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Summary

Industrial ecology (IE) is a maturing scientific discipline. The field is becoming more data and
computation intensive, which requires IE researchers to develop scientific software to tackle
novel research questions. We review the current state of software programming and use
in our field and find challenges regarding transparency, reproducibility, reusability, and ease
of collaboration. Our response to that problem is fourfold: First, we propose how existing
general principles for the development of good scientific software could be implemented
in IE and related fields. Second, we argue that collaborating on open source software could
make IE research more productive and increase its quality, and we present guidelines for
the development and distribution of such software. Third, we call for stricter requirements
regarding general access to the source code used to produce research results and scientific
claims published in the IE literature. Fourth, we describe a set of open source modules for
standard IE modeling tasks that represent our first attempt at turning our recommendations
into practice. We introduce a Python toolbox for IE that includes the life cycle assessment
(LCA) framework Brightway2, the ecospold2matrix module that parses unallocated data
in ecospold format, the pySUT and pymrio modules for building and analyzing multiregion
input-output models and supply and use tables, and the dynamic stock model class for
dynamic stock modeling. Widespread use of open access software can, at the same time,
increase quality, transparency, and reproducibility of IE research.
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Introduction

Computer Tools in Modern Science

The omnipresence of computer-based analysis in modern
science comes with two challenges, which are the subject of
this article. (1) Where science is based on computer models,
the existing software infrastructure determines the range of re-
search questions that can be tackled. Consequently, cutting-
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edge research requires software development, which, in turn,
requires special skills and is time-consuming. Researchers are
rarely software specialists, and their lack of knowledge may lead
to suboptimal results, such as low readability and reusability of
code (Hannay et al. 2009). (2) Published results and scientific
claims must be reproducible and transparent. To ensure this,
scientists have agreed on the general rules of good scientific
record keeping (Macrina 2005) and on the right to give peers
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access to raw data upon request (Ince et al. 2012). There is no
agreement, however, on whether the software used to gener-
ate scientific results should be published along with the results.
Withholding source code makes it more difficult to reproduce
results, and several proposals for higher software availability
have already been made (Peng 2011; Ince et al. 2012; Hanson
et al. 2011).

Computer Tools in Industrial Ecology

Industrial ecology (henceforth IE) is a rapidly advancing
field. Recent progress includes the compilation of an increas-
ing number of databases (ecoinvent Center 2014; Lenzen
et al. 2013; SERI/WU 2014; Tukker et al. 2013), use of in-
creasingly sophisticated quantitative analysis and assessment
methods (e.g., Hertwich et al. 2015), establishment of research
paradigms (Pauliuk and Hertwich 2015; Ehrenfeld 2004), or de-
velopment of common accounting frameworks (Suh et al. 2010;
Fischer-Kowalski et al. 2011; Pauliuk et al. 2015a). Models cur-
rently used in IE require more data and collaboration than ever
before. Has the development of software tools kept pace? How
has the IE community responded to the two challenges above?
To our knowledge, these issues have not yet been addressed in
the IE literature. We attempt to answer these questions for our
area of expertise, which comprises life cycle assessment (LCA),
input-output (I-O) analysis, and dynamic material (MFA) or
substance flow analysis (SFA), three core methods of IE. We fo-
cus on software used to tackle data- and computation-intensive
research questions, that is, cases where simple spreadsheets are
not enough.

Life Cycle Assessment
State-of-the-art LCA studies are most affected, because of

the large number of processes in the background system (more
than 10,000 for ecoinvent 3 [ecoinvent Center 2014]). Tools
for LCA can be divided into closed-source commercial software
(e.g., GaBi [GaBi 2014], SimaPro [Goedkoop et al. 2008], Um-
berto [ifu Hamburg 2014], and Aveny [Aveny GmbH 2014]),
closed source freeware (e.g., CMLCA [Heijungs 2012]), and
open source freeware (e.g., OpenLCA [OpenLCA 2014]). De-
signed mainly for industrial users, the commercial tools are
essential to mainstreaming the practical application of LCA.
Often, however, they prove to be too inflexible to serve the
needs of cutting-edge research. This includes questions requir-
ing region-specific emissions data and impact factors (Mutel
et al. 2012; Cherubini et al. 2012; Saner et al. 2014; Geyer
et al. 2010; Verones et al. 2012), dynamic LCA and tem-
poral emission profiles of product systems (Levasseur et al.
2013; Guest et al. 2013; Beloin-Saint-Pierre et al. 2014), large-
scale prospective assessments and hybridization (Hertwich
et al. 2015; Lenzen and Crawford 2009), efficient uncertainty
analysis (Groen et al. 2014), especially with respect to allo-
cation choices (Jung et al. 2013; Majeau-Bettez et al. 2014b),
and the handling of very large, but fragmented and incom-
patible, data sets (Lenzen et al. 2014; Suh 2005, 2009; Lenzen
et al. 2013). Many leading groups therefore undertake their own

programming activities, and the code is usually written by LCA,
rather than software, specialists.

