
Sequence specificity for uridylylation of the viral peptide linked
to the genome (VPg) of enteroviruses

Catherine H. Schein a,n, Mengyi Ye b, Aniko V. Paul c, M. Steven Oberste d, Nora Chapman e,
Gerbrand J. van der Heden van Noort f, Dmitri V. Filippov f, Kyung H. Choi b

a Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Alachua, FL 32616, United States
b Dept. Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
c Dept. Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States
d Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS G-17, Atlanta, GA 30333, United States
e Dept. Pathology and Microbiology, University of Nebraska Medical Center, NE 68198, United States
f Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands

a r t i c l e i n f o

Article history:
Received 22 April 2015
Returned to author for revisions
17 May 2015
Accepted 22 May 2015
Available online 11 June 2015

Keywords:
Peptide priming
Nucleotide transfer reaction
RNA polymerase
Coxsackie virus
EV-71
Poliovirus
PCP-consensus sequence
Metal ion dependent phosphotransfer

a b s t r a c t

Enteroviruses (EV) uridylylate a peptide, VPg, as the first step in their replication. VPgpUpU, found free in
infected cells, serves as the primer for RNA elongation. The abilities of four polymerases (3Dpol), from EV-
species A–C, to uridylylate VPgs that varied by up to 60% of their residues were compared. Each 3Dpol

was able to uridylylate all five VPgs using polyA RNA as template, while showing specificity for its own
genome encoded peptide. All 3Dpol uridylylated a consensus VPg representing the physical chemical
properties of 31 different VPgs. Thus the residues required for uridylylation and the enzymatic
mechanism must be similar in diverse EV. As VPg-binding sites differ in co-crystal structures, the
reaction is probably done by a second 3Dpol molecule. The conservation of polymerase residues whose
mutation reduces uridylylation but not RNA elongation is compared.

& 2015 Elsevier Inc. All rights reserved.

Introduction

The human enteroviruses (EV), which include the polioviruses
(PV), coxsackie viruses (CVA, CVB) and many other pathogens,
cause febrile rash, respiratory illness, and neurologic disease
(Eyckmans et al., 2014; Pallansch et al., 2013). Although incidence
of PV paralysis has been reduced by 499% globally through
routine immunization and mass vaccination campaigns, there
continue to be cases in areas where vaccine campaigns have been

inhibited by social unrest (Moturi et al., 2014). Non-polio EV, such
as EV A71 (Chan et al., 2011; Wang et al., 2014; Yu et al., 2014;
Zheng et al., 2014) and EV 68(Stephenson, 2014) (Jacobson et al.,
2012; Tokarz et al., 2012) can spread rapidly among children.
These can cause severe respiratory illness and a range of neuro-
logical diseases, from aseptic meningitis to encephalitis and
paralysis (Kreuter et al., 2011; Pallansch et al., 2013; Tao et al.,
2014). Infections with other EV, such as CVB3, may contribute to
diabetes (Salvatoni et al., 2013; Yeung et al., 2011) and heart
disease(Chapman and Kim, 2008; Cooper, 2009).

There are currently no drugs approved for the treatment of the
many different enterovirus infections (Abzug, 2014). As EV are
omnipresent in the intestinal tract of humans and animals, there is
little way to prevent occasional infections. Their antigenic diversity
(Acevedo et al., 2014; Blomqvist et al., 2008) makes it difficult to
develop vaccines to protect against the many different enterovirus
pathogens. To aid in developing more widespread treatments for
EV infections (Campagnola et al., 2011), it is important to identify
common properties of the viral proteins involved in replication.

