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ABSTRACT: It is now common practice in environmental
life cycle assessment (LCA) to conduct sensitivity analyses to
identify critical parameters and prioritize further research.
Typical approaches include variation of input parameters one
at a time to determine the corresponding variation in
characterized midpoints or normalized and weighted end
points. Generally, those input parameters that cause the
greatest variations in output criteria are accepted as the most
important subjects of further investigation. However, in
comparative LCA of emerging technologies, the typical
approach to sensitivity analysis may misdirect research and
development (R&D) toward addressing uncertainties that are
inconsequential or counterproductive. This paper presents a novel method of sensitivity analysis for a decision-driven,
anticipatory LCA of three emerging photovoltaic (PV) technologies: amorphous-Si (a-Si), CdTe and ribbon-Si. Although
traditional approaches identify metal depletion as critical, a hypothetical reduction of uncertainty in metal depletion fails to
improve confidence in the environmental comparison. By contrast, the novel approach directs attention toward marine
eutrophication, where uncertainty reduction significantly improves decision confidence in the choice between a-Si and CdTe.
The implication is that the novel method will result in better recommendations on the choice of the environmentally preferable
emerging technology alternative for commercialization.

■ INTRODUCTION

It is now widely accepted that the proper perspective from
which to assess systemic environmental consequences is the
product or material life cycle.1 Rather than treating environ-
mental issues piece-wise, life cycle assessment (LCA) emerged
as an analytical antidote to the environmental ills of
manufacturing industries such as metals, chemicals, plastic,
automobiles, paper, and fossil fuels.2 While LCA also been
imagined as a method for steering new technologies toward
environmentally preferable outcomes,3 the fact is that the
dominant practices are inherently retrospective.4 As a conse-
quence, emerging technologies such as nanoenabled products
present a significant challenge to LCA analysts seeking to
mitigate prospective environmental risks.5 Key among these
challenges is developing informative models for decision
support6 despite extraordinary data scarcity and uncertainty.7,8

Limitations in Traditional Sensitivity-Analysis Meth-
ods in a Comparative Assessment of Emerging

Technologies. When faced with high parameter uncertainty,
it is difficult to make conclusions regarding the comparative
environmental performance of emerging technologies, or
identify the critical priorities for further research and develop-
ment (R&D) that might increase decision confidence in the
choice an environmentally preferred option from multiple
emerging technology alternatives. To address this, LCA analysts
frequently rely upon sensitivity analysis to test the influence of
uncertain parameters.9,10 Traditional approaches11 and recent
methodological improvements to sensitivity analysis in
LCA12−15 are primarily concerned with parameters affecting
performance of a single alternative (hereafter, absolute
assessment)16,17 as opposed to parameters affecting comparison
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of multiple alternatives.18 Traditional approaches offer
advantages when the overall goal is to improve the environ-
mental performance of a specific technology by identifying and
addressing hotspots. For example, the traditional approach to
sensitivity analysis is well suited to inform R&D programs or
industrial manufacturers seeking to identify and address
hotspots and improve the environmental performance of a
specific technology.
However, traditional practices, when applied in a compara-

tive assessment of technologies, identify uncertainties that may
be irrelevant in specific decision contexts, where the priority
should be identifying those uncertainties that are most
influential to the performance dif ference between alterna-
tives.18,19 For instance, in a comparative LCA where A and B
represent the alternatives, fuel use may be the most influential
parameter in environmental performance of A. However, when
taking into account the relative performance with B, water
consumption may be the most influential in making A and B
distinguishable. Absolute sensitivity analysis informs individual
improvements, while comparative sensitivity analysis informs
the issues that have the most influence in improving the
confidence in the comparison between A and B. With the
exception of a recent illustration,15 implementation of
sensitivity analysis in LCA literature refers to absolute measures
of environmental risk or impact and thus remain ill-suited to
inform technology selection in a comparative assessment.20,21