Despite repeated calls for higher transparency and re-
producibility (Frischknecht 2004; Finnveden et al. 2009;
Finnveden and Ekvall 1998), most LCAs are not sufficiently
transparent to allow for meaningful comparisons across studies
or for the harmonization of their system definitions (Price and
Kendall 2012; Burkhardt et al. 2012; Kim and Wallington
2013). For many studies, raw data are not published, or not
published in a convenient format, which makes it impossible
to reproduce the analysis. This has several reasons: (1) It
is difficult to transparently and comprehensively document
LCA analyses with commercial software; (2) there is a lack of
transparency surrounding critical steps performed by database
providers, such as the matching of characterization factors
to emissions, or allocation; and (3) incentives for more
transparent inventories are low. Moreover, recent analysis has
shown that the choice of LCA software can impact assessment
results (Speck et al. 2015; Herrmann and Moltesen 2015). As
a result, many LCA studies are hard to compare, and they lack
credibility if evaluated by high scientific standards.

Input-Output
Specific software is needed for most I-O models because of

the large number of system variables. Aside from play mod-
els for illustrative purposes, the number of sectors in the sys-
tem typically lies between several hundred (single-region I-O)
and 104 to 105 (for integrated hybrid models such as THEMIS
or the Eora MRIO table [Hertwich et al. 2015; Lenzen et al.
2013]). I-O modeling requires many intermediate steps that re-
quire software, including balancing algorithms, trade linking
tools for multiregion input-output (MRIO), constructs to build
I-O models from supply and use tables (SUTs), and aggrega-
tion/disaggregation routines (Wood 2015; Lenzen et al. 2009;
Majeau-Bettez et al. 2014b; Miller and Blair 2009). Data pro-
cessing and analysis scripts, however, are not generally made
public, and we only know of two exceptions: De Koning and
colleagues (2015) and CIRAIG (2015). A recent comparative
study of six major MRIO frameworks by Lutter and Giljum
(2014, 7) finds a general lack of transparency: “Procedures for
manipulating IO tables, e.g. for disaggregating existing tables or
harmonizing IO tables from different national sources, [are] of-
ten not well documented.” This is a problem, given that these
models are rapidly gaining relevance in climate and resource
policy making.

Material Flow Analysis
The complexity of systems studied in MFA has increased

significantly over the last few years. Systems containing be-
tween 1 and approximately 25 processes are often visualized
with the freeware application STAN, which can also handle
data reconciliation and uncertainty propagation (Vienna Uni-
versity of Technology 2012). Specialized software is indispens-
able for more comprehensive systems, including dynamic MFA
and dynamic stock models (Hatayama et al. 2010; Modaresi
et al. 2014; Elshkaki and Graedel 2013; Wiedenhofer et al.
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2013; Müller 2006; Daigo et al. 2014; Busch et al. 2014),
MFA models of complex supply chains (Wiedmann et al. 2013;
Nakamura and Nakajima 2006; Nakamura et al. 2014; Kagawa
et al. 2014), and quantification of stocks with high spatial reso-
lution (Takahashi et al. 2009). Transparency of MFA and SFA
studies is enhanced by explicit system definitions that accom-
pany many publications. Comprehensive data and intermedi-
ate results are often not published, which makes many results
opaque and hard to reproduce.

Model Combinations
Next to models that strictly follow one of the traditions dis-

cussed above, there are an increasing number of extensions and
combinations of methods, such as hybrid LCA (Suh 2004; Suh
et al. 2004; Heijungs and Suh 2002; Gibon et al. 2014), connec-
tions between MFA and I-O (Nakamura and Nakajima 2006;
Nakamura et al. 2011; Kytzia et al. 2004; Lenzen and Reynolds
2014), and dynamic stock modeling (Pauliuk et al. 2015b;
Nakamura et al. 2014). With the exception of CMLCA
(Heijungs 2012), which can handle hybrid LCA, and the IELab
(Lenzen et al. 2014), which can reconcile large, partially con-
flicting data sets, no specific software for any of these models is
generally available.