Early studies of poliovirus replication revealed that the 50 end
of the RNAwas covalently bound to a small peptide, called VPg (for
viral protein linked to the genome), which was essential for PV
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replication (Ambros and Baltimore, 1978; Lee et al., 1977). A
uridylylated form of VPg, VPgpUpU, was shown to be present in
the cytoplasm of infected cells (Crawford and Baltimore, 1983).
Subsequently, it was shown that VPgpU could be formed in an
in vitro reaction containing the polymerase (3Dpol) and a template
RNA. The uridylylated peptides, VPgpU or VPgpUpU, prime viral
RNA synthesis (Paul et al., 1998). VPg sequences are present in the
genomes of all picornaviruses. Larger VPg proteins were also
identified in caliciviruses and other families that were even more
distinct from the picornaviruses (Goodfellow, 2011) but which
may have arisen from combinations of picornavirus gene
sequences during evolution of the eukaryotic cell (Koonin et al.,
2008).

A wealth of data indicates that mutations throughout the 22
amino acid sequence of PV1-VPg reduce uridylylation in vitro and
lower or eliminate the formation of infectious virus (Kuhn et al.,
1988a, 1988b; Paul et al., 2003). However, there are many gene
sequences known for EV VPgs, which differ at positions (when
aligned with PV-VPg) that are known to affect uridylylation
(Fig. 1). Deep sequencing of viral isolates may reveal even more
diversity (Acevedo et al., 2014), introduced through the high
mutation rate of viral 3Dpol (Gnadig et al., 2012). Indeed, VPg
seems to be evolving at a very rapid rate, as the sequences of the

four EV 3Dpol included here are much more conserved, ranging
from 67–74% identity.

However, function eventually constrains sequence variability.
To determine the minimum requirements for uridylylation, we
analyzed the sequences, the underlying conservation of physico-
chemical properties, and the structures of VPg and their binding
sites on the polymerases in co-crystal structures. VPg, before
uridylylation, in solution has a flexible, or even disordered struc-
ture (Schein et al., 2006a), which might also be stabilized by
binding to cellular components or the polymerase. In contrast,
chemically synthesized uridylylated PV-VPgpU has a very stable
structure in solution (Schein et al., 2010). The NMR structure
indicated that the positively charged residues directly coordinate
with the UMP moiety of the modified tyrosine. Such a stable
structure is probably needed for VPgpU to effectively prime RNA
synthesis.

To determine the specificity endowed within the diversity of
sequences of VPg, we chose four diverse EV polymerases and
determined whether they could recognize VPgs that differed
greatly in sequence from their own encoded peptide. We purified
the 3Dpol of three important human pathogens, from EV-A71
(species A), CVB3 (species B), and CVA24 (species C, and closely
related in sequence to PV-3Dpol) (Smura et al., 2014). Our results
indicate that the diversity in the sequences of the VPg of species
A–C correlates with their different binding sites for uridylylation
on the 3Dpol. The underlying physical chemical properties of the
VPgs were captured in a single consensus sequence. All four of the
polymerases tested could uridylylate this artificial sequence, while
still showing preference for their own VPg. The ability of all to
uridylylate a consensus peptide, coupled with evidence that VPg-
based replication can be done in trans (Chen et al., 2013), suggests
that there is indeed a common mechanism for VPg uridylylation.
However, the specificity we show here, coupled with the different
binding sites seen in co-crystal structures, supports a “2 molecule
mechanism” (Sun et al., 2012), where the VPg can be located at
different positions on one polymerase molecule, and uridylylated
by a second polymerase molecule.

Results

Deriving a PCP-consensus VPg for EV species A–C

The sequences of 31 diverse EV were used to derive a PCP-
consensus for VPg (Fig. 1). Only 9 residues (without inserting gaps)
of the 22 are conserved across EV species A, B, and C. Seven of
these residues are also conserved in analogous positions in diverse
Rhinoviruses (RV, enterovirus species D; Table 1). The conserva-
tion of G1 and Q22 reflects the sequence needed for protease
cleavage of the P3 domain of the polyprotein (Pathak et al., 2007).
Despite the relatively low absolute identity, the physical chemical
properties at each position are more conserved. For example, there
is always a positively charged residue at positions 8–10 in the
sequences, and arginine is always present at position 17. The
absolute sequence number of the positively charged residues is not
conserved (e.g., K9 is a Q, N, R or T in the different sequences).
However, all 5 VPg sequences synthesized for this study have the
same predicted IEP (10.9) and charge (þ4) at pH 7.

