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We study the degeneration of semipositive smooth hermitian line bundles on open com-

plex manifolds, assuming that the metric extends well away from a codimension two

analytic subset of the boundary. Using terminology introduced by R. Hain, we show that

under these assumptions the so-called height jump divisors are always effective. This

result is of particular interest in the context of biextension line bundles on Griffiths

intermediate jacobian fibrations of polarized variations of Hodge structure of weight

−1, pulled back along normal function sections. In the case of the normal function on

Mg associated to the Ceresa cycle, our result proves a conjecture of Hain. As an appli-

cation of our result we obtain that the Moriwaki divisor on Mg has non-negative degree

on all complete curves in Mg not entirely contained in the locus of irreducible singular

curves.

1 Introduction

Let X be a complex manifold, E a reduced divisor on X , and set U = X \ |E|. Let L be a

holomorphic line bundle onU equipped with a smooth hermitian metric ‖·‖. The purpose

of this note is to show a certain concavity property for the singularities of the metric

‖ · ‖ across the boundary divisor E, provided (1) the metric is semipositive over U and (2)
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the metric extends continuously away from an analytic subset S ⊂ |E| of codimension at

least 2 in X . Here we say that the metric ‖ · ‖ is semipositive if the first Chern form c1(L)

of L = (L, ‖ · ‖) is semi-positive as a (1, 1)-form on U . A typical example of an analytic set

S as in condition (1) would be the singular locus of |E|.
To formulate the concavity property it is useful to introduce the notion of a Lear

extension, following R. Hain [13, Sections 6 and 14], inspired by the results of D. Lear in

[19]. We say that the smooth hermitian line bundle L is Lear-extendable over X if there

exists an analytic subset S ⊂ |E| of codimension at least 2 in X and an integer N ∈ Z>0

such that the smooth hermitian line bundle L
⊗N

extends as a continuously metrized

holomorphic line bundle over X \ S. If we assume that the metric ‖ · ‖ is semipositive

in U , then the assumption that S is an analytic subset of codimension at least 2 in X

implies that the holomorphic line bundle L⊗N extends (uniquely) as a holomorphic line

bundle on the whole of X , by [24, Theorem 1] and [26, Proposition 2].

Thus, if L is Lear-extendable over X and the metric ‖ · ‖ is semipositive on U ,

then the line bundle L has a canonical extension as a Q-line bundle over X , determined

by the chosen metric ‖ · ‖ on L. We denote this canonical extension by [L,X ] and call it

the Lear extension of L.

Let C be a connected Riemann surface and let ϕ : C → X be a holomorphic map

such that the generic point of C has image in U . Let V = ϕ−1U , which is an open dense

subset of C. If we assume that L is Lear-extendable over X and in addition that ϕ|∗VL is

Lear-extendable over C, it is natural to consider the difference of Q-line bundles

ϕ∗[L,X ] − [ϕ|∗VL,C]

on C. Since ϕ∗[L,X ] and [ϕ|∗VL,C] agree on V , the difference ϕ∗[L,X ]− [ϕ|∗VL,C] determines

canonically a Q-divisor supported on the boundary set C \V , which we write as J = Jϕ,L.

Following terminology introduced by Hain [13, Section 14] we call J the height jump

divisor of Lwith respect to the morphism ϕ. We say that the height jumps if J is non-zero.

The height jump divisor J measures the failure of the Lear extension to be compatible

with pullback along ϕ.

Our main aim in this note is to prove the following result.

Theorem 1.1. Assume that the metric of the smooth hermitian holomorphic line bundle

L on U is semipositive. Moreover, assume that L has a Lear extension [L,X ] over X , and

that ϕ|∗VL has a Lear extension [ϕ|∗VL,C] over C. Then the height jump divisor Jϕ,L on C is

effective. �
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The main motivation for this result comes from work of Hain [13], G. Pearl-

stein [23], and Pearlstein and C. Peters [22] concerning the curvature properties and

asymptotic behavior of admissible biextension variations of mixed Hodge structure, in

particular a conjecture of Hain formulated in [13, Section 14].

We briefly sketch this circle of ideas, referring to [13] for more details. Let V

denote a polarized variation of Hodge structure of weight −1 over the complex manifold

U = X \ |E|. By classical work of P. Griffiths one has associated to V a canonical torus

bundle J(V) → U , called the intermediate jacobian fibration of V over U . As is explained

in [11, 13], the polarization on V gives rise to a canonical holomorphic line bundle B
on J(V) whose total space classifies self-dual biextension variations of mixed Hodge

structures of V. A self-dual biextension variation of mixed Hodge structures of V is a

variation of mixed Hodge structures B over U with weight graded quotients

Gr0
∼= Z(0), Gr−1

∼= V, Gr−2
∼= Z(1)

such that the resulting extensions W0B/Z(1) ∈ Ext1
MHS(U)(Z(0), V) and W−1B ∈

Ext1
MHS(U)(V, Z(1)) are identified via the canonical map

Ext1
MHS(U)(Z(0), V) = J(V)(U) −→ J̌(V)(U) = Ext1

MHS(U)(V, Z(1))

determined by the polarization of V. The biextension line bundle B is equipped with a

canonical smooth hermitian metric ‖ · ‖, and we write B = (B, ‖ · ‖).
Let ν : U → J(V) be a holomorphic section of the torus bundle J(V) → U .

Then any nowhere vanishing holomorphic section s of ν∗B can be seen as a self-dual

biextension variation of mixed Hodge structure of V on U . We call

h = − log ‖s‖

the height of (the biextension variation) s. Its Levi form

i

π
∂∂̄ h

coincides with the first Chern form c1(ν
∗B) of the smooth hermitian line bundle ν∗B

on U .

We have the following two important results.

Theorem 1.2. (Hain [13, Theorem 13.1], Pearlstein and Peters [22, Theorem 8.2], and

C. Schnell [25, Lemma 2.2]) The first Chern form c1(ν
∗B) is semipositive on U . �
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Theorem 1.3. (Lear [19, Theorem 6.6], Hain [13, Theorem 6.1], and Pearlstein [23,

Theorem 5.19]) Assume that E is a reduced normal crossings divisor, that the varia-

tion of Hodge structure V is admissible, and that ν is an admissible normal function.

