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The Set-Based Hypervolume Newton Method for
Bi-Objective Optimization

Víctor Adrián Sosa Hernández , Oliver Schütze, Hao Wang, André Deutz, and Michael Emmerich

Abstract—In this paper, we propagate the use of a set-based
Newton method that enables computing a finite size approxi-
mation of the Pareto front (PF) of a given twice continuously
differentiable bi-objective optimization problem (BOP). To this
end, we first derive analytically the Hessian matrix of the hyper-
volume indicator, a widely used performance indicator for PF
approximation sets. Based on this, we propose the hypervolume
Newton method (HNM) for hypervolume maximization of a given
set of candidate solutions. We first address unconstrained BOPs
and focus further on first attempts for the treatment of inequality
constrained problems. The resulting method may even converge
quadratically to the optimal solution, however, this property is—
as for all Newton methods—of local nature. We hence propose
as a next step a hybrid of HNM and an evolutionary strat-
egy in order to obtain a fast and reliable algorithm for the
treatment of such problems. The strengths of both HNM and
hybrid are tested on several benchmark problems and compar-
isons of the hybrid to state-of-the-art evolutionary algorithms for
hypervolume maximization are presented.

Index Terms—Hessian matrix, hypervolume indicator, memetic
algorithms, Newton method, set-based local search.

I. INTRODUCTION

IN MANY applications, the problem arises where several
objectives have to be optimized concurrently leading to a

multiobjective optimization problem (MOP). One important
characteristic of MOPs is that their solutions sets, the Pareto
sets (PSs), typically (under certain conditions when the MOP
is continuous and nondegenerate) form objects of dimension
(k − 1), where k is the number of objectives involved in the
problem. In many cases, the decision maker is interested in a
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suitable finite size approximation of the entire PS, namely,
its image, and the Pareto front (PF) [1]. To address this
problem, specialized evolutionary algorithms are predomi-
nantly used [2]–[8]. Such methods are capable of returning
a finite size approximation of the entire set of interest in one
single run of the algorithm, and as they are very robust and
of global nature [9], [10]. One major drawback of all such
methods, however, is that they are quite costly in terms of
function evaluations. That is, they typically require quite a
few function evaluations in order to obtain suitable approxi-
mations. Moreover, they do not converge toward the optimal
solution in the mathematical sense, instead, their populations
may get stuck in nonoptimal (but in most cases in nearly
optimal) regions.

The inclusion of gradient information has long been con-
sidered as a remedy to imprecision [11], [12]. However, the
initially proposed methods were only able to improve the
closeness to the PF, but not the diversity of approximations.
To also include the diversity in gradient-based search for PFs,
directed search methods were proposed in [13] and [14], which
allow not only to move toward the PF based on local gradi-
ent information but also along this set in order to increase
diversity. Alternatively, it proposed the use of the hypervol-
ume gradient defined on an entire population to find diverse
set approximations to the PF (see [15], [16]).

In this paper, we first present the hypervolume Newton
method (HNM) for hypervolume maximization. The hyper-
volume [17] is a widely used indicator to measure the
approximation quality of a set. The method allows for a finite
size approximation of the PF of a bi-objective optimization
problem (BOP) in one run of the algorithm. To this end, we
first derive an analytical expression of the Hessian matrix of
the hypervolume indicator (which is being considered as a par-
ticular scalar optimization problem defined on sets). Based on
this, we formulate the set-based HNM first for unconstrained
and later on for inequality constrained BOP. The resulting
method is defined on entire sets and yields up to quadratic
convergence rates. The method, however, is as all Newton
methods of local nature and requires good starting sets. That is
why in the second step of this paper, we propose a hybrid evo-
lutionary algorithm that utilizes HNM as a local search engine.
Numerical results against state-of-the-art evolutionary algo-
rithms for hypervolume indicator maximization demonstrate
the benefit of the novel approach.

A first study of this paper can be found in [18], where an
HNM is proposed for unconstrained BOPS, albeit using finite
difference approximations of the Hessians. The idea to use the
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Newton method for general convex sets has been proposed
in [19], however, the work does not deal with multiobjective
optimization.

This paper is structured as follows. In Section II, we intro-
duce important mathematical definitions and preliminaries. In
Section III, the Hessian matrix of the hypervolume indicator is
derived and based on it, the HNM is described in Section IV.
Section V deals with the hybrid evolutionary algorithm and
Section VI shows and discusses the results of this algo-
rithm on common bi-objective benchmark problems. Finally,
Section VII concludes this paper with a brief discussion of the
main results and possible future work.

II. PRELIMINARIES AND BACKGROUND

A. Set-Based Multiobjective Optimization

In this paper, continuous MOPs are considered

min
x∈Q

f(x), f : Q ⊆ R
n → R

m (1)

where the vector-valued function is defined as the
concatenation of m objective functions: f(x) :=
(f1(x), f2(x), . . . , fm(x))�. Throughout this paper, it is
assumed that each objective function, fi : Q ⊆ R

n → R

(i = 1, 2, . . . , m), is twice continuously differentiable almost
everywhere in Q.

