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Abstract. For β ∈ (1, 2] the β-transformation Tβ : [0, 1)→ [0, 1) is defined by Tβ(x)=
βx (mod 1). For t ∈ [0, 1) let Kβ(t) be the survivor set of Tβ with hole (0, t) given by

Kβ(t) := {x ∈ [0, 1) : T n
β (x) 6∈ (0, t) for all n ≥ 0}.

In this paper we characterize the bifurcation set Eβ of all parameters t ∈ [0, 1) for which
the set-valued function t 7→ Kβ(t) is not locally constant. We show that Eβ is a Lebesgue
null set of full Hausdorff dimension for all β ∈ (1, 2). We prove that for Lebesgue
almost every β ∈ (1, 2) the bifurcation set Eβ contains infinitely many isolated points
and infinitely many accumulation points arbitrarily close to zero. On the other hand, we
show that the set of β ∈ (1, 2) for which Eβ contains no isolated points has zero Hausdorff
dimension. These results contrast with the situation for E2, the bifurcation set of the
doubling map. Finally, we give for each β ∈ (1, 2) a lower and an upper bound for the
value τβ such that the Hausdorff dimension of Kβ(t) is positive if and only if t < τβ . We
show that τβ ≤ 1− (1/β) for all β ∈ (1, 2).

Key words: dimension theory, low-dimensional dynamics, symbolic dynamics
2010 Mathematics Subject Classification: 11K55, 26A30, 37B10, 37E05, 37E15
(Primary); 11A63, 68R15, 28D05 (Secondary)

1. Introduction
In recent years open dynamical systems, i.e., systems with a hole in the state space through
which mass can leak away at every iteration, have received a lot of attention. Typically one
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The β-transformation with a hole at 0 2483

wonders about the rate at which mass leaves the system and about the size and structure
of the set of points that remain, called the survivor set. In [Urb86, Urb87] Urbański
considered C2-expanding, orientation-preserving circle maps with a hole of the form
(0, t). He studied the way in which the topological entropy of such a map restricted to the
survivor set changes with t . To be more precise, let g be a C2-expanding and orientation-
preserving map on the circle R/Z∼ [0, 1). For t ∈ [0, 1) let Kg(t) be the survivor set
defined by

Kg(t) := {x ∈ [0, 1) : gn(x) /∈ (0, t) for all n ≥ 0}.

Urbański proved that the function t 7→ htop(g|Kg(t)) is a devil’s staircase, where htop

denotes the topological entropy.
Motivated by the work of Urbański, we consider this situation for the β-transformation.

Given β ∈ (1, 2], the β-transformation Tβ : [0, 1)→ [0, 1) is defined by Tβ(x)= βx
(mod 1). When β = 2, we recover the doubling map. In correspondence with [Urb86],
set

Kβ(t) := {x ∈ [0, 1) : T n
β (x) 6∈ (0, t) for all n ≥ 0}. (1.1)

The survivor set Kβ(t) splits naturally into two pieces, Kβ(t)= K 0
β(t) ∪ K+β (t), where

K 0
β(t)= {x ∈ [0, 1) : ∃n T n

β (x)= 0 and T k
β (x) 6∈ (0, t) for all 0≤ k < n},

K+β (t)= {x ∈ [0, 1) : T n
β (x)≥ t for all n ≥ 0}.

(1.2)

The set K+β (t) occurs in Diophantine approximation. Indeed, consider the set

Fβ(t) := {x ∈ [0, 1) | T n
β (x)≥ t for all but finitely many n ∈ N}

of points x ≥ 0 such that 0 is badly approximable by its orbit under Tβ . Then Fβ(t)
can be written as a countable union of affine copies of K+β (t) and thus dimH Fβ(t)=
dimH K+β (t) for all t ∈ [0, 1). The approximation properties of β-expansions have been
studied by several authors. In [LPWW14] the authors considered the Hausdorff dimension
of the set of values β > 1 for which the orbit of 1 approaches a given target value x0 at a
given speed. This work generalized that of [PS08], where x0 = 0 and the speed is fixed.
Other results on the Diophantine approximation properties of β-expansions can be found
in [Nil09, BW14, Cao14, GL15, LW16] among others.

Note that the set-valued map ε 7→ Kβ(ε) is weakly decreasing. Further on, we show
that this map is locally constant almost everywhere, i.e., for almost all t ∈ [0, 1) there
exists a δ > 0 such that Kβ(ε)= Kβ(t) for all ε ∈ [t − δ, t + δ]. Such a result was also
obtained by Urbański in [Urb86] for C2-expanding circle maps. This fact motivates the
study of the right set valued bifurcation set (simply called bifurcation set) Eβ containing
all parameters t ∈ [0, 1) such that the set-valued map ε 7→ Kβ(ε) is not locally constant
on any right-sided neighbourhood of t , i.e.,

Eβ := {t ∈ [0, 1) : Kβ(ε) 6= Kβ(t) for any ε > t}. (1.3)

The local structure of the sets K2(t) and E2 was investigated in detail in [Urb86, Nil09].
The following results can be found more or less explicitly in [Urb86]. More recently it
was shown in [Nil09] that these properties could also be dealt with using more elementary
combinatorial methods.
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2484 C. Kalle et al

FIGURE 1. Left: the numerical plot of ηβ with β ≈ 1.61803 the golden ratio. Right: the numerical plot of ηβ
with β ≈ 1.83929 the tribonacci number.

THEOREM 1.1. (Urbański [Urb86])
(i) The bifurcation set E2 is a Lebesgue null set of full Hausdorff dimension.
(ii) The function η2 : t 7→ dimH K2(t) is a devil’s staircase:

• η2 is decreasing and continuous on [0, 1
2 ];

• η′2(t)= 0 for Lebesgue almost every t ∈ [0, 1
2 ];

• η2(0)= 1 and η2(
1
2 )= 0.

(iii) The topological closure E2 is a Cantor set.
(iv) η2(t) > 0 if and only if t < 1

2 .

Other results on survivor sets for the doubling map T2 can be found in e.g. [BY11,
Det13, AB14, Sid14, GS15, CT17].

An important ingredient for the proofs in [Urb86, CT17] is the fact that

E2 = {t ∈ [0, 1) : T n
2 (t)≥ t for all n ≥ 0}.

This identity does not hold in general for 1< β < 2. Therefore, we define E+β by

E+β := {t ∈ [0, 1) : T n
β (t)≥ t for all n ≥ 0}. (1.4)

Note that E+β ⊆ Eβ but in general these sets do not coincide. In this paper we consider the
survivor set Kβ(t) and the bifurcation set Eβ for β ∈ (1, 2). We give a detailed description
of the topological structure of Eβ and E+β and their dependence on β. Theorems A to D
below list our main results. Our first result strengthens (i) and (ii) of Theorem 1.1.

THEOREM A. Let β ∈ (1, 2] and t ∈ [0, 1).
(i) The bifurcation sets Eβ and E+β are Lebesgue null sets of full Hausdorff dimension.
(ii) The dimension function ηβ : t 7→ dimH Kβ(t) is a devil’s staircase:

• ηβ is decreasing and continuous in [0, 1);
• η′β = 0 Lebesgue almost everywhere in [0, 1);
• ηβ is not constant.

Figure 1 shows numerical plots of the dimension functions ηβ for β ≈ 1.61803, the
golden ratio, i.e., the real root bigger than 1 of the polynomial x2

− x − 1 and for
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β ≈ 1.83929, the tribonacci number, i.e., the real root bigger than 1 of the polynomial
x3
− x2

− x − 1.
The analogous statements of (iii) and (iv) of Theorem 1.1 for β ∈ (1, 2) do not always

hold. The next main theorems show that in general the topological structure of Eβ differs
from that of E2 and that this structure depends on the value of β. Theorems B and C imply
that (iii) of Theorem 1.1 holds only for a very small set of β ∈ (1, 2).

THEOREM B. For Lebesgue almost every β ∈ (1, 2) the bifurcation sets Eβ and E+β
contain infinitely many isolated and accumulation points arbitrarily close to zero and
hence their closures are not Cantor sets. On the other hand,

dimH ({β ∈ (1, 2) : ∃δ > 0 such that E+β ∩ [0, δ] is a Cantor set})= 1.

There are also infinitely many β ∈ (1, 2] such that E+β is a Cantor set. This is true, for
example, for the countable family of multinacci numbers. In terms of Hausdorff dimension
this set is small.

THEOREM C. We have dimH ({β ∈ (1, 2) : E+β is a Cantor set})= 0.

In [Cla16] Clark considered the β-transformation and characterized the holes of the
form (a, b) for which the survivor set Kβ((a, b)) is uncountable or not. From the
properties of ηβ given in Theorem A it follows that for each β ∈ (1, 2] there is a unique
value τβ such that dimH Kβ(t) > 0 if and only if t < τβ . By (iv) of Theorem 1.1 we know
that τ2 = 1/2. We have the following result on τβ .

THEOREM D. For each β ∈ (1, 2] we have τβ ≤ 1− (1/β) and τβ = 1− (1/β) if and

only if E+β is a Cantor set.

In [Nil07] Nilsson studied the critical value τ̃β for the β-transformation with holes of
the form (t, 1). In [Nil07, Proposition 7.12] he proved that for each β ∈ (1, 2), τ̃β =
1− (1/β). Many of the proofs use the symbolic codings of the open systems Tβ with hole
(t, 1). The main difficulty that we had to overcome in order to extend the results from the
doubling map to the β-transformation is that the β-transformation is not coded by the full
shift on two symbols. In fact, for most values of β, the associated symbolic system is not
even sofic. This might also explain the difference between the result from Theorem D and
the result from [Nil07, Proposition 7.12].

The paper is arranged as follows. In §2 we introduce some notation, we recall some
basic properties of β-expansions and prove Theorem A. In §3 we consider the topological
structure of Eβ and E+β and prove Theorem B. By means of Lyndon words we construct
infinitely many nested basic intervals which cover the interval (1, 2) up to a Lebesgue null
set. We can determine all isolated points of E+β by determining in which intervals it falls.
The largest of these intervals are then associated to Farey words, the properties of which
allow us to prove Theorem C in §4 and Theorem D in §5.
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2. Preliminaries, β-expansions and first properties of Kβ(t) and Eβ
In this section we introduce some notation about sequences that is used throughout the
paper. We will recall some basic properties of β-transformations and give some basic
results on Kβ(t) and Eβ . We also prove Theorem A.

2.1. Notation on sequences. Let {0, 1}N be the set of sequences of 0’s and 1’s and let
σ be the left shift on {0, 1}N defined by σ((xi ))= (xi+1). We use {0, 1}∗ to denote the set
of all finite strings of elements from {0, 1}, called words. A word w ∈ {0, 1}n is called a
prefix of a sequence (xi ) ∈ {0, 1}N if x1 . . . xn = w. For a word w = w1 . . . wn ∈ {0, 1}∗

we write w+ := w1 . . . wn−1(wn + 1) if wn = 0 and we write w− := w1w2 . . . wn−1

(wn − 1) if wn = 1. Furthermore, we use w to denote the reflection word w := (1−
w1)(1− w2) . . . (1− wn).

Throughout the paper we use the lexicographical ordering ≺,4,� and < between
sequences and words, which is defined as follows. For two sequences (xi ), (yi ) ∈ {0, 1}N

we write (xi )≺ (yi ) or (yi )� (xi ) if x1 < y1, or there is an integer m ≥ 2 such that xi = yi

for all i < m and xm < ym . Moreover, we say that (xi )4 (yi ) or (yi )< (xi ) if (xi )≺ (yi )

or (xi )= (yi ). This definition can be extended to words in the following way. For u, v ∈
{0, 1}∗ we write u ≺ v if and only if u0∞ ≺ v0∞.

Let #A denote the cardinality of the set A. For a subset Y ⊆ {0, 1}N let Bn(Y) denote
the set of all words of length n that occur in a sequence in Y . The topological entropy of
Y is then given by

h(Y) := lim
n→∞

log #Bn(Y)
n

= inf
n

log #Bn(Y)
n

,

where the second equality holds since by the definition of Bn(Y) the sequence
(log #Bn(Y)) is subadditive. Here and throughout the paper we will use the base-2
logarithm.