Then the smooth hermitian line bundle ν∗B is Lear-extendable over X . In fact, a positive

tensor power of ν∗B has a continuous extension over X \ |E|sing. �

We refer to [23] for a discussion of admissibility of variations of mixed Hodge

structures on U , and of normal functions. The admissibility condition on V implies that

the monodromy operators of V about the irreducible components of E are unipotent.

A polarized variation of Hodge structures V having unipotent monodromy and induced

by the cohomology of a projective smooth morphism of algebraic varieties T → U ,

and with X ⊃ U a smooth algebraic variety with X \ U a normal crossings divisor, is

admissible. In the latter situation, any section ν of J(V) → U determined by a family of

cycles on T over U via Griffiths’s Abel–Jacobi map is an admissible normal function.

Now as above let ϕ : C → X withC a connected Riemann surface be a holomorphic

map such that the generic point of C has image in U , and write V = ϕ−1U . By combining

Theorems 1.1–1.3, we immediately obtain the following result.

Theorem 1.4. Assume that E is a reduced normal crossings divisor, that the variation

V on U is admissible, and that the section ν is an admissible normal function. Then the

height jump divisor Jϕ,ν∗B on C determined by the smooth hermitian line bundle ν∗B on

U and the map ϕ is effective. �

A special case of this result related to the so-called Ceresa cycle in the Jacobian

of a pointed compact connected Riemann surface of genus g ≥ 2 was conjectured by

Hain [13, Conjecture 14.5]. We will elaborate on this special case in Section 4 below.

For the special case of sections of families of principally polarized abelian vari-

eties Theorem 1.4 was shown, among other things, in our previous article [5]. In this

setting B is the classical Poincaré bundle. The method of proof in [5] is based on an

explicit formula for the metric on B together with a precise analysis of its asymptotics.

In the even more special case of sections of Jacobians, the positivity of the height jump

divisor was obtained in [3, 15]. In these two references, the positivity was obtained by

establishing the concavity, in a suitable sense, of Green’s functions of electric circuits.

None of these previous results were sufficient to treat the Ceresa cycle.

A general interpretation of the height jump phenomenon for admissible biex-

tension variations of mixed Hodge structures has been given by P. Brosnan and G.
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Pearlstein [4] in terms of a pairing on the intersection cohomology of the underlying

pure Hodge structure. This approach allows for an alternative proof of Theorem 1.4, cf.

[4, Corollary 11].

We will actually prove a slight extension of Theorem 1.1 to the case of so-called

subpolynomial Lear extensions, cf. Theorem 3.2 below. Moreover, we will work with

the slightly more flexible notion of metrized R-divisors. For example, from a smooth

hermitian holomorphic line bundle Lwe obtain a metrized R-divisor by taking the divisor

and height of a non-zero rational section. We define the subpolynomial Lear extension

of a metrized R-divisor in Section 2.1.

The structure of this note is as follows. In Section 2, we introduce terminology

and state some preliminary results, including the key Lemma 2.11 which is merely a

local version of a lemma from [2, Chapter XI]. In Section 3, we state and prove our main

result, from which Theorem 1.1 immediately follows. Finally in Section 4, we discuss

applications of our main result. We discuss the special case related to the Ceresa cycle, as

well as its ramifications for refined slope inequalities on Mg, following [13, Section 14].

Also we discuss an example related to Arakelov line bundles on families of compact and

connected Riemann surfaces, and the concavity of the local height jump multiplicities.

2 Preliminary Results

2.1 Metrized R-divisors

Our purpose is to study extensions of line bundles (or Cartier divisors) determined by a

smooth hermitian metric. Since a metric is an analytic object it seems better to allow real

coefficients for such extensions and not to be confined to rational coefficients. Now for

real coefficients, the language of Cartier divisors and Green functions is more natural

than that of line bundles and metrics, and thus we adapt this language from now on.

For the theory of divisors on complex manifolds the reader is referred to [16]. In this

section, we recall from [7] the basic definitions concerning metrized R-divisors. We start

by recalling the geometric theory of R-divisors, details of which can be found in [18].

Let X be a complex manifold. A Weil divisor on X is a locally finite Z-linear

combination of irreducible analytic hypersurfaces of X . An analytic subset of X is called

irreducible if its set of non-singular points is connected. Since X is smooth, the concepts

of Cartier and Weil divisor coincide. We denote by Car(X) the group of Cartier divisors

of X . The vector space of R-Cartier divisors of X is defined as

Car(X)R = Car(X) ⊗Z R.

2048 J. I. Burgos Gil et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2019/7/2044/4082918 by Leiden U
niversity / LU

M
C

 user on 03 N
ovem

ber 2021



Thus, an R-Cartier divisor on X is a formal linear combination
∑

i αiDi with αi ∈ R

and Di ∈ Car(X). From now on R-Cartier divisors will be called R-divisors, while Cartier

divisors will be called divisors. The support of a divisorD is denoted by |D|. An R-divisor

D is said to beample (respectively, effective,nef ) ifD is an R-linear combination of ample

(respectively, effective, nef) divisors with positive coefficients.

We now introduce metrized divisors and metrized R-divisors.

Definition 2.1. Let D be a Cartier divisor on X . A Green function for D is a smooth

function g : X \ |D| → R such that, for each point p ∈ X , there is a neighborhood V of

p and a local equation f of D|V such that g + log |f | extends to a smooth function on V .