Optimality is based on the concept of dominance.
1) Let v = (v1, . . . , vm)�, w = (w1, . . . , wm)� ∈ R

m. Then
the vector v is less than w (v <p w), if and only if
vi < wi for all i ∈ {1, . . . , m}. The relation ≤p is defined
analogously.

2) Dominance: A vector x ∈ Q dominates another vector
x′ ∈ R

n (x ≺ x′) with respect to the vector-valued func-
tion f (1) if f(x) ≤p f(x′) and f(x) 
= f(x′) [i.e., there
exists a j ∈ {1, . . . , m} such that fj(x) < fj(x′)].

3) Pareto Optimality: A point x ∈ Q is called a Pareto
optimal or a Pareto point if there is no x′ ∈ Q which
dominates x. The set of all Pareto optimal solutions

X := {x ∈ Q | x is Pareto optimal with respect to f}
is called the PS and the PF is the image of it under f:
PX = {f(x) | x ∈ X }.

We adhere to the set-based approach for MOPs. Moreover,
as discussed in [16], the finite approximation sets of size μ

to the efficient set X are represented by vectors X in R
μ·n.

Each of the search points can be obtained as follows: the first
point x(1) ∈ Q is represented by the first n consecutive com-
ponents of X, the second one by the following n consecutive
components, etc.,

X =
(

x(1)� , x(2)� , . . . , x(μ)�
)�

, x(i) ∈ Q, i = 1, . . . , μ.

In addition, a mapping F : R
μ·n → R

μ·m is obtained from the
objective function f

F(X) :=
(

f
(

x(1)
)�

, f
(

x(2)
)�

, . . . , f
(

x(μ)
)�)�

. (2)

Approximation sets (which we represent by vectors X) to the
efficient set give rise to the vector-representations of approxi-
mation sets Y to the PF by defining Y := F(X). Note that the

PF approximation set Y can be obtained from the μ · m vector
Y by the same segmentation operation on X as above

Y =
(

y(1)� , y(2)� , . . . , y(μ)�
)�

, y(i) ∈ R
m, i = 1, . . . , μ.

The benefits of such a treatment will become clear in the
sequel, where the hypervolume indicator is related to the deci-
sion space through the mapping F and it is differentiated with
respect to the μ · n-vector X.

B. Multiobjective Evolutionary Algorithms

These days, apart from mathematical techniques,
multiobjective evolutionary algorithms (MOEAs) have
been successful in solving MOPs. Algorithms of this type are
able to obtain good (finite) approximations of the efficient
set. In the last decade, several MOEAs have integrated
performance indicators as selection criteria. For instance,
a framework for designing indicator-based evolutionary
algorithms (IBEAs) is proposed in [20] by using any arbi-
trary indicator. Another example is the S metric selection
EMOA (SMS-EMOA) [2] which takes the contribution of
the hypervolume indicator into the selection operator. A one
point steady-selection strategy is used, in order to guarantee
a sequence of populations that is nondecreasing with respect
to hypervolume and at the same time keep the computational
cost of selection small. One more example can be found
in [3]. There are also some other algorithms that have been
designed using different performance indicators, for instance
�p [21] and R2 [22], for more information see [23], [24].

C. Hypervolume Indicator

The hypervolume indicator [17] is a common indicator to
assess the quality of an approximation to the PF. In terms of
minimization, the hypervolume indicator of the PF approxi-
mation Y is defined as the Lebesgue measure of the subspace
dominated by Y , that is cut from above by a reference point
r ∈ R

m

H(Y) := λ
({p ∈ R

m|p <p r ∧ ∃y ∈ Y : y <p p})

with λ being the Lebesgue measure in R
m. Moreover, such a

definition can be extended to the μ·m-vector Y by introducing
the notation H(Y) := H(Y). Based on the mapping stated in
(2), the hypervolume indicator of H(Y) can also be further
related to the μ · n-vector X by function composition

HF(X) := H(F(X)) = H(Y).

Note that the reformulation of the hypervolume indica-
tor defines a mapping: R

μ·n → R. Furthermore, such a
performance indicator allows us to transform an MOP into the
following scalar optimization problem in higher dimension:

max
X∈Rμ·n HF(X)

s.t. x(i) ∈ Q, i = 1, . . . , μ. (3)

The hypervolume indicator has been successfully exploited
also as a selection criterion in evolutionary multiobjective
optimization algorithms (see [2], [3]).
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D. Hypervolume Gradient Field

The hypervolume gradient is defined in [15], where it
is stated that for the function HF, the gradient field ∇HF
is defined as (the denominator layout is adopted for the
calculation of the derivatives in this paper)

∇HF(X)

=
(

∂HF(X)

∂x(1)
1

, . . . ,
∂HF(X)

∂x(1)
n

, . . . ,
∂HF(X)

∂x(μ)
1

, . . . ,
∂HF(X)

∂x(μ)
n

)�

=
(

∂HF(X)

∂x(1)

�
, . . . ,

∂HF(X)

∂x(μ)

�)�
. (4)

Note that each term in the right-hand side of the above
equation is called subgradient, which is the local hyper-
volume change rate by moving only one decision vector
infinitesimally. Moreover, the subgradients can be computed
by applying the chain rule [16], [25]

∂HF(X)

∂x(i)
= ∂Y

∂x(i)

∂HF(X)

∂Y
=

m∑
k=1

∂HF(X)

∂fk
(
x(i)

)∇fk
(

x(i)
)
.