Databases
Databases for IE are further developed than is the case for

model software. Existing databases are accepted and widely used
by the community; they are comprehensive and often well
documented. Examples for such databases include ecoinvent
for LCA (Frischknecht et al. 2005; Weidema et al. 2013);
the Eora world MRIO model (Lenzen et al. 2013), IELab
(Lenzen et al. 2014), or EXIOBASE (Wood et al. 2014) for
I-O, as well as a global database of materials flows for MFA
(SERI/WU 2014). Collaborative data frameworks have been
proposed by several researchers (Davis et al. 2010; Lenzen et al.
2014).

Research Gap and Scope of the Article

1. Level of software development: The understanding of
the importance of good software is ubiquitous within IE,
but this is rarely reflected in common practice of our
field. No widely accepted, readily available implemen-
tations of many common computational routines exist.
At present, most IE models are coded in spreadsheets or
form monolithic blocks of software in various program-
ming languages. They are developed as in-house projects
for single-case studies. Often, the quality of documenta-
tion does not match the complexity of the code. In many
cases, the code is difficult to reuse and is therefore aban-
doned. We know of several instances where this led to
double work. Professional software tools exist for specific
LCA and MFA applications, but it is hard or impossible
to adapt them to new types of research questions. There

is no common public software repository for IE models to
which every researcher can contribute.
We see lifting IE software and the way it is used to a
higher level as a key strategy to successfully mastering
future challenges such as model integration, closer col-
laboration across research groups, and better interaction
with neighboring fields, including integrated assessment,
climate, and computable general equilibrium modeling.

2. Level of software openness: To our knowledge, there
is neither an established standard nor a vivid debate re-
garding transparency and reproducibility of computations
behind published quantitative research conducted under
the label IE. A general lack of reproducibility may lower
the scientific quality of the field as a whole, which, in
the long run, can impede interaction with other scien-
tific fields and acquisition of research funding. Low levels
of reproducibility and transparency exclude noninsiders
from verifying the conclusions drawn, which can under-
mine the credibility of our research. Given that policy
guidance is a main motivation of many studies that use IE
models (e.g., Wiedmann et al. 2011; Tukker et al. 2013;
Wiedmann and Barrett 2013), this lack of credibility must
be considered problematic in a democratic society. This
becomes even more apparent in light of the proposed role
of scientists as “honest brokers” (Pielke Jr 2007) and as
information providers for evidence-informed policy de-
velopment (Rose 2014).

In this article, we present our efforts to respond to the two
challenges. First, we propose guidelines for how existing gen-
eral principles for the development of good scientific software
(Dubois 2005; Wilson et al. 2014) could be implemented in
IE and related fields. Second, we propose guidelines for the de-
velopment of open access software for IE, and, based on Peng
(2011) and Ince and colleagues (2012), we argue that the IE
community should set higher requirements regarding access to
source code behind scientific computations. Finally, we present
our first attempt at “walking the talk”: We describe a set of open
source modules for standard IE modeling tasks that are written
in the general purpose language, Python. We present each topic
in a separate section and discuss possible disadvantages and op-
tions for future development at the end.

Guidelines for Developing, Testing, and
Documenting Software Tools in Industrial
Ecology

We present guidelines for how IE software should be de-
veloped and organized to facilitate correctness and reusability.
These guidelines are independent of the programming language
chosen. Nor are they affected by the decision on whether to
share the software with others. Our suggestions extend exist-
ing guidelines for best practice in scientific coding (Wilson
et al. 2014) and for maintaining correctness in scientific
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Figure 1 Computational blocks of the scientific software for a typical model run in industrial ecology. Not all elements are always present,
but a more elaborate structure, especially with logging and testing modules, is important for complex projects.

software (Dubois 2005). Our guidelines apply to software that
is structured according to the scheme in figure 1, which we
consider to be the general structure of computations in IE.

The software framework depicted in figure 1 breaks up the
data flow into specific functional blocks. Software should be
modular; this increases the clarity and reusability of the different
components. Subsequent reuse for similar purposes should be
considered. There should be a dedicated section or software
module for each block in the diagram in figure 1. For example,
data should be read by a designated input module, in contrast to
the common practice of reading data whenever they are needed.
Control parameters should not be hard coded in the model, but
defined in data files, given that hard-coded parameters are prone
to yield mistakes when modified and forgotten, especially when
they enter the code at different places.

