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Abstract

We present new excess risk bounds for general unbounded loss functions including log loss
and squared loss, where the distribution of the losses may be heavy-tailed. The bounds
hold for general estimators, but they are optimized when applied to η-generalized Bayesian,
MDL, and empirical risk minimization estimators. In the case of log loss, the bounds imply
convergence rates for generalized Bayesian inference under misspecification in terms of a
generalization of the Hellinger metric as long as the learning rate η is set correctly. For
general loss functions, our bounds rely on two separate conditions: the v-GRIP (generalized
reversed information projection) conditions, which control the lower tail of the excess loss;
and the newly introduced witness condition, which controls the upper tail. The parameter
v in the v-GRIP conditions determines the achievable rate and is akin to the exponent
in the Tsybakov margin condition and the Bernstein condition for bounded losses, which
the v-GRIP conditions generalize; favorable v in combination with small model complexity
leads to Õ(1/n) rates. The witness condition allows us to connect the excess risk to
an “annealed” version thereof, by which we generalize several previous results connecting
Hellinger and Rényi divergence to KL divergence.

Keywords: Statistical Learning Theory, Fast Rates, PAC-Bayes, Misspecification, Gen-
eralized Bayes

1. Introduction

Much of statistical learning theory has operated under the restrictive assumption that the
loss suffered for any prediction falls into some finite interval, which to say that the losses are
bounded. In addition, much of this theory for deterministic estimators and even more so for
randomized estimators only yields “slow” convergence rates of the risk of the predictor to the
minimum risk achievable via the model in use; these are the best rates possible in the face
of a worst case distribution. Faster rates of convergence are often possible under various,
practically-applicable conditions on the learning problem, and showing such improvements
is important as they can translate to drastic reductions on the number of examples needed
to achieve a fixed level of error. We provide a novel theory of excess risk bounds for
deterministic and randomized estimators in settings with general unbounded loss functions
which may have heavy-tailed distributions — important applications include regression in
situations with heavy-tailed noise and density estimation with log loss without assuming
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boundedness of likelihood ratios. These bounds have implications for two different areas: in
statistical learning, they establish that with unbounded losses, under weak conditions, one
can obtain estimators with fast convergence rates of their risk — such conditions previously
were only well understood in the bounded case (earlier work on generalization bounds for
unbounded loss functions such as (Meir and Zhang, 2003; Cortes et al., 2019) typically needs
much stronger conditions to obtain fast rates). In density estimation under misspecification,
the new bounds imply convergence rates for η-generalized Bayesian posteriors, in which
the likelihood is raised to a power η not necessarily equal to 1, under surprisingly weak
conditions. Finally, the bounds highlight the close similarity between PAC-Bayesian and
η-generalized Bayesian learning methods under misspecification; these methods usually are
studied within different communities. We now consider these applications in turn:

1. Statistical Learning In Statistical Learning Theory (Vapnik, 1995) the goal is to
learn an action or predictor f̂ from some set of actions, or model, F based on i.i.d. data
Zn ≡ Z1, Z2, . . . , Zn ∼ P , where P is an unknown probability distribution over a sample
space Z. One hopes to learn an f̂ with small risk, i.e., expected loss E[`f̂(Z)], for some

given loss function `. Here, E denotes expectation under P , and f̂ ≡ f̂(Zn) is a function
from Zn to F that represents a learning algorithm; a prototypical example is empirical risk
minimization (ERM). Thus, as is common, with some abuse of notation a learning algorithm
is really a function, i.e., we do not insist it to be computable; and, in statistical contexts,
we sometimes refer to learning algorithms as estimators, simply because this is common
usage. A learning problem can thus be summarized as a tuple (P, `,F). Well-known
special cases include classification (with ` the 0-1 loss or some convex surrogate thereof)
and regression (with ` the squared loss). As is customary (see e.g. (Bartlett et al., 2005)
and (Mendelson, 2014)), in most of our results we assume existence of an optimal f∗ ∈ F
achieving E[`f∗(Z)] = inff∈F E[`f(Z)], and we define the excess loss of f as Lf = `f − `f∗ .