The unique VPg sequences (from species A, B, and C) chosen for
this study are compared in Table 1 with those of other picorna-
virus sequences and the uridylylation site of larger VPgs from
other virus families. The IEP and net charges for the sequences of
RV VPgs are somewhat lower. The sequences of the three genome
encoded VPgs of the distantly related Foot and mouth disease
virus (FMDV; genus Aphthovirus) are, like FMDV polymerase (see
the alignments in Fig. S3), significantly different from those of the

Fig. 1. Sequences of EV VPgs used to design the PCP-consensus VPg with their gene
bank accession numbers. Only the unique sequences were used in calculating the
consensus.
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Enteroviruses used in this study. For example, the FMDV VPgs
contain at least one negatively charged amino acid. However, their
overall IEP and net charge are similar to those of the EVs.

Fig. 2 shows the absolutely conserved residues of the EV-VPgs
(maroon) mapped on the NMR structure of VPg (PDB accession
code 2BBL (Schein et al. 2006a)), with the uridylylated Tyr3
residues in turquoise. Residues K9/10 are circled, as mutation of
both of these residues is lethal for PV replication in culture.

Comparision of uridylyation activities of EV species A–C

Three 3Dpol were purified similarly and their ability to uridy-
lylate the VPgs was compared to that of PV-3Dpol (purified in
another lab) in the most permissive assay for uridylylation, using a
polyA template RNA and Mn2þ (Fig. 3). Quantitative comparison of
the PAGE assays of representative experiments for uridylylation of
the 4 natural VPgs (CVA24, CVB3, EV A71, and PV1), and the PCP-
consensus VPg, by three polymerases from the three species is
shown in Table 2. Within the accuracy of this assay, we can say
that each of the polymerases did show preference for its own VPg,
with CVA24 consistently being more accepting of sequences that
differed from its own. All of the VPgs, including the consensus,
were uridylylated to at least 25% of the efficiency of the cognate
encoded VPg.

As a control, we also tested another RNA dependent, RNA
polymerase, from the Flavivirus Dengue (DENV), in the uridylyla-
tion assay with and without consensus VPg. As Fig. S2 shows,
DENV polymerase produced large amounts of RNase A-sensitive,

poly U RNA in the uridylylation assay. As expected, it did not
produce VPgpU, which was produced by all three enteroviral 3Dpol

in the same assay mix.

Discussion

We show here that EV 3Dpol, chosen from the most diverse
members of EV species A–C, are able to uridylylate all four wild
type VPgs as well as a PCP-consensus VPg. The efficiency was 25–
100% of that seen for their cognate VPgs. Surprisingly, the two
most divergent 3Dpol, from EV A71 (EV-A representative) and CVB3
(EV-B), still uridylylated the PCP-consensus VPg as well as or
better than the wild type VPgs of CVA24 or PV1 (both EV-C). This
indicates there is a common framework for uridylylation by even
the most divergent EV-3Dpol.

These results mirror to some extent the specificity of RV-VPgs.
The rhinovirus VPgs differ from those of EV species A–C in length
and the presence of negatively charged amino acids (Table 1).
Mutations to insert negative charge into PV1 VPg, such as repla-
cing Leu6 with glutamic acid, greatly reduce replication (Cheney et
al., 2003). Previous studies have shown that RV2 3Dpol can
uridylylate the VPgs of diverse RV (Gerber et al., 2001) and PV
VPg, but PV 3Dpol cannot uridylylate the VPgs of RV2 or RV89 (Paul
et al., 2003). The 3Dpol of RV16 (Cheney et al., 2003) also
uridylylates PV VPg and the reaction is inhibited by the same
mutations that inhibit uridylylation by PV 3Dpol (Gerber et al.,
2001). This again implies a basic common underlying mechanism,
with specificity encoded by both the enzyme and the peptide.