An Anticipatory, Decision-Driven Sensitivity-Analysis
for Emerging Technologies. Decision-driven approaches in
LCA reduces onerous data requirements.20,22 When integrated
with the novel anticipatory-LCA framework for emerging
technologies, the decision-driven approach identifies the most
promising option from competing alternatives in a specific-
environmental context and can prioritize further R&D efforts to
inform the selection of the environmentally preferable
emerging technology alternative for commercialization.4 In
addition, the anticipatory, decision-driven approach (hereafter
anticipatory approach) avoids external normalization where
characterized inventory midpoints are typically divided by
reference values applicable to a chosen geographic region.25 For
example, if the climate impact of manufacturing a product is
1000 kg CO2-eq and the reference value for climate change for
the world is 5.76 × 1013,24 the externally normalized climate
change score is 2.39 × 10−11. External normalization is avoided
because it can potentially mask key environmental trade-offs
that impact the choice of preferred alternative.26 The
anticipatory approach mandates internal normalization23 to
identify the salient environmental trade-offs that are most
sensitive to stakeholder preferences, such as has been
implemented in stochastic multiattribute analysis (SMAA)
approaches.24 Internal normalization benchmarks a technol-
ogy’s environmental performance in relation to the competing
alternatives performance through outranking methods, which
compare the alternatives on a pairwise basis and normalize the
environmental score of the alternatives on a scale between 0
and 1 (the outranking score). The outranking is based on the
indifference and preference threshold19 (Figure 1). For
example, if the difference between the characterized environ-
mental score in an impact category of alternative X and Y is
greater than the preference threshold p, then X is strongly
preferred over Y. Therefore, the characterized environmental
score of X is normalized to 1. Similarly, if the difference
between the characterized environmental score of alternative X

and Y is less than the indifference threshold q, then the
characterized inventory midpoint of X is normalized to 0.
This work presents a new sensitivity analysis method in LCA

to support an anticipatory approach to improve the
prioritization of R&D and better inform decisions on
technology selection for emerging technologies. To contrast
existing approaches that emphasize absolute assessment with
the anticipatory approach necessary to identify environmentally
promising alternatives at early stages of technology develop-
ment, we apply the moment independent sensitivity analysis
method28−30 (Figure 2) to compare three emerging PV
technologies. We chose the moment independent sensitivity
analysis method as it accounts for higher order interactions,
provides quantitative measures of uncertainty contributions
from the parameters, and is applicable in scenarios when the
input parameters are correlated and the input and outputs are
nonlinearly and nonmonotonically related.14 Moreover, the
recent growth in software and hardware capabilities can meet
the high computational resource requirements that previously
prevented the widespread adoption of moment independent
methods.
In both the assessments, we include weights, sampled from a

uniform distribution, to quantify the stakeholder sensitivity to
three environmental impact categories−climate change, marine
eutrophication and metal depletion. In the absolute assessment,
the environmental performance of the three PV technologies
(Figure 3) is determined by calculating a weighted score (eq 1)
after weighting and externally normalizing values sampled from
the characterized inventory distribution (Table 1). Therefore,
in the absolute assessment, the uncertainty in the weighted
score (the output parameter) of each PV technology is
dependent on six parameters: the uncertainty in the three
weights for the impact categories and the three impact category
scores. In the anticipatory approach, the relative rank of the
three PV technologies (Figure 3) is determined by applying the
SMAA framework (eqs 2−7). SMAA ranks the alternatives by
weighting and internally normalizing the values obtained from a
Monte Carlo sampling of the characterized inventory
distribution (Table 1).27 An overlap in the highest rank
represents the uncertainty in the choice of the environmentally
preferred technology alternative. In the anticipatory assessment,
the uncertainty in the relative rank of a PV technology (the
output parameter) is dependent on the uncertainty in 12
parameters, the three weights for the impact categories and the

Figure 1. Preference function (PF) to calculate the outranking score
for CdTe in the climate change impact category. p and q are the
preference and the indifference thresholds, respectively.
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Figure 2. Calculation of moment independent sensitivity analysis index (δ) to identify the significant uncertainties affecting the weighted score of a
PV technology.

Figure 3. Weighted scores of the three PV technologies in the absolute assessment (left) and the relative rankings in the anticipatory assessment
(right). The upper and lower end of the whiskers (left) represent the maximum and minimum value of the weighted_score and the upper and lower
end of the box represent the upper and lower quartiles of the weighted_score, respectively. For the anticipatory assessment (right), the y-axis depicts
the likelihood (out of a 10 000 runs) that an alternative was ranked first (most preferred), second or third based on the relative environmental score
(eq 2). The x-axis represents the rank.