A metrized divisor on X is a pair D = (D,gD) where D is a divisor on X and gD is a Green

function for D. The group of metrized divisors on X is denoted by Ĉar(X). �

Remark 2.2. Given a holomorphic line bundle L onX provided with a smooth hermitian

metric ‖ · ‖ and a non-zero meromorphic section s, we obtain a metrized divisor

d̂iv(s) = (div(s), − log ‖s‖)

on X . However, we note that the notions of hermitian line bundle with section and of

metrized divisor are not exactly the same. For example, if we multiply the section s

by a non-zero complex number ζ and the metric by the positive real number |ζ |−1, the

associated metrized divisor does not change. �

Definition 2.3. Let X be a complex manifold. The group of metrized R-divisors on X is

the quotient

Ĉar(X)R = Ĉar(X) ⊗Z R
/ ∼

where ∼ is the equivalence relation given by
∑

i αiDi ∼ ∑
j βjEj if and only if

∑
i αiDi =∑

j βjEj and there is a dense open subset U of X such that

∑
i

αigDi(p) =
∑
j

βjgEj (p) for allp ∈ U .

Let D = ∑
i αiDi. Then the function gD = ∑

i αigDi : U → R is called the Green function

of D. �
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Definition 2.4. The first Chern form of a metrized R-divisor D = (D,gD) is

c1(D) = i

π
∂∂̄ gD.

This form can be extended to a smooth (1, 1)-form on the whole X . �

Remark 2.5. For a holomorphic line bundle L on X with smooth hermitian metric ‖ · ‖
and non-zero meromorphic section s we have c1(d̂iv(s)) = c1(L, ‖ · ‖). �

2.2 Subpolynomial Lear extensions

In this section, we introduce subpolynomial Lear extensions of metrized R-divisors.

This concept is a mild generalization of the Mumford-Lear extensions introduced in the

context of metrized line bundles in [6] and is suggested by [2, Lemma XI.9.17] where it is

proved that, for compact Riemann surfaces, semipositivity, and subpolynomial growth

together are enough to compute the degree of a hermitian line bundle using Chern–Weil

theory. We will crucially use a local version of [2, Lemma XI.9.17] in the proof of our

main result.

Definition 2.6. A function μ : R>0 → R>0 is called subpolynomial if, for all n ∈ R>0,

lim
x→∞

μ(x)

xn
= 0. �

We will use subpolynomial functions to control the growth of our metrics along

the boundary. A typical example of a subpolynomial function is the logarithm μ(x) =
log(1 + x).

Let X be a complex manifold of pure dimension d, and E a reduced divisor on X .

Write U = X \ |E|.

Definition 2.7. Let D = (D,gD) be a metrized R-divisor on U . We say that a subpolyno-

mial (sp-) Lear extension of D over X exists if there is an auxiliary metrized R-divisor

DX = (DX ,gDX ) on X with DX |U = D and an analytic subset S ⊂ |E| of codimension at

least 2 in X , such that for all p ∈ |E| \ S there is an open neighborhood V of p in X \ S,

a local equation f of E, a real number a and a subpolynomial function μ such that the

inequalities

− log(μ(1/|f |)) ≤ gD − gDX + a log |f | ≤ log(μ(1/|f |)) (2.1)

are satisfied on V ∩ U . �
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Remark 2.8. The real number a in the previous definition depends on the choice of

the auxiliary metrized divisor DX and on the point p. However by definition the real

number a is locally constant on |E|\S. In particular, if p,q belong to the same irreducible

component of E, then the real numbers associated to p,q agree. �

Definition 2.9. LetD = (D,gD) be a metrized R-divisor onU . Let {Ei}i∈I be the irreducible

components of E. Assume that a sp-Lear extension of D over X exists, with auxiliary

metrized divisor DX . By Remark 2.8, one has well defined real numbers ai, i ∈ I , one for

each irreducible component Ei of E. We define the sp-Lear extension of D over X as the

R-divisor

[D,X ] = DX +
∑
i∈I

aiEi. (2.2)

The sum in (2.2) is locally finite, as E is a divisor. �

Proposition 2.10. If D has a sp-Lear extension over X , it is unique. �

Proof. Let D
′
X =

(
D′
X ,gD′

X

)
and S′ be a different choice of auxiliary metrized R-divisor

and analytic subset in Definition 2.7. Then there are real numbers {bi}i∈I such that

D′
X = DX +

∑
i∈I

biEi.

Without loss of generality we may assume that S = S′ and that |E|sing ⊂ S. Let p ∈ |E| \ S
and V a small enough neighborhood of p that only intersects a single component Ei of E.

Let f ′ be another choice of local equation for E on V . Then f ′ = uf for a non-vanishing

holomorphic function u on V . Finally let μ′ be another choice of subpolynomial function

such that

− log(μ′(1/|f ′|)) ≤ gD − gD′
X

+ a′
i log |f ′| ≤ log(μ′(1/|f ′|)). (2.3)

After shrinking V if necessary, we can find a third subpolynomial function μ′′ such that

0 < log(μ′(1/|f ′|)) ≤ log(μ′′(1/|f |)) and 0 < log(μ(1/|f |)) ≤ log(μ′′(1/|f |)).

By definition of Green function, there is a smooth function ϕ on V such that

gD′
X

= gDX − bi log |f | + ϕ.
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Then, subtracting equation (2.1) from equation (2.3) we deduce

−2 log(μ′′(1/|f |)) ≤ (bi + a′
i − ai) log |f | + log |u| − ϕ ≤ 2 log(μ′′(1/|f |))

which implies that ai = a′
i + bi. We conclude

D′
X +

∑
i∈I

a′
iEi = DX +

∑
i∈I

(bi + a′
i)Ei = DX +

∑
i∈I

aiEi,

and this proves the result. �

2.3 Residues of semipositive forms

We will write 	 ⊂ C for the closed unit disk, and 	∗ = 	 \ {0} for the punctured closed

disk. For 0 < t ≤ 1, we denote by 	t the closed disk of radius t.

Let U be a complex manifold and ω a (1, 1)-form on U . Recall that ω is called

semipositive if for every continuous map ϕ : 	t → U which is holomorphic on the interior

of 	t, the positivity condition ∫
	t

ϕ∗ω ≥ 0

holds. Fix 0 < s ≤ 1. Let g be a smooth function on an open neighborhood of 	∗
s taking

values in R. We write

ω:= i

π
∂∂̄g, η:= i

π
∂̄g.

The next lemma is a local variant on [2, Lemma XI.9.17], where a global version is given.