Diverse VPg binding sites on the 3Dpol of EV A71 (Chen et al.,
2013) and CVB3 (Gruez et al., 2008b) suggest a second polymerase
molecule may catalyze uridylylation. These sites are both on the
“reverse surface” of the polymerase (Figs. S3 and S4). The site
identified for CVB3 is near that identified for PV 3Dpol by
mutagenesis (Lyle et al., 2002) and docking studies (Schein et al.,
2006a, 2006b). Since the site for EV A71 is so different, yet both
polymerases are able to uridylylate the same VPgs, this suggests
that uridylylation is done by a second polymerase molecule, with
the VPg bound to the surface of the first. Assuming the VPgs of
species B and C continue to bind to approximately the same region
on EV A71, alteration of R379 to L, F377 to G and V391 to T on the
protein surface could greatly destabilize the binding site, thus
lowering the reaction rate. The need for two polymerase mole-
cules to catalyze the reaction has been suggested by several other
authors based on different types of data (Gruez et al., 2008a; Sun
et al., 2012; Tellez et al., 2006).

The similarity in overall charge of the 3 encoded FMDV VPgs
(Table 1) does suggest that this Apthovirus should have the same
basic mechanism as the EV for uridylylation. However, the
sequence similarity between the two sets of VPgs is very low (3/
22 identical, 3/9 identical for the absolutely conserved amino
acids). A Blast search of the Refseq database starting from PV1 VPg
brings only VPgs for EV species A–D and J within the first 10
sequences, but no FMDV VPg in the top 100 sequences. The same
search, beginning with FMDV VPg2 finds FMDV but no EV VPg.

Further, the polymerases diverge in both sequence and struc-
ture. The amino acids of the surface sites for the EV VPgs are not
present in FMDV 3Dpol (Fig. S3). In co-crystal structures of the
3Dpol of FMDV with both its free and uridylylated VPg1 (Ferrer-
Orta et al., 2006), both VPg and VPgpU were seen fully extended
near the active site of the polymerase. Thus the Apthoviruses may
indeed have a different mechanism for uridylylation.

Alternatively, much of the data could be explained if the surface
site for VPg is simply to aid in cleavage of VPg from the 3BC
protein. Higher resolution crystal structures of the EV-polymerases
with their uridylylated VPgs might help to resolve these

Table 1
Comparison of the isoelectric points (IEP) and net charges at pH 7 of VPgs.

Virus VPg sequence IEP Charge

EV-A71 GAYSGAPKQVLKKPALRTATVQ 10.9 4
CVB3 GAYTGVPNQKPRVPTLRQAKVQ 11.5 4
PV1 GAYTGLPNKKPNVPTIRTAKVQ 10.9 4
CVA24 GAYTGLPNKKPSVPTVRTAKVQ 10.9 4
PCPCon GAYTGLPNQKPKVPTIRTAKVQ 10.9 4

RV2 GPYSGEPKPKTKVPERRIVAQ 10.4 3
RV4 GPYSGNPPHNKLKAPTLRPVVVQ 10.7 3
RV16 GPYSGEPKPKTKVPERRVVAQ 10.4 3
RV89 GPYSGEPKPKSRAPERRVVTQ 10.7 3

FMDV-VPg1 GPYAGPLERQRPLKVRAKLPRQE 11.3 4
FMDV-VPg2 GPYAGPMERQKPLKVKARAPVVKE 10.6 4
FMDV-VPg3 GPYAGPVKKPVALKVKAKNLIVTE 10.5 4