Table 1. Mean and Standard Deviation of the Lognormally Distributed Characterization Scores (Using the ReCiPe Impact
Assessment Method) for Generating 1 MJ of Electricity from Three Emerging PV Technologiesa

a-Si CdTe ribbon-Si

mean standard dev mean standard dev mean standard dev

marine eutrophication (kg N-eq, weight = 0.65 to 0.75) 5.60 × 10−06 1.50 × 10−06 6.20 × 10−06 1.60 × 10−06 8.80 × 10−06 2.10 × 10−06

climate change (kg CO2 eq, weight = 0.25 to 0.35) 1.60 × 10−02 4.10 × 10−03 1.30 × 10−02 2.50 × 10−03 1.72 × 10−02 3.60 × 10−03

metal depletion (kg Fe eq, weight = 0.05 to 0.15) 9.00 × 10−03 2.50 × 10−03 8.50 × 10−03 2.10 × 10−03 6.90 × 10−03 1.90 × 10−03

aThe values are a subset of values presented in ref 18.
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three impact category scores of each of the three PV
alternatives.
To identify critical uncertainties in the absolute and the

anticipatory assessment, we apply the moment independent
sensitivity analysis to determine the delta (δ) index values
(Figure 2) for each of the input parameters that influence the
weighted score and relative ranks. The uncertainty in the input
parameters with the greatest δ value is the most significant
(Figure 4). To simulate and contrast outcomes from R&D
efforts informed by the sensitivity analysis in the absolute and
the anticipatory assessment, we create two scenarios corre-
sponding to the absolute and the anticipatory assessment. In
the absolute and the anticipatory scenario, we decrease the
uncertainty in the critical parameters identified by the
sensitivity analysis in the absolute and anticipatory assessment,
respectively. Based on the decreased uncertainty, the environ-
mental rankings are calculated in both the scenarios and
compared with the baseline ranking (Figure 5). The R&D
strategy corresponding to the scenario with a lower overlap in
the alternatives obtaining the highest environmental rank
(compared to the baseline scenario) is better suited for
improving the decision confidence in technology selection.

■ MATERIALS AND METHODS

The PV industry is making rapid technological improvements
as a result of private and public R&D efforts that have improved
thermodynamic efficiencies and reduced costs.31−33 Nonethe-
less, PV is far from a technological homogeneous industry.

There is a broad array of commercial, pilot, and research scale
chemistries and technologies, each competing for both market
share and new investments. Monocrystalline silicon (mono-Si)
and multicrystalline silicon (multi-Si) account for around 95%
of all PV modules sold, while cadmium telluride (CdTe)
accounts less than 5%, and all other technologies like ribbon-Si,
amorphous silicon (a-Si) account for the remainder.34 We
choose CdTe, a-Si and Ribbon-Si as a case study for emerging
technologies as they are minority technologies and smaller in
scale than the market dominant crystalline silicon technologies;
proprietary to a single manufacturer (First Solar is the largest
U.S. PV manufacturer, but the sole provider of CdTe modules);
and have data scarcity and significant uncertainties in material
and energy inventory data, especially considering the rapid
evolution of technology and manufacturing processes at the
leading edge of research.
We evaluate a-Si, CdTe, and ribbon-Si as there is a significant

environmental and climate benefit in increasing the manufac-
turing and deployment of alternative PV technologies which
have a lower greenhouse gas (GHG) manufacturing emissions
than the market dominant crystalline silicon PV technolo-
gies.35,36 However, while being less climate intensive, thin film
PV technologies such as CdTe, a-Si, and Ribbon-Si may have
high burdens in other impact categories such as metal
depletion.18 To explore the trade-offs, we evaluate the three
emerging PV technologies in the decision-context of identifying
an alternative offering the lowest climate change (kg CO2 eq),
metal depletion (kg Fe eq) and marine eutrophication (kg N-

Figure 4. Moment independent index (δ) values identifying significant uncertainties for the a-Si in the absolute (left) and the anticipatory
assessment (right). Uncertainty in the parameters with the highest value of δ in the figure in the left and right contribute the most to the overall
uncertainty in the weighted score (“weighted_score” in eq 1) and the relative score (“rel_score” in eq 2), respectively. CC, climate change; MD,
metal depletion; ME- marine eutrophication.