2.2. The β-transformation and β-expansions. Now we recall some properties of the β-
transformation. Let β ∈ (1, 2] and let the (greedy) β-transformation Tβ : [0, 1)→ [0, 1)
be given as in the introduction, i.e., Tβ(x)= βx (mod 1). It has a unique ergodic invariant
measure that is equivalent to the Lebesgue measure (cf. [Rén57]). This measure is the
unique measure of maximal entropy with entropy equal to log β. For each x ∈ [0, 1) the
greedy β-expansion of x , denoted by b(x, β)= (bi (x, β)), is the sequence obtained from
Tβ by setting for each i ≥ 1,

bi (x, β)=

{
0 if T i−1

β (x) ∈ [0, 1
β
),

1 if T i−1
β (x) ∈ [ 1

β
, 1).

The name greedy β-expansion stems from the fact that it is the lexicographically largest
sequence (xi ) ∈ {0, 1}N satisfying

x =
∑
i≥1

xi

β i =: πβ((xi )). (2.1)

We write b(1, β) for the sequence 1b(β − 1, β).

Downloaded from https://www.cambridge.org/core. 20 Oct 2021 at 08:04:15, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


The β-transformation with a hole at 0 2487

The set of sequences that occur as greedy β-expansions for a given β can be
characterized using quasi-greedy β-expansions. For each x ∈ (0, 1] the quasi-greedy β-
expansion of x is obtained dynamically by iterating the map T̃β : (0, 1] → (0, 1] given
by

T̃β(x)=

{
βx if x ∈ (0, 1

β

]
,

βx − 1 if x ∈ ( 1
β
, 1
]
.

The only essential difference between the maps Tβ and T̃β is the value they take at the point
1/β. For x ∈ (0, 1] the quasi-greedy β-expansion b̃(x, β)= (b̃i (x, β)) is then obtained
by setting b̃i (x, β)= 0 if 0< T̃ i−1

β (x)≤ (1/β) and b̃i (x, β)= 1 if (1/β) < T̃ i−1(x)≤ 1.
The quasi-greedy β-expansion of 1 plays a crucial role in what follows. For β ∈ (1, 2]
write

α(β) := b̃(1, β).

Note that if b(x, β)= b1 . . . bn0∞ with bn = 1, then b̃(x, β)= b1 . . . b−n α(β). On the
other hand, if b(x, β) does not end with 0∞, then b(x, β)= b̃(x, β). The following
characterization of α(β) can be found in [KL07, Theorem 2.3]. Let Q⊂ {0, 1}N be the set
of sequences (ai ) ∈ {0, 1}N not ending with 0∞ and satisfying

an+1an+2 . . .4 a1a2 . . . for all n ≥ 0. (2.2)

LEMMA 2.1. The map β 7→ α(β) is a strictly increasing bijection between the interval
(1, 2] and the set Q.

For a given β the sequence α(β) determines the set of all greedy β-expansions in
the following way. Let 6β be the set of all greedy β-expansions of x ∈ [0, 1). Then
(cf. [Par60])

6β = {(xi ) ∈ {0, 1}N : σ n((xi ))≺ α(β) for all n ≥ 0}. (2.3)

Similarly, let 6̃β be the set of all quasi-greedy β-expansions of x ∈ (0, 1]. Then

6̃β = {(xi ) ∈ {0, 1}N : 0∞ ≺ σ n((xi ))4 α(β) for all n ≥ 0}.

The following result can be found in [Par60] (see also [dVKL16]).

LEMMA 2.2. Let β ∈ (1, 2]. The map x 7→ b(x, β) is a strictly increasing bijection from
[0, 1) to 6β and is right-continuous with respect to the ordering topology on 6β .

On the other hand, the map x 7→ b̃(x, β) is a strictly increasing bijection from (0, 1] to
6̃β and is left-continuous with respect to the ordering topology on 6̃β .

2.3. First properties of Kβ(t) and Eβ . Let t ∈ [0, 1) be given. Recall the definitions of
the survivor set Kβ(t)= K 0

β(t) ∪ K+β (t) from (1.1) and (1.2). We define the corresponding
symbolic survivor sets as the sets of all greedy β-expansions of elements in the sets Kβ(t),
K 0
β(t) and K+β (t), respectively. Lemma 2.2 gives the following descriptions:

K+β (t)= {(xi ) ∈ {0, 1}N : b(t, β)4 σ n((xi ))≺ α(β) ∀n ≥ 0},

K0
β(t)= {(xi ) ∈ {0, 1}N : ∃n ≥ 0 σ n((xi ))= 0∞

and b(t, β)4 σ k((xi ))≺ α(β) ∀0≤ k < n},

Kβ(t)=K+β (t) ∪K
0
β(t).

(2.4)
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We will often switch from Kβ(t) to Kβ(t) and back. The set Kβ(t) is closed and Tβ is
continuous when restricted to Kβ(t). Under the metric d on {0, 1}N given by

d((xi ), (yi ))= β
−inf{n≥1:xn 6=yn}

the map πβ : (Kβ(t), σ )→ (Kβ(t), Tβ) is a topological conjugacy. This gives that

htop(Tβ |Kβ(t))= htop(Kβ(t)).

For the bifurcation set Eβ , defined in (1.3), the following description can implicitly be
found in [Urb86].

PROPOSITION 2.3. Eβ = {t ∈ [0, 1) : t ∈ Kβ(t)} and thus Eβ ∩ [t, 1)⊆ Kβ(t) for any t ∈
(0, 1).

Proof. For all t ∈ (0, 1)we have t 6∈ Kβ(ε) for any ε > t . Hence, if t ∈ Kβ(t), then t ∈ Eβ .
Suppose that t 6∈ Kβ(t), i.e., there is an N ≥ 1 such that T N

β (t) ∈ (0, t). By the right-
continuity of T N

β , there is a δ > 0 such that

T N
β (ε) ∈

(
T N
β (t),

T N
β (t)+ t

2

)
⊆ (0, t) for all ε ∈ [t, t + δ].

This implies that Kβ(t) ∩ [t, t + δ] = ∅ and thus Kβ(t + δ)⊆ Kβ(t)⊆ Kβ(t + δ). We
conclude that the function ε 7→ Kβ(ε) is constant on [t, t + δ], so t 6∈ Eβ . �

COROLLARY 2.4. For each β ∈ (1, 2] the set [0, 1)\Eβ is open.

Proof. Let t 6∈ Eβ . The proof of the previous proposition then gives a δ1 > 0 such that
[t, t + δ1] ∩ Eβ = ∅. From t 6∈ Kβ(t) it follows that there is an N ≥ 1 such that T N

β (t) ∈
(0, t). Hence, T k

β (t) 6= (1/β) for any 0≤ k ≤ N , which means that T N
β is left-continuous

in t . Then, as in the proof of Proposition 2.3, we can find a δ2 > 0 such that [t − δ2, t] ∩
Eβ = ∅. �

In (1.4) the set E+β was defined. By the same proof as given for Proposition 2.3 we also
get that E+β is the bifurcation set of K+β (t), i.e.,

E+β = {t ∈ [0, 1) : t ∈ K+β (t)} = {t ∈ [0, 1) : K+β (ε) 6= K+β (t) for any ε > t}.

As for Kβ(t) we add a third set E0
β of the elements in Eβ that are pre-images of 0:

E0
β = {t ∈ Eβ : ∃n ≥ 0 T n

β (t)= 0} = {t ∈ [0, 1) : t ∈ K 0
β(t)}.

Then Eβ = E+β ∪ E0
β and E+β ∩ E0

β = {0}.
The symbolic bifurcation sets, i.e., the sets of all greedy β-expansions of elements in

Eβ , E+β and E0
β , can be described as follows:

E+β = {(ti ) ∈ {0, 1}N : ∀n ≥ 0 (ti )4 σ n((ti ))≺ α(β)},

E0
β = {(ti ) ∈ {0, 1}N : ∃n ≥ 0 σ n((ti ))= 0∞

and (ti )4 σ k((ti ))≺ α(β) for all 0≤ k < n},

Eβ = E+β ∪ E
0
β .

(2.5)
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In the series of papers [Rai89, Rai92, Rai94], Raith studied invariant sets for piecewise
monotone expanding maps on the interval [0, 1]. More specifically, in [Rai94] he
removed a finite number of open intervals from [0, 1] and considered piecewise monotone
expanding maps restricted to the survivor set. He then studied the dependence on the end
points of the holes of the Hausdorff dimension of the survivor set and of the topological
entropy of the map restricted to the survivor set. Since no x ∈ [0, 1) has Tβ(x)= 1, we
can apply these results to Tβ on [0, 1) with the single hole (0, t) removed. In particular,
applying the results from [Rai94, Corollary 1.1 and Theorem 2] gives the following.

PROPOSITION 2.5. [Rai94] Let β ∈ (1, 2) be given. The maps Hβ : t 7→ htop(Kβ(t)) and
ηβ : t 7→ dimH Kβ(t) are continuous on [0, 1).

In the process of proving [Rai94, Theorem 2] Raith proved in [Rai94, Lemma 3] that
Bowen’s dimension formula also holds in this case, i.e., the Hausdorff dimension of the
survivor set is the unique zero of the pressure function. In our setting this translates to the
following dimension formula:

dimH Kβ(t)=
htop(Tβ |Kβ(t))

log β
. (2.6)

Since for any t ∈ [0, 1) the sets K 0
β(t) and E0

β contain at most countably many points,
we have the following properties for the sets under consideration. Let λ denote the one-
dimensional Lebesgue measure.

dimH Kβ (t)= dimH K+β (t) dimH K 0
β (t)= 0

λ(Kβ (t))= λ(K
+

β (t)) λ(K 0
β (t))= 0

dimH Eβ = dimH E+β dimH E0
β = 0

λ(Eβ )= λ(E
+

β ) λ(E0
β )= 0

htop(Kβ (t))=max{htop(K+β (t)), htop(K 0
β (t))}

This table implies that for Theorem A(i) it is enough to consider only Eβ . From
Proposition 2.5 and (2.6) we also get that t 7→ dimH K+β (t) is continuous and that

htop(Kβ(t))= dimH (K+β (t)) log β.

The next result specifies the relations between the sets even further.

PROPOSITION 2.6. Let β ∈ (1, 2). If t ∈ E+β , then htop(Kβ(t))= htop(K+β (t)).

Proof. Since K+β (t)⊆Kβ(t), it suffices to prove that htop(K+β (t))≥ htop(Kβ(t)). For
t = 0 there is nothing to prove. Take t ∈ E+β \ {0} and write (ti ) := b(t, β). Then

(ti )4 σ n((ti ))≺ α(β) for all n ≥ 0.

Hence, (ti ) does not end with 0∞ and by (2.4) we can rewrite K0
β(t) as

K0
β(t)= {(xi ) : ∃n ≥ 0 σ n((xi ))= 0∞ and (ti )≺ σ k((xi ))≺ α(β) ∀0≤ k < n}. (2.7)

Downloaded from https://www.cambridge.org/core. 20 Oct 2021 at 08:04:15, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


2490 C. Kalle et al

We claim that

|Bk(K0
β(t))| ≤

k+1∑
j=1

|B j−1(K+β (t))|.

Take a word a1 . . . ak ∈ Bk(K0
β(t)) and without loss of generality suppose that it occurs as

a prefix of a sequence (xi ) ∈K0
β(t), i.e., (xi )= a1 . . . ak xk+1xk+2 . . . . Let j ≥ 0 be such

that x j = 1 and the tail x j+1x j+2 . . .= 0∞. If j = 0, then (xi )= 0∞. Avoiding this trivial
case we assume that j ≥ 1 and we will prove that x1 . . . x j−10 ∈ B j (K+β (t)). By (2.7) it
follows that

t1 . . . t j−i 4 xi+1 . . . x j−10≺ α1(β) . . . α j−i (β) for all 0≤ i < j. (2.8)

Let i∗ ≤ j be the smallest index such that xi∗+1 . . . x j−10= t1 . . . t j−i∗ . If strict
inequalities in (2.8) hold for all i < j , then we put i∗ = j . Note that (ti )4 σ n((ti ))≺ α(β)
for all n ≥ 0. Then by the minimality of i∗ it follows that

x1 . . . x j−10t j−i∗+1t j−i∗+2 . . .= x1 . . . xi∗ t1t2 . . . ∈K+β (t).

Observe that x1 . . . x j−1 = a1 . . . a j−1 if j ≤ k and x1 . . . xk = a1 . . . ak if j ≥ k + 1.
This implies that a1 . . . a j−1 = x1 . . . x j−1 ∈ B j−1(K+β (t)) if j ≤ k or a1 . . . ak ∈

Bk(K+β (t)) if j ≥ k + 1 and proves the claim.