Confidence in final results is heightened by systematic and
transparent quality checks. Testing routines should therefore be
an integral part of scientific IE software development. Unit tests
check whether each unit of code (usually each function) per-
forms as intended. Unit tests include test cases that cover the
typical use of a function, as well as special cases and situations
that should raise errors (Beck 2003). These tests should always
accompany the code and be rerun when the module is mod-
ified to ensure that the intended functionality is maintained.
In contrast, system tests—such as performance, compatibility,
load, and usability testing—are harder to automate. They verify
that the software as a whole meets functional requirements and
are therefore interesting for more mature IE projects aiming for
mainstream use.

The next guideline is the key to successful modulariza-
tion and reuse of the code: Development and documenta-
tion of the interfaces between software blocks is of central
importance, as is the documentation of the functions of the
code within the blocks. Documentation should cover the func-
tion of the code, not only its structure (Wilson et al. 2014).

Moreover, good interfaces facilitate the use of different pro-
gramming languages.

Once a module works correctly and is well documented, it
should be formally released under a version number: The different
blocks of a model should be subject to a version control system to keep
track of modifications. Version control systems record the entire
history of a piece of software. This is essential if past results
based on older versions are to be reproduced, and it facilitates
the consolidation of simultaneous contributions by multiple
developers or research groups. Examples for distributed version
control software can be found in the supporting information
available on the Journal’s website.

Finally, we need to keep track of the computations of the
entire software to make sure that the results can be understood
and reproduced, even years after the model was run: Each proper
model run should be documented in a log file that is stored together
with the results, which traces the flow of computation from the input
data to the results. The log file should contain information such
as a time stamp, the source location and version numbers of the
input data and the modules used, the status or error messages
of the different modules called, and key parameters and user
choices defined during the model run.

The above recommendations are consensual and do not re-
quire much motivation. To develop a sophisticated piece of
software following these rules, the programming community has
articulated many complementary or partly overlapping software
development strategies to efficiently reach high levels of qual-
ity. Notable examples include: the traditional waterfall model;
test-driven development; extreme programming; and multiple
agile development strategies (Beck 1999). We refrain from rec-
ommending a specific methodology to the IE community, given
that the choice of an optimal strategy is largely project and
resource dependent. We do recommend, however, that groups
investing resources in software development apply a specific
strategy for this process.
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Guidelines for Collaborative Software
Projects Within Industrial Ecology and a
Call for More Transparency of Published
Results

The benefits of pursuing high-quality standards for scientific
software are hardly debatable. More sensitive is the question
of whether or not to share software with peers and have them
use and improve it. We argue that, in many cases, considerable
synergies may arise by combining the pursuit of high-quality
software and the willingness to publish it open source.

The first type of synergy concerns the productivity of IE
research: Open source software can help the whole IE commu-
nity to move faster and produce higher-quality work with less
effort. Collaborative software projects encourage researchers to
interact; they can also initiate scientific collaboration beyond
mere programming. Contributing to such software increases a
researcher’s visibility. An example from another scientific field
is the Coupled Model Intercomparison Project (CMIP), which
includes a standard experimental protocol for studying the out-
put of coupled atmosphere-ocean general circulation models.
CMIP provides a community-based infrastructure in support
of climate model diagnosis, validation, intercomparison, doc-
umentation and data access. Virtually the entire international
climate modeling community has participated in this project
since its inception in 1995 (WCRP 2015). Similar efforts are
known from neuroscience (Hines et al. 2009), bioinformatics
(Hamelryck and Manderick 2003), and astrophysics (Robitaille
et al. 2013).

The second type of synergy concerns the reproducibility and
transparency of published numerical results and the scientific
claims based on them (Easterbrook 2014). If authors of scientific
articles were required to publish the code they used to analyze
the data and present the results, their work would gain sub-
stantial credibility, and the community could make much more
use of it (Ince et al. 2012; Peng 2011). These obvious bene-
fits of open scientific software have started to change journal
policies regarding access to code. For example, in 2011, Science
announced that it would extend its “data access requirement
[ . . . ] to include computer codes involved in the creation or
analysis of data” (Hanson et al. 2011, 649). In October 2014,
Nature released an editorial on code sharing and announced
that “editors [ . . . ] reserve the right to decline a paper if impor-
tant code is unavailable” (Nature 2014, 536).