Figure 5. Relative environmental rankings for the three PV technologies in the baseline scenario (left), and when R&D decreases the critical
uncertainty of metal depletion (center) and marine eutrophication (right) for a-Si. The mean is decreased by one standard deviation and the
standard deviation is decreased by 50% from baseline values (Table 1).
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eq) impact for a functional unit of 1 MJ of electricity. The
lifecycle inventory (LCI) data used to determine the environ-
mental impacts for generating electricity from CdTe includes
raw material extraction, panel and auxiliary material required to
manufacture the CdTe module.18 For the silicon alternatives,
the LCI data includes quartz reduction, production of solar
grade silicon and wafers, and laminate production.18 In
addition, LCI data for the three PV alternatives includes
transportation, materials required for installation and operation
of balance of system components (inverters), cleaning, and
wiring.18 We select only three impact categories to simplify
calculations and base the technology choice on the environ-
mental benefit of transitioning away from climate-intensive
sources of electricity, reducing the eutrophication impact for
PV installations, limiting the feedstock of earth-limited metals
used for manufacturing PV, and best illustrate the utility of the
novel sensitivity analysis method.37−41 The lognormally
distributed environmental scores in the three impact categories
are obtained from ref 18 which determined the scores by
applying the ReCiPe midpoint (Heirarchist) impact assessment
method42 to 1 MJ of electricity generated from the three PV
technologies. The mean (μN) and the standard distribution
(σN) of the lognormally distributed environmental scores for
the three PV technologies, which are used in the absolute and
anticipatory assessment of the PV technologies, are presented
in Table 1.
Absolute Assessment of Photovoltaic Technologies.

In the absolute assessment, the unitless weighted score
(weighted_score) of the three PV technologies is calculated
by the weighted sum of the normalized scores in the climate
change (CC), metal depletion (MD) and the marine
eutrophication (ME) impact categories23,43

∑_ = × _ × _
=

weighted score weight norm factor charac score
i

i i
CC,MD,ME

i

(1)

where, weighti, norm_facti, charac_scorei is the weight,
normalization factor, and characterized score in impact category
“i”, respectively. The weights for marine eutrophication, climate
change, and metal depletion impact categories are assumed to
be uniformly distributed between 0.65−0.75, 0.25−0.35, and
0.05−0.15, respectively. We assume that the weights are
uniformly distributed, as there is no standard practice for
assigning weights in an LCA.44 The choice of the weights
reflect a higher emphasis on marine eutrophication and climate
change. A lower emphasis is placed on metal depletion as metal
feedstock concerns can be addressed by recycling spent PV
modules.17,40 The uniform distribution is preferred over point
values for weights to account for the uncertainty in the
stakeholder values. The sum of the weights for the three impact
categories is constrained to one. We calculated 10 000 values
for weighted_score for the three PV technologies by
stochastically sampling 10 000 values for the impact scores
and the weights based on the log-normal distribution properties
in Table 1 and, the uniform distributions, respectively. The
normalization factors for Europe in the marine eutrophication,
climate change, and metal depletion impact categories are
0.0988 (kg N-eq)−1, 0.0000892 (kg CO2 eq)

−1, and 0.0014 (kg
Fe eq)−1, respectively.42 We assume point values for the
normalization factors as this is the standard practice.42,45

Anticipatory Assessment of Photovoltaic Technolo-
gies. For the anticipatory assessment, we use outranking
methods27,46 to rank the three PV technologies based on the

relative difference in the environmental scores in marine
eutrophication, climate change, and metal depletion impact
categories. The relative score (rel_score), ranging between the
environmental least preferable (−1) and environmental most
preferable (+1), represents the environmental performance of a
PV technology relative to the two other alternatives The
calculation of the relative score for CdTe is shown in eq 2 and
the same is applicable to a-Si and Ribbon-Si

θ θ

θ θ

_ = −

+ −
‐ ‐

‐ ‐

rel score [ ]

[ ]

CdTe (CdTe,a Si) (a Si,CdTe)

(CdTe,Ribbon Si) (Ribbon Si,CdTe) (2)

where θ(CdTe,a‑Si) and θ(CdTe,Ribbon‑Si) represent the total positive
flow of CdTe with respect to a-Si and Ribbon-Si. The total
positive flow is a measure of CdTe being environmentally
preferred over a-Si and Ribbon-Si. Similarly, θ(a‑Si,CdTe) and
θ(Ribbon‑Si,CdTe) represent the negative flows of CdTe and is a
measure of the a-Si and Ribbon-Si being environmentally
preferred over CdTe.
The positive flow (e.g., for CdTe over a-Si) is calculated in eq

3

θ ψ

ψ

ψ

= ×

+ ×

+ ×

‐ ‐ ‐

‐ ‐

‐ ‐

[ weight ]

[ weight ]

[ weight ]

(CdTe,a Si) (CdTe,a Si) cc cc

(CdTe,a Si) md md

(CdTe,a Si) me me (3)

where ψ is the positive flow in a specific impact category (e.g.,
climate change) and weightcc, weightmd, and weightme represent
the weights in the climate change, metal depletion and marine
eutrophication, respectively. ψ for climate change is calculated
using eq 4 and the same is applicable for calculating the positive
flows for metal depletion and marine eutrophication.