We give the direct proof of the local version here, following the arguments in [2], since

it only takes little longer than deducing the local case from the global case. Moreover,

the result is central in our arguments.

Lemma 2.11. Suppose that ω is a semipositive (1, 1)-form on an open neighborhood of

	∗
s , and that there exist a ∈ R and a subpolynomial function μ such that

− log(μ(1/|z|)) ≤ g(z) + a log |z| ≤ log(μ(1/|z|)). (2.4)

Then
∫

	s
ω:= limε→0

∫
	s\	ε

ω exists in R, and we have

0 ≤
∫

	s

ω =
∫

∂	s

η + a. �
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Proof. For ease of notation we will treat only the case s = 1. For each 0 < t ≤ 1, a

computation in polar coordinates yields

∂̄g|∂	t =
(

− i

2
r
∂g

∂r
− 1

2

∂g

∂θ

)
d θ .

We define

F(t) = −
∫

∂	t

η = −1

2π

∫
∂	t

r
∂g

∂r
d θ .

For t1 < t2 we have using Stokes’s theorem

F(t2) − F(t1) = −
∫

∂	t2

η +
∫

∂	t1

η = −
∫

	t2 \	t1

ω ≤ 0.

Thus, the function F is non-increasing.

Now for any 0 < ε ≤ t ≤ 1 we compute

F(t)(log t − log ε) =
∫ t

ε

F(t)
d r

r

≤
∫ t

ε

F(r)
d r

r

= −1

2π

∫ t

ε

∫ 2π

0

∂g

∂r
d r d θ

= −1

2π

∫ 2π

0
g(teiθ ) − g(εeiθ ) d θ .

Fixing t and letting ε vary we find

−F(t) log ε ≤ constant + 1

2π

∫ 2π

0
g(εeiθ ) d θ .

Applying the right-most bound from formula (2.4) we see that

−F(t) log ε ≤ constant − a log(ε) + log(μ(1/ε)).

The fact that μ is subpolynomial and that, for ε < 1, − log ε > 0, implies that F(t) ≤ a.

In particular we find that the limit

K:= lim
t→0

−
∫

∂	t

η

exists and that K ≤ a.
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Using again that F is non-increasing, we deduce that −K ≤ −F(t) for all t. Thus,

for 0 < ε < t ≤ 1,

−K(log t − log ε) ≤
∫ t

ε

−F(r)
d r

r
= 1

2π

∫ 2π

0
g(teiθ ) − g(εeiθ ) d θ .

Fixing t and applying the left-most bound from formula (2.4) we obtain

K log ε ≤ constant + a log(ε) + log(μ(1/ε)).

From this we deduce that K ≥ a, so that in fact K = a, and proving in particular that

lim
t→0

∫
∂	t

η + a = 0. (2.5)

Finally we apply Stokes’s Theorem to deduce

0 ≤
∫

	

ω = lim
t→0

∫
	\	t

ω =
∫

∂	

η − lim
t→0

∫
∂	t

η =
∫

∂	

η + a.

This proves the lemma. �

Corollary 2.12. LetR = {z1, . . . , zk} ⊂ 	s be a finite set of points with |zi| < s, and let g be

a smooth function on an open neighborhood of 	s\R such that ω = i
π
∂∂̄g is semipositive,

and such that there is a subpolynomial function μ and real numbers ai such that

− log(μ(1/|z − zi|)) ≤ g(z) + ai log |z − zi| ≤ log(μ(1/|z − zi|))

when z is close to zi. Then the (in)equalities

0 ≤
∫

	s

ω =
∫

∂	s

η +
k∑
i=1

ai

hold, where η = i
π
∂̄g. �

Proof. It is enough to cut out a small disc around each point zi, contained in the interior

of 	s, to apply Lemma 2.11 to each of these discs, and to apply Stokes’s theorem to the

complement of the discs. �

A metrized R-divisor D = (D,gD) on U is called semipositive if c1(D) is a

semipositive (1, 1)-form on U .
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Corollary 2.13. Assume that X is a Riemann surface. Let D be a metrized R-divisor on

U = X \ |E|. Assume that D is semipositive and that D has a sp-Lear extension over X .

Then c1(D) is locally integrable on X . If X is compact, then the (in)equalities

0 ≤
∫
U
c1(D) = deg [D,X ]

hold. �

Proof. We write

ω = i

π
∂∂̄gD, η = i

π
∂̄gD

on U as before. The local integrability of c1(D) = ω follows directly from Lemma 2.11.

Assume that X is compact. The bound
∫
U c1(D) ≥ 0 is then clear. Let p ∈ |E|. Applying

the result found in equation (2.5) to small disks 	ε around p we find that

− lim
ε→0

∫
∂	ε

η = a,

where a is the local contribution at p to deg [D,X ]. The usual argument using Stokes’s

theorem then gives the stated equality. �

Remark 2.14. Let U be a connected Riemann surface with smooth compactification X ,

and let V be an admissible polarized variation of Hodge structures of weight −1 as in

the Introduction. Let ν : U → J(V) be an admissible normal function and denote by B the

canonically metrized biextension line bundle on J(V). Using Theorems 1.2 and 1.3, as a

special case of Corollary 2.13 we obtain the local integrability of the (1, 1)-form c1(ν
∗B),

together with the equality ∫
U
c1(ν

∗B) = deg [ν∗B,X ].

This result proves [13, Conjecture 6.6]. That [13, Conjecture 6.6] holds has previously

been noted by Pearlstein in [21, Corollary 3.2] and by Pearlstein and Peters in [22,

Section 1.5.6]. �

3 Positivity of the Height Jump Divisor

Let X be a complex manifold, E a reduced divisor on X and U = X \ |E|. Let D = (D,gD)

be a metrized R-divisor on U . Let C be a connected Riemann surface and ϕ : C → X a
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holomorphic map such that the image of the generic point of C lies in U \ |E|. Write

V = ϕ−1(U). We have a well-defined R-divisor ϕ|∗VD on V and a Green function ϕ|∗VgD =
gD ◦ ϕ|V giving a metrized R-divisor ϕ|∗VD = (ϕ|∗VD, ϕ|∗VgD) on V .

