
M E T H O D S , TO O L S , A N D S O F T WA R E

Lifting Industrial Ecology Modeling
to a New Level of Quality
and Transparency
A Call for More Transparent Publications and a Collaborative
Open Source Software Framework

Stefan Pauliuk, Guillaume Majeau-Bettez, Christopher L. Mutel, Bernhard Steubing,
and Konstantin Stadler

Summary

Industrial ecology (IE) is a maturing scientific discipline. The field is becoming more data and
computation intensive, which requires IE researchers to develop scientific software to tackle
novel research questions. We review the current state of software programming and use
in our field and find challenges regarding transparency, reproducibility, reusability, and ease
of collaboration. Our response to that problem is fourfold: First, we propose how existing
general principles for the development of good scientific software could be implemented
in IE and related fields. Second, we argue that collaborating on open source software could
make IE research more productive and increase its quality, and we present guidelines for
the development and distribution of such software. Third, we call for stricter requirements
regarding general access to the source code used to produce research results and scientific
claims published in the IE literature. Fourth, we describe a set of open source modules for
standard IE modeling tasks that represent our first attempt at turning our recommendations
into practice. We introduce a Python toolbox for IE that includes the life cycle assessment
(LCA) framework Brightway2, the ecospold2matrix module that parses unallocated data
in ecospold format, the pySUT and pymrio modules for building and analyzing multiregion
input-output models and supply and use tables, and the dynamic stock model class for
dynamic stock modeling. Widespread use of open access software can, at the same time,
increase quality, transparency, and reproducibility of IE research.

Keywords:

industrial ecology
input-output analysis (IOA)
LCA software
open source software
scientific computing
transparency and reproducibility

Supporting information is available
on the JIE Web site

Introduction

Computer Tools in Modern Science

The omnipresence of computer-based analysis in modern
science comes with two challenges, which are the subject of
this article. (1) Where science is based on computer models,
the existing software infrastructure determines the range of re-
search questions that can be tackled. Consequently, cutting-

Address correspondence to: Konstantin Stadler, Industrial Ecology Programme, NTNU; NO-7491 Trondheim, Norway. Email: konstantin.stadler@ntnu.no

© 2015 by Yale University
DOI: 10.1111/jiec.12316 Editor managing review: Manfred Lenzen

Volume 19, Number 6

edge research requires software development, which, in turn,
requires special skills and is time-consuming. Researchers are
rarely software specialists, and their lack of knowledge may lead
to suboptimal results, such as low readability and reusability of
code (Hannay et al. 2009). (2) Published results and scientific
claims must be reproducible and transparent. To ensure this,
scientists have agreed on the general rules of good scientific
record keeping (Macrina 2005) and on the right to give peers

www.wileyonlinelibrary.com/journal/jie Journal of Industrial Ecology 937

M E T H O D S , TO O L S , A N D S O F T WA R E

access to raw data upon request (Ince et al. 2012). There is no
agreement, however, on whether the software used to gener-
ate scientific results should be published along with the results.
Withholding source code makes it more difficult to reproduce
results, and several proposals for higher software availability
have already been made (Peng 2011; Ince et al. 2012; Hanson
et al. 2011).

Computer Tools in Industrial Ecology

Industrial ecology (henceforth IE) is a rapidly advancing
field. Recent progress includes the compilation of an increas-
ing number of databases (ecoinvent Center 2014; Lenzen
et al. 2013; SERI/WU 2014; Tukker et al. 2013), use of in-
creasingly sophisticated quantitative analysis and assessment
methods (e.g., Hertwich et al. 2015), establishment of research
paradigms (Pauliuk and Hertwich 2015; Ehrenfeld 2004), or de-
velopment of common accounting frameworks (Suh et al. 2010;
Fischer-Kowalski et al. 2011; Pauliuk et al. 2015a). Models cur-
rently used in IE require more data and collaboration than ever
before. Has the development of software tools kept pace? How
has the IE community responded to the two challenges above?
To our knowledge, these issues have not yet been addressed in
the IE literature. We attempt to answer these questions for our
area of expertise, which comprises life cycle assessment (LCA),
input-output (I-O) analysis, and dynamic material (MFA) or
substance flow analysis (SFA), three core methods of IE. We fo-
cus on software used to tackle data- and computation-intensive
research questions, that is, cases where simple spreadsheets are
not enough.

Life Cycle Assessment
State-of-the-art LCA studies are most affected, because of

the large number of processes in the background system (more
than 10,000 for ecoinvent 3 [ecoinvent Center 2014]). Tools
for LCA can be divided into closed-source commercial software
(e.g., GaBi [GaBi 2014], SimaPro [Goedkoop et al. 2008], Um-
berto [ifu Hamburg 2014], and Aveny [Aveny GmbH 2014]),
closed source freeware (e.g., CMLCA [Heijungs 2012]), and
open source freeware (e.g., OpenLCA [OpenLCA 2014]). De-
signed mainly for industrial users, the commercial tools are
essential to mainstreaming the practical application of LCA.
Often, however, they prove to be too inflexible to serve the
needs of cutting-edge research. This includes questions requir-
ing region-specific emissions data and impact factors (Mutel
et al. 2012; Cherubini et al. 2012; Saner et al. 2014; Geyer
et al. 2010; Verones et al. 2012), dynamic LCA and tem-
poral emission profiles of product systems (Levasseur et al.
2013; Guest et al. 2013; Beloin-Saint-Pierre et al. 2014), large-
scale prospective assessments and hybridization (Hertwich
et al. 2015; Lenzen and Crawford 2009), efficient uncertainty
analysis (Groen et al. 2014), especially with respect to allo-
cation choices (Jung et al. 2013; Majeau-Bettez et al. 2014b),
and the handling of very large, but fragmented and incom-
patible, data sets (Lenzen et al. 2014; Suh 2005, 2009; Lenzen
et al. 2013). Many leading groups therefore undertake their own

programming activities, and the code is usually written by LCA,
rather than software, specialists.

Despite repeated calls for higher transparency and re-
producibility (Frischknecht 2004; Finnveden et al. 2009;
Finnveden and Ekvall 1998), most LCAs are not sufficiently
transparent to allow for meaningful comparisons across studies
or for the harmonization of their system definitions (Price and
Kendall 2012; Burkhardt et al. 2012; Kim and Wallington
2013). For many studies, raw data are not published, or not
published in a convenient format, which makes it impossible
to reproduce the analysis. This has several reasons: (1) It
is difficult to transparently and comprehensively document
LCA analyses with commercial software; (2) there is a lack of
transparency surrounding critical steps performed by database
providers, such as the matching of characterization factors
to emissions, or allocation; and (3) incentives for more
transparent inventories are low. Moreover, recent analysis has
shown that the choice of LCA software can impact assessment
results (Speck et al. 2015; Herrmann and Moltesen 2015). As
a result, many LCA studies are hard to compare, and they lack
credibility if evaluated by high scientific standards.

Input-Output
Specific software is needed for most I-O models because of

the large number of system variables. Aside from play mod-
els for illustrative purposes, the number of sectors in the sys-
tem typically lies between several hundred (single-region I-O)
and 104 to 105 (for integrated hybrid models such as THEMIS
or the Eora MRIO table [Hertwich et al. 2015; Lenzen et al.
2013]). I-O modeling requires many intermediate steps that re-
quire software, including balancing algorithms, trade linking
tools for multiregion input-output (MRIO), constructs to build
I-O models from supply and use tables (SUTs), and aggrega-
tion/disaggregation routines (Wood 2015; Lenzen et al. 2009;
Majeau-Bettez et al. 2014b; Miller and Blair 2009). Data pro-
cessing and analysis scripts, however, are not generally made
public, and we only know of two exceptions: De Koning and
colleagues (2015) and CIRAIG (2015). A recent comparative
study of six major MRIO frameworks by Lutter and Giljum
(2014, 7) finds a general lack of transparency: “Procedures for
manipulating IO tables, e.g. for disaggregating existing tables or
harmonizing IO tables from different national sources, [are] of-
ten not well documented.” This is a problem, given that these
models are rapidly gaining relevance in climate and resource
policy making.