By the claim it follows that |Bk(K0
β(t))| ≤ (k + 1)|Bk(K+β (t))|. Using that Kβ(t)=

K0
β(t) ∪K

+

β (t) we have

|Bk(Kβ(t))| ≤ (k + 2)|Bk(K+β (t))| for all k ≥ 1.

Taking logarithms, dividing both sides by k and letting k→∞, we conclude that
htop(Kβ(t))≤ htop(K+β (t)), which gives the result. �

2.4. The size of Eβ . The results from the previous sections are enough to prove
Theorem A. We start by proving the following result, which holds for all β ∈ (1, 2). It
covers item (i) from Theorem A as well as part of Theorem B.

PROPOSITION 2.7. For any β ∈ (1, 2) the bifurcation set Eβ is a Lebesgue null set.
Furthermore, dimH (Eβ ∩ [0, δ])= 1 for any δ > 0. In particular, dimH Eβ = 1.

Proof. For the first part of the statement, let β ∈ (1, 2) and N ∈ N. The ergodicity of Tβ
with respect to its invariant measure equivalent to the Lebesgue measure λ implies that
λ-almost every x ∈ [0, 1) is eventually mapped into the interval (0, (1/N )). Hence, the
survivor set Kβ((1/N )) is a Lebesgue null set for each N ∈ N. This implies that λ(Eβ)= 0
since by Proposition 2.3,

Eβ ⊆
∞⋃

N=1

Kβ

(
1
N

)
.

To prove the second part, take a large integer N ≥ 1. Let Eβ,N be the set of x ∈
[0, 1) with a greedy expansion b(x, β)= (bi (x, β)) satisfying b1(x, β) . . . bN (x, β)=
0N and such that the tails bN+1(x, β)bN+2(x, β) . . . do not contain N consecutive zeros.
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It immediately follows that Eβ,N ⊆ Eβ . Note that K+β (1/β
N ) is exactly the set of

x ∈ [0, 1) for which b(x, β) does not have more than N consecutive zeros. Hence,

Eβ,N =
1
βN K+β

(
1
βN

)
and thus dimH Eβ,N = dimH K+β (1/β

N )= dimH Kβ(1/βN ). Moreover, for any δ > 0,
we can find a large integer N such that Eβ,n ⊆ Eβ ∩ [0, δ] for all n ≥ N . Therefore,

dimH (Eβ ∩ [0, δ])≥ dimH Eβ,n = dimH Kβ

(
1
βn

)
for all n ≥ N . By continuity of the map ηβ : t 7→ dimH Kβ(t), letting n→∞ gives that

dimH (Eβ ∩ [0, δ])≥ dimH Kβ(0)= dimH [0, 1)= 1. �

Proof of Theorem A. Item (i) is given by Proposition 2.7. For item (ii), first bullet point,
the fact that ηβ decreases weakly immediately follows from its definition and the continuity
of ηβ is given by Proposition 2.5. For the second bullet point we have that the set-valued
map t 7→ Kβ(t) is locally constant Lebesgue almost everywhere since λ(Eβ)= 0. The last
bullet point follows since ηβ(0)= 1 and for t ≥ (1/β) we completely remove the second
branch from Tβ , so that obviously dimH (Kβ(t))= 0 and ηβ(t)= 0. �

3. Topological structure of Eβ
In this section we prove Theorem B. In fact, we prove a stronger result by specifying the
set of β ∈ (1, 2) for which there is a δ > 0 such that E+β ∩ [0, δ] does not contain isolated
points. This is the set

C3 := {β ∈ (1, 2) : the length of consecutive zeros in α(β) is bounded}. (3.1)

From a dynamical point of view C3 is the set of β ∈ (1, 2) such that the orbit {T̃ n
β (1)}

∞

n=0
is bounded away from zero. Replacing α(β) in the definition of C3 by b(1, β) gives the set
called C3 in [Sch97]. In [Sch97] Schmeling proved that this set has zero Lebesgue measure
and full Hausdorff dimension. Since the two versions of C3 only differ by countably many
points, the same holds for our set C3 from (3.1). We prove Theorem B using Lyndon
words, which we will define next.

Recall from (2.5) that

E+β = {(ti ) ∈ {0, 1}N : (ti )4 σ n((ti ))≺ α(β) for all n ≥ 0}.

In other words, any sequence in E+β is the lexicographically smallest sequence in6β under
the shift map σ . For this reason we recall the following definition (cf. [Lot02]).

Definition 3.1. A word s is called Lyndon if s is aperiodic and σ n(s∞)< s∞ for all n ≥ 0.

The following lemma lists some useful properties of Lyndon words. The first and third
items easily follow from the definition and we omit their proofs.

LEMMA 3.2.
(i) s1 . . . sm is a Lyndon word if and only if

si+1 . . . sm � s1 . . . sm−i for all 0< i < m.
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(ii) If s1 . . . sm is a Lyndon word, then for any 1≤ n < m with sn = 0 the word s1 . . . s+n
is also Lyndon.

(iii) If v, w are Lyndon words and vw ≺ wv, then for all n ∈ N we have that vnw is a
Lyndon word.

Proof. To prove (ii), suppose that sn = 0 for some 1≤ n < m. Since 1 is a Lyndon word,
the statement holds for n = 1. If 2≤ n < m, then by (i) it follows that

si+1 . . . s+n � si+1 . . . sn < s1 . . . sn−i for all 0< i < n.

Therefore, again by (i) s1 . . . s+n is a Lyndon word, as required. �

By taking i = m − 1 in Lemma 3.2(i) it follows that s1 = 0 and sm = 1. So, any Lyndon
word of length at least two starts with 0 and ends with 1. We use Lemma 3.2 to show that
any isolated point in E+β has a periodic greedy β-expansion.

PROPOSITION 3.3. Let β ∈ (1, 2]. If t is an isolated point of E+β , then its greedy β-
expansion b(t, β) is periodic. Moreover, no element from E+β is isolated in Eβ .

The proof of this proposition is based on the following two lemmas. Together they say
that any point in E+β with aperiodic β-expansion can be approximated from below by a
sequence of points in E+β that have a periodic orbit under Tβ .

LEMMA 3.4. Let (ti ) ∈ E+β be an aperiodic sequence. For each m ≥ 1 we have

(t1 . . . tm)∞ ≺ (ti ) and (t1 . . . tm)∞ ∈6β .

Proof. Let (ti ) ∈ E+β be an aperiodic sequence. Then by (2.5) we have

(ti )≺ σ n((ti ))≺ α(β) for all n ≥ 1. (3.2)

Fix m ≥ 1. By taking n = m, 2m, . . . in (3.2) it follows that

(t1 . . . tm)∞ = t1 . . . tm(t1 . . . tm)∞

4 t1 . . . tm tm+1 . . . t2m(t1 . . . tm)∞

4 t1 . . . t2m t2m+1 . . . t3m(t1 . . . tm)∞ 4 · · ·4 (ti ).

Since (ti ) is not periodic, we conclude that (t1 . . . tm)∞ ≺ (ti ).

For the second statement, (3.2) and the first part of the proposition give that

σ n((t1 . . . tm)∞)= tn+1 . . . tm(t1 . . . tm)∞ ≺ tn+1 . . . tm tm+1tm+2 . . . ≺ α(β)

for each 0≤ n < m and hence (t1 . . . tm)∞ ∈6β . �

From [SM94, Proposition 2.2] we have the following lemma.

LEMMA 3.5. Let (ti ) ∈ E+β be an aperiodic sequence. Then there exist infinitely many
m ∈ N such that t1 . . . tm is a Lyndon word.

Note that both previous lemmas do not hold for Eβ . Let (ti ) ∈ E0
β be such that σ n((ti ))

= 0∞. Then for any m > n we have (t1 . . . tm)∞ � (ti ), contradicting the statement of
Lemma 3.4. As for the statement of Lemma 3.5, for all m ≥ 2n we have that t1 . . . tm is
not Lyndon.
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Proof of Proposition 3.3. Let t ∈ E+β be a point with aperiodic greedy β-expansion
b(t, β)= (ti ). Since (ti ) ∈ E+β , by Lemma 3.5 there exists a sequence (m j ) such
that t1 . . . tm j is Lyndon for all j ≥ 1. Furthermore, by Lemma 3.4 we have
(t1 . . . tm j )

∞
∈6β for each j ≥ 1. Hence, for all j ≥ 1 we have (t1 . . . tm j )

∞
∈ E+β and

thus πβ((t1 . . . tm j )
∞) ∈ E+β . Letting j→∞ we conclude that πβ((t1 . . . tm j )

∞)→

πβ((ti ))= t , which implies that t is not isolated in E+β .
Now assume that t ∈ E+β has a periodic greedy β-expansion b(t, β)= (t1 . . . tm)∞,

where m is chosen minimal. We will show that t is not isolated in Eβ . If m = 1, then we
have b(t, β)= 0∞, i.e., t = 0. In this case the result trivially follows from Proposition 2.7.
Now assume that m ≥ 2. Let a1 . . . am be the maximal cyclic permutation of t1 . . . tm .
Then there exists a j ∈ {0, 1, . . . , m − 1} such that a1 . . . am = t j+1 . . . tm t1 . . . t j . Note
that σ n((t1 . . . tm)∞)≺ α(β) for all n ≥ 0. Then

(a1 . . . am)
∞
≺ α(β), (3.3)

which implies that a1 . . . am 4 α1(β) . . . αm(β). We claim that a1 . . . am ≺

α1(β) . . . αm(β).

If a1 . . . am = α1(β) . . . αm(β), then (3.3) together with Lemma 2.1 gives

a1 . . . am 4 αm+1(β) . . . α2m(β)4 α1(β) . . . αm(β)= a1 . . . am .

So, a1 . . . a2m = (a1 . . . am)
2. Iterating this argument with Lemma 2.1 and (3.3) gives that

α(β)= (a1 . . . am)
∞, leading to a contradiction with (3.3). This proves the claim.

For N ∈ N define the sequence tN := (t1 . . . tm)N t1 . . . t+j 0∞. Since t j = 0, the
sequence tN is well defined. By Lemma 3.2(iii) it follows that σ n(tN )� tN for all
0≤ n < m N + j . Moreover, a1 . . . am ≺ α1(β) . . . αm(β). It follows that σ n(tN )≺ α(β)

for all n ≥ 0. So, tN ∈ E0
β for all N ∈ N. Since πβ(tN )↘ t as N →∞, the point t ∈ E+β

is not isolated in Eβ . �

The next proposition says that no point from E0
β\{0} can be approximated from above

by elements from Eβ and that a point t ∈ E0
β\{0} is isolated in Eβ if the orbit of 1 enters

(0, t).

PROPOSITION 3.6. Let t ∈ E0
β\{0}. Then there is a δ > 0 such that Eβ ∩ [t, t + δ] = {t}.

Moreover, if β − 1 6∈ Kβ(t), then t is isolated in Eβ .

Proof. If t ∈ E0
β\{0}, then there is a smallest n ≥ 0 such that T n

β (t)= (1/β). By the right-

continuity of Tβ , there is a δ > 0 such that all ε ∈ (t, t + δ] satisfy T n+1
β (ε) ∈ (0, t)⊆

(0, ε). Hence, ε 6∈ Kβ(ε) and thus ε 6∈ Eβ .
The first statement implies that to prove that an element from E0

β\{0} is isolated, it
is enough to prove that it cannot be approximated from below. If again n is such that
T n
β (t)= (1/β), then for a small enough δ we know that for any point ε ∈ [t − δ, t) the

point T n+1
β (ε) is close to 1. Let m be the smallest integer such that T m

β (β − 1) ∈ (0, t).
Then there is a 0< δ < t − T m

β (β − 1) such that any ε ∈ [t − δ, t) satisfies

T n+1+m+1
β (ε) ∈ (0, T m

β (β − 1))⊆ (0, ε).

Hence, ε 6∈ Eβ and Eβ ∩ [t − δ, t] = {t}. �
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From now on we focus on the set E+β . We first construct subintervals of (1, 2) such that
E+β contains isolated points whenever β is in one of these intervals. We start with a couple
of lemmas.

LEMMA 3.7. Let (ti ), (αi ) ∈ {0, 1}N be given. Suppose that there is an m ≥ 1 such that
αm = 1 and σm((αi ))4 (ti ). Define the sets

K := {(xi ) ∈ {0, 1}N : (ti )4 σ n((xi ))≺ (αi ) for all n ≥ 0},

Xm := {(xi ) ∈ {0, 1}N : (ti )4 σ n((xi ))4 (α1 . . . α
−
m )
∞ for all n ≥ 0}.