(5)

E. Hypervolume-Based Local Search Techniques Within
MOEAs

In recent years, different local search techniques have been
designed for improving the performance of some evolutionary
algorithms by using first- or second-order derivative meth-
ods (see [13], [26]–[29]). However, it is not clearly specified
how these improvements can (or should) be measured. The
integration of an indicator can steer the local search in
better directions and also be more effective for improving
points. In the following, we describe some hypervolume-based
local search algorithms that have been developed to construct
memetic strategies. The hypervolume gradient was used as
a gradient-ascent method for maximizing the hypervolume.
Such a local search procedure was applied after performing
one run of the SMS-EMOA [2]. The results showed how
gradient-based indicator methods can improve the convergence
rate of evolutionary algorithms. In [16], the definition of the
hypervolume gradient was extended to m > 2 and also an effi-
cient algorithm for its computation for m ≤ 4 was provided.
Sosa Hernández et al. [18] proposed the multiobjective HVDS.
This local search procedure is based on the directed search
method (see [14]) to improve the hypervolume contribution
for a selected point or points in the current population. HVDS
divides the objective space into three regions and for each
region another local search strategy is proposed. The effect of
the integration of the local searcher pushes the population to
converge faster, which reduces the number of function evalu-
ations to obtain a desirable approximation of the efficient set.
Recently, the use of Newton method for sets based on the
hypervolume indicator has been proposed [18]. This method
uses the hypervolume gradient and an approximation of the
Hessian matrix by using finite differences to compute a search
direction. First, the results showed the potential of this method

even by using an approximation, however, the exact computa-
tion of the hypervolume Hessian matrix and the extension of
the usability of this method are called for.

III. HYPERVOLUME HESSIAN MATRIX

A. Derivation of the Hessian Matrix

We first derive the Hessian matrix of the hypervolume indi-
cator for the general multiobjective optimization scenario. The
Hessian matrix in bi-objective cases is treated in Section III-D.
The hypervolume Hessian matrix is the Jacobian of the
hypervolume gradient defined as follows:

∇2HF(X) = ∂

∂X

(
∂HF(X)

∂X

)

=

⎛
⎜⎜⎜⎝

∂

∂X

(
∂HF(X)

∂x(1)

)

︸ ︷︷ ︸
μ·n×n

, . . . ,
∂

∂X

(
∂HF(X)

∂x(μ)

)
⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

∂

∂x(1)

(
∂HF(X)

∂x(1)

)
. . . ∂

∂x(1)

(
∂HF(X)

∂x(μ)

)

...
. . .

...
∂

∂x(μ)

(
∂HF(X)

∂x(1)

)
. . . ∂

∂x(μ)

(
∂HF(X)

∂x(μ)

)

⎞
⎟⎟⎟⎠

(6)

where each subgradient is differentiated with respect to X.
This results in μ2 block partitions (n×n) of the Hessian matrix.
The (i, j)-block matrix can be further expressed as follows:

∂

∂x(i)

(
∂HF(X)

∂x(j)

)
= ∂

∂x(i)

(
∂y(j)

∂x(j)

∂HF(X)

∂y(j)

)

=
m∑

k=1

∂

∂x(i)

(
∂fk

(
x(j)

)

∂x(j)

∂HF(X)

∂fk
(
x(j)

)
)

=
m∑

k=1

∂

∂x(i)

(
∂HF(X)

∂fk
(
x(j)

)
)

∇fk
(

x(j)
)�

︸ ︷︷ ︸
Aij

+
m∑

k=1

∂2fk
(
x(j)

)

∂x(i)∂x(j)

∂HF(X)

∂fk
(
x(j)

)
︸ ︷︷ ︸

Bij

.

According to the differentiation above, each (i, j)-block
matrix is a combination of two components: Aij and Bij.
Note that in matrix Aij, [∂/(∂x(i))]([(∂HF(X))/(∂fk(x(j)))]) is
a column vector of size n and stands for the subgradient of
[(∂HF(X))/(∂fk(x(j)))] at x(j). In the following, we abbreviate
fk(x(i)) as f (i)

k and its gradient ∇fk(x(i)) as ∇f (i)
k .

B. First Component Matrix: Aij

Matrix Aij has size n × n and can be expressed as a sum of
outer products

Aij =
m∑

k=1

∂

∂x(i)

(
∂HF(X)

∂f (j)
k

)
∇f (j)

k

�

︸ ︷︷ ︸
rank 1

. (7)
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Due to the fact that it is a sum of m outer products, this term
has at most rank m. It is possible to make Aij to have full
rank only if m ≥ n. In other cases, Aij is always rank defi-
cient (rank(Aij) ≤ m < n). This indicates that in the “usual”
multiobjective optimization case, where the number of objec-
tive functions is smaller than the number of decision variables,
such a matrix Aij is always singular.