When the losses are almost surely bounded under P , there exists a well-established
theory that gives optimal convergence rates of the excess risk E[Lf̂ ] of estimator f̂ in terms
of sample size n. Broadly speaking, in the bounded case the optimal rate is usually of order

O ((
compn
n

)
γ

) , (1)

where compn is a measure of model complexity such as the Vapnik-Chervonenkis (VC)
dimension or the log-cardinality of an optimally chosen ε-net over F , among others. For
the models usually studied in statistics, such complexity measures are sublinear in n, and
for “simple” models (often called parametric models, like those of finite VC dimension in
classification) are finite or logarithmic in n. The exponent γ, which is in the range [1/2,1]
in practically all cases of interest, reflects the easiness of a learning problem by depending
on both geometric and statistical properties of (P, `,F). This exponent is equal to 1/2
in the worst case but can be larger, allowing for faster rates, if the loss ` has sufficient
curvature, e.g., if it is exponentially concave (exp-concave) or mixable (Cesa-Bianchi and
Lugosi, 2006), or if (P, `,F) satisfies “easiness” conditions such as the Tsybakov margin
condition (Tsybakov, 2004), a Bernstein condition (Audibert, 2004; Bartlett and Mendel-
son, 2006), or (stochastic) exp-concavity (Juditsky et al., 2008). Because these conditions
and the others on which this paper centers can allow for learning at faster rates, when
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any of the conditions hold a learning problem is intuitively easier. We thus call all such
conditions easiness conditions throughout this work. In this literature, one often calls (1)
with γ = 1/2 the slow rate and (1) with γ = 1 the fast rate. We note, however, that the
terminology “fast rate” is somewhat imprecise, as there are special cases for which rates
even faster than n−1 are possible (Audibert and Tsybakov, 2007). A more precise term
may be “optimistic rate” (see (Mendelson, 2017a) for a lucid discussion), as this is the rate
obtainable in the optimistic situation where an easiness condition holds. We opt for “fast”
primarily for historical reasons.

Van Erven et al. (2015) showed that, in the case when the excess losses are bounded1,
all the “easiness” conditions above are subsumed by what they term the v-central condition,
where v is a function that effectively modulates γ. While Van Erven et al. (2015) do show
connections between such conditions for unbounded excess losses as well, they left open
the question of whether the conditions still imply fast rates in that case. Thus, the first
main target of the present paper is to extend this “fast rate theory” to the unbounded and
heavy-tailed excess loss case. A main consequence of our bounds is that under v-GRIP
conditions (“GRIP” stands for generalized reversed information projection), which consist
of the v-central condition and a weakening thereof, and an additional witness condition,
the obtainable rates remain the same as in the bounded case.

2. Density Estimation under Misspecification Letting F index a set of probability
densities {pf ∶ f ∈ F} and setting the loss ` to the log loss, `f(z) = − log pf(z), we find that
the statistical learning problem becomes equivalent to density estimation, the excess risk
becomes equal to the generalized Kullback-Leibler (KL) divergence

D(f∗ ∥ f̂) = EZ∼P [log(pf∗(Z)/pf̂(Z))],

and ERM becomes maximum likelihood estimation. We call a model F well-specified if
it is correct, i.e., if pf∗ is the density of the true distribution P ; in that case D(f∗ ∥ f̂)
becomes the standard KL divergence. In this setting, our results thus automatically be-
come convergence bounds of estimators f̂ to the KL-optimal density within F , where the
convergence itself is in terms of KL divergence rather than more usual, weaker metrics such
as Hellinger distance. Here, our results vastly generalize earlier results on KL bounds which
typically rely on strong conditions such as boundedness of likelihood ratios or exponential
tail conditions (Birgé and Massart, 1998; Yang and Barron, 1998; Wong and Shen, 1995;
Sason and Verdú, 2016); in this work, the much weaker witness condition suffices.