Then K = Xm .

Proof. Obviously, Xm ⊆K. We show that K\Xm = ∅. Suppose that this is not the case
and let (xi ) ∈K\Xm . Then there is a j ≥ 1 such that x j+1 . . . x j+m = α1 . . . αm . Since
(xi ) ∈K, the assumption that σm((αi ))4 (ti ) implies that

x j+m+1x j+m+2 . . .≺ αm+1αm+2 . . .4 (ti ),

which contradicts (xi ) ∈K. Hence, K\Xm = ∅. �

Let β ∈ (1, 2) and t ∈ [0, 1). The previous lemma has the following consequence for
K+β (t). If there is a smallest m ≥ 1 such that

αm+1(β)αm+2(β) . . .4 b(t, β)

or equivalently T̃ m
β (1)≤ t , then we can rewrite K+β (t) as

K+β (t)= {(xi ) : b(t, β)4 σ n((xi ))4 (α1(β) . . . αm(β)
−)∞ for any n ≥ 0}.

Hence, any point in the survivor set K+β (t) then has the property that its entire orbit lies
between t and the point πβ((α1(β) . . . αm(β)

−)∞). We need two more lemmas. Recall
the definition of the set Q from (2.2) as the set of sequences that occur as α(β) for some
β ∈ (1, 2].

LEMMA 3.8. Let (a1 . . . am)
∞
∈Q with minimal period m. Then

ai+1 . . . a+m 4 a1 . . . am−i for all 0< i < m.

Proof. Let β ∈ (1, 2) be such that α(β)= (a1 . . . am)
∞. Then b(1, β)= a1 . . . a+m 0∞.

Hence, for each 0< i < m we have b(T i
β(1), β)= ai+1 . . . a+m 0∞ and T i

β(1) < 1. The
result then follows from Lemma 2.2. �

Note that for any non-periodic word b1 . . . bm ∈ {0, 1}∗ there is a 0≤ j ≤ m − 1 such
that b j+1 . . . bmb1 . . . b j is the smallest among its cyclic permutations and therefore
Lyndon. We denote this word by S(b1 . . . bm) and call it the Lyndon word for b1 . . . bm .
Similarly, there is a 0≤ k ≤ m − 1 such that bk+1 . . . bmb1 . . . bk is the largest among
its cyclic permutations. We denote this by word by L(b1 . . . bm). In what follows we
will sometimes use the property that for any word b1 . . . bm ∈ {0, 1}m and any sequence
(xi ) ∈ {0, 1}N,

σ n((xi ))< b1 . . . bm0∞ for all n ≥ 0 ⇐⇒ σ n((xi ))< (b1 . . . bm)
∞ for all n ≥ 0.

(3.4)
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FIGURE 2. Some of the basic intervals (βL , βR ]. The numbers near the arches indicate the words a1 . . . am such
that α(βL )= (a1 . . . am )

∞. The intervals that are not contained in any other interval are the Farey intervals.
They are the ones for which a1 . . . am is a Farey word. The arches corresponding to Farey intervals are shown

in black, the lighter coloured arches correspond to words that are Lyndon, but not Farey.

LEMMA 3.9. Let s1 . . . sm be a Lyndon word and write a1 . . . am = L(s1 . . . sm). Let
0≤ j < m be such that s1 . . . sm = a j+1 . . . ama1 . . . a j and set

Zm := {(xi ) ∈ {0, 1}N : s1 . . . sm0∞ 4 σ n((xi ))4 (a1 . . . am)
∞
∀n ≥ 0}.

(i) If (xi ) ∈ Zm has prefix a j+1 . . . am , then (xi )= (s1 . . . sm)
∞.

(ii) If (xi ) ∈ Zm has prefix a1 . . . a j , then (xi )= (a1 . . . am)
∞.

Proof. Since the proofs of (i) and (ii) are similar, we only give the proof of (i). Let
a j+1 . . . am x1x2 . . . ∈ Zm . Then

s1 . . . sm0∞ 4 σ n(a j+1 . . . am x1x2 . . .)4 (a1 . . . am)
∞ for all n ≥ 0. (3.5)

In particular,

a j+1 . . . am x1 . . . x j < s1 . . . sm = a j+1 . . . ama1 . . . a j ,

which gives
x1 . . . x j < a1 . . . a j .

On the other hand, by taking n = m − j in (3.5) we get x1 . . . xm 4 a1 . . . am . Hence,

x1 . . . x j = a1 . . . a j and x j+1 . . . xm 4 a j+1 . . . am .

Again, by (3.5) now with n = m we have x j+1 . . . xm < s1 . . . sm− j = a j+1 . . . am .
Therefore, x1 . . . xm = a1 . . . am . By iteration we conclude that

a j+1 . . . am x1x2 . . .= (a j+1 . . . ama1 . . . a j )
∞
= (s1 . . . sm)

∞,

as required. �

We now construct infinitely many nested intervals (βL , βR] such that E+β has isolated
points whenever β ∈ (βL , βR]. Figure 2 shows some of these intervals. We will later
show that these basic intervals cover the whole interval (1, 2) up to a set of zero Lebesgue
measure.

PROPOSITION 3.10. Let s1 . . . sm be a Lyndon word and write a1 . . . am = L(s1 . . . sm).
Then both (a1 . . . am)

∞ and a1 . . . a+m (s1 . . . sm)
∞ belong to Q and hence there are

uniquely defined bases βL , βR ∈ (1, 2] such that α(βL)= (a1 . . . am)
∞ and α(βR)=

a1 . . . a+m (s1 . . . sm)
∞. Moreover:

(i) (s1 . . . sm)
∞
∈6β if and only if β > βL ;

(ii) if β ∈ (βL , βR], then πβ((s1 . . . sm)
∞) is an isolated point of E+β ;

(iii) if β > βR , then πβ((s1 . . . sm)
∞) is not an isolated point of E+β .
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Proof. Let βL be as in the proposition. First we show that the interval (βL , βR] is well
defined, i.e., βR exists and that βL < βR . We use the characterization from Lemma 2.1,
so it suffices to show that the sequence a= a1 . . . a+m (s1 . . . sm)

∞
∈Q, i.e., it satisfies

σ n(a)4 a for all n ≥ 0. Since s1 . . . sm is a Lyndon word, any word of length 1≤ n ≤
m − 1 occurring in a1 . . . am = L(s1 . . . sm) is lexicographically larger than or equal to
s1 . . . sn . Combining this with Lemmas 3.8 and 3.2(i) gives

an+1 . . . a+m s1 . . . sn 4 a1 . . . am−nam−n+1 . . . am ≺ a1 . . . a+m

for all 0< n < m. So, σ n(a)≺ a for each 0< n < m. Moreover, since

σ n((s1 . . . sm)
∞)4 (a1 . . . am)

∞
≺ a1 . . . a+m (s1 . . . sm)

∞

for all n ≥ 0, we get σ n(a)≺ a for all n ≥ 1 and thus a ∈Q. Lemma 2.1 then implies
that a is indeed the quasi-greedy expansion of 1 for some base βR , i.e., α(βR)=

a1 . . . a+m (s1 . . . sm)
∞. Since α(βL)≺ α(βR), Lemma 2.1 also gives that βR > βL .

Hence, the interval (βL , βR] is well defined.
Let 1≤ j ≤ m − 1 be such that

s1 . . . sm = a j+1 . . . ama1 . . . a j .

For (i), note that if β ≤ βL , then (s1 . . . sm)
∞
6∈6β since

σ j ((s1 . . . sm)
∞)= (a1 . . . am)

∞ < α(β).

For β ∈ (βL , βR] it follows immediately that (s1 . . . sm)
∞
∈6β since s1 . . . sm is the

smallest permutation of a1 . . . am and (a1 . . . am)
∞
≺ α(β).

For (ii), let β ∈ (βL , βR] and set t = πβ((s1 . . . sm)
∞). Then b(t, β)= (s1 . . . sm)

∞
∈

E+β , so t ∈ E+β . By Lemma 2.2 and since t has a periodic β-expansion, there exists a
small δ > 0 such that for any x ∈ [t − δ, t + δ] the greedy expansion b(x, β) has prefix
s1 . . . sm . By Lemma 3.7 it follows that

K+β (t − δ)⊆ {(xi ) : s1 . . . sm0∞ 4 σ n((xi ))≺ a1 . . . a+m (s1 . . . sm)
∞
∀n ≥ 0}

= {(xi ) : (s1 . . . sm)
∞ 4 σ n((xi ))≺ a1 . . . a+m (s1 . . . sm)

∞
∀n ≥ 0}

= {(xi ) : (s1 . . . sm)
∞ 4 σ n((xi ))4 (a1 . . . am)

∞
∀n ≥ 0}

= {(xi ) : s1 . . . sm0∞ 4 σ n((xi ))4 (a1 . . . am)
∞
∀n ≥ 0}, (3.6)

where we have used the fact from (3.4) in the first and last equalities. Since for any
x ∈ [t − δ, t + δ] the greedy expansion b(x, β) begins with s1 . . . sm , by Lemma 3.9(i)
and (3.6) we obtain that

K+β (t − δ) ∩ [t − δ, t + δ] ⊆ {t}.

Since t ∈ E+β ∩ [t − δ, t + δ] ⊆ K+β (t − δ) ∩ [t − δ, t + δ], we conclude that t is isolated
in E+β for any β ∈ (βL , βR].

For (iii), let β > βR and again set t = πβ((s1 . . . sm)
∞). We construct a sequence (tn)

in E+β such that tn ↘ (s1 . . . sm)
∞ in the order topology as n→∞. Let

tn := ((s1 . . . sm)
ns1 . . . s+m− j )

∞
= ((a j+1 . . . ama1 . . . a j )

na j+1 . . . a+m )
∞. (3.7)

Downloaded from https://www.cambridge.org/core. 20 Oct 2021 at 08:04:15, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


The β-transformation with a hole at 0 2497

We claim that there is an N ∈ N such that tn ∈ E+β for all n > N . By Lemma 3.2(ii)
and (iii) it follows that tn is Lyndon. Left to show is that tn ∈6β . Note that the largest
permutation of tn is given by

dn = (a1 . . . a+m (a j+1 . . . ama1 . . . a j )
n−1a j+1 . . . am)

∞

= (a1 . . . a+m (s1 . . . sm)
n−1s1 . . . sm− j )

∞.

For β > βR either α1(β) . . . αm(β)� a1 . . . a+m or there exists an N ≥ 1 such that α(β)=
a1 . . . a+m (s1 . . . sm)

N−1b1 . . . bm with b1 . . . bm � s1 . . . sm . In the first case obviously
dn ≺ α(β). In the second case we have dn ≺ α(β) for all n > N . Hence, tn ∈6β for all
n > N .

We have found a sequence (tn)⊆ E+β decreasing to b(t, β)= (s1 . . . sm)
∞ as n→∞

and, accordingly, a sequence (πβ(tn))⊆ E+β decreasing to t = πβ((s1 . . . sm)
∞) as

n→∞. Therefore, t is not isolated in E+β . �

Recall from (3.1) that C3 is the set of β ∈ (1, 2) such that the length of consecutive
zeros in the quasi-greedy expansion α(β) is bounded.

THEOREM 3.11. If β ∈ (1, 2)\C3, then both Eβ ∩ [0, δ] and E+β ∩ [0, δ] contain infinitely
many isolated points and infinitely many accumulation points for all δ > 0.

Proof. By Proposition 2.7 it follows that Eβ ∩ [0, δ] and E+β ∩ [0, δ] contain infinitely
many accumulation points for all δ > 0, so we focus on the isolated points. Fix β ∈
(1, 2)\C3. Then α(β) contains consecutive zeros of arbitrary length. Hence, α(β) is
not periodic and the orbit of 1 under T̃β will come arbitrarily close to 0. This implies that
for any t > 0, β − 1 6∈ Kβ(t) and thus by Proposition 3.6 any t ∈ E0

β\{0} will be isolated
in Eβ . Note that for any n ≥ 1 we have (1/βn) ∈ E0

β . This gives the statement for Eβ .
To prove that E+β contains infinitely many isolated points arbitrarily close to 0,

we construct by induction a sequence of intervals (βL ,k, βR,k), k ≥ 1, such that β ∈
(βL ,k, βR,k) for all k ≥ 1, where (βL ,k, βR,k) is defined as in Proposition 3.10. Write

α(β)= 1l10m11l20m2 . . . 1lk 0mk . . . . (3.8)

Since α(β) does not end with 0∞, we have mk ∈ {1, 2, . . .} for all k ≥ 1. Furthermore,
from β /∈ C3 we get supk≥1 mk =∞.