In the following lemma, a detailed expression of Aij is given
for the bi-objective case (m = 2). Without loss of generality,
we assume that the objective vectors (and corresponding deci-
sion vectors) are arranged according to the ascending order of
the first objective values.

Lemma 1: Let m = 2 and all vectors x(i), i = 1 . . . , μ,
be mutually nondominated, the first component Aij is nonzero
only if the block matrix is located on the main diagonal (i =
j) or the first diagonal above/below the main diagonal (|i −
j| = 1), and it can be written as

Aij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇f (j)
2 ∇f (j)

1

� + ∇f (j)
1 ∇f (j)

2

�
if i = j

−∇f (j+1)

1 ∇f (j)
2

�
if i = j + 1

−∇f (j−1)

2 ∇f (j)
1

�
if i = j − 1

0 otherwise.

(8)

Proof: Assume a fixed reference point r = (r1, r2)
�.

To simplify the formulation, we denote f (μ+1)
1 := r1 and

f (0)
2 := r2. The partial derivative of the hypervolume indicator

with respect to the objective value is derived in [16], which
corresponds to the length of the steps of the attainment curve

∂HF(X)

∂f (j)
1

= f (j)
2 − f (j−1)

2 ,
∂HF(X)

∂f (j)
2

= f (j)
1 − f (j+1)

1 . (9)

It is clear that [(∂HF(X))/(∂f (j)
1 )] is a function of only x(j) and

x(j−1) (similar argument holds for [(∂HF(X))/(∂f (j)
2 )]). The

gradient of the partial derivatives can be given, for example:
[∂/(∂x(j))]([(∂HF(X))/(∂f (j)

k )]) = ∇f (j)
2 . Such a gradient is

nonzero for at least one objective function, when i = j, i =
j + 1, or i = j − 1. By substituting the required gradients into
(7), the expression of Aij can be obtained.

C. Second Component Matrix: Bij

Bij is a weighted sum of second-order derivatives of the
objective functions, where the weights are partial derivatives
of the hypervolume indicator at each objective value [see (5)].
Note that the second-order derivative [(∂2f (j)

k )/(∂x(i)∂x(j))] is
not zero if and only if i = j

H(j)
k := ∂2f (j)

k

∂x(j)2

is the Hessian matrix of objective function fk at point x(j).
Consequently, matrix Bij can be written as

Bij =
{∑m

k=1
∂HF(X)

∂f (j)
k

H(j)
k if i = j

0 if i 
= j.
(10)

Note that [(∂HF(X))/(∂f (j)
k )] can be obtained from (9). The

singularity of matrix Bij depends on the properties of the

Hessian matrices of the objective functions. Under the assump-
tion that all objective functions are convex (the objective-wise
Hessian matrices are positive definite), matrix Bij is also posi-
tive definite, under the condition that all the objective functions
are subject to maximization (for minimization, Bij is negative
definite). In general, if each objective function has nonsingu-
lar Hessian matrix almost everywhere, it is obvious that the
matrix Bij is nonsingular.

D. Hypervolume Hessian in Bi-Objective Case

For a BOP, the hypervolume Hessian matrix has the follow-
ing structure:

∇2HF(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D1 Ã1

Ã�
1 D2 Ã2

Ã�
2

. . .
. . .

. . .
. . . Ãμ−1

Ã�
μ−1 Dμ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where Di = Aii + Bii and Ãi = Ai(i+1) = −∇f (i)
2 ∇f (i+1)

1

�

according to (8). Note that the Hessian matrix ∇2HF(X) is a
tridiagonal block matrix.

IV. HYPERVOLUME NEWTON METHOD

After having stated the hypervolume gradient and Hessian
matrix for a μ · n-vector X for a given MOP, we are now
in the position to address the set-based Newton method for
hypervolume maximization. For this, we will first consider
the unconstrained case and later on discuss first attempts to
treat constrained problems.

Given an unconstrained MOP and a population of μ indi-
viduals, the Newton step (or Newton function) is defined as
follows:

N : R
μ·n → R

μ·n

N(X) := X − ∇2HF(X)−1∇HF(X). (11)

The Newton direction for the entire population is given by

νN := −∇2HF(X)−1∇HF(X) ∈ R
μ·n (12)

and the according directions for each individual x(i) of X are
denoted by ν

(i)
N ∈ R

n, i = 1, . . . , μ. Since the hypervolume
indicator subgradient (4) for the strictly dominated subvector
x(i) of X is zero and also its corresponding Newton direction
will be zero. Consequently, such a point will remain stationary
when applying the set-based Newton method. In the following,
we restrict the approximation set X to the set of mutually
nondominated elements. For this purpose, we define the set X̃
as the subset of X that contains all its nondominated elements.
The HNM is thus defined as

X0 ∈ R
μ·n

Xi+1 = N
(

X̃i

)
, for i = 0, 1, 2, . . . (13)

The pseudocode for HNM is shown in Algorithm 1. For
the step size control, we suggest to choose the initial step
t̃0 = 1 together with quadratic backtracking to satisfy the
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(a) (b)

(c) (d)

Fig. 1. Numerical result of HNM on MOP1 using (14) as initial population.
(a) and (b) Iterations in decision and objective space. (c) and (d) Optimal
solution and its image for μ = 5 and r = (20, 20)�.