We believe that it is time for the IE community to embark
on the discussion about open source software. To feed this de-
bate, we propose guidelines for the development of open source
software and more transparent publishing.

Guidelines for the Development and Deployment of
Open Access Software in Industrial Ecology

Our first claim is that each piece of software that transforms
a well-defined input into a well-defined output and that has
potential for reuse is worth publishing under an open source
license. That includes computation routines that implement a

published model, but also routines for data parsing and format-
ting as well as visualization scripts.

Any published software code can be studied, used, and mod-
ified for private purposes, without limitations. If the modifica-
tions are to be published and redistributed, however, the origi-
nal software needs to be published under a specific open source
license, because default copyright rules would apply if this was
not done (WIPO 2009). The open source license determines
the type of applications the code can be used for; it therefore
plays a crucial role in the success of the open source strategy.
A large number of open source licenses exist, but they follow
two basic patterns. (1) Copyleft licenses mandate modified code
to be published under the same open source license. The most
prominent example is the GNU General Public License (GPL),
which requires that all modifications and improvements of open
source software published under the GPL be published under
the same license. This provides an incentive for further open
source development, and thus it discourages commercial use
(Free Software Foundation 2007). (2) Permissive licenses, such
as the BSD and MIT licenses (Open Source Initiative 1988;
The FreeBSD Project 1992), only have minimal constraints
for how the software can be used, and their use may increase
chances that the code is used for both scientific and commer-
cial applications. In the Supporting Information on the Web,
we provide links to different license guides. We assert that the
selection of the open source license has important implications for the
success of the project and potential future commercial use.

We continue by arguing that in order to avoid fragmentation,
practitioners should make an effort to reuse existing code—
expanding upon existing projects or creating derivatives—
rather than starting from scratch and isolating their work from
the rest of the IE code base. Interfaces to other modules should
be built and published alongside with the actual functional-
ity. Good documentation, examples, and tutorials should come
along with the code.

Publishing scientific software under an open source license is
no guarantee of better software, but it carries a large potential.
It turns a piece of software into a publication in its own right,
which encourages the publisher to properly modularize, test,
document, and comment the software. This alone will raise
practice standards by making the code better structured and
less prone to mistakes. We believe that following the proposed
guidelines will help to make open source publishing of code
beneficial to the community as a whole, including the author
of the code.

More Transparency and Reproducibility from
Mandatory Code Sharing

In response to the increasing demand for publicly avail-
able software to reproduce scientific claims, the IE commu-
nity should consider to set higher requirements regarding the
provision of raw data and scientific software along with peer-
reviewed publications. We believe that the editors of journals
that publish IE research as well as the reviewers are key players
in this process. They should consider asking authors for a major
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Figure 2 Summary of our proposed guidelines for software development and sharing. These guidelines were developed for industrial
ecology, but they also comprise other fields where the typical program structure follows the flow diagram in figure 1.

revision of manuscripts whose claims are not reproducible be-
cause of lack of documentation, data, or software. This would
encourage authors to document their scientific claims with
higher transparency and reproducibility.

Laboratory notebooks are a basic element of scientific work
in many established fields of science. To increase the repro-
ducibility of scientific computations in IE, the IE community
should consider promoting the preparation of electronic lab
books that track computations (Mutel and Müller 2013; Shen
2014).

A general requirement that scientific claims of IE publica-
tions be fully reproducible would be a strong incentive for a more
open software culture. Authors could adhere to the requirement
by not only publishing the essential scientific software along
with peer-reviewed publications, but also by modularizing and
releasing the software under an open source license with all
benefits this brings about. On the other hand, if scientific soft-
ware is already released open source, an author writing an article
could merely point to a set of software modules and their ver-
sion numbers. This could be recognized as a sufficient level of
reproducibility by the community. Open source software and re-
producible scientific claims are two sides of the same coin. We
close our explanations by summarizing our recommendations
on software development, sharing, and publication in tabular
form (figure 2).

The Python Toolbox for Industrial Ecology

There are many ways of turning the general principles into
practice, and we refrain from promoting a “right way” of doing
this. Starting points for the choice of open source programming
frameworks can be found in the Supporting Information on the
Web. Here, we present the results of an effort made during re-
cent years and invite others to use the tools and to share their
own developments with the community. Using the general pur-
pose language, Python, we developed and published a number
of software modules to handle a large number of typical tasks
in the main fields of quantitative IE research: LCA, I-O, and
MFA/SFA. Though developed mostly independently of one an-
other, we strived to make them compatible to one another by
developing interfaces and making them adhere to common data
formats. We first present the modules and then the connections
between them (figure 3).