Material Flow Analysis
The complexity of systems studied in MFA has increased

significantly over the last few years. Systems containing be-
tween 1 and approximately 25 processes are often visualized
with the freeware application STAN, which can also handle
data reconciliation and uncertainty propagation (Vienna Uni-
versity of Technology 2012). Specialized software is indispens-
able for more comprehensive systems, including dynamic MFA
and dynamic stock models (Hatayama et al. 2010; Modaresi
et al. 2014; Elshkaki and Graedel 2013; Wiedenhofer et al.

938 Journal of Industrial Ecology

M E T H O D S , TO O L S , A N D S O F T WA R E

2013; Müller 2006; Daigo et al. 2014; Busch et al. 2014),
MFA models of complex supply chains (Wiedmann et al. 2013;
Nakamura and Nakajima 2006; Nakamura et al. 2014; Kagawa
et al. 2014), and quantification of stocks with high spatial reso-
lution (Takahashi et al. 2009). Transparency of MFA and SFA
studies is enhanced by explicit system definitions that accom-
pany many publications. Comprehensive data and intermedi-
ate results are often not published, which makes many results
opaque and hard to reproduce.

Model Combinations
Next to models that strictly follow one of the traditions dis-

cussed above, there are an increasing number of extensions and
combinations of methods, such as hybrid LCA (Suh 2004; Suh
et al. 2004; Heijungs and Suh 2002; Gibon et al. 2014), connec-
tions between MFA and I-O (Nakamura and Nakajima 2006;
Nakamura et al. 2011; Kytzia et al. 2004; Lenzen and Reynolds
2014), and dynamic stock modeling (Pauliuk et al. 2015b;
Nakamura et al. 2014). With the exception of CMLCA
(Heijungs 2012), which can handle hybrid LCA, and the IELab
(Lenzen et al. 2014), which can reconcile large, partially con-
flicting data sets, no specific software for any of these models is
generally available.

Databases
Databases for IE are further developed than is the case for

model software. Existing databases are accepted and widely used
by the community; they are comprehensive and often well
documented. Examples for such databases include ecoinvent
for LCA (Frischknecht et al. 2005; Weidema et al. 2013);
the Eora world MRIO model (Lenzen et al. 2013), IELab
(Lenzen et al. 2014), or EXIOBASE (Wood et al. 2014) for
I-O, as well as a global database of materials flows for MFA
(SERI/WU 2014). Collaborative data frameworks have been
proposed by several researchers (Davis et al. 2010; Lenzen et al.
2014).

Research Gap and Scope of the Article

1. Level of software development: The understanding of
the importance of good software is ubiquitous within IE,
but this is rarely reflected in common practice of our
field. No widely accepted, readily available implemen-
tations of many common computational routines exist.
At present, most IE models are coded in spreadsheets or
form monolithic blocks of software in various program-
ming languages. They are developed as in-house projects
for single-case studies. Often, the quality of documenta-
tion does not match the complexity of the code. In many
cases, the code is difficult to reuse and is therefore aban-
doned. We know of several instances where this led to
double work. Professional software tools exist for specific
LCA and MFA applications, but it is hard or impossible
to adapt them to new types of research questions. There

is no common public software repository for IE models to
which every researcher can contribute.
We see lifting IE software and the way it is used to a
higher level as a key strategy to successfully mastering
future challenges such as model integration, closer col-
laboration across research groups, and better interaction
with neighboring fields, including integrated assessment,
climate, and computable general equilibrium modeling.

2. Level of software openness: To our knowledge, there
is neither an established standard nor a vivid debate re-
garding transparency and reproducibility of computations
behind published quantitative research conducted under
the label IE. A general lack of reproducibility may lower
the scientific quality of the field as a whole, which, in
the long run, can impede interaction with other scien-
tific fields and acquisition of research funding. Low levels
of reproducibility and transparency exclude noninsiders
from verifying the conclusions drawn, which can under-
mine the credibility of our research. Given that policy
guidance is a main motivation of many studies that use IE
models (e.g., Wiedmann et al. 2011; Tukker et al. 2013;
Wiedmann and Barrett 2013), this lack of credibility must
be considered problematic in a democratic society. This
becomes even more apparent in light of the proposed role
of scientists as “honest brokers” (Pielke Jr 2007) and as
information providers for evidence-informed policy de-
velopment (Rose 2014).

In this article, we present our efforts to respond to the two
challenges. First, we propose guidelines for how existing gen-
eral principles for the development of good scientific software
(Dubois 2005; Wilson et al. 2014) could be implemented in
IE and related fields. Second, we propose guidelines for the de-
velopment of open access software for IE, and, based on Peng
(2011) and Ince and colleagues (2012), we argue that the IE
community should set higher requirements regarding access to
source code behind scientific computations. Finally, we present
our first attempt at “walking the talk”: We describe a set of open
source modules for standard IE modeling tasks that are written
in the general purpose language, Python. We present each topic
in a separate section and discuss possible disadvantages and op-
tions for future development at the end.

Guidelines for Developing, Testing, and
Documenting Software Tools in Industrial
Ecology

We present guidelines for how IE software should be de-
veloped and organized to facilitate correctness and reusability.
These guidelines are independent of the programming language
chosen. Nor are they affected by the decision on whether to
share the software with others. Our suggestions extend exist-
ing guidelines for best practice in scientific coding (Wilson
et al. 2014) and for maintaining correctness in scientific

Pauliuk et al., Open Source Software for Industrial Ecology 939

M E T H O D S , TO O L S , A N D S O F T WA R E

Figure 1 Computational blocks of the scientific software for a typical model run in industrial ecology. Not all elements are always present,
but a more elaborate structure, especially with logging and testing modules, is important for complex projects.

software (Dubois 2005). Our guidelines apply to software that
is structured according to the scheme in figure 1, which we
consider to be the general structure of computations in IE.

The software framework depicted in figure 1 breaks up the
data flow into specific functional blocks. Software should be
modular; this increases the clarity and reusability of the different
components. Subsequent reuse for similar purposes should be
considered. There should be a dedicated section or software
module for each block in the diagram in figure 1. For example,
data should be read by a designated input module, in contrast to
the common practice of reading data whenever they are needed.
Control parameters should not be hard coded in the model, but
defined in data files, given that hard-coded parameters are prone
to yield mistakes when modified and forgotten, especially when
they enter the code at different places.

Confidence in final results is heightened by systematic and
transparent quality checks. Testing routines should therefore be
an integral part of scientific IE software development. Unit tests
check whether each unit of code (usually each function) per-
forms as intended. Unit tests include test cases that cover the
typical use of a function, as well as special cases and situations
that should raise errors (Beck 2003). These tests should always
accompany the code and be rerun when the module is mod-
ified to ensure that the intended functionality is maintained.
In contrast, system tests—such as performance, compatibility,
load, and usability testing—are harder to automate. They verify
that the software as a whole meets functional requirements and
are therefore interesting for more mature IE projects aiming for
mainstream use.

The next guideline is the key to successful modulariza-
tion and reuse of the code: Development and documenta-
tion of the interfaces between software blocks is of central
importance, as is the documentation of the functions of the
code within the blocks. Documentation should cover the func-
tion of the code, not only its structure (Wilson et al. 2014).

Moreover, good interfaces facilitate the use of different pro-
gramming languages.