Wolfe conditions [30] on the hypervolume. If automatic dif-
ferentiation [30] is used to evaluate the (exact) gradient and
the Hessian matrix at the iterate Xi, the cost for each Newton
step is given by 5μ + (4 + 6n)μ function evaluations.

Hence, if the hypervolume Hessian of the optimal set X∗ is
regular and the initial set X0 is close enough to X∗, we can
expect local quadratic convergence of the sequence of sets Xi,
i ∈ N, toward X∗ [30]. The investigation of the regularity of
the Hessian at the optimal solution is subject of ongoing work.

Example 1: In order to demonstrate the performance of the
HNM we consider the following BOP:

f1 = (x1 − 1)2 + (x2 − 1)2

f2 = (x1 + 1)2 + (x2 + 1)2 (MOP1)

where we choose a reference point r = (20, 20)�.
1) We choose μ = 5 and the initial population X0 as{

x(1)
0 , x(2)

0 , x(3)
0 , x(4)

0 , x(5)
0

}

=
{(

0

−2

)
,

(
0.5

−1.5

)
,

(
1

−1

)
,

(
1.5

−0.5

)
,

(
2

2

)}
.

(14)

Fig. 1 shows the performance of HNM both in decision
and objective space. As it can be seen, the iterations
quickly approach the optimal solution for μ = 5 and
a given reference point. This observation is confirmed
in Table I, where the hypervolume values, the norm of
the gradients, and the error—measured in terms of the
Hausdorff distance [21] of Xi and the optimal solution—
are displayed for each iteration. The values indicate
quadratic convergence.

2) Next, we consider the same setting but using as initial
population
{

x(1)
0 , x(2)

0 , x(3)
0 , x(4)

0 , x(5)
0

}

TABLE I
HYPERVOLUME VALUES, ERROR, AND HYPERVOLUME GRADIENTS FOR

THE APPLICATION OF HNM ON MOP1 USING (14) (SEE FIG. 1)

(a) (b)

(c) (d)

Fig. 2. Numerical result of HNM on MOP1 using (15) as initial population.
(a) and (b) Iterations in decision and objective space. (c) and (d) Optimal
solution and its image for μ = 4 and r = (20, 20)�.

=
{(−0.12

−1.57

)
,

(
0.48

−1.24

)
,

(
1

−1

)
,

(
1.32

−0.26

)
,

(
1.89

−0.11

)}
.

(15)

Fig. 2 and Table II show the numerical results of HNM.
In step 2, x(1)

2 gets dominated by x(3)
2 . The iteration

thus continues with X̃2 ∈ R
4·2, that is, with a set of

4 2-D vectors. HNM converges (again quadratically)
toward the optimal hypervolume population, albeit for
population size μ = 4.

Next, we consider inequality constrained MOPs of the form

min
x∈Rn

f(x)

s.t. gj(x) ≤ 0, j = 1, . . . , q. (16)

For the treatment of such problems we propose to utilize
a penalization approach that transforms the original (con-
strained) MOP into an auxiliary unconstrained one. In the
current context, the related unconstrained problem reads as

min
x∈Rn

f(x) + p(x)c (17)
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TABLE II
HYPERVOLUME VALUES, ERROR, AND HYPERVOLUME GRADIENTS FOR

THE APPLICATION OF HNM ON MOP1 USING (15) FOR X0
(COMPARE TO FIG. 2)

Algorithm 1: HNM(X0, Imax, tolx)
Data: initial point X0 ∈ R

μ·n, maximal number of
iterations Imax, tolerance tolx ∈ R+.

Result: best found Newton iteration X(N) according to H.
1 for i = 0 to Imax do
2 Compute X̃i, ∇HF(X̃i), ∇2HF(X̃i)

3 Compute step size ti ∈ R+
4 Xi+1 := X̃i − ti∇2HF(X̃i)

−1∇HF(X̃i)

5 if ||∇HF(Xi+1)|| < tolx then
6 Return X(N) := Xi+1
7 end
8 end
9 Return X(N) := Xi+1

where c = (c, . . . , c)� ∈ R
m, c > 0 a given (large) constant,

and

p(x) :=
q∑

j=1

max
(
0, gj(x)

)2 (18)

the penalization function. To solve inequality constrained
MOPs of the form (16), HNM is thus applied on the uncon-
strained problem (17) as described above. To avoid conver-
gence toward spurious solutions, the value of c cannot remain
fixed during the computations. Instead, we need a sequence
ci > 0 with limi→∞ ci = ∞. In our computations, we have
chosen c0 = 10 and in each Newton step the value is increased
by a factor of 10, i.e., ci = 10i+1.

