.; Hoffmann, P. Tetrahedron Lett. 2008, 49, 5449.
16. Fortin, S.; Moreau, E.; Lacroix, J.; Cote, M. F.; Petitclerc, E.; Gaudreault, R. C. Eur. J. Med. Chem. 2010, 45, 2928.
17. Yang, X.; Birman, V. B. Org. Lett. 2009, 11, 1499.
18. Pasternak, A.; Marino, D.; Vicario, P. P.; Ayala, J. M.; Cascierri, M. A.; Parsons, W.; Mills, S. G.; Maccoss, M.; Yang, L. J. Med. Chem. 2006, 49, 4801.
19. Zweemer, A. J. M.; Nederpelt, I.; Vrieling, H.; Hafith, S.; Doornbos, M. L. J.; de Vries, H.; Abt, J.; Gross, R.; Stamos, D.; Saunders, J.; Smit, M. J.; IJzerman, A. P.; Heitman, L. H. Mol. Pharmacol. 2013, 84, 551.
20. Murphy, P. M.; Baggiolini, M.; Charo, I. F.; Hébert, C. A.; Horuk, R.; Matsushima, K.; Miller, L. H.; Oppenheim, J. J.; Power, C. A. Pharmacol. Rev. 2000, 52, 145.
21. Pease, J. E.; Horuk, R. J. Med. Chem. 2012, 55, 9363.
22. Shiraishi, M.; Aramaki, Y.; Seto, M.; Imoto, H.; Nishikawa, Y.; Kanzaki, N.; Okamoto, M.; Sawada, H.; Nishimura, O.; Baba, M.; Fujino, M. J. Med. Chem. 2000, 43, 2049.
23. Knappmann, I. Chemoenzymatische Synthese und Struktur/Affinitäts Beziehungen enantiomerenreiner sigma-Rezeptorliganden mit 2-Benzopyran-Struktur; Westfälische Wilhelms-Universität: Münster, 2007.
24. Bodnar, B. S.; Vogt, P. F. J. Org. Chem. 2009, 74, 2598.
25. Christoffers, J.; Kauf, T.; Werner, T.; Rössle, M. Eur. J. Org. Chem. 2006, 2601.
26. Brodmerkel, C. M.; Huber, R.; Covington, M.; Diamond, S.; Hall, L.; Collins, R.; Leffet, L.; Gallagher, K.; Feldman, P.; Collier, P.; Stow, M.; Gu, X.; Baribaud, F.; Shin, N.; Thomas, B.; Burn, T.; Hollis, G.; Yeleswaram, S.; Solomon, K.; Friedman, S.; Wang, A.; Xue, C. B.; Newton, R. C.; Scherle, P.; Vaddi, K. J. Immunol. 2005, 175, 5370.
27. Cheng, Y.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.

[^0]: * Corresponding author. Tel.: +49 251 8333311; fax: +49 2518332144.

 E-mail address: wuensch@uni-muenster.de (B. Wünsch).
 http://dx.doi.org/10.1016/j.bmc.2015.02.019
 0968-0896/© 2015 Elsevier Ltd. All rights reserved.