Set i0 = 1 and let i1 > i0 be the smallest index for which mi1 > m1. Set a1 :=

1l10m1 · · · 1li1−10. Note that α(β) begins with a+1 and by Lemma 2.1 σ n(α(β))4 α(β) for
all n ≥ 0. This implies that σ n(a∞1 )4 a∞1 for all n ≥ 0. So, by Lemma 2.1 the sequence
a∞1 is the quasi-greedy expansion of 1 for some base βL ,1, i.e., α(βL ,1)= a∞1 . Note that
the word a1 contains consecutive zeros of length at most m1. So, the Lyndon word s1 =

s1 . . . sl1+m1+···+li1
for a1 begins with 0m11. Again, one can check that σ n(a+1 s∞1 )4 a+1 s∞1

for all n ≥ 0. So, there exists βR,1 ∈ (1, 2) such that α(βR,1)= a+1 s∞1 . By using mi1 > m1

and (3.8) it follows that

α(βL ,1)= a∞1 = (1
l10m1 · · · 1li1−10)∞ ≺ 1l10m1 · · · 1li1 0 · · · = α(β)

and

α(βR,1)= a+1 s∞1 = 1l10m1 · · · 1li1 0m11 · · · � 1l10m1 · · · 1li1 0mi1 1 · · · = α(β).
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By Lemma 2.1 we have β ∈ (βL ,1, βR,1). Moreover, by Proposition 3.10 we have that
πβ(s∞1 ) is an isolated point of E+β . Now we pick ik using ik−1. Let ik > ik−1 be the
smallest index such that mik > mik−1 . Then by the definitions of i1, . . . , ik−1 it follows
that mik > m j for all j < ik . Set ak := 1l10m1 · · · 1lik−10. Then the block ak contains
consecutive zeros of length at most mik−1 . So, the Lyndon word sk = s1 . . . sl1+m1+···+lik
for ak begins with 0mik−1 1. By the same argument as above we can find two bases
βL ,k, βR,k ∈ (1, 2) such that

α(βL ,k)= a∞k = (1
l10m1 · · · 1lik−10)∞ ≺ 1l10m1 · · · 1lik 0 · · · = α(β),

α(βR,k)= a+k s∞k = 1l10m1 · · · 1lik 0mik−1 1 · · · � 1l10m1 · · · 1lik 0mik 1 · · · = α(β).

Therefore, β ∈ (βL ,k, βR,k) and by Proposition 3.10 we have that πβ(s∞k ) is an isolated
point of E+β .

By induction we construct a sequence of intervals (βL ,k, βR,k), k ≥ 1, such that β ∈
(βL ,k, βR,k) for all k ≥ 1. Moreover, the points πβ(s∞k ) are isolated in E+β . Note that sk

begins with a block 0mik−1 1 for any k ≥ 1 and mik−1 strictly increases to ∞ as k→∞.
This implies that E+β ∩ [0, δ] contains infinitely many isolated points for any δ > 0. �

THEOREM 3.12. For β ∈ C3 there is a δ > 0 such that E+β ∩ [0, δ] has no isolated points.

Proof. Fix β ∈ C3. Then the length of consecutive zeros in α(β) is bounded by some
large integer M . Set δ = (1/βM+3)= πβ(0M+210∞). To show that E+β ∩ [0, δ] has no
isolated points, suppose on the contrary that t is an isolated point of E+β ∩ [0, δ]. By
Proposition 3.3 it follows that the greedy β-expansion b(t, β) of t is periodic, namely

b(t, β)= (t1 . . . tm)∞ ∈ E+β

with minimal period m. Moreover, t1 . . . tm is Lyndon. For m = 1 we get that t = 0, which
by Proposition 2.7 is not isolated in E+β . Let m ≥ 2 and let a1 . . . am = L(t1 . . . tm). Then
(a1 . . . am)

∞
∈Q, so by Lemma 2.1 it is the quasi-greedy expansion of 1 for some base

βL , i.e., α(βL)= (a1 . . . am)
∞. By Proposition 3.10 it follows that β ∈ (βL , βR], where

βR is the unique base satisfying

α(βR)= a1 . . . a+m (t1 . . . tm)∞.

Hence,
(a1 . . . am)

∞
≺ α(β)4 a1 . . . a+m (t1 . . . tm)∞. (3.9)

Since t ≤ δ = πβ(0M+210∞), we have (t1 . . . tm)∞ = b(t, β)4 0M+210∞. So, t1 . . . tm
begins with M + 2 consecutive zeros and a1 . . . am contains M + 2 consecutive zeros. By
(3.9) we conclude that α(β) contains M + 1 consecutive zeros, leading to a contradiction
with our hypothesis that the number of consecutive zeros in α(β) is bounded by M . �

Proof of Theorem B. The first part of the statement follows from Proposition 2.7 and
Theorem 3.11 since λ(C3)= 0 by the results from [Sch97]. The fact from [Sch97] that
dimH C3 = 1 together with Theorem 3.12 gives the last part of the result. �
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4. When E+β does not have isolated points
In this section we prove Theorem C, which states that the set of β ∈ (1, 2) for which E+β
has no isolated points is rather small; it has zero Hausdorff dimension. The theorem is
obtained by showing that the intervals (βL , βR] introduced in the previous section cover
all but a Hausdorff dimension zero part of the interval (1, 2). Figure 2 suggests that the
basic intervals are nested. In Proposition 4.1 below we prove that this is indeed the case.
Subsequently, we identify those intervals (βL , βR] that are not contained in any other basic
interval, which turn out to be the ones given by a specific subset of the Lyndon words,
called Farey words.

PROPOSITION 4.1. Let I1 = (βL , βR] and I2 = (β̃L , β̃R] be two different basic intervals.
If I1 ∩ I2 6= ∅, then I1 ⊂ I2 or I2 ⊂ I1.

Proof. Suppose that I1 = (βL , βR] is parameterized by the word a1 . . . am and I2 =

(β̃L , β̃R] is parameterized by the word b1 . . . bn , i.e.,

α(βL)= (a1 . . . am)
∞, α(βR)= a1 . . . a+m (s1 . . . sm)

∞
;

α(β̃L)= (b1 . . . bn)
∞, α(β̃R)= b1 . . . b+n (t1 . . . tn)∞,

where s1 . . . sm = S(a1 . . . am) and t1 . . . tn = S(b1 . . . bn) are the Lyndon words for
a1 . . . am and b1 . . . bn , respectively. Since I1 ∩ I2 6= ∅, by symmetry we may assume
that β̃L ∈ I1 = (βL , βR]. We are going to show that β̃R < βR , which by Lemma 2.1 is
equivalent to showing that

b1 . . . b+n (t1 . . . tn)∞ ≺ a1 . . . a+m (s1 . . . sm)
∞. (4.1)

Since βL < β̃L ≤ βR , by Lemma 2.1 it follows that

(a1 . . . am)
∞
≺ (b1 . . . bn)

∞ 4 a1 . . . a+m (s1 . . . sm)
∞. (4.2)

We claim that n > m.
• If n < m, then by (4.2) we have b1 . . . bn = a1 . . . an . Write m = un + r with u ≥ 1

and 1≤ r ≤ n. By Lemma 3.8 and (4.2) it follows that a1 . . . aun = (b1 . . . bn)
u and

b1 . . . br = a1 . . . ar = aun+1 . . . a+m , so

a1 . . . am = (b1 . . . bn)
ub1 . . . b−r .

By using that s1 . . . sm = S(a1 . . . am) we obtain that

a1 . . . a+m (s1 . . . sm)
∞

= (b1 . . . bn)
ub1 . . . br (s1 . . . sm)

∞

4 (b1 . . . bn)
ub1 . . . br (br+1 . . . bnb1 . . . b−r (b1 . . . bn)

u−1b1 . . . br )
∞

≺ (b1 . . . bn)
∞,

leading to a contradiction with (4.2).
• If n = m, then by (4.2) we have b1 . . . bm = a1 . . . am or b1 . . . bm = a1 . . . a+m . Both

cases contradict (4.2).
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Therefore, we find that n > m. Write n = km + j with k ≥ 1 and 1≤ j ≤ m. By (4.2)
we have

b1 . . . bn 4 a1 . . . a+m (s1 . . . sm)
k−1s1 . . . s j .

From
s j+1 . . . sms1 . . . s j 4 a1 . . . am ≺ a1 . . . a+m

one can easily see that

(a1 . . . a+m (s1 . . . sm)
k−1s1 . . . s j )

∞
� a1 . . . a+m (s1 . . . sm)

∞ < (b1 . . . bn)
∞.

So, b1 . . . bn 6= a1 . . . a+m (s1 . . . sm)
k−1s1 . . . s j and hence

b1 . . . b+n 4 a1 . . . a+m (s1 . . . sm)
k−1s1 . . . s j . (4.3)

If strict inequality holds in (4.3), then (4.1) follows immediately and we are done. Suppose
that the equality holds in (4.3). We split the proof of (4.1) into the following two cases.
(I) 1≤ j ≤ (m/2). Since s1 . . . sm is a Lyndon word it follows that

s1 . . . s−j ≺ s1 . . . s j 4 s j+1 . . . s2 j .

Furthermore, t1 . . . tn is the Lyndon word for

b1 . . . bn = a1 . . . a+m (s1 . . . sm)
k−1s1 . . . s−j .

Then

(t1 . . . tn)∞ 4 (s1 . . . s−j a1 . . . a+m (s1 . . . sm)
k−1)∞

≺ (s j+1 . . . s2 j s2 j+1 . . . sms1 . . . s j )
∞.

By (4.3) this proves (4.1), as required.
(II) (m/2) < j ≤ m. Since s1 . . . sm and t1 . . . tn are both Lyndon words, by Lemma 3.2(i)
it follows that

(t1 . . . tn)∞ 4 (s1 . . . sm− j sm− j+1 . . . s−j a1 . . . a+m (s1 . . . sm)
k−1)∞

≺ (s j+1 . . . sms1 . . . s j )
∞.

Again we have established (4.1). �

4.1. Farey words. The set of Farey words is constructed recursively as follows. Let F0

be the ordered set containing the two words 0 and 1, i.e., F0 := (0, 1). For each n ≥ 1,
Fn = (v1, . . . , v2n+1) is the ordered set obtained from Fn−1 = (w1, . . . , w2n−1+1) by

v2i−1 := wi for 1≤ i ≤ 2n−1
+ 1,

v2i := wiwi+1 for 1≤ i ≤ 2n−1,

where wiwi+1 denotes the concatenation of the words wi and wi+1. For example,

F0 = (0, 1), F1 = (0, 01, 1), F2 = (0, 001, 01, 011, 1).

Then a word w ∈ {0, 1}∗ is a Farey word if there is an n ≥ 0 such that ω ∈ Fn . For each
n ≥ 0 the words in Fn are listed from left to right in a lexicographically increasing order
(cf. [CIT18, Lemma 2.2]). In particular, no Farey word is periodic. Let

F :=
⋃
n≥0

Fn\{0, 1}
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be the set of non-degenerate Farey words. Clearly, any w1 . . . wm ∈ F has w1 = 0=
1− wm . It is well known that Farey words are balanced, i.e., if for i = 0, 1 we use |u|i
to denote the number of occurrences of the symbol i in the word u, then any w ∈ F has
the property that for any two subwords u and v of w of the same length and i = 0, 1,
||u|i − |v|i | ≤ 1. We recall from [CIT18, Proposition 2.3] the following definition.

Definition 4.2. Let w = w1 . . . wm ∈ F . A decomposition w = uv is called the standard
factorization of w if u and v are both Farey words.

By the construction of Fn the standard factorization of a non-degenerate Farey word
w1 . . . wm is unique. We list some properties of Farey words. The proofs can be found in
[CIT18, Propositions 2.8 and 2.9].
(f1) For w1 . . . wm ∈ F both w1 . . . wm−10 and 1w2 . . . wm are palindromes, i.e.,

w2 . . . wm−1 = wm−1 . . . w2.

(f2) Suppose that w1 . . . wm ∈ F has standard factorization (w1 . . . wm1)(wm1+1 . . .

wm). The lexicographically largest cyclic permutation of w1 . . . wm is given by

wm−m1+1 . . . wmw1 . . . wm−m1 = wmwm−1 . . . w2w1.