Definition 3.1. Let X , U , D and ϕ : C → X be as above. Assume that D admits a sp-Lear

extension [D,X ] to X . Assume furthermore that the metrized divisor ϕ|∗VD on V admits a

sp-Lear extension [ϕ|∗VD,C] to C. Then the height jumpdivisor is defined as the difference

Jϕ,D = ϕ∗[D,X ] − [ϕ|∗VD,C],

which is an R-divisor on C. �

In particular, the height jump divisor measures the lack of functoriality of a sp-

Lear extension. The main result of the present note is the following result, of which

Theorem 1.1 is an immediate consequence. We are neither assuming X nor C to be

compact, at this point.

Theorem 3.2. Assume that the hypotheses of Definition 3.1 are satisfied, and that the

metrized divisor D = (D,gD) on U is semipositive, that is, the smooth (1, 1)-form c1(D) on

U is semipositive. Then the height jump divisor Jϕ,D = ϕ∗[D,X ] − [ϕ|∗VD,C] is an effective

R-divisor on C. �

Proof. Since we are assuming that D has a sp-Lear extension over X , we have in par-

ticular an auxiliary metrized R-divisor DX = (DX ,gDX ) on X such that DX |U = D. We may

assume that DX has no common components with E. Next, observe that the statement

is local on C, and that the support of the height jump divisor is contained in C \ V . Let

p ∈ C such that ϕ(p) ∈ |E|. Choose a local coordinate z in a neighborhood of p such that

p is given by z = 0, write

Bε(p) = {q ∈ C | |z(q)| ≤ ε}

and choose an ε > 0 small enough such that Bε(p) ∩ ϕ−1(|E| ∪ |DX |) = {p} and that Bε(p)

is homeomorphic to a closed disk. For δ ≥ 0 and small enough, let ϕδ : Bε(p) → X be a

generic deformation of ϕ varying continuously with δ. By this we mean that

(1) for all δ the map ϕδ is continuous, and holomorphic on the interior of Bε(p);

(2) ϕ0 = ϕ|Bε(p);
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Fig. 1. Generic deformation.

(3) for δ > 0, ϕδ(Bε(p)) meets E ∪DX properly and transversely and avoids (|E| ∪
|DX |)sing

;

(4) the number of intersection points of ϕδ(Bε(p)) with |E| (respectively with

|DX |) is constant and agrees with the multiplicity at p of ϕ∗E (respectively of

ϕ∗DX ,red).

A generic deformation can be easily constructed using the transversality theorem [10,

p. 68]. Such a generic deformation is represented in Figure 1.

Let E1, . . . ,Ek be the irreducible components of E that meet a small neighborhood

of ϕ(p). We denote by m the multiplicity of ϕ∗DX ,red at the point p and by mi the multi-

plicity at p of ϕ∗Ei, i = 1, . . . ,k. Let a1, . . . ,ak be the real numbers appearing in Remark

2.8 for the sp-Lear extension of D to X and the auxiliary metrized R-divisor DX and aC

the one for the sp-Lear extension of ϕ∗|VD to C at p with auxiliary divisor ϕ∗DX . Then

the multiplicity of the height jump divisor Jϕ,D at p is given by

k∑
i=1

miai +m− aC −m =
k∑
i=1

miai − aC .
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Thus we are reduced to proving that aC ≤ ∑
miai. We write

ω = i

π
∂∂̄gD, η = i

π
∂̄gD

on U as usual. From Corollary 2.12 we deduce that for all small δ > 0 we have

0 ≤
∫
Bε(p)

ϕ∗
δ ω =

∫
∂Bε(p)

ϕ∗
δ η +

k∑
i=1

miai +m.

Since the image of ∂Bε(p) by ϕδ varies in a region where the form η is smooth we can take

the limit when δ goes to zero in the previous equation to deduce

∫
∂Bε(p)

ϕ∗η +
k∑
i=1

miai +m ≥ 0. (3.1)

From Lemma 2.11, we obtain that

lim
ε→0

∫
∂Bε(p)

ϕ∗η = −aC −m. (3.2)

Combining equations (3.1) and (3.2), we deduce aC ≤ ∑k
i=1 miai as required. �

4 Applications

The purpose of this section is to discuss some applications of the results shown above.

4.1 A conjecture of Hain

Let X be a complex manifold, E a reduced normal crossings divisor on X , and write

U = X \ |E|. Let V be an admissible polarized variation of Hodge structures of weight

−1 on U , let J(V) → U denote the associated Griffiths intermediate Jacobian fibration,

and let ν : U → J(V) be an admissible normal function as in the introduction. Let B be

the canonically metrized biextension line bundle on J(V). As was already explained in

the introduction, results of Lear, Hain, Pearlstein, Schnell, and Pearlstein and Peters (cf.

Theorems 1.2 and 1.3) show that the assumptions in Theorem 1.1 are satisfied for the

smooth hermitian line bundle ν∗B on U . Thus, let C be a connected Riemann surface and

ϕ : C → X a holomorphic map such that the image of the generic point of C lies in U \ |E|,
then we derive.
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Theorem 4.1. The height jump divisor Jϕ,ν∗B on C determined by ν∗B and the map ϕ is

effective. �

Fix an integer g ≥ 2. We will apply Theorem 4.1 to the case where U = Mg is

the moduli stack (orbifold) of smooth complete complex curves of genus g, and where as

compactification X ⊃ U we choose X = Mg, the moduli stack of stable curves of genus g.

We note that both U and X are stacks on the site of complex manifolds with étale covers

in the sense of [27, Tag 02ZH], rather than actual complex manifolds. Although our

definitions and results above do not apply directly to this more general setting, they do

carry over straightforwardly: first of all our stacks have representable diagonals, and

admit an étale surjective map from a complex manifold. These two properties follow

immediately from the analogous results in the algebraic setting, for which we refer to

[9]. Second, if a Lear extension of a smooth hermitian line bundle exists, it is unique,

and moreover its formation commutes with arbitrary étale base change, for example by

dimension considerations. For similar reasons, our discussion of intermediate Jacobian

fibrations, polarizations, biextensions and normal functions extends to the more general

setting. We note that the boundary divisor X \ U has normal crossings.