ψ = − −‐ ‐ PF{CdTe a Si }(CdTe,a Si) cc cc cc (4)

CdTeCC and a-SiCC represent the climate change scores of
CdTe and a-Si (stochastically sampled from Table 1) and PF
represents a preference function (Figure 1).
The negative flow is similarly calculated by

ψ = − −‐ ‐ PF{a Si CdTe }(a Si,CdTe) cc cc cc (5)

The PF converts the relative difference in a specific
environmental impact category (e.g., climate change) to an
outranking score between 0 and 1. Figure 1 shows the PF for
CdTe and a-Si in the climate change impact category and the
same applies to other pairwise comparisons between the PV
technologies across the three environmental impact categories
CdTeCC and a-SiCC are obtained through a Monte Carlo

sampling from the mean and standard deviations in Table 1.
The preference threshold (p) represents the smallest difference
in the environmental score in a particular impact category at
which one PV technology is preferred over the other.47 If the
difference between CdTeCC and a-SiCC is less than p, then
CdTe has a lower climate change burden and is assigned a
score 1 (CdTeCC = 1). The indifference threshold (q)
represents the largest difference in the environmental scores
in a particular impact category at which a PV technology is not
preferred over the other. If the difference in the environmental
impacts is greater than q, then CdTe has a greater climate
change burden and is assigned a score 0 (CdTeCC = 0). If the
difference in the environmental impacts lies between q and p
then CdTe has a lower climate change burden and is assigned a
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value between 0 and 1 based on the expression shown in Figure
1. To calculate negative flows, climate change score of CdTe is
subtracted from a-Si and the difference is similarly converted
into an outranking score.
The values of p and q can be determined from the

uncertainty in the characterization data27 or elicited from
experts.48 We use the former approach27 and calculate p and q
(e.g., for climate change) as

= + ÷_ _ ‐p (SD SD ) 2cc CdTe cc a Si (6)

= ÷q p 2 (7)

where, SDcc_CdTe and SDcc_a‑Si is the standard deviation for
climate change for CdTe and a-Si (Table 1). A similar
calculation is used to calculate p and q for marine
eutrophication and metal depletion.
It is important to note that the relative environmental score

(rel_score) is similarly calculated for a-Si and Ribbon-Si using
eqs 2−7.
The calculation of the relative environmental score for the

three PV technologies (rel_score) is then repeated for 10 000
runs based on the environmental impact scores that are
stochastically sampled from the log-normal distributions in
Table 1. In each run, the PV alternatives are ranked first to third
based on the relative environmental score. The first rank is
assigned to the most environmentally preferable PV technology
with a relative score closest to +1. Similarly, the third rank is
assigned to the least environmentally preferable PV technology
with a relative score closest to −1. Thus, the PV technology
that is ranked first most often (out of a 10 000 runs) is the most
environmentally preferable alternative. The overlap in the
likelihood of multiple PV technologies obtaining the first rank
is a measure of the uncertainty in the choice of the
environmentally preferred PV technology. For instance, if a-
Si, CdTe, and ribbon-Si obtain the first rank in 36, 34, and 30%
of the 10 000 runs there is a significant overlap and uncertainty
in the choice of the environmentally preferred technology.
However, if a-Si, CdTe, and ribbon-Si obtain the first rank in
75, 20 and 5% of the 10 000 runs then a-Si is clearly the
environmentally preferred alternative.
Moment Independent Sensitivity Analysis for the

Absolute Assessment. For the absolute assessment, the
aggregate uncertainty in the weighted score of a PV technology
(eq 1) is dependent on the uncertainty in each of the six
parameters, the scores in the three environmental impact
categories and the corresponding weights (Table 1). We use
the moment independent sensitivity analysis method to
calculate the delta (δ) indices for the six parameters that
contribute to the uncertainty of the weighted score (weight_-
score in eq 1). The uncertainties of the parameter with the
highest δ index values contributes the most to the uncertainty
in the weighted score (weighted_score, eq 1). The calculation
of the δ indices is outlined in Figure 2 and for further details the
reader can refer.30