(f3) Suppose that w1 . . . wm ∈ F has standard factorization (w1 . . . wm1)(wm1+1 . . .

wm). Then w1 . . . wm is a Lyndon word and its lexicographically second smallest
cyclic permutation is wm1+1 . . . wmw1 . . . wm1 .

Recall that for w1 . . . wm ∈ {0, 1}∗, w1 . . . wm = (1− w1)(1− w2) . . . (1− wm) and
note that by symmetry in the set F ,

w1 . . . wm ∈ F ⇒ wm . . . w1 ∈ F .

By Lemma 3.2(i) it follows that if w1 . . . wm ∈ F , then (w1 . . . wm)
∞
∈Q, i.e.,

σ n((w1 . . . wm)
∞)4 (w1 . . . wm)

∞ for all n ≥ 0. Properties (f1), (f2) and (f3) imply
the following.

LEMMA 4.3. Let s1 . . . sm ∈ F with a1 . . . am = L(s1 . . . sm). Suppose that

s1 . . . sm = (s1 . . . sm1)(sm1+1 . . . sm)

is the standard factorization of s1 . . . sm .
(i) The words a1 . . . am−11 and 0a2 . . . am are palindromes, i.e.,

a2 . . . am−1 = am−1 . . . a2.

(ii) The Lyndon word associated to a1 . . . am is given by

am−m1+1 . . . ama1 . . . am−m1 = amam−1 . . . a1.

(iii) (a1 . . . am1)
∞
∈Q.

Proof. (i) and (ii) immediately follow from (f1) and (f2), respectively. For (iii) we know
that s1 . . . sm1 is a Lyndon word and therefore (s1 . . . sm1)

∞ 4 σ n((s1 . . . sm1)
∞) for all

n ∈ N. This gives (a1 . . . am1)
∞ < σ n((a1 . . . am1)

∞) for all n ∈ N. �
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For Farey words we obtain a strengthened version of Lemma 3.9, which will be useful
in the proofs of Theorems C and D. We define a family {9p} of substitutions first. For
each p ≥ 1 set

9p(0)= 0p+11 and 9p(1)= 0p1. (4.4)

We extend this definition to words b1 . . . bn ∈ {0, 1}∗ by

9p(b1 . . . bn)=9p(b1) . . . 9p(bn)

and similarly for sequences in {0, 1}N. One easily shows that τk preserves the
lexicographical ordering {0, 1}N: for any two sequences (bi ), (di ) ∈ {0, 1}N we have

(bi )4 (di )⇔9p(bi )49p(di ). (4.5)

PROPOSITION 4.4. Let w = s1 . . . sm ∈ F . Then setting

Zw := {(xi ) ∈ {0, 1}N : w0∞ 4 σ n((xi ))4 (sm . . . s1)
∞ for all n ≥ 0}

we have that Zw := {σ j (w∞) : 0≤ j < m}; in particular, #Zm = m.

Proof. It is clear that {σ j (w∞) : 0≤ j < m} ⊆ Zw. The other inclusion we prove by
induction on the level of the Farey words. For w = 01 the statement is trivial. Let n ≥ 2
be given and assume that the statement is true for all non-degenerate Farey words of F j ,
j < n. Let w = s1 . . . sm ∈ Fn . Note that if w = 0m−11 or w = 01m−1, then the statement
is obviously true, so we exclude this case. Since all Farey words are balanced there is a p
such that w is of the form

w = 0p+110p11 . . . 0pN 10p1 or w = 01p01p1 . . . 01pN 01p+1

for some N ∈ N ∪ {0}, where p1 . . . pN ∈ {p, p + 1}N is a palindrome. Assume that w =
0p+110p11 . . . 0pN 10p1; the proof for the other case is similar. Recall the substitution 9p

defined in (4.4). There is a word v = 0t1 . . . tN 1 ∈ {0, 1}∗ with 9p(v)= w. In [CIT18,
Lemma 2.12] it is proven that v is a Farey word, so v ∈ Fk for some k < n. Moreover,
since w 6= 0p+11 we have v 6∈ {0, 1}. Recall that

sm . . . s1 = 1s2 . . . sm−10= 10p10p11 . . . 0pn 10p+1,

so that
σ((sm . . . s1)

∞)=9p((1t1 . . . tN 0)∞).

Let x ∈ Zw be given. Then by the form of w any two 1’s in x are separated by at least p
and at most p + 1 0’s. Assume first that x1 . . . x p+2 = 0p+11, so that there is a y ∈ {0, 1}N

such that 9p(y)= x . Note that for any r ≥ 1 there corresponds a j ≥ 1 such that σ j (x)=
9p(σ

r (y)) since any digit in y corresponds to a block 0p+11 or 0p1 in x . From (3.4) we
get that

9p(σ
r (y))= σ j (x)< w∞ =9p(v

∞),

which by (4.5) above implies that σ r (y)< v∞ for all r ≥ 0. On the other hand, from
σ j (x)4 (sm . . . s1)

∞ for all j ≥ 0 it follows that σ r (y)4 (1t2 . . . tN 0)∞ for all r ≥ 0.
Hence, y ∈ Zv and by the induction hypothesis there is an ` ∈ {0, 1, . . . , N } such that
y = σ `(v∞). This implies that

x =9p(y)= σ i (w∞),
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where

i =


0 if `= 0,
p + 2 if `= 1,
(p + 2)+ (p1 + 1)+ (p2 + 1)+ · · · + (p`−1 + 1) if 2≤ `≤ N .

(4.6)

If x is such that x1 . . . x j+1 = 0 j 1 for some 0≤ j ≤ p, then there is a y ∈ {0, 1}N such
that 9p(y)= σ j+1(x) and by the same arguments as above we get that

x = 0 j 1σ j+1(x)= 0 j 19p(y)= 0 j 1σ i (w∞)= σ i ′(w∞),

where, in view of (4.6), i ′ ∈ {0, 1, . . . , m − 1} is defined by

i ′ =
{

m − j − 1 if i = 0,
i − j − 1 otherwise.

This completes the proof. �

4.2. Farey intervals. We now use the Farey words to identify the basic intervals
(βL , βR] that are not contained in any other basic interval.

Definition 4.5. Let s1 . . . sm ∈ F with a1 . . . am = L(s1 . . . sm) and let γL and
γR be given by the quasi-greedy expansions α(γL)= (a1 . . . am)

∞ and α(γR)=

a1 . . . a+m (amam−1 . . . a1)
∞, respectively. Then the interval Ja1...am = (γL , γR] is called

the Farey interval generated by a1 . . . am .

The following lemma is used to show that the Farey intervals are the maximal basic
intervals.

LEMMA 4.6. Let w = s1 . . . sm ∈ F and let a = a1 . . . am = L(s1 . . . sm). If an = 1 for
some 1≤ n ≤ m, then

(S(a1 . . . a−n ))
∞
≺ w∞.

Proof. We will prove this lemma by induction on the level of the Farey words. For the
word 01 the statement is clear. Let k ≥ 2 be given and assume that the statement holds for
all non-degenerate Farey words in F j with j < k. Let w = s1 . . . sm ∈ Fk . If w = 0m−11
or w = 01m−1, then the statement obviously holds. Otherwise, in view of the fact that any
Farey word is balanced, w must have the form

w = 0p+110p110p2 . . . 10pN 10p1 or w = 01p01p101p2 . . . 01pN 01p+1

for some p ∈ N and N ∈ N ∪ {0}, where p1 . . . pN ∈ {p, p + 1}N is a palindrome. We
split the proof into the following two cases.
(I) w = 0p+110p110p2 . . . 10pN 10p1. Then

a = L(w)= 10p10p110p2 . . . 10pN 10p+1
=: 10p010p110p2 . . . 10pN 10pN+1 . (4.7)

Let 9p be the substitution map from (4.4). Then by (4.7) there exists a word v =

t0t1 . . . tN tN+1 = 1t1 . . . tN 0 such that

σ(a∞)= (9p(v))
∞.
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By [CIT18, Lemma 2.12] it follows that v = L(0t1 . . . tN 1) and 0t1 . . . tN 1 ∈ Fi for some
i < k. Let 1≤ n ≤ m be such that an = 1. Then there is a 0≤ j ≤ N + 1 such that

a1 . . . a−n = 10p010p1 . . . 10p j−110p j+1.

Observe that p j ∈ {p, p + 1}. If p j = p + 1, then the Lyndon word S(a1 . . . a−n ) begins
with 0p+21 and w begins with 0p+11. This implies that (S(a1 . . . a−n ))

∞
≺ w∞. If p j =

p, then t j = 1 and
(S(a1 . . . a−n ))

∞
= (S(9p(1t1 . . . t−j )))

∞.

By the induction hypothesis it follows that

(S(1t1 . . . t−j ))
∞
≺ (0t1 . . . tN 1)∞.

Since the map 9p preserves the lexicographical ordering (see (4.5)) this gives

(S(a1 . . . a−n ))
∞
= (S(9p(1t1 . . . t−j )))

∞
=9p(S(1t1 . . . t−j ))

∞)

≺ 9p((0t1 . . . tN 1)∞)= w∞.

(II) w = 01p01p101p2 . . . 01pN 01p+1. Then the largest cyclic permutation of w is

a = L(w)= 1p+101p101p20 . . . 1pN 01p0=: 1p001p101p20 . . . 1pN 01pN+10. (4.8)

Define the substitution map 9̂p by

9̂p(0)= 01p and 9̂p(1)= 01p+1

and extend it to words and sequences in the usual way. One easily shows that 9̂p preserves
the lexicographical ordering. Then by (4.8) there exists a word v = t0t1 . . . tN tN+1 =

1t1 . . . tN 0 such that
σm−1(a∞)= 9̂p(v

∞).

Furthermore, by [CIT18, Lemma 2.12] it follows that v = L(0t1 . . . tN 1) and 0t1 . . . tN

1 ∈ Fi for some i < k. Let 1≤ n ≤ m be such that an = 1. Then by (4.8) there exist
0≤ j ≤ N + 1 and 0< `≤ p j such that

a1 . . . a−n = 1p001p101p20 . . . 1p j−101p j−`0.

Observe that p j ∈ {p, p + 1}. Then 0≤ p j − `≤ p. If p j − ` < p, then S(a1 . . . a−n )
begins with 01p j−`0 and w begins with 01p. So, (S(a1 . . . a−n ))

∞
≺ w∞. If p j − `= p,

then p j = p + 1 and t j = 1. Since 0t1 . . . tN 1 is a non-degenerate Farey word in Fi with
i < k by the induction hypothesis we have

(S(1t1 . . . t−j ))
∞
≺ (0t1 . . . tN 1)∞.

Since the map 9̂p preserves the lexicographical ordering it follows that

(S(a1 . . . a−n ))
∞
= (S(9̂p(1t1 . . . t−j )))

∞
= 9̂p((S(1t1 . . . t−j ))

∞)

≺ 9̂p((0t1 . . . tN 1)∞)= w∞.

This completes the lemma. �

PROPOSITION 4.7. Each Farey interval is a maximal basic interval.
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Proof. By Proposition 4.1 the basic intervals are nested, so it suffices to prove that a Farey
interval cannot be contained in any other basic interval. Let (γL , γR] be a Farey interval
generated by a Farey word s1 . . . sm and let a1 . . . am = L(s1 . . . sm). Then

α(γL)= (a1 . . . am)
∞ and α(γR)= a1 . . . a+m (s1 . . . sm)

∞.

Suppose on the contrary that there exists another basic interval (βL , βR] such that
(γL , γR]( (βL , βR]. Assume that (βL , βR] is generated by the Lyndon word t1 . . . tn
and let b1 . . . bn = L(t1 . . . tn). Then

α(βL)= (b1 . . . bn)
∞ and α(βR)= b1 . . . b+n (t1 . . . tn)∞.

So, by using βL < γL ≤ βR it follows that

(b1 . . . bn)
∞
≺ (a1 . . . am)

∞ 4 b1 . . . b+n (t1 . . . tn)∞. (4.9)

By the same argument as in the proof of Proposition 4.1 we obtain m > n.

Now we claim that a1 . . . an = b1 . . . b+n . By (4.9) it follows that b1 . . . bn 4
a1 . . . an 4 b1 . . . b+n . So, it suffices to prove that a1 . . . an 6= b1 . . . bn . Suppose that
a1 . . . an = b1 . . . bn . Write m = kn + j with k ≥ 1 and 1≤ j ≤ n. Note that a1 . . . am

is the largest cyclic permutation of a Farey word. Then ai+1 . . . am ≺ a1 . . . am−i for all
i < m. So,

a1 . . . am 4 (a1 . . . an)
kam− j+1 . . . am ≺ (a1 . . . an)

ka1 . . . a j = (b1 . . . bn)
kb1 . . . b j ,

leading to a contradiction with (4.9). This establishes the claim.