We also provide bounds that are more similar to the standard Hellinger-type bounds
and that hold without the witness condition, having a generalization of squared Hellinger
distance (suitable for misspecification) rather than KL divergence on the left. Our bounds
also allow for estimators that output a distribution Π on F rather than a single f̂ and are
particularly well-suited for η-generalized Bayesian posteriors, in which the likelihood in the
prior-posterior update is raised to a power η; standard Bayes corresponds to η = 1. We
thus can compare our rates to classical results on Bayesian rates of convergence in the well-
specified case, such as in the influential paper (Ghosal, Ghosh, and van der Vaart, 2000)
(GGV from now on). In this case, we generally obtain rates comparable to those of GGV,

1. Van Erven et al. (2015) actually assume that the losses are bounded, but inspection of the results therein
reveals that all that is needed is in fact bounded excess losses.
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but under weaker conditions, as long as we take η (arbitrarily close to but) smaller than 1,
a fact already noted for η-generalized Bayes by Zhang (2006a); Martin et al. (2017); Walker
and Hjort (2002). In contrast to earlier work, however, our results remain valid in the
misspecified case, although η has to be adjusted there to get convergence at all; moreover,
the rates obtained are with respect to a new “misspecification metric” and hence are not
always comparable to those obtained in the well-specified case. The optimal η depends on
the “best” parameter v for which a v-GRIP condition holds. Grünwald and Van Ommen
(2017) give a simple example which shows that taking η = 1 (standard Bayes) in regression
under misspecification can lead to results that are dramatically worse than taking the right
η, thus showing that our results do have practical implications.

3. η-generalized Bayes and PAC-Bayes The η-generalized Bayesian posterior can
be further generalized: for general loss functions `, we can define “posteriors” ΠB

n with
densities given by

dΠB
n

dΠ0
(f) ≡ πBn (f) ≡ πB(f ∣ z1, . . . , zn) ∶=

exp (−η∑ni=1 `f(zi))

∫F exp (−η∑ni=1 `h(zi)) ⋅ dΠ0(h)
, (2)

for some “prior” distribution Π0 on F . This idea goes back at least to Vovk (1990) and is
central in the PAC-Bayesian approach to statistical learning (McAllester, 2003). Recently,
it has also been embraced within the Bayesian community (Bissiri et al., 2016; Miller and
Dunson, 2018). Nevertheless, the communities studying frequentist convergence of Bayesian
methods under misspecification and PAC-Bayesian analysis are still largely separate; yet,
the present paper shows that the approaches can be analyzed using the very same ma-
chinery and that it is fruitful to do so. To wit, all our results are based on an existing
lemma due to T. Zhang (2006b; 2006a) which provides convergence bounds in terms of
an “annealed” pseudo-excess risk for general estimators; these bounds are optimized if one
plugs in η-generalized Bayesian estimators of the general form above. Zhang’s bound is
itself based on earlier works in the information theory literature (in particular, the Mini-
mum Description Length (MDL) literature) (Barron and Cover, 1991; Li, 1999)) and the
PAC-Bayesian literature (Catoni, 2003; Audibert, 2004). Of course, the technique also has
some disadvantages, to which we return in the Discussion (Section 7).

1.1. Overview and Main Insights of the Paper

Section 2 formalizes the setting; Section 7 discusses additional related work and potential
future work and provides discussion. The paper ends with appendices containing all long
proofs, technical details concerning infinities, and some additional examples. The main
results are in Sections 3–6:

Section 3: Zhang’s Bound; Information Complexity In Section 3, for which we
do not claim any novelty, we present Lemma 5; this lemma is T. Zhang’s (2006b; 2006a)
result that bounds a pseudo-excess risk of estimator f̂ ∶ Zn → F in terms of the information
complexity ICn,η. A very simplified form of this lemma is

E
ann(η)
Z∼P [Lf̂] ⊴η⋅n ICn,η, (3)
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where the pseudo-excess risk E
ann(η)
Z∼P is formally defined in (11) and ⊴ indicates exponential

stochastic inequality (ESI), a useful notational tool which we define. ESI implies both
inequality in expectation and with high probability over the sample Zn that determines
f̂ ≡ f̂(Zn); the subscript η⋅n is only relevant for the in-probability version (see Proposition 3)
and can be ignored for now. The actual bound (14) we provide in Lemma 5 generalizes
(3), also allowing for estimators that output a distribution such as generalized Bayesian
posteriors as given by (2). ICn,η is a notion of model complexity which, apart from n and η,
also depends (for now suppressed in the notation) on the data Zn, the choice of estimator
f̂ or Πn, and on a distribution Π0 on F which we may think of as “something like” a prior:
while the bound holds for any fixed Π0, the estimator that minimizes ICn,η for given prior
Π0 and data Zn is the corresponding η-generalized Bayesian posterior ΠB

n given by (2).