Moment Independent Sensitivity Analysis for the
Anticipatory Assessment. For the anticipatory assessment,
the aggregate uncertainty in the relative environmental score of
a PV technology (eq 2) is dependent on the uncertainty in each
of the 12 parametersthe scores of the specific PV technology
and the two competing alternatives in the three environmental
impact categories (Table 1) and the weights for the three
environmental impact categoriesas the values of the
normalization factors are fixed.42 The identification and ranking

of the uncertainties is similar to the approach shown in Figure 2
with the following modifications: IPA, IPB, and IPc in steps 1, 2,
and 4 have 12 columns corresponding to the 12 input
parameters, the relative score (rel_score) is calculated in steps 3
and 5 using eq 2, and Sj and δj are calculated for each of the 12
parameters in step 7 and 8.

Simulating R&D Outcomes from Addressing Critical
Uncertainties in Absolute and Anticipatory Assessment.
R&D strategies can be specifically designed to address critical
parameter uncertainties and, thereby, improve decision-
confidence in the choice of the environmentally preferred
emerging technology. This study simulates and contrasts the
outcomes of two R&D scenarios that are informed by and
address the critical uncertainties in the absolute and the
anticipatory assessment. In each scenario, a hypothetical R&D
strategy is simulated by decreasing the mean of the critical
parameter by one standard deviation and the standard deviation
by 50%. The reduction in the mean of the critical impact
category score represents an increased environmental efficiency
resulting from R&D, while the decrease in standard deviation
represents a reduction in uncertainty. The decrease in mean
and standard deviation is assumed to be achieved through
laboratory experiments that improve the performance and
measurement accuracy of the energy or material inventory
items that contribute significantly to the critical environmental
impact score. The corresponding impact of the R&D strategy is
determined by recalculating the overlap in PV technologies
obtaining the first rank based on the modified mean and the
standard deviation (Figure 5). The R&D strategy resulting in
the least overlap will result in the greatest confidence in the
comparative technology selection.

■ RESULTS AND DISCUSSION
Absolute and Anticipatory Assessment of the PV

Technologies. In the absolute assessment (Figure 3, left),
there is a significant uncertainty in the choice of the
environmentally preferable PV technology, as there is an
overlap in the range of the weighted scores of a-Si (mean = 1.99
× 10−06, SD = 4.95 × 10−07), CdTe (mean = 1.87 × 10−06, SD
= 4.32 × 10−07), and Ribbon-Si (mean = 1.96 × 10−06, SD =
3.84 × 10−07). We apply the Kruskal−Wallis (KW) test49 to
demonstrate that the uncertainty in the choice of the
environmentally preferable PV technology is significant. The
KW test tests if the difference between the weighted scores of
two PV technologies is statistically significant. The results show
that the weighted scores for a-Si and CdTe, and a-Si and
Ribbon-Si are statistically indistinguishable (SI Section 4).
In the anticipatory assessment, a-Si and CdTe are ranked first

45% and 50% in 10 000 runs, respectively. Ribbon-Si obtains a
third rank with a likelihood of 79% in 10 000 runs as it has
significantly higher score in the marine eutrophication and
climate change impact categories, which are weighed higher
than the metal depletion category (Table 1). However, in the
absolute assessment, the environmental performance of ribbon-
Si is comparable with that of a-Si and CdTe as there is a
significant uncertainty in the weighted_score of the three PV
technologies (Figure 3, left and SI Section 4). The uncertainty
persists despite Ribbon-Si having a significantly higher impact
in climate change and marine eutrophication categories than
CdTe and a-Si (Table 1), and climate change and marine
eutrophication being assigned higher weights in the decision.
This can be attributed to the external normalization factors that
are used only in the absolute assessment to calculate the
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weighted score and performance compensation across environ-
mental impact categories. The weighted score of the three PV
technologies is less sensitive to the performance in the marine
eutrophication category, which is 3−4 orders of magnitude
lower than climate change and metal depletion (Table 1 and
Figure 4). Furthermore, the weighted score of the three PV
technologies is less sensitive to the performance in the climate
change category as the normalization factor for climate change
(0.0000892 kg CO2 eq−1) is 1−3 orders of magnitude lower
than metal depletion (0.0014 kg Fe eq−1) and marine
eutrophication (0.0988 kg N-eq−1). As a result, in the absolute
assessment, the weighted scores of the three PV technologies is
most sensitive to the performance in the metal depletion
category. Therefore, the poor performance of Ribbon-Si in the
climate change and marine eutrophication is compensated by
the superior performance in the metal depletion category. The
discrepancy in the relative environmental performance of
Ribbon-Si in the absolute and the anticipatory assessment
highlights the shortcoming of using external measures of
normalization to inform comparative, decision-driven assess-
ments. The external measure of normalization masks poor
performance in specific impact categories (e.g., climate change
and marine eutrophication) and can potentially misinform
comparative, decision-driven assessments. For example, a
decision-maker seeking to identify a PV alternative with a low
climate change and marine eutrophication footprint can be
misinformed to choose Ribbon-Si as the environmental
performance of the Ribbon-Si is comparable with that of a-Si
and CdTe (Figure 3, left). This is despite Ribbon-Si having a
higher burden in the climate change and marine eutrophication
categories.
Moment Independent Sensitivity Analysis. The results