By the claim it follows that an = 1 and t1 . . . tn = S(b1 . . . bn)= S(a1 . . . a−n ). Since
s1 . . . sm is a non-degenerate Farey word and a1 . . . am = L(s1 . . . sm), by Lemma 4.6 it
follows that

(t1 . . . tn)∞ ≺ (s1 . . . sm)
∞ 4 (an+1 . . . ama1 . . . an)

∞.

Again by the claim we conclude that

b1 . . . b+n (t1 . . . tn)∞ ≺ (a1 . . . am)
∞.

This leads to a contradiction with (4.9). �

Proposition 3.10 states that for any β ∈ Ja1...am the set E+β contains an isolated
point. So, the set of β ∈ (1, 2) for which E+β has no isolated points is a subset of
(1, 2)\

⋃
s1...sm∈F Jsm ...s1 . Suppose on the other hand that β ∈ (1, 2)\

⋃
s1...sm∈F Jsm ...s1 .

From Proposition 3.3 we know that any isolated point t of E+β must have a periodic β-
expansion b(t, β). To such a β-expansion we can relate a basic interval (βL , βR] as in
Proposition 3.10. From the maximality of the Farey intervals and Proposition 3.10 we can
then deduce that t is not isolated for E+β . Thus, the set of β ∈ (1, 2) for which E+β has no
isolated points is in fact equal to the set

(1, 2)
∖ ⋃

s1...sm∈F
Jsm ...s1 .
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To prove Theorem C it is therefore enough to prove that this set has Hausdorff dimension
zero. We do so by relating each Farey interval Ja1...am to another interval Ia1...am associated
to the doubling map and using known results for the union

⋃
Ia1...am .

Recall that the doubling map is given by T2(x)= 2x (mod 1) and that π2 : {0, 1}N→
[0, 1] is the projection map defined in (2.1). Set

ED :=
{

x ∈
[
0, 1

2

)
: T n

2 (x) ∈
[
x, x + 1

2

]
for all n ≥ 0

}
.

For each Farey word w = w1 . . . wm ∈ F we denote by Iw := (qL , qR) the open interval
associated to w, where

qL = π2((wmwm−1 . . . w1)
∞)− 1

2 and qR = π2((w1 . . . wm)
∞).

The interval Iw = (qL , qR) is well defined since by (f1) it follows that

qL = π2(0wm−1wm−2 . . . w1(wmwm−1 . . . w1)
∞)

= π2(w1w2 . . . wm−10(wmwm−1 . . . w1)
∞) < π2((w1 . . . wm)

∞)= qR .

In [CIT18] we find the following result.

PROPOSITION 4.8. [CIT18, Proposition 2.14]
(i) Each Iw is a connected component of (0, 1

2 )\ED . Moreover,(
0,

1
2

)∖
ED =

⋃
w∈F

Iw.

(ii) dimH ED = 0.

Recall that by Lemma 2.1 the function α : β 7→ α(β) is a strictly increasing bijection
from (1, 2] to Q. Moreover, π2 : {0, 1}N→ (0, 1] is a strictly increasing bijection if we
remove from {0, 1}N all sequences ending with 0∞. Since such sequences do not occur as
quasi-greedy expansions of 1 and since the first digit α1(β) equals 1 for any β ∈ (1, 2), the
map

φ : (1, 2)→
(

1
2
, 1
)
, β 7→ π2(α(β))=

∞∑
i=1

αi (β)

2i

is strictly increasing as well. The image φ((1, 2)) is a proper subset of ( 1
2 , 1).

LEMMA 4.9.

φ

(
(1, 2)

∖ ⋃
s1...sm∈F

Jsm ...s1

)
⊆

(
1
2
, 1
)∖ ⋃

s1...sm∈F
(1− Is1...sm )= 1− ED.

Proof. Let s1 . . . sm ∈ F with a1 . . . am = L(s1 . . . sm). Note that

qR = π2((a1 . . . am)
∞)=

∑
n≥1

1
2n − π2((a1 . . . am)

∞)= 1− φ(γL).

Moreover, by Lemma 4.3(i) and (ii) it follows that

α(γR)= a1 . . . a+m (amam−1 . . . a1)
∞
= 1am−1am−2 . . . a1(amam−1 . . . a1)

∞.
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Then

φ(γR)= π2(1am−1am−2 . . . a1(amam−1 . . . a1)
∞)

=
1
2 + π2((amam−1 . . . a1)

∞)= 1
2 + (1− π2((amam−1 . . . a1)

∞))

= 1−
(
π2((amam−1 . . . a1)

∞)− 1
2

)
= 1− qL .

Since φ is strictly increasing and bijective from (1, 2) to φ((1, 2)) this implies that

φ−1((1− qR, 1− qL))= (γL , γR).

By Proposition 4.8(i) this gives the result. �

Finally, to determine the Hausdorff dimension of (1, 2)\
⋃

s1...sm∈F Jsm ...s1 , we prove
that the inverse φ−1

: π2 ◦ α((1, 2))→ (1, 2) is Hölder continuous and combine this with
the following well-known result: if f : (X, ρ1)→ (Y, ρ2) is a c-Hölder continuous map
between two metric spaces (X, ρ1) and (Y, ρ2), then dimH f (X)≤ (1/c) dimH X .

LEMMA 4.10. For any integer N ≥ 2 the function φ−1 is c-Hölder continuous with c =
(log(1+ 1/N )/ log 4) on the set φ([1+ (1/N ), 2)).

Proof. Fix N ≥ 2 and let β1, β2 ∈ [1+ (1/N ), 2) with β1 < β2. Then α(β1)≺ α(β2). Let
n be the positive integer such that

α1(β1) . . . αn−1(β1)= α1(β2) . . . αn−1(β2) and αn(β1) < αn(β2). (4.10)

By using 1= πβ1(α(β1))= πβ2(α(β2)) and (4.10) it follows that

0< β2 − β1 = β2

∞∑
j=1

α j (β2)

β
j

2

− β1

∞∑
j=1

α j (β1)

β
j

1

≤

∞∑
j=1

α j (β2)

β
j−1

2

−

∞∑
j=1

α j (β1)

β
j−1

2

=

∞∑
j=n

α j (β2)− α j (β1)

β
j−1

2

≤

∞∑
j=n

1

(1+ 1
N )

j−1
= N

(
1+

1
N

)2−n

. (4.11)

On the other hand, by (4.10) we also have

π2(α(β2))− π2(α(β1))=

∞∑
j=1

α j (β2)− α j (β1)

2 j =

∞∑
j=n

α j (β2)− α j (β1)

2 j

≥
1
2n −

∞∑
j=n+1

α j (β1)

2 j ≥
1

2n(2n − 1)
>

1
4n , (4.12)

where the second inequality follows by Lemma 2.1 and the fact that

αn+1(β1)αn+2(β1) · · ·4 α1(β1)α2(β1) · · ·4 (1n−10)∞.

Combining (4.11) and (4.12) we conclude that

|π2(α(β2))− π2(α(β1))| ≥
1
4n =

(
1+

1
N

)−(log 4)/(log(1+1/N ))n

≥ (N (1+ 1/N )2)−(log 4)/(log(1+1/N ))

× |β2 − β1|
(log 4)/(log(1+1/N )). �
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Proof of Theorem C. By Lemma 4.9 the only thing left to show is that dimH φ
−1(1−

ED)= 0. This follows from Lemma 4.10 and Proposition 4.8(ii) in the following way:

0≤ dimH φ
−1(1− ED)= dimH

( ⋃
N≥2

(
φ−1(1− ED) ∩

[
1+

1
N
, 2
)))

= sup
N≥2

dimH φ
−1
(
(1− ED) ∩ φ

([
1+

1
N
, 2
)))

≤ sup
N≥2

log 4
log(1+ 1/N )

dimH

(
(1− ED) ∩ φ

([
1+

1
N
, 2
)))

≤ sup
N≥2

log 4
log(1+ 1/N )

dimH (1− ED)= sup
N≥2

log 4
log(1+ 1/N )

dimH ED = 0. �

5. The critical points of the dimension function
Since the map ηβ : t 7→ dimH Kβ(t) is a decreasing, continuous function with ηβ(0)= 1
and ηβ(1/β)= 0, there is a unique value τβ such that dimH Kβ(t) > 0 if and only if t < τβ .
Determining the value of τβ would extend the results from [Cla16] for holes of the form
(0, t). For β = γL equal to the left end point of one of the Farey intervals, we show below
that τβ = 1− (1/β). This result is based on the following lemma.

LEMMA 5.1. Let s1 . . . sm ∈ F with a1 . . . am = L(s1 . . . sm). Let 1≤ j ≤ m be such that
s1 . . . sm = a j+1 . . . ama1 . . . a j . For each N ≥ 1 define the sequence tN ∈ {0, 1}N by

tN := (0a2 . . . am(a1 . . . am)
N a1 . . . a j )

∞. (5.1)

Then for each N ≥ 1, tN ≺ tN+1. Furthermore, any sequence t that is a concatenation of
blocks of the form

0a2 . . . am(a1 . . . am)
ka1 . . . a j , k ≥ N ,

satisfies tN 4 σ n(t)≺ (a1 . . . am)
∞ for all n ≥ 0. In particular, we have for each n ≥ 0

that
tN 4 σ

n(tN )≺ (a1 . . . am)
∞.

Proof. By Lemma 4.3 it follows that

s1 . . . sm = amam−1 . . . a1 = 0a2 . . . a+m = a j+1 . . . ama1 . . . a j . (5.2)

This implies that for all N ≥ 1

tN = (0a2 . . . am(a1 . . . am)
N a1 . . . a j )(a j+1 . . . ama1 . . . a−j (a1 . . . am)

N a1 . . . a j )
∞

≺ (0a2 . . . am(a1 . . . am)
N+1a1 . . . a j )

∞
= tN+1,

giving the first part of the statement. For the second part, let t be a sequence
consisting of a concatenation of blocks of the form 0a2 . . . am(a1 . . . am)

ka1 . . . a j with
prefix 0a2 . . . am(a1 . . . am)

K a1 . . . a j for some K ≥ N . We first show that σ n(t)≺
(a1 . . . am)

∞ for all n ≥ 0. For n = 0 the statement is clear. By Lemma 3.8 it follows that
ai+1 . . . am ≺ a1 . . . am−i for each 0< i < m. This implies that σ n(t)≺ (a1 . . . am)

∞ for

Downloaded from https://www.cambridge.org/core. 20 Oct 2021 at 08:04:15, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


The β-transformation with a hole at 0 2509

each `m < n < (`+ 1)m, 0≤ `≤ K . For all other values of n < (K + 1)m + j we obtain
the result from (5.2), which implies that

a1 . . . a j 0a2 . . . am = a1 . . . ama1 . . . a−j ≺ a1 . . . ama1 . . . a j .

The same arguments then give the result for any n ≥ 0. Hence, σ n(t)≺ (a1 . . . am)
∞ for

all n ≥ 0. We now show that σ n(t)< tN for each n ≥ 0. Note that t has prefix

s1 . . . s−m (a1 . . . am)
K a1 . . . a j .

For n = 0 the statement follows from (5.2). By (5.2) and Lemmas 3.2 and 3.8 it follows
that

si+1 . . . s−m < s1 . . . sm−i and a1 . . . ai � am−i+1 . . . am = sm−i+1 . . . s−m

for all 0< i < m, giving the statement for all 0< n < m. Since s1 . . . sm is the Lyndon
word associated to a1 . . . am we obtain

ai+1 . . . ama1 . . . ai < s1 . . . sm � s1 . . . s−m for any 0≤ i < m.

Since a1 . . . a j s1 . . . sm− j = a1 . . . am the conclusion that σ n(t)< tN for all n ≥ 0
follows. �

PROPOSITION 5.2. Let s1 . . . sm ∈ F with a1 . . . am = L(s1 . . . sm) and let β ∈ (1, 2) be
such that α(β)= (a1 . . . am)

∞. Then 1− (1/β) ∈ E0
β and

τβ = 1−
1
β
=max E+β .