For this choice of estimator, one can often design priors such that, with high probability
and in expectation, ICn,η for the η-generalized Bayesian estimator can be upper bounded
as

ICn,η = Õ (
compn
ηn

) , (4)

for functions compn that rely on the model F ’s complexity as indicated above (the Õ-
notation suppresses logarithmic factors). In Section 3 we show that in the application
to well-specified density estimation, priors can always be chosen such that the classical
posterior contraction rates of GGV are (essentially) recovered for any fixed η > 0, in the
sense that (3) would imply the same rates if the left-hand side were replaced by a squared
Hellinger distance. For example, for standard finite and parametric statistical models, we
obtain for Bayesian estimators that compn = Õ(1); for the nonparametric statistical models
considered by GGV, we obtain compn = Õ(nα) for an α such that (4) becomes the minimax
optimal rate. Similar bounds on ICn,η with general loss functions are given in Section 6.
Henceforth, we use the term parametric to refer to F for which generalized Bayes estimators
give compn = O(logn) = Õ(1).

We would thus get good convergence bounds if the left-hand side of (3) were the actual
excess risk, but instead it is an “annealed” version thereof, always smaller than the actual
excess risk and sometimes even negative. All of our own results can be viewed as establishing
conditions under which the annealed excess risk can either be related to the actual excess
risk or otherwise to a (generalized Hellinger) metric measuring “distance” between f∗ and
f in some manner; this is done by modifying η. Both the information complexity and its
upper bound (4) can only increase as we decrease η (Proposition 6); yet, for small enough
η, annealed convergence implies convergence in the sense in which we are interested (either
excess risk or generalized Hellinger distance) up to some constant factor (Sections 4 and 5)
and sometimes with an additional slack term (Sections 5 and 6). Thus, the optimal η is
given by a tradeoff between information complexity and these additional factors and terms.

Sections 4–6 each contain (a) a condition enabling a link between annealed excess risk
and the divergence of interest in that section; (b) a new theoretical concept underlying the
condition, (c) convergence result(s) relating information complexity to an actual metric or
excess risk, and (d) example(s) that illustrate it.

Section 4: The Strong Central Condition and a New Metric; First Convergence
Result The strong central condition (Van Erven et al., 2015) expresses that the lower tail
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of the excess loss Lf ∶= `f − `f∗ is exponential, i.e., P (`f∗ − `f > A) is exponentially small in
A. It has a parameter η̄ > 0 that determines the precise bound that can be obtained. While
this may sound like a very strong condition, due to the nature of the log loss it automatically
holds for density estimation with η̄ = 1 if the model is well-specified or convex. We show
(Theorem 10) that the η̄-strong central condition is sufficient for convergence in a new
“misspecification” metric dη̄ (Definition 8) that generalizes the Hellinger distance: there
exist estimators such that for every 0 < η < η̄,

d2
η̄(f

∗, f̂) ⊴η⋅n Cη ⋅ ICn,η,

where Cη is a constant that tends to ∞ as η ↑ η̄ and is bounded by 1 if η ≤ η̄/2. For
misspecified models, η̄ can in principle be either smaller or larger than 1. This metric is
mainly of interest in the density estimation application of our work, and we thus compare
our results to those of GGV for well-specified density estimation and illustrate them for the
case of misspecified generalized linear models (GLMs). Plugging in any fixed η < η̄ in (4)
and comparing to (1), we see that under the strong central condition, we can always achieve
the fast rate, i.e., (1) with γ = 1.

Section 5: The Witness Condition and a First Excess Risk Convergence Result
Here we consider when, under the strong central condition, we can get bounds on the actual
excess risk (or, in density estimation, on the generalized KL divergence). We provide a new
concept, the empirical witness of badness condition, or witness condition for short, which
provides control over the upper tail of the excess loss Lf = `f − `f∗ (whereas the central
condition concerns the lower tail). Essentially, the witness condition says that whenever
f ∈ F is worse than f∗ in expectation, the probability that we witness this in our training
example should not be negligibly small. We thus rule out the case that f has extremely
large loss with extremely small probability. This condition turns out to be quite weak
— it can still hold if, for example, the excess loss `f − `f∗ is heavy-tailed (it suffices for
the conditional second moment of the target to be uniformly bounded almost surely; see
Example 7). Thus we establish our first excess risk convergence result, Theorem 14, which,
in its simplest form, says that if both the central condition holds with parameter η̄ and the
witness condition holds, then for all 0 < η < η̄,

E[Lf̂ ] ⊴η⋅n/aη aη ⋅ ICn,η, (5)

where aη is a constant that again tends to ∞ as η ↑ η̄. Once again, by combining (5) and
(4), we see that under a witness and η̄-central condition, we can achieve the fast rate by
taking γ = 1 in (1).