of the moment independent sensitivity analysis, identifying the
significant uncertainties in the absolute and the anticipatory
assessment, is depicted in Figure 4 for a-Si and section 1 of the
SI for CdTe and Ribbon-Si. It is important to reiterate that the
aggregate uncertainty is dependent on the uncertainty in each
of the six parameters in the absolute assessment (Figure 4 left)
and 12 paramaters in the anticipatory assessment (Figure 4
right). In the absolute assessment, the uncertainty in the weight
and the impact category score for metal depletion contribute
the most to the overall uncertainty in the absolute environ-
mental score of the a-Si, CdTe and Ribbon-Si technologies (SI
Figure 4 and section 1). However, in the anticipatory
assessment, the uncertainty in the marine eutrophication
score contributes the most (among 12 parameters) to the
overall uncertainty of the relative environmental score (rel_-
score) of the a-Si, CdTe and Ribbon-Si technologies (SI Figure
4 and section 1). This is further emphasized by the marine
eutrophication of the CdTe and ribbon-Si having a “δ” index
value than the metal depletion and climate change scores of a-
Si.
Simulated R&D Outcomes from Addressing Critical

Uncertainties in Absolute and Anticipatory Assessment.
Figure 5 contrasts the outcomes from pursuing R&D strategies
that address the critical uncertainties identified by the moment
independent sensitivity analysis in the absolute and the
anticipatory assessment. An R&D strategy that reduces the
uncertainty in the metal depletion score for a-Si, a critical
uncertainty in the absolute assessment (Figure 4, left),
produces the most improvement in the environmental
performance of a-Si (SI Figure S11).

However, a reduction in the uncertainty of metal depletion
does not improve decision-confidence in the choice between
the a-Si and the CdTe as the environmentally preferred PV
technology. a-Si and CdTe obtain the first rank with a
likelihood of 51 and 45% in 10 000 runs (Figure 5, center) and
this overlap is similar to the baseline scenario where they are
ranked first with a likelihood of 45 and 50% (Figure 5, left),
respectively.
In contrast, an R&D strategy that decreases the uncertainty

in the marine eutrophication score for a-Si, a critical uncertainty
in the anticipatory assessment (Figure 4, right), improves
decision confidence as a-Si is environmentally preferred over
CdTe with a 76% likelihood in 10 000 runs (Figure 5, right).
This is significantly greater than the baseline scenario where a-
Si has a 45% likelihood of being the environmentally preferred
alternative in 10 000 runs (Figure 5, middle).
Similar results are observed for CdTe (SI Figure S5 and S8)

and Ribbon-Si (SI Figures S12 and S13). Furthermore, SI
Figures S3, S4, S6, S7, S9, and S10 show that the relative
rankings are more sensitive to a reduction in the mean of the
metal depletion and marine eutrophication scores than the
standard deviation.
The findings also highlight the importance of resolving the

uncertainty in the choice of the environmentally preferred
emerging technology alternative before addressing the hotspot
of a specific technology. Without resolving the uncertainty
between a-Si and CdTe as the environmentally preferred
alternative, the decision maker can either invest in addressing
the environmental hotpots of CdTe or a-Si, which is metal
depletion. At best, investing in R&D to improve the metal
depletion of a-Si will not resolve the uncertainty in the choice
between a-Si and CdTe as the environmentally preferred
alternative (Figure 5). At worst, investing in R&D to improve
the metal depletion of CdTe (a hotspot for CdTe, SI Figure
S5) is counterproductive from an environmental standpoint.
Despite improving the environmental performance of CdTe,
this R&D investment is not contributing toward improving the
most environmentally favorable option, which is a-Si.
The results in SI Figure 4 and section 1 call attention to the