Proof. Since m is the minimal period of α(β) the greedy β-expansion of 1 is equal to
b(1, β)= a1 . . . a+m 0∞. Lemma 4.3 tells us that a1 . . . a+m = 1am−1 . . . a1, so

πβ(amam−1 . . . a10∞)= πβ(1am−1 . . . a10∞)−
1
β
= πβ(a1 . . . a+m 0∞)−

1
β
= 1−

1
β
.

Recall that amam−1 . . . a1 = 0a2 . . . a+m . Then by Lemma 3.8 it follows that for each
n ≥ 0, σ n(amam−1 . . . a10∞)≺ (a1 . . . am)

∞
= α(β) and hence amam−1 . . . a10∞ is

the greedy β-expansion of 1− (1/β), i.e., b(1− (1/β), β)= amam−1 . . . a10∞. By
Lemma 3.2, b(1− (1/β), β) ∈ E0

β , so 1− (1/β) ∈ E0
β .

The quasi-greedy β-expansion of 1− (1/β) is given by

b̃
(

1−
1
β
, β

)
= 0a2 . . . am(a1 . . . am)

∞.

Now consider the sequences tN from Lemma 5.1. Since tN 4 σ n(tN )≺ (a1 . . . am)
∞
=

α(β) for all n ≥ 0 we have tN ∈ E+β for each N ≥ 1. Moreover, if we set tN :=

πβ(tN ), then Lemma 2.2 gives that tN ↗ 1− (1/β) as N →∞. So, max E+β ≥ 1−
(1/β). Furthermore, the fact that any sequence of concatenations of blocks of the form
0a2 . . . am(a1 . . . am)

ka1 . . . a j , k ≥ N , belongs to K+β (tN ) implies that htop(K+β (tN ))

> 0 for all N ≥ 1 and hence also htop(Kβ(tN )) > 0 for all N ≥ 1. By the dimension
formula (2.6) we then get that τβ ≥ 1− (1/β).
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On the other hand, by Lemma 4.3(ii) and Proposition 4.4 we have

K+β

(
1−

1
β

)
= {(xi ) : amam−1 . . . a10∞ 4 σ n((xi ))≺ (a1 . . . am)

∞
∀n ≥ 0} = ∅.

(5.3)
Since E+β ∩ [1− (1/β), 1] ⊆ K+β (1− (1/β)) this implies that max E+β ≤ 1− (1/β). It
also implies that dimH Kβ(1− (1/β))= 0, which gives that τβ ≤ 1− (1/β) and proves
the result. �

Remark 5.3. Note that the previous lemma also implies that for any t < 1− (1/γL) we
have htop(K+γL

(t)) > 0. We will use this later on.

Next we will give a lower and an upper bound for τβ on each Farey interval (γL , γR].

LEMMA 5.4. Let s1 . . . sm ∈ F with a1 . . . am = L(s1 . . . sm). For each β ∈ (γL , γR] set
t∗ = πβ(0a2 . . . am(a1 . . . am)

∞) and t� = πβ(0a2 . . . a+m 0∞). Then t∗ ∈ E+β , t� ∈ E0
β

and

1−
1
β
−

1
βm +

1
β(βm − 1)

≤ t∗ ≤ τβ ≤ t� < 1−
1
β
.

Proof. Take β ∈ (γL , γR]. Then

(a1 . . . am)
∞
≺ α(β)4 a1 . . . a+m (amam−1 . . . a1)

∞.

We first show that τβ ≥ t∗. By Lemmas 4.3 and 3.8 we have

σ n(0a2 . . . am(a1 . . . am)
∞)4 (a1 . . . am)

∞
≺ α(β) for all n ≥ 0.

Hence, b(t∗, β)= 0a2 . . . am(a1 . . . am)
∞ and as in the proof of Lemma 5.1 we have that

σ n(b(t∗, β))< b(t∗, β) for each n ≥ 0. So, t∗ ∈ E+β .
For each t < t∗ we have by Lemma 2.2 that b(t, β)≺ 0a2 . . . am(a1 . . . am)

∞. This
implies that for N large enough b(t, β)≺ tN ≺ (a1 . . . am)

∞
≺ α(β). By Lemma 5.1 it

follows that tN ∈K+β (t) and htop(Kβ(t))≥ htop(K+β (t)) > 0. Thus, dimH Kβ(t) > 0 and
τβ ≥ t∗.

On the other hand, for t� we have that 0a2 . . . a+m 0∞ is admissible for any β ∈

(γL , γR] and that σ n(0a2 . . . a+m 0∞)� 0a2 . . . a+m 0∞ for all 0< n < m, so t� ∈ E0
β . By

Lemmas 4.3 and 3.7 we get

K+β (t
�)

⊆ {(xi ) : amam−1 . . . a10∞ 4 σ n((xi ))≺ a1 . . . a+m (amam−1 . . . a1)
∞
∀n ≥ 0}

= {(xi ) : (amam−1 . . . a1)
∞ 4 σ n((xi ))≺ a1 . . . a+m (amam−1 . . . a1)

∞
∀n ≥ 0}

= {(xi ) : (amam−1 . . . a1)
∞ 4 σ n((xi ))4 (a1 . . . am)

∞
∀n ≥ 0}

= {(xi ) : amam−1 . . . a10∞ 4 σ n((xi ))4 (a1 . . . am)
∞
∀n ≥ 0}. (5.4)

By Proposition 4.4 it follows that #K+β (t�) <∞, so that dimH Kβ(t�)= 0. This gives that
τβ ≤ t�. Note that

πγR (a1a2 . . . a+m (0a2 . . . am)
∞)= 1.
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FIGURE 3. A plot of 1− (1/β) and 1− (1/β)− (1/βm )+ (1/β(βm
− 1)) for basic intervals corresponding to

Farey words of length m with m ≤ 10.

Then we have for each β ∈ (γL , γR] that

t∗ = πβ(0a2 . . . am(a1a2 . . . am)
∞)

> 1−
1
β
−

1
βm +

∞∑
i=1

1
β im+1 = 1−

1
β
−

1
βm +

1
β(βm − 1)

.

From Proposition 5.2 we know that πγL (0a2 . . . a+m 0∞)= 1− (1/γL). For β > γL we
have a1 . . . a+m 0∞ ≺ b(1, β), so that

t� = πβ(0a2 . . . a+m 0∞)= πβ(a1 . . . a+m 0∞)− πβ(10∞) < 1−
1
β
. �

In Figure 3 we see a plot of the lower and upper bounds for τβ found in Lemma 5.4.
The next lemma considers the critical point τβ for the remaining values of β, i.e., those

that are not in the closure of a Farey interval.

LEMMA 5.5. Let β ∈ (1, 2)\
⋃
[γL , γR] with the union taken over all Farey intervals.

Then max E+β = τβ = 1− (1/β).

Proof. Take β ∈ (1, 2)\
⋃
[γL , γR]. First we show that τβ ≥ 1− (1/β). Let t <

1− (1/β) with b(t, β)= (bi (t, β)). Since dimH ((1, 2)\
⋃
[γL , γR])= 0 there exists a

sequence of Farey intervals ([γL ,k, γR,k]) such that γL ,k ↗ β as k→∞. Thus, as k→∞
we have

∞∑
i=1

bi (t, β)
(γL ,k)i

↘

∞∑
i=1

bi (t, β)
β i = t and 1−

1
γL ,k
↗ 1−

1
β
. (5.5)

For each k we have a sequence (tk,N )⊆ E+γL ,k
as given in (5.1). Since γL ,k < β we obtain

for each N , n ≥ 1 that

tk,N 4 σ
n(tk,N )≺ α(γL ,k)≺ α(β).
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Hence, tk,N ∈ E+β for all k ≥ 1 and N ≥ 1. This gives that max E+β ≥ 1− (1/β).
Moreover, since t < 1− (1/β) we can find by (5.5) a sufficiently large M ∈ N such that

t < t1 :=
∞∑

i=1

bi (t, β)
(γL ,M )i

< 1−
1

γL ,M
< 1−

1
β
.

Observe that b(t, β)= (bi (t, β)) is a γL ,M -expansion of t1, which is lexicographically less
than or equal to its greedy expansion b(t1, γL ,M ). Then

K+β (t)= {(xi ) : b(t, β)4 σ n((xi ))≺ α(β) ∀n ≥ 0}

⊇ {(xi ) : b(t1, γL ,M )4 σ
n((xi ))≺ α(γL ,M ) ∀n ≥ 0} =K+γL ,M

(t1). (5.6)

Since τγL ,M = 1− (1/γL ,M ) > t1 by Remark 5.3 we know that htop(K+γL ,M
(t1)) > 0 and

together with (5.6) we then find that htop(K+β (t)) > 0, which in turn implies that τβ ≥ t .
Since t < 1− (1/β) was taken arbitrarily we conclude that τβ ≥ 1− (1/β).

To prove the other inequality we show that for any t > 1− (1/β) we have K+β (t)= ∅.
Take t > 1− (1/β). There is a sequence of Farey intervals ([γL ,k, γR,k]) such that
γL ,k↘β as k→∞. Thus, when k→∞ we have

∞∑
i=1

bi (t, β)
(γL ,k)i

↗

∞∑
i=1

bi (t, β)
β i = t and 1−

1
γL ,k
↘ 1−

1
β
.

Since t > 1− (1/β) we can find a sufficiently large N ∈ N such that

1−
1
β
< 1−

1
γL ,N

< t2 :=
∞∑

i=1

bi (t, β)
(γL ,N )i

< t.

Since γL ,N > β, b(t, β) is the greedy γL ,N -expansion of t2, i.e., b(t, β)= b(t2, γL ,N ).
Therefore,

K+β (t)⊆ {(xi ) : b(t2, γL ,N )4 σ
n((xi ))≺ α(γL ,N ) ∀n ≥ 0}

= K+γL ,N
(t2)⊆K+γL ,N

(τγL ,N ).

From (5.3) we conclude that K+β (t)= ∅ and hence max E+β , τβ ≤ t . Since t > 1− (1/β)

was taken arbitrarily we have max E+β = τβ = 1− (1/β). �

Proof of Theorem D. From Proposition 5.2 and Lemmas 5.4 and 5.5 we know that for all
β ∈ (1, 2) we have τβ ≤ 1− (1/β) with equality only if β ∈ (1, 2)\

⋃
(γL , γR]. We also

know that for these points τβ =max E+β .

By Proposition 3.3 we know that any isolated point of E+β has a periodic greedy
β-expansion b(t, β). From Proposition 3.10 it follows that any t ∈ (0, 1), for which
b(t, β)= (s1 . . . sm)

∞ is Lyndon, is isolated in E+β if and only if β lies in the basic
interval associated to (s1 . . . sm)

∞. Since Farey intervals are maximal by Proposition 4.7,
if β 6∈

⋃
(γL , γR], then E+β cannot contain an isolated point and E+β is a Cantor set. �
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6. Final observations and remarks
With the results from Theorems B and C we have shown that the situation for β ∈ (1, 2)
differs drastically from the situation for β = 2 that was previously investigated in [Urb86,
Nil09, CT17]. There are still several unanswered questions.

Firstly, the structure of E0
β remains illusive to us. We know that t ∈ E0

β is isolated in
Eβ if β − 1 6∈ Kβ(t) and in Proposition 2.6 we proved that htop(Kβ(t))= htop(K+β (t)) for
any t ∈ E+β . It would be interesting to know whether t ∈ E0

β is isolated in Eβ in case
β − 1 ∈ Kβ(t) and to consider htop(K0

β(t)) also in case t 6∈ E+β .
In the previous section we have investigated the value of the critical point τβ of the

dimension function ηβ : t 7→ dimH Kβ(t). We could determine this value for any β in the
set (1, 2)\

⋃
(γL , γR]. If β ∈ (γL , γR] for some Farey interval (γL , γR], we only have a

lower and an upper bound for τβ . With a calculation very similar to the one in (5.4) one
can show that for any β ∈ (γL , γR] that satisfies

α(β)≺ a1 . . . a+m (0a2 . . . am)(a1 . . . am)
∞

we have τβ = t∗. However, for larger values of β ∈ (γL , γR] the situation seems more
intricate. It would be interesting to consider this question further by specifying τβ more
precisely also on

⋃
(γL , γR] and by analysing the behaviour of the function τ : β 7→ τβ .

For β = 2 it is shown in [Urb86] that dimH (E2 ∩ [t, 1])= dimH K2(t). Motivated by
Proposition 2.7 we conjecture the following.

CONJECTURE 6.1. For any t ∈ [0, 1) and any β ∈ (1, 2) we have dimH (Eβ ∩ [t, 1])=
dimH Kβ(t).
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