Once a module works correctly and is well documented, it
should be formally released under a version number: The different
blocks of a model should be subject to a version control system to keep
track of modifications. Version control systems record the entire
history of a piece of software. This is essential if past results
based on older versions are to be reproduced, and it facilitates
the consolidation of simultaneous contributions by multiple
developers or research groups. Examples for distributed version
control software can be found in the supporting information
available on the Journal’s website.

Finally, we need to keep track of the computations of the
entire software to make sure that the results can be understood
and reproduced, even years after the model was run: Each proper
model run should be documented in a log file that is stored together
with the results, which traces the flow of computation from the input
data to the results. The log file should contain information such
as a time stamp, the source location and version numbers of the
input data and the modules used, the status or error messages
of the different modules called, and key parameters and user
choices defined during the model run.

The above recommendations are consensual and do not re-
quire much motivation. To develop a sophisticated piece of
software following these rules, the programming community has
articulated many complementary or partly overlapping software
development strategies to efficiently reach high levels of qual-
ity. Notable examples include: the traditional waterfall model;
test-driven development; extreme programming; and multiple
agile development strategies (Beck 1999). We refrain from rec-
ommending a specific methodology to the IE community, given
that the choice of an optimal strategy is largely project and
resource dependent. We do recommend, however, that groups
investing resources in software development apply a specific
strategy for this process.

940 Journal of Industrial Ecology

M E T H O D S , TO O L S , A N D S O F T WA R E

Guidelines for Collaborative Software
Projects Within Industrial Ecology and a
Call for More Transparency of Published
Results

The benefits of pursuing high-quality standards for scientific
software are hardly debatable. More sensitive is the question
of whether or not to share software with peers and have them
use and improve it. We argue that, in many cases, considerable
synergies may arise by combining the pursuit of high-quality
software and the willingness to publish it open source.

The first type of synergy concerns the productivity of IE
research: Open source software can help the whole IE commu-
nity to move faster and produce higher-quality work with less
effort. Collaborative software projects encourage researchers to
interact; they can also initiate scientific collaboration beyond
mere programming. Contributing to such software increases a
researcher’s visibility. An example from another scientific field
is the Coupled Model Intercomparison Project (CMIP), which
includes a standard experimental protocol for studying the out-
put of coupled atmosphere-ocean general circulation models.
CMIP provides a community-based infrastructure in support
of climate model diagnosis, validation, intercomparison, doc-
umentation and data access. Virtually the entire international
climate modeling community has participated in this project
since its inception in 1995 (WCRP 2015). Similar efforts are
known from neuroscience (Hines et al. 2009), bioinformatics
(Hamelryck and Manderick 2003), and astrophysics (Robitaille
et al. 2013).

The second type of synergy concerns the reproducibility and
transparency of published numerical results and the scientific
claims based on them (Easterbrook 2014). If authors of scientific
articles were required to publish the code they used to analyze
the data and present the results, their work would gain sub-
stantial credibility, and the community could make much more
use of it (Ince et al. 2012; Peng 2011). These obvious bene-
fits of open scientific software have started to change journal
policies regarding access to code. For example, in 2011, Science
announced that it would extend its “data access requirement
[. . .] to include computer codes involved in the creation or
analysis of data” (Hanson et al. 2011, 649). In October 2014,
Nature released an editorial on code sharing and announced
that “editors [. . .] reserve the right to decline a paper if impor-
tant code is unavailable” (Nature 2014, 536).

We believe that it is time for the IE community to embark
on the discussion about open source software. To feed this de-
bate, we propose guidelines for the development of open source
software and more transparent publishing.

Guidelines for the Development and Deployment of
Open Access Software in Industrial Ecology

Our first claim is that each piece of software that transforms
a well-defined input into a well-defined output and that has
potential for reuse is worth publishing under an open source
license. That includes computation routines that implement a

published model, but also routines for data parsing and format-
ting as well as visualization scripts.

Any published software code can be studied, used, and mod-
ified for private purposes, without limitations. If the modifica-
tions are to be published and redistributed, however, the origi-
nal software needs to be published under a specific open source
license, because default copyright rules would apply if this was
not done (WIPO 2009). The open source license determines
the type of applications the code can be used for; it therefore
plays a crucial role in the success of the open source strategy.
A large number of open source licenses exist, but they follow
two basic patterns. (1) Copyleft licenses mandate modified code
to be published under the same open source license. The most
prominent example is the GNU General Public License (GPL),
which requires that all modifications and improvements of open
source software published under the GPL be published under
the same license. This provides an incentive for further open
source development, and thus it discourages commercial use
(Free Software Foundation 2007). (2) Permissive licenses, such
as the BSD and MIT licenses (Open Source Initiative 1988;
The FreeBSD Project 1992), only have minimal constraints
for how the software can be used, and their use may increase
chances that the code is used for both scientific and commer-
cial applications. In the Supporting Information on the Web,
we provide links to different license guides. We assert that the
selection of the open source license has important implications for the
success of the project and potential future commercial use.

We continue by arguing that in order to avoid fragmentation,
practitioners should make an effort to reuse existing code—
expanding upon existing projects or creating derivatives—
rather than starting from scratch and isolating their work from
the rest of the IE code base. Interfaces to other modules should
be built and published alongside with the actual functional-
ity. Good documentation, examples, and tutorials should come
along with the code.

Publishing scientific software under an open source license is
no guarantee of better software, but it carries a large potential.
It turns a piece of software into a publication in its own right,
which encourages the publisher to properly modularize, test,
document, and comment the software. This alone will raise
practice standards by making the code better structured and
less prone to mistakes. We believe that following the proposed
guidelines will help to make open source publishing of code
beneficial to the community as a whole, including the author
of the code.

More Transparency and Reproducibility from
Mandatory Code Sharing

In response to the increasing demand for publicly avail-
able software to reproduce scientific claims, the IE commu-
nity should consider to set higher requirements regarding the
provision of raw data and scientific software along with peer-
reviewed publications. We believe that the editors of journals
that publish IE research as well as the reviewers are key players
in this process. They should consider asking authors for a major

Pauliuk et al., Open Source Software for Industrial Ecology 941

M E T H O D S , TO O L S , A N D S O F T WA R E

Figure 2 Summary of our proposed guidelines for software development and sharing. These guidelines were developed for industrial
ecology, but they also comprise other fields where the typical program structure follows the flow diagram in figure 1.

revision of manuscripts whose claims are not reproducible be-
cause of lack of documentation, data, or software. This would
encourage authors to document their scientific claims with
higher transparency and reproducibility.

Laboratory notebooks are a basic element of scientific work
in many established fields of science. To increase the repro-
ducibility of scientific computations in IE, the IE community
should consider promoting the preparation of electronic lab
books that track computations (Mutel and Müller 2013; Shen
2014).

A general requirement that scientific claims of IE publica-
tions be fully reproducible would be a strong incentive for a more
open software culture. Authors could adhere to the requirement
by not only publishing the essential scientific software along
with peer-reviewed publications, but also by modularizing and
releasing the software under an open source license with all
benefits this brings about. On the other hand, if scientific soft-
ware is already released open source, an author writing an article
could merely point to a set of software modules and their ver-
sion numbers. This could be recognized as a sufficient level of
reproducibility by the community. Open source software and re-
producible scientific claims are two sides of the same coin. We
close our explanations by summarizing our recommendations
on software development, sharing, and publication in tabular
form (figure 2).