Life Cycle Assessment (Brightway2 and Extensions)

Brightway2 is a framework for LCA, covering everything
from data I-O and processing to calculations and interpretation
(Mutel 2014). The software itself is split into different modules,
each with a specific focus and limited set of capabilities. In
addition to the core components, extension modules provide
user interfaces, regional and dynamic LCA, and data interfaces
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Figure 3 Relations between the different modules. We show input data (red), data flow between modules (black), and typical applications
(right). From left to right, this figure follows the progression of figure 1 from raw data input to final analysis. SUT = supply and use table;
LCA = life cycle assessment; IO = input-output; MFA = material flow analysis; LCI = life cycle inventory; GUI = graphical user interface.

for external programs. Brightway2 is extensively documented
and is designed to be easy to use and adapt. An example for the
application of Brightway2LCA is given by Mutel and colleagues
(2012).

Brightway2LCA includes the following major features:
� Import of ecospold 1 and 2 (ecoinvent 2 and 3) and

SimaPro files and export to multiple formats
� Very fast static and stochastic LCA calculations and

supply-chain graph traversal
� Web-based and classical graphical user interfaces (GUIs)

enable data management as well as visualization of
LCA results including networks, Hinton matrices, and
treemaps.

The Activity Browser is a free open source LCA software that
builds upon brightway2 (Steubing 2014). It provides a GUI to
brightway2 and enables, among others, a browser-inspired nav-
igation through LCA databases, the creation and modification
of activities and databases, as well as fast LCA calculations for
multiple functional units and impact assessment methods at a
time. The Activity Browser also includes an extension for a
meta-level modeling of life cycle inventories (LCIs) that en-
ables grouping several processes into so-called metaprocesses,
which can be linked based on user-defined product names to
screen alternative life cycles and which provide the basis for
optimization problems (Steubing 2015).

Matrix System Representations (ecospold2matrix)

Ecospold2matrix (Majeau-Bettez 2014a) is partly based on
the ecospold-parsing functionality of Brightway2, but it is much
simpler and more narrow in scope. To help bridge the gap be-
tween typical LCA and environmentally extended input-output

workflows, this module reorganizes the ecoinvent 3 database as
a collection of matrices. It can notably:

� assemble the unallocated dataset in a supply and use table
framework (see pySUT).

� perform basic quality checks on the preallocated data
sets and arrange them as Leontief technical coefficient
matrices with environmental extensions.

� optionally change sign conventions for waste flows and
properties to align with the waste input-output (WIO)
model (Nakamura and Kondo 2002).

Supply and Use Tables (pySUT), Allocations, and
Constructs

SUTs are a widely used accounting framework for flows
within society’s metabolism and its exchange with nature
(Miller and Blair 2009; European Commission 2008; Schmidt
et al. 2010; Majeau-Bettez et al. 2014a). SUTs are the start-
ing point for the construction of symmetric input-output ta-
bles (IOTs) (United Nations 1999; Lenzen and Reynolds 2014;
Lenzen and Rueda-Cantuche 2012).

The open source python class, pySUT, provides the fol-
lowing group of routines common to the System of National
Accounts and I-O modeling (Pauliuk 2014a):

� Balance checks, including the market and industry bal-
ances

� Aggregation and resorting of products, industries, and
regions

� Application of allocations and constructs to build
Leontief-A-matrices and extensions.

The LCA community has articulated the treatment of multi-
functional activities in terms of allocation models, whereas the
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I-O community treats coproducing industries with construct
models (Heijungs and Suh 2002). The allocation construct.py
module (Majeau-Bettez 2014b) reflects the recent harmoniza-
tion of these modeling practices (Suh et al. 2010) and offers
the functionality of both. It applies the general and specific al-
locations and constructs that follow the framework developed
by Majeau-Bettez and colleagues (2014b).