Example 2: We reconsider the MOP from Example 1 but
additionally impose the box constraints

xi ∈ [−0.5,−0.25], i = 1, 2. (19)

We have chosen r = (20, 20)T and μ = 5 as before, and the
initial population as{

x(1)
0 , x(2)

0 , x(3)
0 , x(4)

0 , x(5)
0

}

=
{(−0.46

−0.43

)
,

(−0.41

−0.38

)
,

(−0.36

−0.33

)
,

(−0.31

−0.28

)
,

(−0.26

−0.23

)}
.

(20)

Fig. 3 shows a numerical result of HNM for this setting.
Table III indicates that the iterations converges, but that

(a) (b)

(c) (d)

Fig. 3. Numerical result of HNM on MOP1 together with the box con-
straints (19) using (20) as initial population. (a) and (b) Iterations in decision
and objective space. (c) and (d) Optimal solution and its image for μ = 5
and r = (20, 20)�.

TABLE III
HYPERVOLUME VALUES, ERROR, AND HYPERVOLUME GRADIENTS FOR

THE APPLICATION OF HNM ON MOP1 WITH CONSTRAINT (19)
USING (20) FOR X0 (COMPARE TO FIG. 3)

the convergence speed is only linear, which is due to the
penalization approach.

For equality constrained MOPs, one can proceed analo-
gously to “classical” equality constrained SOPs via adapting
the Lagrange multiplier method [30], the explicit description
is left out here due to space limitations. More advanced con-
straint handling techniques are certainly interesting but beyond
the scope of this paper.

Here, another important aspect to consider when using the
HNM is the choice of a reference point r. For the previous
examples, we have chosen r much larger than the nadir point
to consider all the possible elements by the HNM. Further,
this is for adjusting the extreme points of the approximation.
This strategy represents no problem for BOPs (see [31]), since
r can be infinitely large, however, in the case of m > 2, this
will not be appropriate anymore [32]. Different strategies have
to be explored for the choosing of the best r when m goes up,
but, for the moment, the choosing of a reference point greater
than each greatest fk in the final approximation is enough.
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V. MEMETIC STRATEGY

By the above discussion, we can expect linear convergence
for inequality constrained problems and is even quadratic
convergence for unconstrained problems. The convergence,
however, is only of local nature as it is the case for all
Newton variants. Thus, a carefully chosen starting population
is required or else the Newton iteration may fail to converge.
We propose thus in the next step to hybridize the HNM with
an evolutionary algorithm in order to obtain a fast and reli-
able memetic strategy. As an evolutionary algorithm we will
use the SMS-EMOA which is a state-of-the-art EMOA that
aims for hypervolume maximization [2]. Crucial for the effec-
tive realization of the hybrid is to decide when to switch
from the evolutionary strategy to HNM. We suggest to apply
the Newton method once: 1) the current population of SMS-
EMOA only consists of mutually nondominated elements and
2) the difference of the hypervolume values of two consecutive
populations is less than a given threshold. More precisely, the
hybrid method we propose here, SMS-EMOA-HNM, works
as follows (compare to Algorithm 2). First, an initial popula-
tion with μ elements is chosen at random. In each iteration
step (steps 4–11), a new offspring is generated and added
to the current archive. Then, the new population is catego-
rized into s subfronts, G1, . . . , Gs, according to the domination
grade. Next, the hypervolume contribution is computed for
each individual of the worst front Gs, and the individual with
the least contribution is deleted from the archive (denoted as
updated archive). This process is continued until the popula-
tion consists of only one subfront and the difference of the
hypervolume value of the current and the updated archive is
less than or equal to a threshold tolHNM. Finally, HNM is per-
formed on the best-found population and the improved result
is returned by the algorithm.

VI. NUMERICAL RESULTS

All of the experiments conducted through this section were
performed on a computer with an Intel Core i7-2670QM 2.20
GHz CPU, 8 GB RAM, and Microsoft Windows 10 x64. As a
first step, we will empirically evaluate the performance of the
novel Newton method as well as the hybrid. To this end, we
investigate HNM as a stand-alone algorithm. One natural ques-
tion is the performance against the version presented in [18],
where the Hessian has been approximated via finite differences
(denoted by HNMA). Performance-wise, we have not observed
a noticeable difference in our computations. This changes,
however, when considering the computational times for both
methods due to the bandwidth structure of the Hessian. As
an example, Table IV shows the CPU times of the HNM and
HNMA on MOP1 for two different population sizes. As antic-
ipated, the CPU times are significantly less when computing
the exact Hessian, for increasing values of μ and n. In our
example, the CPU times differ by 2 orders of magnitude for
μ = 100, where we only have n = 2 decision variables.

Next, we evaluate the potential of the novel memetic
strategy. As test problems, we selected unconstrained and
constrained MOPs that have different properties, such as the
shapes of the PF and the modalities of the objective functions.

Algorithm 2: SMS-EMOA-HNM
Data: A reference point r ∈ R

m, a given tolerance
tolHNM ∈ R+ for SMS-EMOA, and a maximal
number of iterations Imax and a tolerance
tolx ∈ R+ for HNM.