By associating to each moduli point [Y ] of Mg, where Y is a smooth complete

curve of genus g, its first homology group H1(Y , Z(1)) we obtain a tautological polarized

admissible variation of Hodge structures H of weight −1 on Mg. Denote by L the varia-

tion of Hodge structure (
∧3

H)(−1), then wedging with the polarization gives a canonical

inclusion H ↪→ L. Denote by V the quotient L/H. Then both L and V are admissible polar-

ized variations of Hodge structure of weight −1 on Mg. As it turns out, the universal

Ceresa cycle in the Jacobian of a (pointed) complete curve of genus g canonically gives

rise, by the Griffiths Abel–Jacobi map, to an admissible normal function ν : Mg → J(V).

For this particular normal function, the result in Theorem 4.1 was conjectured by Hain,

see [13, Conjecture 14.5]. The possibility that the more general result of Theorem 4.1

could be true was suggested by Hain at the end of [13, Section 14].

4.2 Positivity and slope inequalities

For a moment we return to the setting of Section 3. In particular we have X a complex

manifold, E a reduced divisor on X and we set U = X \ |E|. Let D = (D,gD) be a metrized

R-divisor on U , let C be a connected Riemann surface and ϕ : C → X a holomorphic

map such that the image of the generic point of C lies in U \ |E|. Write V = ϕ−1(U). We

assume that the hypotheses of Theorem 3.2 are satisfied, in particular we know that the
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height jump divisor Jϕ,D = ϕ∗[D,X ] − [ϕ|∗VD,C] is an effective R-divisor on C. The result

below implies that the sp-Lear extension [D,X ] of D over X has non-negative degree on

each compact connected Riemann surface mapping into X with generic point mapping

into U .

Theorem 4.2. Assume that C is compact. Then the inequalities

deg ϕ∗[D,X ] ≥ deg Jϕ,D ≥ 0

are satisfied. �

Proof. From Corollary 2.13 we infer that deg [ϕ|∗VD,C] = ∫
V ϕ|∗V c1(D) ≥ 0. From this we

obtain that deg ϕ∗[D,X ] ≥ deg ϕ∗[D,X ]−deg [ϕ|∗VD,C] = deg Jϕ,D. The inequality deg Jϕ,D ≥
0 follows from Theorem 3.2. �

Let g ≥ 2 be an integer. As is explained in [13, Section 14], in the case of the normal

function ν on Mg associated to the Ceresa cycle the inequality deg ϕ∗[ν∗B, Mg] ≥ 0 that

we may deduce from Theorem 4.2 leads to interesting slope inequalities for compact

Riemann surfaces C mapping into Mg. We recall the matter here briefly. First of all, it

is proved by Hain and D. Reed [12, Theorem 1.3] (see also [13, Theorem 10.1]) that the

Lear extension [ν∗B, Mg] is equal to the so-called Moriwaki divisor

M = (8g+ 4)λ1 − gδ0 −
[g/2]∑
h=1

4h(g− h)δh

on Mg. Here, following classical notation, λ1 denotes the determinant of the Hodge

bundle on Mg, δ0 is the class of the boundary divisor 	0 whose generic point is an

irreducible stable curve with one singular point, and δh for 1 ≤ h ≤ [g/2] is the class of

the boundary divisor 	h whose generic point is a stable curve consisting of two smooth

components, one of genus h, and one of genus g− h, joined at one point.

Now, A. Moriwaki [20] has shown that the divisor M has non-negative degree

on all complete curves in Mg not contained in the boundary. Hain [13, Proposition 5.4]

notes that V extends canonically as a polarized admissible variation of Hodge structure

over Mc
g = Mg \ 	0, the biextension line bundle B extends canonically as a smooth

hermitian line bundle over J(V) over Mc
g, and ν extends canonically as an admissible

normal function of J(V) over Mc
g. In particular (cf. [13, Theorem 14.1]), the Moriwaki

divisor M has non-negative degree on all complete curves contained in Mc
g. As already
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noted in [13, Section 14], Theorem 4.2 combined with [13, Proposition 5.4] implies the

following joint refinement of Moriwaki’s and Hain’s results.

Theorem 4.3. The Moriwaki divisor M on Mg has non-negative degree on all complete

curves in Mg not contained in 	0. �

Using the more refined inequality deg ϕ∗[ν∗B,X ] ≥ deg Jϕ,ν∗B one can obtain better

slope inequalities for each map ϕ : C → Mg with image not contained in 	0 where one can

control the height jump divisor Jϕ,ν∗B. For example, it was noticed by Hain [13, Section 14]

that one has a strictly positive height jump for a small disk mapping generically in Mg

and passing through a point in the closure of the hyperelliptic locus in Mg corresponding

to a stable curve which is the union of a genus h stable curve and a genus g−h−1 stable

curve, intersecting at two points. This example has been extended and analyzed in more

detail by Brosnan and Pearlstein, cf. [4, Theorem 201].

4.3 Arakelov line bundles

We discuss another situation where Theorem 1.1 can be applied. The context is that of

families of compact and connected Riemann surfaces equipped with canonical smooth

hermitian line bundles as defined by Arakelov in [1] using canonical Green’s functions.

We obtain the necessary Lear extendability from the article [17] by the third author,

and the necessary semipositivity from the semipositivity of the Poincaré bundle on

the jacobian, together with an (unsurprising) lemma that states that semipositivity of

smooth hermitian line bundles is preserved upon taking Deligne self-pairing.