FCV GTYRGRGVALTDDEYDEWREHNASRK 5.5 �0.9
MNV GVFRTRG–LTDEEYDEFKKRRESRG 9.6 1

The top five VPgs were used in this study. PV1 VPg sequence is bold; residues that
differ from it in the other EV sequences chosen for study are bold and italicized.
Residues conserved in EV species A–C are underlined. These are followed by VPg
sequences from RV and the 3 genome encoded VPgs of the distantly related
picornavirus FMDV. The conserved residues in RV that they share with other
enteroviruses are bold. The bold residues in the FMDV sequences are those
identical to PV1 VPg.
In contrast, as the last two sequences illustrate, the conserved areas (residues 10–
30) around the uridylylated Tyr (bold) from the VPg proteins of feline calicivirus
(FCV) and murine norovirus (MNV) VPgs (Leen et al., 2013) have completely
different IEP and charge, suggesting two different mechanisms for uridylylation.
Mutation of the underlined residues in MNV-VPg greatly reduce or prevent VPg
uridylylation, VPg-RNA synthesis by the MNV polymerase and virus recovery (Leen
et al., 2013).
Arrows indicate the uridylylated Tyrosine. The charges and IEP were calculated
with the Peptide property calculator from Innovagen (http://pepcalc.com/ppc.php).
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possibilities.Essential, negatively charged amino acids in larger
VPgs of caliciviruses suggest a different uridylylation mechanism.

It is clear simply from sequence conservation (Table 1), as well
as mutation studies, that a net positive charge on the peptide is
essential for uridylylation of EV VPgs, and probably for those of
FMDV. The positively charged residues could bind the incoming
UTP residue during uridylylation, as well as stabilize the position
of the bound Tyr-UMP conjugate during priming (Schein et al.,
2010).

Although the small picornaviral VPgs are positively charged,
the reactive tyrosine in the NMR structures of feline calicivirus
(FCV) and murine norovirus (MNV) projects from a protein helix,

and is surrounded by negatively charged residues in the linear
sequence (last lines of Table 1). As Table 1 shows, the charges of
the sequences surrounding the reactive Tyrosine of the FCV and
MNV VPgs are “polar opposites”. While the positive charges of PV-
VPg are essential, mutation of negatively charged residues near the
uridylylated Tyr in MNV VPgs prevents formation of the VPg-RNA
covalent complex and virus replication (Leen et al., 2013). These
residues could stabilize the structure through salt bridges (formed
perhaps to residues not included in the NMR structure). Alterna-
tively, they could bind metal ions as part of the catalytic mechan-
ism. Negatively charged amino acids, particularly aspartates,
capable of tightly binding metal ions, play an important role in

Fig. 2. NMR structure of VPg (2BBL.pdb; structure 1) (Schein et al., 2006a) showing residues conserved in all EV species A–C sequences (maroon) and the uridylylated Tyr3
(in cyan, its phenolic O is in orange red). The other residues are “CPK” colored according to atom type (H¼gray, O¼red, black¼C, Blue¼N). Residue positions where positive
charge is conserved are circled. Here, Front indicates the (positively charged) face of VPg onwhich the Tyr3-OH is located, and Back indicates the side of VPg that docks to the
polymerase at the indicated binding site for VPg (Schein et al., 2006b).

Fig. 3. Uridylation of 5 diverse VPgs by Enteroviral polymerases from species A–C. Sequences of VPgs are shown in Table 1. (a) PV and CVA24 3Dpol efficiently uridylylate all
five VPgs. The assay was incubated for 1 h at 34 1C, and reactions were run on two �13.5% PAG (aligned next to one another). Both polymerases from species C (Brown et al.,
2003) uridylylate a PCP-consensus VPg (PCPcon) as efficiently as their respective wild-type VPgs and those from EV-B Species B (represented by CVB3 VPg) and species A
(EV-A71). (b) Comparison of uridylylation of 5 different VPgs by 3Dpol from EV-A71, CVB3, and CVA24. The reactions were incubated for 2 h at 30 1C and run on a 26 slot
Criterion Tris–Tricine 10–20% gel (Bio-Rad). The three polymerases were purified within a few weeks of each other (Fig. S1). The reactions were run simultaneously with the
same amounts of each VPg in the assay. The quantification is shown in Table 2 products.
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nuclease and phosphatase common mechanisms (Braun and
Schein, 2014; Oezguen et al., 2007).