The Python Toolbox for Industrial Ecology

There are many ways of turning the general principles into
practice, and we refrain from promoting a “right way” of doing
this. Starting points for the choice of open source programming
frameworks can be found in the Supporting Information on the
Web. Here, we present the results of an effort made during re-
cent years and invite others to use the tools and to share their
own developments with the community. Using the general pur-
pose language, Python, we developed and published a number
of software modules to handle a large number of typical tasks
in the main fields of quantitative IE research: LCA, I-O, and
MFA/SFA. Though developed mostly independently of one an-
other, we strived to make them compatible to one another by
developing interfaces and making them adhere to common data
formats. We first present the modules and then the connections
between them (figure 3).

Life Cycle Assessment (Brightway2 and Extensions)

Brightway2 is a framework for LCA, covering everything
from data I-O and processing to calculations and interpretation
(Mutel 2014). The software itself is split into different modules,
each with a specific focus and limited set of capabilities. In
addition to the core components, extension modules provide
user interfaces, regional and dynamic LCA, and data interfaces

942 Journal of Industrial Ecology

M E T H O D S , TO O L S , A N D S O F T WA R E

Brightway2

code re-use

planned merge

data processing
quality checks

analysis tools
processed data
exogenous driver

data input

bw2
analyzer

pymrio

pySUT

allocation_
construct

bw2calcbw2data

ecospold
2matrix

bw2web, bw2browser, Activity Browser

LCA:

IO:

MFA:

• LCI database
management
• Static & stochastic
LCA calculations
• Systematic analysis
• Web, console and
classical GUI

• Consistency checks
• Harmonized LCA/IO
modeling
• streamlined IO
manipulations
• automated analysis
and footprint reports

• Prospective analysis
• stock/flow-driven
modeling

ecospold*

symmetric tables

SUT

ecospold†

stock time series
cohort structure
dynamic flows

pre-allocated
and unallocated
*

and other LCA
data formats
†

dynamic_
stock_
model

Figure 3 Relations between the different modules. We show input data (red), data flow between modules (black), and typical applications
(right). From left to right, this figure follows the progression of figure 1 from raw data input to final analysis. SUT = supply and use table;
LCA = life cycle assessment; IO = input-output; MFA = material flow analysis; LCI = life cycle inventory; GUI = graphical user interface.

for external programs. Brightway2 is extensively documented
and is designed to be easy to use and adapt. An example for the
application of Brightway2LCA is given by Mutel and colleagues
(2012).

Brightway2LCA includes the following major features:
� Import of ecospold 1 and 2 (ecoinvent 2 and 3) and

SimaPro files and export to multiple formats
� Very fast static and stochastic LCA calculations and

supply-chain graph traversal
� Web-based and classical graphical user interfaces (GUIs)

enable data management as well as visualization of
LCA results including networks, Hinton matrices, and
treemaps.

The Activity Browser is a free open source LCA software that
builds upon brightway2 (Steubing 2014). It provides a GUI to
brightway2 and enables, among others, a browser-inspired nav-
igation through LCA databases, the creation and modification
of activities and databases, as well as fast LCA calculations for
multiple functional units and impact assessment methods at a
time. The Activity Browser also includes an extension for a
meta-level modeling of life cycle inventories (LCIs) that en-
ables grouping several processes into so-called metaprocesses,
which can be linked based on user-defined product names to
screen alternative life cycles and which provide the basis for
optimization problems (Steubing 2015).

Matrix System Representations (ecospold2matrix)

Ecospold2matrix (Majeau-Bettez 2014a) is partly based on
the ecospold-parsing functionality of Brightway2, but it is much
simpler and more narrow in scope. To help bridge the gap be-
tween typical LCA and environmentally extended input-output

workflows, this module reorganizes the ecoinvent 3 database as
a collection of matrices. It can notably:

� assemble the unallocated dataset in a supply and use table
framework (see pySUT).

� perform basic quality checks on the preallocated data
sets and arrange them as Leontief technical coefficient
matrices with environmental extensions.

� optionally change sign conventions for waste flows and
properties to align with the waste input-output (WIO)
model (Nakamura and Kondo 2002).

Supply and Use Tables (pySUT), Allocations, and
Constructs

SUTs are a widely used accounting framework for flows
within society’s metabolism and its exchange with nature
(Miller and Blair 2009; European Commission 2008; Schmidt
et al. 2010; Majeau-Bettez et al. 2014a). SUTs are the start-
ing point for the construction of symmetric input-output ta-
bles (IOTs) (United Nations 1999; Lenzen and Reynolds 2014;
Lenzen and Rueda-Cantuche 2012).

The open source python class, pySUT, provides the fol-
lowing group of routines common to the System of National
Accounts and I-O modeling (Pauliuk 2014a):

� Balance checks, including the market and industry bal-
ances

� Aggregation and resorting of products, industries, and
regions

� Application of allocations and constructs to build
Leontief-A-matrices and extensions.

The LCA community has articulated the treatment of multi-
functional activities in terms of allocation models, whereas the

Pauliuk et al., Open Source Software for Industrial Ecology 943

M E T H O D S , TO O L S , A N D S O F T WA R E

I-O community treats coproducing industries with construct
models (Heijungs and Suh 2002). The allocation construct.py
module (Majeau-Bettez 2014b) reflects the recent harmoniza-
tion of these modeling practices (Suh et al. 2010) and offers
the functionality of both. It applies the general and specific al-
locations and constructs that follow the framework developed
by Majeau-Bettez and colleagues (2014b).

Multiregional Input-Output Analysis (pymrio)

Approximately half a dozen environmentally extended
MRIO tables were published over the last 2 years (Tukker and
Dietzenbacher 2013). Most of these tables are freely available.
Each model has its own file format, classification, and indexing;
efficient handling and analyzing of MRIO models therefore re-
quires a certain degree of training. The pymrio module (Stadler
2014a) allows for easy handling of global MRIO models. It pro-
vides a comprehensive, well-documented (Stadler 2014b) set
of commands for manipulating and analyzing (MR)IO tables,
including:

� Parsing global MRIO tables
� Modifying region and sector classification
� Restructuring extensions
� Calculating various accounts (footprint, territorial, im-

pacts embodied in trade)
� Exporting to various formats (csv, html, MS Excel)
� Visualization and automated report generation

Dynamic Stock Modeling (dynamic stock model)

Age-cohort–based models are standard in modeling of ma-
terial, product, and capital stocks (Pauliuk et al. 2015b). The
open source python class, dynamic stock model, provides three
standard routines for dynamic stock modeling (Pauliuk 2014b):

� Inflow-driven model: (Van der Voet et al. 2002; Pauliuk
et al. 2012; Nakamura et al. 2014; Fishman et al. 2014;
Glöser et al. 2013).

� Stock-driven model: (Müller 2006; Modaresi and Müller
2012; Modaresi et al. 2014; Hatayama et al. 2010; Busch
et al. 2014).

� Historic inflow from given age-structure of a stock. This
method is used in cases where an initial stock is present,
for example, when processing scenario results from the
TIMER model (de Vries et al. 2001).

Connections Between the Different Modules

The different modules are related to one another in sev-
eral ways (figure 3). SUTs are one central nexus: They are an
output of ecospold2matrix and an input to pySUT and alloca-
tion construct. Leontief IOTs (for I-O and LCA) are the other
nexus; they are an output of bw2data, ecospold2matrix, py-
SUT, and allocation construct, as well as an input to bw2calc
and pymrio. At present, there is no connection between the
modules for LCA and I-O and the dynamic stock model class.

This will change once dynamic stock models will be used as ex-
ogenous drivers for dynamic I-O models (Nakamura et al. 2014;
Pauliuk et al. 2015b; Kagawa et al. 2014).