difference in the critical uncertainties in the absolute and the
anticipatory evaluation of the emerging technologies. The
absolute approach is primarily used to inform R&D strategies
for improving the environmental performance of individual
emerging technologies, whereas the anticipatory approach
directs R&D strategy toward decreasing the uncertainty in
the choice between multiple alternatives. Uncertainty analysis
in the absolute assessment is best suited to inform R&D
decisions that produce the greatest improvements in the
environmental performance of a single technology (SI Section
3). However, the uncertainty analysis in the absolute assess-
ment can misdirect R&D effort toward addressing uncertainties
that are not significant when the comparative decision is
unclear and normalization and weighting have been applied to
multiple impact criteria. For example, focusing experimental
effort toward addressing the uncertainty in metal depletion
impact category, which is the most critical uncertainty in the
absolute assessment for CdTe (SI Figure S1 left), produces the
greatest environmental improvement for CdTe (SI Figure S12).
However, addressing the metal depletion uncertainty will not
decrease the uncertainty in the choice between a-Si or CdTe
(SI Figure S5 left) as metal depletion is not in the top three
uncertainties that undermine decision confidence (SI Figure S1
right). Instead, having identified marine eutrophication (SI
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Figure S1 right), specific R&D efforts to reduce marine
eutrophication uncertainties can include designing experiments
to improve data quality in those parameters or probability
distributions that contribute to uncertainty of marine
eutrophication data sets.
The principal advantages of the anticipatory, decision-driven

approach illustrated here are several:

• It allows analysis to proceed under conditions of high
data uncertainty by relying on expert judgment of
probability distributions, which can subsequently be
tested for relevance to the decision when normalization
and weighting is applied across multiple environmental
impact categories. In some cases, such as ribbon-Si,
technologies may be eliminated from further consid-
eration without additional analysis in a given decision
context.

• It allows testing research hypotheses (represented as a
change in the probability assignment of material or
energy inventory data) that explore the level of
technology improvement necessary to reverse an
environmental preference rank ordering.

• It facilitates conservation of research resources by
focusing efforts on those uncertainties that are most
relevant to the decision as opposed to the improvement
of a single technology.

Current LCA software provide features for magnitude based
contribution analysis which identifies the material and energy
inventory items that contribute the most toward the
characterized environmental impact scores. Furthermore, the
features for uncertainty assessment in LCA software quantify
the overall uncertainty in the characterized environmental
impact scores. However, neither the contribution analysis nor
the uncertainty assessment in existing LCA packages can
identify the key uncertainties in the material and energy
inventory items that contribute the most to the uncertainty in
the characterized environmental impact scores. As a result, the
uncertainty assessment in Figure 4 is terminated at the level of
environmental impact categories as standard commercial LCA
software have limited features to explore uncertainty dis-
aggregation at the material and energy flow level. The authors
reemphasize that this is a limitation of commercial software
typically used by practitioners to conduct LCAs and not a
limitation of the proposed novel sensitivity-analysis method.
This calls for future research toward uncertainty assessment of
the underlying inventory items in proprietary and open source
LCA software50 to inform decisions on prioritizing R&D effort
toward reducing uncertainty in key energy and material data
sets of emerging technologies.
For simplicity and illustrative purposes, this research

considers only three impact categories, three technology
alternatives and addresses only parameter uncertainties. The
case study of PV technology, the three impact categories, and
the upper and lower limits of the uniform distribution for the
weights are chosen to best illustrate the utility of the novel
sensitivity analysis approach. The anticipatory framework can
be applied to other emerging technologies beyond PV without
any modifications to the methods presented in this work. In
addition, the anticipatory framework can be extended to
include other impact categories, different upper and lower
limits for the uniform distribution and different distribution
types for the weights, greater number of technology alternatives
(minimum requirement is two alternatives), model and

scenario uncertainty,51 and uncertainty in normalization factors.
For example, based on the lifecycle inventory data for emerging
technology alternatives which are under investigation, the
distributions for multiple impact categories (e.g., ozone
depletion potential, fossil depletion potential in ReCiPe) can
be determined in SimaPro and included though a Monte Carlo
sampling in eq 2. The moment independent sensitivity analysis
can then include the additional impact categories to inform
R&D and improve decisions on the choice between the
emerging technologies under investigation. It should be noted
computational time for calculating the moment independent
sensitivity analysis index (δ) increases with an increasing
number of emerging technology alternatives and the impact
categories.
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