The differences in the environment of the uridylylated tyrosine
in different VPgs suggests that the “big bang of picornavirus
evolution” (Koonin et al., 2008) that gave rise to so many diverse
viruses, also gave different solutions to the problem of generating
a stable surface to prime RNA synthesis.

Methods

VPg synthesis and quantification

VPgs were produced synthetically, using normal FMOC-based
amino acid derivatives. Synthetic VPgpU, used for calibrating the
position of VPgpU on gels in early stages of this work, was
generated as described previously (Schein et al., 2010; van der
Heden van Noort et al., 2013). VPgs were dissolved in water and
their concentration determined using the extinction coefficients
for tyrosine (the only UV-absorbing amino acid in the peptide) in
the range of 220–280 nm.

Determining a PCP-consensus VPg

The PCP-consensus method determines the sequence that is
most similar in its physical chemical properties to all others in a
set. It is designed to be useful for sets with many sequences (such
as viral isolates) that have a high superficial redundancy (i.e.,
nearly identical sequences that differ at only a few positions). The
rationale and details of the method are described in detail else-
where (Bowen et al., 2012; Danecek et al., 2010; Danecek and
Schein, 2010; Schein et al., 2012). Here, the PCP-con program was
used to determine a consensus of 31 of the most diverse EV VPg
sequences (Fig. 1). The resulting PCP-consensus sequence is
compared to the four wild type VPgs that were used in this study
in Table 1.

Polymerase purification

Genes for the CVA24 and EV A71 polymerases were obtained
from EV collections at the CDC. The CVB3 polymerase gene was
obtained from the cloned cDNA of the strain CVB3/28 (Tu et al.,

1995). This strain induces myocarditis and pancreatitis in suscep-
tible mice and accelerates the development of T1 diabetes in older
non-obese diabetic mice (Tracy et al., 2002). The three 3Dpol genes
were subcloned into pET30 in the Recombinant DNA Laboratory at
UTMB, so that the resulting protein would have a C-terminal
hexahistidine tag. PV 3Dpol was expressed in Escherichia coli from
plasmid pT5-3D (a gift of Dr. Karla Kirkegaard).

Plasmids containing the respective 3Dpol gene were trans-
formed into the Rosetta DE3 strain of E. coli that has been
optimized for the codon usage of higher organisms. Protein
expression was induced with 1 mM isopropyl β-D-thiogalactopyr-
anoside (IPTG) for 16 hours at 18 1C (with shaking). The 3Dpol was
in the soluble fraction of the lysate and was purified using Talon
metal affinity resin (Clontech) with a 5–100 mM imidazole gra-
dient. Protein-containing fractions were concentrated to �2 mL,
and further purified on a Superdex 75 (GE Healthcare) gel filtra-
tion column. Protein-containing fractions were pooled and con-
centrated to 2–7 mg/mL (Fig. S1). Dengue virus polymerase was
expressed and purified as described previously (Bussetta and Choi,
2012).

Assay for uridylylation

The reaction mixtures (10 μl) contained 50 mM HEPES, pH 7.5,
8% glycerol, 0.5 μg of the template RNA: polyA (Sigma); 0.5 mM
manganese(II) acetate, 1–2 μg purified 3Dpol, 1 μg synthetic VPg,
and 10 μM UTP (þα-UT32P (Amersham)) (Paul et al., 1998). Except
where noted otherwise (Fig. 3a), multiplex assays of the poly-
merases with the five VPgs were done in siliconized PCR plates
and incubated for 2 h at 30 1C. They were stopped by addition of
SDS containing gel loading buffer and heated at 60 1C for 3–4 min
before applying to TGX-any KD minigels (15 slot) or Criterion (26
slot), Tris–Tricine/SDS-PAGE (10–20%, Biorad Criterion Peptide).
The uridylylated VPg32pU products were quantified with a Phos-
phorimager (PMI; Biorad).
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