Multiregional Input-Output Analysis (pymrio)

Approximately half a dozen environmentally extended
MRIO tables were published over the last 2 years (Tukker and
Dietzenbacher 2013). Most of these tables are freely available.
Each model has its own file format, classification, and indexing;
efficient handling and analyzing of MRIO models therefore re-
quires a certain degree of training. The pymrio module (Stadler
2014a) allows for easy handling of global MRIO models. It pro-
vides a comprehensive, well-documented (Stadler 2014b) set
of commands for manipulating and analyzing (MR)IO tables,
including:

� Parsing global MRIO tables
� Modifying region and sector classification
� Restructuring extensions
� Calculating various accounts (footprint, territorial, im-

pacts embodied in trade)
� Exporting to various formats (csv, html, MS Excel)
� Visualization and automated report generation

Dynamic Stock Modeling (dynamic stock model)

Age-cohort–based models are standard in modeling of ma-
terial, product, and capital stocks (Pauliuk et al. 2015b). The
open source python class, dynamic stock model, provides three
standard routines for dynamic stock modeling (Pauliuk 2014b):

� Inflow-driven model: (Van der Voet et al. 2002; Pauliuk
et al. 2012; Nakamura et al. 2014; Fishman et al. 2014;
Glöser et al. 2013).

� Stock-driven model: (Müller 2006; Modaresi and Müller
2012; Modaresi et al. 2014; Hatayama et al. 2010; Busch
et al. 2014).

� Historic inflow from given age-structure of a stock. This
method is used in cases where an initial stock is present,
for example, when processing scenario results from the
TIMER model (de Vries et al. 2001).

Connections Between the Different Modules

The different modules are related to one another in sev-
eral ways (figure 3). SUTs are one central nexus: They are an
output of ecospold2matrix and an input to pySUT and alloca-
tion construct. Leontief IOTs (for I-O and LCA) are the other
nexus; they are an output of bw2data, ecospold2matrix, py-
SUT, and allocation construct, as well as an input to bw2calc
and pymrio. At present, there is no connection between the
modules for LCA and I-O and the dynamic stock model class.

This will change once dynamic stock models will be used as ex-
ogenous drivers for dynamic I-O models (Nakamura et al. 2014;
Pauliuk et al. 2015b; Kagawa et al. 2014).

Access, Use, and Collaboration

This brief description should give an impression of the capa-
bility of the toolbox and describe how the different modules are
connected. We refer to the specific documentations for further
detail. The toolboxes can be downloaded from their respective
home pages or from GitHub and Bitbucket. Most modules are
published under the BSD or similar licenses, which allows third
parties to use the code for commercial and noncommercial ap-
plications. The branching functionality of distributed version
control allows for several versions to be modified in parallel.
The modules follow our guidelines for good coding: They offer
specific functions, and they come along with unit tests, log-
ging routines (where applicable), and version control. They
all come with an online documentation, are published under
an open source license, and the software releases are version
controlled.

Options for Future Development

Further development of the LCA, I-O, and MFA toolboxes
is planned. There are many options for expansion, including:

� Standardized and transparent compilation and reconcili-
ation of SUTs from primary data sources

� Implementation of tools for tiered hybrid, integrated
hybrid, and WIO models (Heijungs and Suh 2002;
Nakamura and Kondo 2002)

� Creation of good visualization and data handling routines
� Dynamic-stock driven LCA/I-O analyses
� Structural analysis of MRIO systems

We invite interested scholars to join our efforts to create a
more open, more professional toolbox for IE.

Another important step to create an active software devel-
oper community for IE is to provide good overview of the differ-
ent tools, their capabilities, and interfaces between them. This
will become necessary at some point and could happen through
a dedicated website such as IndEcol-software-Wikibook, an
open content online textbook that any user can edit
(Wikimedia Foundation 2014).

Final Considerations

Concerns About Open Source Software

Can open source software also be commercially successful?
How does it impact the dynamics of science, especially compe-
tition among researchers? How can researchers reconcile their
wish to publish open source with their employers’ regulations
on intellectual property? These questions are the subject of a
broad debate, and we restrict ourselves to providing a few ar-
guments in favor of open source software: Publishing software
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under certain open source licenses (e.g., BSD) does not hinder
commercialization of the software later on. Major information
technology (IT) companies, including Red Hat Inc., Oracle
Corporation, Google Inc, and Facebook Inc, publish the source
code of their products or actively participate in open source
projects. We believe that publishing open source software for IE
does not preclude successful commercialization given that many
end users in industrial or consulting businesses will prefer using
high-end commercial software and related training services to
working with the source code themselves. Neither does it hin-
der competition among researchers in the short run, given that
a published software project may be split into different versions
(“forked”), and developed in different directions by different
research groups. It would impede, however, the development of
large nontransparent software projects and the accumulation of
knowledge biases over many years, as seen in the integrated as-
sessment modeling community (Schneider 1997). Finally, from
our experience, we can tell that universities generally accept
the release of code or materials in support of research, provided
that they benefit financially from successful commercialization.