Access, Use, and Collaboration

This brief description should give an impression of the capa-
bility of the toolbox and describe how the different modules are
connected. We refer to the specific documentations for further
detail. The toolboxes can be downloaded from their respective
home pages or from GitHub and Bitbucket. Most modules are
published under the BSD or similar licenses, which allows third
parties to use the code for commercial and noncommercial ap-
plications. The branching functionality of distributed version
control allows for several versions to be modified in parallel.
The modules follow our guidelines for good coding: They offer
specific functions, and they come along with unit tests, log-
ging routines (where applicable), and version control. They
all come with an online documentation, are published under
an open source license, and the software releases are version
controlled.

Options for Future Development

Further development of the LCA, I-O, and MFA toolboxes
is planned. There are many options for expansion, including:

� Standardized and transparent compilation and reconcili-
ation of SUTs from primary data sources

� Implementation of tools for tiered hybrid, integrated
hybrid, and WIO models (Heijungs and Suh 2002;
Nakamura and Kondo 2002)

� Creation of good visualization and data handling routines
� Dynamic-stock driven LCA/I-O analyses
� Structural analysis of MRIO systems

We invite interested scholars to join our efforts to create a
more open, more professional toolbox for IE.

Another important step to create an active software devel-
oper community for IE is to provide good overview of the differ-
ent tools, their capabilities, and interfaces between them. This
will become necessary at some point and could happen through
a dedicated website such as IndEcol-software-Wikibook, an
open content online textbook that any user can edit
(Wikimedia Foundation 2014).

Final Considerations

Concerns About Open Source Software

Can open source software also be commercially successful?
How does it impact the dynamics of science, especially compe-
tition among researchers? How can researchers reconcile their
wish to publish open source with their employers’ regulations
on intellectual property? These questions are the subject of a
broad debate, and we restrict ourselves to providing a few ar-
guments in favor of open source software: Publishing software

944 Journal of Industrial Ecology

M E T H O D S , TO O L S , A N D S O F T WA R E

under certain open source licenses (e.g., BSD) does not hinder
commercialization of the software later on. Major information
technology (IT) companies, including Red Hat Inc., Oracle
Corporation, Google Inc, and Facebook Inc, publish the source
code of their products or actively participate in open source
projects. We believe that publishing open source software for IE
does not preclude successful commercialization given that many
end users in industrial or consulting businesses will prefer using
high-end commercial software and related training services to
working with the source code themselves. Neither does it hin-
der competition among researchers in the short run, given that
a published software project may be split into different versions
(“forked”), and developed in different directions by different
research groups. It would impede, however, the development of
large nontransparent software projects and the accumulation of
knowledge biases over many years, as seen in the integrated as-
sessment modeling community (Schneider 1997). Finally, from
our experience, we can tell that universities generally accept
the release of code or materials in support of research, provided
that they benefit financially from successful commercialization.

On the Choice of Software

We have been careful not to make too specific recommen-
dations regarding which language or development environ-
ment to use. We see this as a secondary issue, surpassed by
the need to build well-structured, tested, and well-documented
software. All available languages and tools have their advan-
tages and disadvantages. In many cases, they can be embedded
into one another, given that versatile interfaces between most
languages exist.

An important issue, which requires careful deliberation, con-
cerns the openness of the development environment. Whereas
for many general purpose languages, including Java, Python,
C++, or Fortran, compilers and integrated development en-
vironments are freely available under an open source license,
this is not the case for proprietary languages such as Matlab
or Mathematica. Thus, users of the latter languages are sub-
ject to vendor lock-in, which raises issues over the longevity
of the code base and may be cost prohibitive for some insti-
tutions. This economic advantage and the independence of a
specific provider should be taken into consideration when de-
ciding which programming environment to use. We consider
the use of a free and open programming environment to be more
appropriate for an emerging research field with high ambitions
and a strong footing in the developing world.

Conclusion

IE needs better software to mature further. The proposed
guidelines for the development of more professional software
for the IE community cover modularization, testing, interfaces,
documentation, version control, and logging routines. To fol-
low these guidelines, additional effort related to modulariza-
tion, testing, and documentation is needed. According to our

experience, however, this effort is promptly offset by the benefits
of reusability and ease of collaboration.

Open source software for IE research has a large potential to
make our field more productive and to produce higher-quality
results. The proposed guidelines for open source IE software may
help to realize this potential, and first steps in that direction
have already been taken. It may take some time, however, until
a comprehensive and mature open source software framework
will be at disposal to the community.

Transparent and reproducible results are another aspect of a
mature research field. Published IE research often falls short of
the standards set in other fields, and the IE community should
consider setting higher requirements regarding general access
to software tools and/or documentation of data flows related to
published IE research.

We identified considerable synergies between high-quality
software, open source software, and reproducible results and be-
lieve that the recommendations given in the article will even-
tually help IE researchers make more solid contributions to
understanding and solving the environmental challenges faced
by modern society. Clearly, we are only at the beginning of such
a process.

Acknowledgments

The work of Stefan Pauliuk and Konstantin Stadler was
funded by the European Commission under the DESIRE Project
(grant no.: 308552). The work of Bernhard Steubing was funded
within the National Research Programme �Resource Wood�
(NRP 66; www.nfp66.ch) by the Swiss National Science Foun-
dation (project no.: 136612). The research was conducted with-
out involvement of the funding sources. The authors thank two
reviewers for their helpful feedback.

References

Aveny GmbH. 2014. Aveny LCA. www.aveny.ch/. Accessed 20 Oc-
tober 2014.

Beck, K. 1999. Extreme programming explained: Embrace change. Boston,
MA, USA. Addison-Wesley.

Beck, K. 2003. Test-driven development by example. Boston, MA, USA:
Addison-Wesley.

Beloin-Saint-Pierre, D., R. Heijungs, and I. Blanc. 2014. The ESPA
(Enhanced Structural Path Analysis) method: A solution to an
implementation challenge for dynamic life cycle assessment stud-
ies. The International Journal of Life Cycle Assessment 19(4): 861–
871.

Burkhardt, J. J., G. Heath, and E. Cohen. 2012. Life cycle greenhouse
gas emissions of trough and tower concentrating solar power elec-
tricity generation. Journal of Industrial Ecology 16(S1): S93–S109.

Busch, J., J. K. Steinberger, D. A. Dawson, P. Purnell, and K. E.
Roelich. 2014. Managing critical materials with a technology-
specific stocks and flows model. Environmental Science & Technol-
ogy 48(2): 1298–1305.

Cherubini, F., R. M. Bright, and A. H. Strømman. 2012. Site-
specific global warming potentials of biogenic CO2 for bioenergy:

Pauliuk et al., Open Source Software for Industrial Ecology 945

M E T H O D S , TO O L S , A N D S O F T WA R E

Contributions from carbon fluxes and albedo dynamics. Environ-
mental Research Letters 7(4): 045902.

CIRAIG (The Internation Centre for the Life Cycle of Products, Pro-
cesses and Services). 2015. Open IO-Canada: Open source Input-
output LCA model and tool to estimate life cycle impacts of
products and services. http://www.ciraig.org/en/open io canada/.
Accessed 28 May 2015.

Daigo, I., S. Osako, Y. Adachi, and Y. Matsuno. 2014. Time-series
analysis of global zinc demand associated with steel. Resources,
Conservation and Recycling 82: 35–40.

Davis, C., I. Nikolic, and G. P. J. Dijkema. 2010. Industrial ecology
2.0. Journal of Industrial Ecology 14(5): 707–726.

Dubois, P. F. 2005. Maintaining correctness in scientific programs.
Computing in Science and Engineering 7(3): 80–85.

Easterbrook, S. M. 2014. Open code for open science? Nature Geoscience
7(11): 779–781.

ecoinvent Center. 2014. ecoinvent version 3. Dübendorf, Switzer-
land: ecoinvent Center. www.ecoinvent.org/database/ecoinvent-
version-3/. Accessed 10 May 2014.