Result: Final population X(F).
1 Initialize a population X with μ elements at random.
2 Hu := H(f(X))

3 do
4 Hc := Hu // HV value of current

archive
5 Generate an offspring x′ ∈ S from X.
6 Set X := X ∪ {

x′}.
7 Build a ranking X = G1 ∪ G2 ∪ . . . ∪ Gs according

the grade of dominance, where Gs denotes the worst
sub-front.

8 Compute the hypervolume contribution for each
x ∈ Gs.

9 Denote by x∗ the element with least hypervolume
contribution in Gs.

10 X := X \ {x∗}
11 Hu := H(f(X)) // HV value of updated

archive
12 while |Hu − Hc| > tolHNM or s > 1;
13 Construct a μ · n-vector X from X
14 X̃ := HNM(X, Imax, tolx)
15 Return X(F) constructed from X̃

TABLE IV
CPU TIMES (IN SECONDS) OF HNMA AND HNM FOR DIFFERENT

POPULATION SIZES USING SEVEN ITERATIONS OVER 20 EXPERIMENTS

We select to test our algorithm over DTLZ [33], modified
ZDT [34], and UF [35] test functions among others. The
dimensions of the decision spaces vary from 2 to 30. For
this comparison, we choose to use SMS-EMOA [2], the base
algorithm of our memetic strategy; IBEA, where the selec-
tion mechanism is governed by the performance indicator [20];
NSGA-II, an algorithm based on dominance [4]; and finally,
we compare against MOEA/D-DRA, an approach based on
decomposition [6].

As design parameters, we have chosen tolHNM = 1 × 10−3,
Imax = 6, tolx = 1 × 10−10, and μ = 50. As reference
point, we have chosen r = (11, 11)� for all problems and
have set a budget of 50 000 function evaluations, however,
the SMS-EMOA-HNM can stop before. All experiments have
been repeated for 20 independent runs. The following compar-
ison is made at the point that the SMS-EMOA-HNM stops.
Table V shows the hypervolume values for all the five meth-
ods. In 17 of 21 test functions, SMS-EMOA-HNM achieves
the best values. Moreover, in 11 of 17 test functions, where
SMS-EMOA-HNM wins, it exists significant statistical differ-
ences [marked with an asterisk (*) in Table V]. Our approach
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TABLE V
STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) ACCORDING

TO HYPERVOLUME FOR THE FIVE ALGORITHMS. THE MEASURES WERE

TAKEN WHEN THE SMS-EMOA-HNM STOPS TO USE THE SAME

BUDGET OF FUNCTION EVALUATIONS

seems to be effective for linear PSs even in higher dimension
(DTLZ, ZDT, LSS, Fonseca 1, and MOP 2 test functions).
However, its performance is diminished when it tackles more
difficult PSs. See UF test functions results in Table V; our
algorithm only wins in 3 of 7 cases. We notice that HNM
depends on the starting population due to its local nature.
Then, the performance of HNM is affected when the pop-
ulation produced by the global approach, in this particular
case, the SMS-EMOA is not good like in UF3. In UF3,
the SMS-EMOA-HNM outperforms SMS-EMOA, however,
cannot reach the value obtained by MOEA/D-DRA. For non-
linear and disconnected PSs (see UF5 and UF6) the method is
clearly not effective. The refinement of the solutions in these
areas of the PS can be very difficult for our approach, since,
a slight movement can affect the hypervolume value. Then,
the method prefers to not move what causes that HNM gets
stuck. By considering the geometry of the PFs, the HNM has
worked well over convex (MOP2, ZDT1M, LSS, ZDT4M,

(a) (b)

Fig. 4. Convergence plot comparisons over the whole execution of SMS-
EMOA and SMS-EMOA-HNM for some test functions. (a) LSS α = 1.5.
(b) LSS α = 0.5.

and UF1), concave (Fonseca 1, DTLZ3, LSS, ZDT6M, and
UF4), linear (DTLZ1), and disconnected fronts (ZDT3M). The
performance of the HNM is invariant to the geometry of the
PF, nevertheless, the method has difficulties in dealing with
nonlinear and disconnected PSs. In most of the test functions
our memetic approach, the SMS-EMOA-HNM, seems to be
competitive and superior against the other approaches. It is
important to mention that the HNM has not been designed
for replacing evolutionary algorithms instead this paper shows
that the method can be used for obtaining better approxima-
tions of the PF with higher hypervolume values almost near
to the optimal. Finally, for other kind of problems, such as the
imbalance MOPs proposed in [36] and [37], the method as it
is will not perform well. This is since the final approximations
produced by commonly used evolutionary algorithms (NSGA-
II, MOEA/D, and SMS-EMOA) generally do not cover the
whole PF. Due to these, algorithms aim more for convergence
than diversity. Therefore, by using the HNM with a starting
point produced by SMS-EMOA will not be good since the
local nature of the Newton method only will allow to refine
the solution set locally. However, Liu et al. [36] developed
an approach called multiobjective to multiobjective that can
be coupled with any MOEA. This strategy can be helpful to
produce a good starting point for the HNM for tackling these
kind of problems.