Let T and U be smooth complex algebraic varieties and let π : T → U be a proper

submersion whose fibers are compact connected Riemann surfaces. Following P. Deligne

[8], one has a canonical holomorphic line bundle 〈L,M〉 on U associated to any two

holomorphic line bundles L,M on T . The line bundle 〈L,M〉 is bi-multiplicative in L,M ,

and its formation is compatible with any base change. If L,M are equipped with smooth

hermitian metrics ‖ · ‖L and ‖ · ‖M , then 〈L,M〉 has a canonical induced smooth hermitian

metric ‖ · ‖〈L,M〉. With this canonical metric, one has the equality

c1(〈L,M〉, ‖ · ‖〈L,M〉) =
∫

π

c1(L, ‖ · ‖L) ∧ c1(M , ‖ · ‖M ) (4.1)

of (1, 1)-forms on U , where
∫

π
denotes integration along the fiber.
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Lemma 4.4. Let L be a holomorphic line bundle on T equipped with a smooth hermitian

metric ‖ · ‖. Assume that the metric ‖ · ‖ is semipositive on T . Then the induced metric

on the Deligne pairing 〈L,L〉 is semipositive on U . �

Proof. Write ω = c1(L, ‖ · ‖). Then we have from (4.1) that

c1(〈L,L〉) =
∫

π

ω ∧ ω.

Let p ∈ T . We can choose local holomorphic coordinates u1, . . . ,un, z around p with

u1, . . . ,un local holomorphic coordinates around π(p) on U , and with z a holomorphic

coordinate in the fiber. Using the summation convention we can write

ω = i
(
Ajk duj duk + duj b

t
j dz + dz bj duj + c dz dz

)
with

� =
(
A b

bt c

)

a positive semidefinite hermitian matrix. We find

ω ∧ ω = −2
(
Ajkc duj duk dz dz − bj b

t
k duj duk dz dz

)
= 2 i

(
Ajkc − bj b

t
k

)
duj duk idz dz.

As idz dz is semipositive, using a partition of unity we see that it suffices to show that

the (1, 1)-form

i
(
Ajkc − bj b

t
k

)
duj duk

is semipositive locally on U . We are done once we show that the hermitian matrix

Ac − bbt

is positive semidefinite. For this it suffices to show that for all x ∈ Cn the inequality

xtAcx − xtbbtx ≥ 0 (4.2)

holds. From the fact that � ≥ 0 we obtain that for all x ∈ Cn,y ∈ C we have

xtAx + xtby + ybtx + ycy ≥ 0. (4.3)
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Both A, c ≥ 0. If c = 0 then it easily follows that b = 0 and the required inequality (4.2)

holds trivially. If c > 0 we take y = −xtbc−1 in (4.3) and (4.2) follows again. �

Let ωAr denote the relative dualizing sheaf of T → U , equipped with the Arakelov

metric from [1]. Assume that the fibers of T → U have positive genus g. Let J(H) → U

denote the jacobian family associated to T → U , and denote by B the Poincaré bundle

on J(H), equipped with its canonical smooth hermitian metric.

Proposition 4.5. Assume that the map T → U has a holomorphic section P : U → T .

Then the smooth hermitian line bundle P∗ωAr is semipositive on U . �

Proof. We abbreviate J = J(H). Let δP : T → J be the Abel-Jacobi map associated to

the section P, that is the U-map T → J that for all u ∈ U sends a point x ∈ Tu to the

divisor class of Pu − x in Ju. Let κ : U → J denote the holomorphic map that sends u ∈ U

to the divisor class of (2g−2)Pu −ωTu in Ju. As is shown in [17, Proposition 8.5], we have

a canonical isometry

(P∗ωAr)
⊗4g2 ∼−→ 〈δ∗

PB, δ∗
PB〉 ⊗ κ∗B (4.4)

of smooth hermitian line bundles on U . From Theorem 1.2, we deduce that δ∗
PB is semi-

positive on T , and that κ∗B is semipositive onU . It follows from Lemma 4.4 that 〈δ∗
PB, δ∗

PB〉
is semipositive on U . The result follows. �

Corollary 4.6. The smooth hermitian line bundle ωAr is semipositive on T , and the

Deligne pairing 〈ωAr, ωAr〉 is semipositive on U . �

Proof. Apply Proposition 4.5 to the first projection T×U T → T and the diagonal section

	 : T → T ×U T to obtain the semipositivity of ωAr on T . Then apply again Lemma 4.4 to

obtain the semipositivity of 〈ωAr, ωAr〉 on U . �

Now we assume a smooth complex variety X ⊃ U is given with boundary E =
X\U a reduced normal crossings divisor. The next result is then part of [17, Theorem 1.3].

Theorem 4.7. Assume that the family T → U can be extended into a semistable curve

Y → X . Then the Deligne pairing 〈ωAr, ωAr〉 has a Lear extension over X . If we assume

moreover that T → U has a holomorphic section P : U → T , then the smooth hermitian

line bundle P∗ωAr also has a Lear extension over X . �
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Combining Corollary 4.6 and Theorem 4.7 with Theorem 1.1 we obtain the

following result.

Theorem 4.8. Assume that the family T → U can be extended into a semistable curve

Y → X . Let C be a connected Riemann surface, and ϕ : C → X a holomorphic map such

that the image of the generic point of C lies in U . Then the height jump divisor Jϕ,〈ωAr,ωAr〉
associated to ϕ and 〈ωAr, ωAr〉 on C is effective. If we assume moreover that the map

T → U has a holomorphic section P : U → T , then also the height jump divisor Jϕ,P∗ωAr

on C is effective. �

4.4 Concavity of the height jump

It is natural to investigate how the height jump divisor changes if one varies the test

curve ϕ. Let X be a complex manifold of dimension n, E a reduced normal crossings

divisor on X , and put U = X \ |E|. Let D = (D,gD) be a metrized R-divisor on U , and

assume as usual that D is semipositive on U and sp-Lear extendable over X . Let 	0

denote the open unit disk in C. Let p ∈ X be a point, let z = (z1, . . . , zn) with zi ∈ 	0 be

local coordinates around p on X such that zi(p) = 0 for i = 1, . . . , r, and the divisor E is

given in the local coordinates z by the equation z1 · · · zr = 0. Here 0 ≤ r ≤ n.

Let V ⊂ 	0 denote the punctured open disk. Assume that ϕ|∗VD is Lear extendable

over 	0 for all holomorphic maps ϕ : 	0 → X such that ϕ(0) = p and such that ϕ−1U = V .