Ehrenfeld, J. R. 2004. Industrial ecology: A new field or only a
metaphor? Journal of Cleaner Production 12(8–10): 825–831.

Elshkaki, A. and T. E. Graedel. 2013. Dynamic analysis of the global
metals flows and stocks in electricity generation technologies.
Journal of Cleaner Production 59: 260–273.

European Commission. 2008. Eurostat manual of supply, use and input-
output tables, 2008 edition. Luxembourg: Eurostat.

Finnveden, G. and T. Ekvall. 1998. Life-cycle assessment as a decision-
support tool—The case of recycling versus incineration of paper.
Resources Conservation and Recycling 24(3): 235–256.

Finnveden, G., M. Z. Hauschild, T. Ekvall, J. Guinée, R. Heijungs, S.
Hellweg, A. Koehler, D. Pennington, and S. Suh. 2009. Recent
developments in life cycle assessment. Journal of Environmental
Management 91(1): 1–21.

Fischer-Kowalski, M., F. Krausmann, S. Giljum, S. Lutter, A. Mayer,
S. Bringezu, Y. Moriguchi, H. Schütz, H. Schandl, and H. Weisz.
2011. Methodology and indicators of economy-wide material flow
accounting. Journal of Industrial Ecology 15(6): 855–876.

Fishman, T., H. Schandl, H. Tanikawa, P. Walker, and F. Krausmann.
2014. Accounting for the material stock of nations. Journal of
Industrial Ecology 18(3): 407–420.

Free Software Foundation. 2007. GNU general public license.
www.gnu.org/copyleft/gpl.html. Accessed 28 October 2014.

Frischknecht, R. 2004. Transparency in LCA—A heretical request?
The International Journal of Life Cycle Assessment 9(4): 211–213.

Frischknecht, R., N. Jungbluth, H. J. Althaus, G. Doka, R. Dones, T.
Heck, S. Hellweg, et al. 2005. The ecoinvent database: Overview
and methodological framework. International Journal of Life Cycle
Assessment 10(1): 3–9.

GaBi. 2014. GaBi software—A product sustainability performance
solution. www.ecoinvent.org/database/ecoinvent-version-3/. Ac-
cessed 24 January 2014.

Geyer, R., D. M. Stoms, J. P. Lindner, F. W. Davis, and B. Wittstock.
2010. Coupling GIS and LCA for biodiversity assessments of land
use. The International Journal of Life Cycle Assessment 15(5): 454–
467.

Gibon, T., E. G. Hertwich, R. Wood, J. Bergesen, and S. Suh. 2014.
A methodology for scenario analysis in hybrid input-output analysis:
Case study on energy technologies. Trondheim, Norway: NTNU.

Glöser, S., M. Soulier, and L. A. Tercero Espinoza. 2013. Dynamic anal-
ysis of global copper flows. Global stocks, postconsumer material

flows, recycling indicators, and uncertainty evaluation. Environ-
mental Science & Technology 47(12): 6564–6572.

Goedkoop, M., M. Oele, A. de Schryver, and M. Vieira. 2008. SimaPro
7, database manual, methods library. Amersfoors, the Netherlands:
PRé Consultants.

Groen, E. A., R. Heijungs, E. A. M. Bokkers, and I. J. M. de Boer. 2014.
Methods for uncertainty propagation in life cycle assessment.
Environmental Modelling & Software 62: 316–325.

Guest, G., F. Cherubini, and A. H. Strømman. 2013. Global warming
potential of carbon dioxide emissions from biomass stored in the
anthroposphere and used for bioenergy at end of life. Journal of
Industrial Ecology 17(1): 20–30.

Hamelryck, T. and B. Manderick. 2003. PDB file parser and structure
class implemented in Python. Bioinformatics 19(17): 2308–2310.

Hannay, J. E., C. Macleod, J. Singer, H. P. Langtangen, D. Pfahl, and
G. Wilson. 2009. How do scientists develop and use scientific
software? In ICSE Workshop on Software Engineering for Com-
putational Science and Engineering, 2009. SECSE ’09, 23 May,
Vancouver, British Columbia, Canada.

Hanson, B., A. Sugden, and B. Alberts. 2011. Making data maximally
available. Science 331(11): 649.

Hatayama, H., I. Daigo, Y. Matsuno, and Y. Adachi. 2010. Outlook
of the world steel cycle based on the stock and flow dynamics.
Environmental Science & Technology 44(16): 6457–63.

Heijungs, R. 2012. CMLCA: Scientific software for LCA, IOA, EIOA,
and more. www.cmlca.eu/. Accessed 10 October 2014.

Heijungs, R. and S. Suh. 2002. Computational structure of life cycle
assessment. Dordrecht, the Netherlands: Kluwer Academic.

Herrmann, I.T. and A. Moltesen. 2015. Does it matter which Life Cy-
cle Assessment (LCA) tool you choose? – a comparative assess-
ment of SimaPro and GaBi. Journal of Cleaner Production 86: 163–
169.

Hertwich, E. G., T. Gibon, E. A. Bouman, A. Arvesen, S. Suh, G.
A. Heath, J. D. Bergesen, A. Ramirez, M. I. Vega, and L. Shi.
2015. Integrated life-cycle assessment of electricity-supply sce-
narios confirms global environmental benefit of low-carbon tech-
nologies. Proceedings of the National Academy of Sciences of the
United States of America 112(20): 6277–6282.

Hines, M. L., A. P. Davison, and E. Muller. 2009. NEURON and
Python. Frontiers in Neuroinformatics 3: 1.

ifu Hamburg. 2014. Umberto NXT LCA. www.umberto.de/en/. Ac-
cessed 20 October 2014.

Ince, D. C., L. Hatton, and J. Graham-Cumming. 2012. The case for
open computer programs. Nature 482(7386): 485–488.

Jung, J., N. Assen, and A. Bardow. 2013. Sensitivity coefficient-based
uncertainty analysis for multi-functionality in LCA. The Interna-
tional Journal of Life Cycle Assessment 19(3): 661–676.

Kagawa, S., S. Nakamura, Y. Kondo, K. Matsubae, and T. Nagasaka.
2014. Forecasting replacement demand of durable goods and the
induced secondary material flows: A case study of automobiles.
Journal of Industrial Ecology 19(1): 10–19.

Kim, H. C. and T. J. Wallington. 2013. Life-cycle energy and green-
house gas emission benefits of lightweighting in automobiles:
Review and harmonization. Environmental Science & Technology
47(12): 6089–6097.

Koning, A. De, G. Huppes, S. Deetman, and A. Tukker. 2015. Scenar-
ios for a 2°C world: A trade-linked input-output model with high
sector detail. Climate Policy 1–17.

Kytzia, S., M. Faist, and P. Baccini. 2004. Economically extended—
MFA: A material flow approach for a better understanding of

946 Journal of Industrial Ecology

M E T H O D S , TO O L S , A N D S O F T WA R E

food production chain. Journal of Cleaner Production 12(8–10):
877–889.

Lenzen, M. and R. Crawford. 2009. The path exchange method for
hybrid LCA. Environmental Science & Technology 43(21): 8251–
8256.

Lenzen, M., B. Gallego, and R. Wood. 2009. Matrix balancing under
conflicting information. Economic Systems Research 21(1): 23–44.

Lenzen, M., A. Geschke, T. O. Wiedmann, J. Lane, N. Anderson, T.
Baynes, J. Boland, et al. 2014. Compiling and using input-output
frameworks through collaborative virtual laboratories. The Science
of the Total Environment 485–486C: 241–251.

Lenzen, M., D. D. Moran, K. Kanemoto, and A. Geschke. 2013. Build-
ing Eora: A global multi-region input-output database at high
country and sector resolution. Economic Systems Research 25(1):
20–49.