Considering the computational time expended to compute
the local search, our algorithm use less time in most of
the cases than the SMS-EMOA (see Table VI). This means
that the switch between the global and the local approach
decreases the computational time spent using the same number
of function evaluations. However, NSGA-II, MOEA/D-DRA,
and IBEA are the algorithms that perform much faster than the
SMS-EMOA. Nevertheless, by selecting the one with the best
performance, we could apply the HNM also to refine the solu-
tion and decrease the computational time. To make the com-
parison fair, we use the implementation of these algorithms
provided by jMetal [38] using the default configuration.

Fig. 4 shows the convergence plots for SMS-EMOA against
SMS-EMOA-HNM in some test problems. The black lines
represent the means for every 100 function evaluations of
SMS-EMOA-HNM, it is important to emphasize that our
proposal stops before spending all the function evaluations
in the budget. The red dotted lines represent the means for
the competitor (SMS-EMOA) and the magenta dots represent

Authorized licensed use limited to: Universiteit Leiden. Downloaded on December 01,2021 at 09:33:15 UTC from IEEE Xplore.  Restrictions apply. 



2194 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 5, MAY 2020

TABLE VI
STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) ACCORDING

TO TIME (SECONDS) FOR ALL ALGORITHMS

(a) (b)

Fig. 5. Final approximation in parameter space obtained by (a) SMS-EMOA
and (b) SMS-EMOA-HNM in the Lame Super Sphere problem with n = 2
and μ = 100 after 20 000 function evaluations.

the maximal hypervolume values for each problem. We can
observe that the new hybrid reaches the maximal hypervol-
ume values. Further, even if all algorithms converge toward

TABLE VII
�2 VALUES BETWEEN THE FINAL APPROXIMATIONS AND THE PSS

the maximum, the convergence is significantly faster for SMS-
EMOA-HNM, saving about 20 000 function evaluations. Fig. 4
shows the advantage of using the HNM for the refinement
of the final approximations produced by a global approach
by saving function evaluations and reaching better hypervol-
ume values. The above-mentioned superiority does not only
hold when considering the hypervolume value but also the
approximation quality of the PS. Fig. 5 shows a numerical
result of SMS-EMOA-HNM and its base MOEA on the Lame
Super Sphere problem with n = 2 for a budget of 20 000
function evaluations. The PS is the line segment connecting
the points (0, 0)� and (1, 1)�. Apparently, the approximation
quality of SMS-EMOA-HNM is much better than the one from
SMS-EMOA. Remarkably, the approximation quality of the
latter cannot reach the other one even if the function eval-
uation budget is increased. This observation gets confirmed
in Table VII, where the approximation qualities (measured
via the averaged Hausdorff distance �2 [21]) of the final
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populations for all problems and algorithms are displayed.
Then, SMS-EMOA-HNM significantly outperforms five other
MOEAs on our chosen benchmark functions.

The proposed HNM only works for BOPs. Such prob-
lems have to be continuous and second-order differentiable.
A problem for extending the applicability of the method for
m > 2 is the time complexity of the computation of the
hypervolume Hessian matrix. However, by using the same
framework and by adapting a quasi-Newton method, we could
tackle problems with m > 2. The adaptation of the HNM is
left for future work.

VII. CONCLUSION

In this paper, we have propagated the use of a population-
based Newton method for hypervolume maximization within
specialized memetic strategies for the treatment of sufficiently
smooth continuous MOPs. First of all, we have derived the
hypervolume Hessian matrix for a given MOP and popula-
tion analytically and have fully expressed the matrix for the
case of a BOP. Further, we have investigated under which
condition the matrix has full rank. Next, we have proposed
the population-based HNM for hypervolume maximization for
unconstrained MOPs and have made first attempts for the ade-
quate treatment of constraints. For the proposed method, we
could expect the following features:

1) local quadratic convergence in the unconstrained case;
2) set-based local search;
3) save function evaluations;
4) reach in most of the cases a near optimal H value;
5) invariant to different geometries of PFs;
6) not well performed over nonlinear and disconnect PSs;
7) necessity of a good starting point to avoid getting stuck;
8) necessity of the computation of the Hessian matrix.
Since the convergence holds only locally, we have proposed

in the sequel SMS-EMOA-HNM, a hybrid of HNM and SMS-
EMOA to obtain a fast and reliable solver for continuous
BOPs. Numerical results and comparisons have finally shown
the benefit of the novel memetic algorithm.

For future work, it would be desirable to develop and test
more advanced constrained handling techniques which would
increase the applicability of the method. Also, an adaptation
of HNM for m > 2 (quasi-Newton method) and a study
of the best choice of r will be pursued. Moreover, the sin-
gularity of the Hessian matrix will be inspected around the
stationary point of the hypervolume indicator and the singu-
larity conditions obtained in this paper should be generalized
to the scenario when μ > 2. Finally, the application of
the novel hybrid to real-world problems would be of great
interest.
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