Let DX = (DX ,gDX ) be an auxiliary metrized R-divisor for D on X , and write

[D,X ] = DX +
∑
i∈I

aiEi

where ai ∈ R and where Ei are the irreducible components of E. As we are only inter-

ested in the local situation around p we may assume without loss of generality that

I = {1, . . . , r} and that for all i = 1, . . . , r the irreducible component Ei is given locally on

X by the equation zi = 0. Let ϕ : 	0 → X be a holomorphic map such that ϕ(0) = p and

such that ϕ−1U = V . Then ϕ∗DX is an auxiliary metrized R-divisor for ϕ|∗VD, and we can

write

[ϕ|∗VD, 	0] = ϕ∗DX + a · [0]

wherea ∈ R. When one varies ϕ it is readily seen thata only depends on the multiplicities

mi = ord0(ϕ
∗(zi)) for i = 1, . . . , r. Thus we obtain a function a : Zr

>0 → R, with associated
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jump function J = JD,p : Zr
>0 → R given by

J(m1, . . . ,mr) = −a(m1, . . . ,mr) +
r∑
i=1

miai.

One easily checks that the function J is homogeneous of weight one, and extends

to a function on Zr
≥0. Indeed, note that setting mi equal to zero for all i ∈ I ′ ⊆ I corre-

sponds to moving p into the locus where zi �= 0 for all i ∈ I ′. In particular, the local

height jump function J extends canonically to a function J : Qr
≥0 → R.

In [23, Theorem 5.37], Pearlstein shows that the local height jumps for the pull-

back of a biextension line bundle along an admissible normal function as we discussed

above are given by a rational function in Q(x1, . . . ,xr). In general, one expects that

because of the semipositivity of the metric involved, the function J : Qr
≥0 → R should

have good concavity properties. Under mild assumptions, this is indeed true, as we show

in the next proposition.

Proposition 4.9. Assume that for all s ∈ Z>0 and for all holomorphic maps ϕ : (	0)s → X

such that ϕ−1|E| ⊂ (	0)s \Vs, the metrized R-divisor ϕ|∗VsD is Lear extendable over (	0)s.

Then the extended local height jump function J : Qr
≥0 → R at p ∈ X as defined above is

Q-concave. �

Proof. Fix s ∈ Z>0 and fix r-tuples vj = (m1,j, . . . ,mr,j) ∈ Qr
≥0 for j = 1, . . . , s. Let λ1, . . . , λs

be scalars in Q>0. We would like to show the inequality

J

⎛⎝ s∑
j=1

λjvj

⎞⎠ ≥
s∑

j=1

λjJ(vj) (4.5)

in R. By the homogeneity of J , we may assume λj ∈ Z>0 for all j = 1, . . . , s, mi,j ∈ Z≥0 for

all i = 1, . . . , r and j = 1, . . . , s. Write Y = (	0)s. Consider then the map ϕ : Y → X given

in the local holomorphic coordinates z = (z1, . . . , zn) by the assignment

(y1, . . . ,ys) �→ (u · ym1,1
1 · · ·ym1,s

s , . . . ,u · ymr,1
1 · · ·ymr,s

s , zr+1(p), . . . , zn(p)).

where u ∈ R>0 is small enough so the image of Y is contained in the coordinate

neighborhood of p. Also consider the map χ : 	0 → Y given by t �→ (tλ1 , . . . , tλs). We

have

ϕ ◦ χ : 	0 → X , t �→ (u · t
∑s
j=1 λjm1,j , . . . ,u · t

∑s
j=1 λjmr,j , zr+1(p), . . . , zn(p))
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and we conclude that the height jump divisor Jϕ◦χ ,D is equal to J(
∑s

j=1 λjvj) [0] in

Car(	0)R. Similarly, if we let ηj : 	0 → Y for j = 1, . . . , s be the map that sends t to

(1/2, . . . , 1/2, t, 1/2, . . . , 1/2), with the t at the j-th spot, then the height jump divisor for

ϕ ◦ ηj is given by J(vj) [0] in Car(	0)R. By assumption ϕ|∗VsD has a Lear extension over Y .

Writing F1, . . . ,Fs for the coordinate divisors in Y , the definition of J gives the equality

ϕ∗[D,X ] − [ϕ|∗VsD,Y ] =
s∑

j=1

J(vj)Fj

in Car(Y)R. Applying Theorem 3.2 to the map χ : 	0 → Y we obtain the inequality

χ∗[ϕ∗D,Y ] − [χ∗ϕ∗D, 	0] ≥ 0. (4.6)

Here, for readability, we have left out the subscripts |V and |Vs from the notation. On the

other hand we may compute

χ∗[ϕ∗D,Y ] − [χ∗ϕ∗D, 	0] = χ∗

⎛⎝−
s∑

j=1

J(vj)Fj + ϕ∗[D,X ]
⎞⎠− [(ϕ ◦ χ)∗D, 	0]

= −
s∑

j=1

λjJ(vj) [0] + (ϕ ◦ χ)∗[D,X ] − [(ϕ ◦ χ)∗D, 	0]

= −
s∑

j=1

λjJ(vj) [0] + Jϕ◦χ ,D

= −
s∑

j=1

λjJ(vj) [0] + J

⎛⎝ s∑
j=1

λjvj

⎞⎠ [0].

(4.7)

Combining (4.6) and (4.7), we obtain (4.5) as required. �

Note that Vs has a normal crossings boundary divisor in (	0)s. Therefore, com-

bining Proposition 4.9 with Theorem 1.3 and Pearlstein’s result [23, Theorem 5.37] we

obtain the following.

Theorem 4.10. Let V be an admissible polarized variation of Hodge structures of

weight −1 on U , let J(V) → U denote the associated intermediate jacobian fibration, and

let ν : U → J(V) be an admissible normal function. Let B be the biextension line bundle

on J(V) endowed with its canonical metric. Then the height jump function J : Qr
≥0 → R

at p ∈ X is given by a Q-concave rational function in Q(x1, . . . ,xr). �
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