Lenzen, M. and C. J. Reynolds. 2014. A supply-use approach to waste
input-output analysis. Journal of Industrial Ecology 18(2): 212–226.

Lenzen, M. and J. M. Rueda-Cantuche. 2012. A note on the use of
supply-use tables in impact analyses. Statistics and Operations Re-
search Transactions 36(2): 139–152.

Levasseur, A., P. Lesage, M. Margni, and R. Samson. 2013. Biogenic
carbon and temporary storage addressed with dynamic life cycle
assessment. Journal of Industrial Ecology 17(1): 117–128.

Lutter, S. and S. Giljum. 2014. Demand-based measures of material flows.
A review and comparative assessment of existing calculation methods
and data options. Working Party on Environmental Information.
Paris: OECD.

Macrina, F. L. 2005. Scientific record keeping. In Scientific integrity,
3rd ed., edited by F. L. Macrina (pp. 269–295). Washington, DC:
ASM.

Majeau-Bettez, G. 2014a. ecospold2matrix: A Python class for re-
casting Ecospold2 LCA datasets into Leontief matrix repre-
sentations or supply and use tables. https://github.com/majeau-
bettez/ecospold2matrix. Accessed 14 November 2014.

Majeau-Bettez, G. 2014b. allocation_construct: A Python mod-
ule for lifecycle assessment allocations and input-output con-
structs. https://github.com/majeau-bettez/allocation_construct.
Accessed 17 November 2014.

Majeau-Bettez, G., R. Wood, E. G. Hertwich, and A. H. Strømman.
2014a. When do allocations and constructs respect material, en-
ergy, financial, and production balances in LCA and EEIO? Jour-
nal of Industrial Ecology Forthcoming. DOI: 10.1111/jiec.12273.

Majeau-Bettez, G., R. Wood, and A. H. Strømman. 2014b. Unified
theory of allocations and constructs in life cycle assessment and
input-output analysis. Journal of Industrial Ecology 18(5): 747–770.

Miller, R. E. and P. D. Blair. 2009. Input-output analysis: Foundations
and extensions. New York: Cambridge University Press.

Modaresi, R. and D. B. Müller. 2012. The role of automobiles for the
future of aluminum recycling. Environmental Science & Technology
46(16): 8587–8594.

Modaresi, R., S. Pauliuk, A. N. Løvik, and D. B. Müller. 2014. Global
carbon benefits of material substitution in passenger cars until
2050 and the impact on the steel and aluminum industries. Envi-
ronmental Science & Technology 48(18): 10776–10784.

Müller, D. B. 2006. Stock dynamics for forecasting material flows—
Case study for housing in the Netherlands. Ecological Economics
59(1): 142–156.

Mutel, C. and S. Müller. 2013. Using online scientific notebooks for
LCA calculations. http://chris.mutel.org/static/images/ipython-
notebooks-handout.pdf. Accessed 24 October 2014.

Mutel, C. L. 2014. Brightway2: A new open source frame-
work for advanced life cycle assessment calculations. http://
brightwaylca.org/. Accessed 11 October 2014.

Mutel, C. L., S. Pfister, and S. Hellweg. 2012. GIS-based regionalized
life cycle assessment: How big is small enough? Methodology
and case study of electricity generation. Environmental Science &
Technology 46(2): 1096–1103.

Nakamura, S. and Y. Kondo. 2002. Input-output analysis of waste
management. Journal of Industrial Ecology 6(1): 39–63.

Nakamura, S., Y. Kondo, S. Kagawa, K. Matsubae, K. Nakajima, and
T. Nagasaka. 2014. MaTrace: Tracing the fate of materials over
time and across products in open-loop recycling. Environmental
Science & Technology 48(13): 7207–7214.

Nakamura, S., Y. Kondo, K. Matsubae, K. Nakajima, and T. Nagasaka.
2011. UPIOM: A new tool of MFA and its application to the flow
of iron and steel associated with car production. Environmental
Science & Technology 45(3): 1114–1120.

Nakamura, S. and K. Nakajima. 2006. Waste input-output material
flow analysis and its application to quantity metals. Journal of the
Japan Institute of Metals 70(6): 505–510.

Nature. 2014. Nature editorial: “Code share: Papers in Nature journals
should make computer code accessible where possible.” Nature
514(7524): 536.

Open Source Initiative. 1988. The MIT license. http://
opensource.org/licenses/MIT. Accessed 28 October 2014.

OpenLCA. 2014. Open LCA Nexus—Your source for LCA datasets.
https://nexus.openlca.org/brands. Accessed 24 January 2013.

Pauliuk, S. 2014a. pySUT—A Python class for handling supply and
use tables. https://github.com/stefanpauliuk/pySUT. Accessed 8
October 2014.

Pauliuk, S. 2014b. dynamic stock model—A Python class for dyn-
amic stock modelling. https://github.com/stefanpauliuk/dynamic
stock model. Accessed 6 October 2014.

Pauliuk, S. and E. G. Hertwich. 2015. Prospective models of society’s
future metabolism—What industrial ecology has to contribute.
In Taking stock of industrial ecology, edited by R. Clift and A.
Duckmann. Dordrecht, the Netherlands: Springer, Netherlands.
Forthcoming.

Pauliuk, S., G. Majeau-Bettez, and D. B. Müller. 2015a. A general
system structure and accounting framework for socioeconomic
metabolism. Journal of Industrial Ecology Forthcoming.

Pauliuk, S., T. Wang, and D. B. Müller. 2012. Moving toward the
circular economy: The role of stocks in the Chinese steel cycle.
Environmental Science & Technology 46(1): 148–154.

Pauliuk, S., R. Wood, and E. G. Hertwich. 2015b. Dynamic models
of fixed capital stocks and their application in industrial ecology.
Journal of Industrial Ecology 19(1): 104–116.

Peng, R. D. 2011. Reproducible research in computational science.
Science (New York, N.Y.) 334(6060): 1226–1227.

Pielke Jr, R. A. 2007. The honest broker: Making sense of science in policy
and politics. Cambridge, UK; New York: Cambridge University
Press.

Price, L. and A. Kendall. 2012. Wind power as a case study. Journal of
Industrial Ecology 16(S1): S22–S27.

Robitaille, T. P., E. J. Tollerud, P. Greenfield, M. Droettboom, E. Bray,
T. Aldcroft, M. Davis, et al. 2013. Astrophysics astropy: A com-
munity Python package for astronomy. Astronomy and Astrophysics
558(A33): 1–9.

Rose, D. C. 2014. Five ways to enhance the impact of climate science.
Nature Climate Change 4(7): 522–524.

Pauliuk et al., Open Source Software for Industrial Ecology 947

M E T H O D S , TO O L S , A N D S O F T WA R E

Saner, D., C. Vadenbo, B. Steubing, and S. Hellweg. 2014. Regional-
ized LCA-based optimization of building energy supply: Method
and case study for a Swiss municipality. Environmental Science &
Technology 48(13): 7651–7659.

Schmidt, J. H., B. P. Weidema, and S. Suh. 2010. EU-FORWAST
project. Deliverable no. 6.4. Documentation of the final model used
for the scenario analyses. Aalborg, Denmark. http://forwast.brgm.fr/
Documents/Deliverables/Forwast D64.pdf. Accessed 28 May
2015.

Schneider, S. H. 1997. Integrated assessment modeling of global cli-
mate change: Transparent rational tool for policy making or
opaque screen hiding value-laden assumptions? Environmental
Modeling and Assessment 2(4): 229–249.

SERI/WU (Sustainable Europe Research Institute/Vienna University
of Economics and Business). 2014. Global material flow database.
www.materialflows.net. Accessed 28 May 2015.

Shen, H. 2014. Nature toolbox: “Interactive notebooks: Sharing the
code.” Nature 515(7525): 151–152.