On the Choice of Software

We have been careful not to make too specific recommen-
dations regarding which language or development environ-
ment to use. We see this as a secondary issue, surpassed by
the need to build well-structured, tested, and well-documented
software. All available languages and tools have their advan-
tages and disadvantages. In many cases, they can be embedded
into one another, given that versatile interfaces between most
languages exist.

An important issue, which requires careful deliberation, con-
cerns the openness of the development environment. Whereas
for many general purpose languages, including Java, Python,
C++, or Fortran, compilers and integrated development en-
vironments are freely available under an open source license,
this is not the case for proprietary languages such as Matlab
or Mathematica. Thus, users of the latter languages are sub-
ject to vendor lock-in, which raises issues over the longevity
of the code base and may be cost prohibitive for some insti-
tutions. This economic advantage and the independence of a
specific provider should be taken into consideration when de-
ciding which programming environment to use. We consider
the use of a free and open programming environment to be more
appropriate for an emerging research field with high ambitions
and a strong footing in the developing world.

Conclusion

IE needs better software to mature further. The proposed
guidelines for the development of more professional software
for the IE community cover modularization, testing, interfaces,
documentation, version control, and logging routines. To fol-
low these guidelines, additional effort related to modulariza-
tion, testing, and documentation is needed. According to our

experience, however, this effort is promptly offset by the benefits
of reusability and ease of collaboration.

Open source software for IE research has a large potential to
make our field more productive and to produce higher-quality
results. The proposed guidelines for open source IE software may
help to realize this potential, and first steps in that direction
have already been taken. It may take some time, however, until
a comprehensive and mature open source software framework
will be at disposal to the community.

Transparent and reproducible results are another aspect of a
mature research field. Published IE research often falls short of
the standards set in other fields, and the IE community should
consider setting higher requirements regarding general access
to software tools and/or documentation of data flows related to
published IE research.

We identified considerable synergies between high-quality
software, open source software, and reproducible results and be-
lieve that the recommendations given in the article will even-
tually help IE researchers make more solid contributions to
understanding and solving the environmental challenges faced
by modern society. Clearly, we are only at the beginning of such
a process.
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2011. Methodology and indicators of economy-wide material flow
accounting. Journal of Industrial Ecology 15(6): 855–876.

Fishman, T., H. Schandl, H. Tanikawa, P. Walker, and F. Krausmann.
2014. Accounting for the material stock of nations. Journal of
Industrial Ecology 18(3): 407–420.

Free Software Foundation. 2007. GNU general public license.
www.gnu.org/copyleft/gpl.html. Accessed 28 October 2014.

Frischknecht, R. 2004. Transparency in LCA—A heretical request?
The International Journal of Life Cycle Assessment 9(4): 211–213.

Frischknecht, R., N. Jungbluth, H. J. Althaus, G. Doka, R. Dones, T.
Heck, S. Hellweg, et al. 2005. The ecoinvent database: Overview
and methodological framework. International Journal of Life Cycle
Assessment 10(1): 3–9.

GaBi. 2014. GaBi software—A product sustainability performance
solution. www.ecoinvent.org/database/ecoinvent-version-3/. Ac-
cessed 24 January 2014.

Geyer, R., D. M. Stoms, J. P. Lindner, F. W. Davis, and B. Wittstock.
2010. Coupling GIS and LCA for biodiversity assessments of land
use. The International Journal of Life Cycle Assessment 15(5): 454–
467.

Gibon, T., E. G. Hertwich, R. Wood, J. Bergesen, and S. Suh. 2014.
A methodology for scenario analysis in hybrid input-output analysis:
Case study on energy technologies. Trondheim, Norway: NTNU.
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Polytechnique de Montréal, Quebec, Canada. Christopher L.
Mutel is a staff scientist at the Paul Scherrer Institute (PSI),
Villigen, Switzerland. Bernhard Steubing is a post-doctoral
researcher at the Institute of Environmental Engineering at the
Swiss Federal Institute of Technology (ETH Zurich), Zurich,
Switzerland.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web site:

Supporting Information S1: This supporting information contains a detailed list of online references to programming
practice in other fields, links to some software tools mentioned in the paper, and links to several blog entries on relevant
topics.

Pauliuk et al., Open Source Software for Industrial Ecology 949