Speck, R., S. Selke, R. Auras, and J. Fitzsimmons. 2015. Life cycle
assessment software: Selection can impact results. Journal of In-
dustrial Ecology. DOI: 10.1111/jiec.12245.

Stadler, K. 2014a. pymrio—Multi regional input output analysis
in Python. http://dx.doi.org/10.6084/m9.figshare.1209339. Ac-
cessed 20 October 2014.

Stadler, K. 2014b. pymrio: A python module for automating input
output calculations and generating reports. https://github.com/
konstantinstadler/pymrio. Accessed 11 October 2014.

Steubing, B. 2014. Activity browser—A free and extendable LCA soft-
ware. https://bitbucket.org/bsteubing/activity-browser. Accessed
2 February 2015.

Steubing, B. 2015. Meta-process concept. http://activity-browser.
readthedocs.org/en/latest/metaprocess_introduction.html. Ac-
cessed 17 February 2015.

Suh, S. 2004. Functions, commodities and environmental impacts in
an ecological-economic model. Ecological Economics 48(4): 451–
467.

Suh, S. 2005. Developing a sectoral environmental database for input-
output analysis: The comprehensive environmental data archive
of the US. Economic Systems Research 17(4): 449–469.

Suh, S. 2009. Developing the sectoral environmental database
for input-output analysis: Comprehensive environmental data
archive of the U.S. In Handbook of input-output economics in in-
dustrial ecology, edited by S. Suh (pp. 689–712). Dordrecht, the
Netherlands: Springer.

Suh, S., M. Lenzen, G. J. Treloar, H. Hondo, A. Horvath, G. Hup-
pes, O. Jolliet, et al. 2004. System boundary selection in life-
cycle inventories using hybrid approaches. Environmental Science
& Technology 38(3): 657–664.

Suh, S., B. P. Weidema, J. H. Schmidt, and R. Heijungs. 2010. Gener-
alized make and use framework for allocation in life cycle assess-
ment. Journal of Industrial Ecology 14(2): 335–353.

Takahashi, K. I., R. Terakado, J. Nakamura, I. Daigo, Y. Matsuno, and
Y. Adachi. 2009. In-use stock of copper analysis using satellite
nighttime light observation data. Materials Transactions 50(7):
1871–1874.

The FreeBSD Project. 1992. The FreeBSD copyright. www.freebsd.
org/copyright/freebsd-license.html. Accessed 28 October 2014.

Tukker, A. and E. Dietzenbacher. 2013. Global multiregional input-
output frameworks: An introduction and outlook. Economic Sys-
tems Research 25(1): 1–19.

Tukker, A., A. de Koning, R. Wood, T. Hawkins, S. Lutter, J. Acosta,
J. M. Rueda Cantuche, et al. 2013. Exiopol—Development and
illustrative analyses of a detailed global MR EE SUT/IOT. Eco-
nomic Systems Research 25(1): 50–70.

United Nations. 1999. Handbook of input-output-table compilation and
analysis. Studies in methods. Vol. series F. New York: United Na-
tions.

Van der Voet, E., R. Kleijn, R. Huele, M. Ishikawa, and E. Verkui-
jlen. 2002. Predicting future emissions based on characteristics of
stocks. Ecological Economics 41(2): 223–234.

Verones, F., K. Bartl, S. Pfister, R. Jimenez Vilchez, and S. Hell-
weg. 2012. Modeling the local biodiversity impacts of agricul-
tural water use: Case study of a wetland in the coastal arid
area of Peru. Environmental Science & Technology 46(9): 4966–
4974.

Vienna University of Technology. 2012. STAN. www.stan2web.net/.
Accessed 10 October 2014.

Vries, B. J. M. de, D. P. van Vuuren, M. G. J. den Elzen, and M.
A. Janssen. 2001. The Targets IMage Energy Regional (TIMER)
Model: Technical documentation. www.pbl.nl/en/publications/
2001/TheTargetsIMageEnergyRegionalTIMERModelTechnical
Documentation. Accessed 28 May 2015.

WCRP (World Climate Research Program). 2015. CMIP Coupled
Model Intercomparison Project. http://cmip-pcmdi.llnl.gov/. Ac-
cessed 12 February 2015.

Weidema, B. P., C. Bauer, R. Hischier, C. L. Mutel, T. Ne-
mecek, J. Reinhard, C. Vadenbo, and G. Wernet. 2013.
Overview and methodology. Data quality guideline for the ecoinvent
database version 3. Zürich, Switzerland. www.ecoinvent.org/files/
dataqualityguideline ecoinvent 3 20130506.pdf. Accessed 28
May 2015.

Wiedenhofer, D., E. Rovenskaya, W. Haas, F. Krausmann, I. Pallua,
and M. Fischer-Kowalski. 2013. Is there a 1970s syndrome? Ana-
lyzing structural breaks in the metabolism of industrial economies.
Energy Procedia 40: 182–191.

Wiedmann, T. O. and J. Barrett. 2013. Policy-relevant applications of
environmentally extended MRIO databases—Experiences from
the Uk. Economic Systems Research 25(1): 143–156.

Wiedmann, T. O., H. Schandl, M. Lenzen, D. D. Moran, S. Suh, J.
West, and K. Kanemoto. 2013. The material footprint of nations.
Proceedings of the National Academy of Sciences of the United States
of America 1–6.

Wiedmann, T. O., H. C. Wilting, M. Lenzen, S. Lutter, and V. Palm.
2011. Quo vadis MRIO? Methodological, data and institutional
requirements for multi-region input–output analysis. Ecological
Economics 70(11): 1937–1945.

Wikimedia Foundation. 2014. Wikibooks. http://en.wikibooks.
org/wiki/Main_Page. Accessed 11 October 2014.

Wilson, G., D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R.
T. Guy, S. H. D. Haddock, et al. 2014. Best practices for scientific
computing. PLoS Biology 12(1): e1001745.

WIPO (World Intellectual Property Association). 2009. Understanding
copyright and related rights. Geneva, Switzerland: WIPO.

Wood, R. 2011. Construction, stability and predictability of an input-
output time-series for Australia. Economic Systems Research 23(2):
175–211.

Wood, R., K. Stadler, T. Bulavskaya, S. Lutter, S. Giljum, A. de Kon-
ing, J. Kuenen, et al. 2014. Global sustainability accounting—
Developing EXIOBASE for multi-regional footprint analysis. Sus-
tainability 7(1): 138–163.

948 Journal of Industrial Ecology

M E T H O D S , TO O L S , A N D S O F T WA R E

About the Authors

Stefan Pauliuk is a post-doctoral researcher and Konstantin
Stadler is a researcher at the Industrial Ecology Programme
at the Department of Energy and Process Engineering at the
Norwegian University of Science and Technology (NTNU),
Trondheim, Norway. Guillaume Majeau-Bettez is a post-
doctoral researcher jointly hired by the Industrial Ecology Pro-

gramme at the Department of Energy and Process Engineering
at NTNU and by CIRAIG (Interuniversity Research Centre for
the Life Cycle of Products, Processes and Services) at the École
Polytechnique de Montréal, Quebec, Canada. Christopher L.
Mutel is a staff scientist at the Paul Scherrer Institute (PSI),
Villigen, Switzerland. Bernhard Steubing is a post-doctoral
researcher at the Institute of Environmental Engineering at the
Swiss Federal Institute of Technology (ETH Zurich), Zurich,
Switzerland.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web site:

Supporting Information S1: This supporting information contains a detailed list of online references to programming
practice in other fields, links to some software tools mentioned in the paper, and links to several blog entries on relevant
topics.

Pauliuk et al., Open Source Software for Industrial Ecology 949