The witness condition vastly generalizes earlier conditions such as boundedness of like-
lihood ratios in density estimation (Birgé and Massart, 1998; Yang and Barron, 1998) and
the exponential tail condition of Wong and Shen (1995). Moreover, (5) (Theorem 14) is
based on Lemma 13, which generalizes earlier results relating KL divergence to Hellinger
and Rényi-type divergences such as those of Yang and Barron (1999), Haussler and Opper
(1997), Birgé and Massart (1998), Wong and Shen (1995), and Sason and Verdú (2016).
We also discuss the similarity between the witness condition and the recently introduced
small-ball assumption of Mendelson (2014).

6



Fast Rates for General Unbounded Loss Functions

Section 6: Weaker Fast Rate Conditions; the GRIP The η̄-central condition of
Section 4 can be generalized to the v-central condition, where v ∶ R+ → R+ is a non-
decreasing function; nonconstant v(x) gives weaker conditions that still allow for fast rates.
Van Erven et al. (2015) showed that for the bounded excess loss case, most existing easiness
conditions can be shown to be equivalent to either a v-central condition or to what they call
a v-PPC (pseudo-probability-convexity) condition. In one of their central results, they show
these two seemingly different conditions to be equivalent to one another, and also, if v is
of the form v(x) ≍ x1−β, (essentially) equivalent to a (B,β)-Bernstein condition (Audibert,
2004; Bartlett and Mendelson, 2006). In this section we show that for unbounded excess
losses, the v-central and v-PPC conditions become quite different from each other (and also
from the Bernstein condition): the v-PPC condition allows for heavy- (polynomial) tailed
loss distributions, whereas the v-central condition does not.

We first present Theorem 22, an excess risk bound under the v-central condition that is
a relatively straightforward consequence of Theorem 14, our risk bound under the η̄-central
condition. We then move to Theorem 29, a similar excess risk bound under the v-PPC
condition. This theorem involves the GRIP, the novel, fundamental concept of this section
(Definition 23). GRIP stands for generalized reversed information projection and generalizes
the concept of reversed information projection introduced by Li (1999). The GRIP mη

F is
an η-dependent pseudo-predictor (it might achieve smaller risk than any f for which `f is
defined). We show that, for each η, if f∗ is replaced by the GRIP mη

F , then the convergence
result (5) above holds. We can interpret the v-PPC condition as controlling the excess risk
of f∗ over the GRIP mη

F as a function of η: the smaller η, the smaller this excess risk. This
determines, for each sample size, an optimal η at which the bound (5) and the excess risk
of f∗ relative to mη

F balance. Theorem 22 establishes that whenever the witness condition
holds and a v-central condition holds, we have, for every ε > 0, for η < v(ε),

E[Lf̂ ] ⊴η⋅n/a′η a′η ⋅ ICn,η + ε; (6)

where again a′η is a constant. Theorem 29 shows that if a v-PPC condition holds, the same
result holds whenever η < v(ε)/2, but now only in expectation, for yet another a′η. Thus, the

optimal rate now depends on v; in particular, if v(ε) ∝ ε1−β, then we can optimize over ε
using upper bound (4) and find that, as long as compn is logarithmic in n (as in parametric
settings), by setting η at sample size n equal to η ≍ n−(1−β)/(2−β) we obtain the rate

E[Lf̂ ] = Õ (n
− 1

2−β ) (7)

which interpolates between the fast rate ((1) with γ = 1) and the slow rate (γ = 1/2),
where γ = 1/(2 − β) depends on β. Such calculations are well-known for the bounded loss
case, and our results establish that the same story continues to hold for the unbounded
excess loss case, as long as a witness condition holds — even for heavy-tailed losses. While
Theorems 22 and 29 are applicable to the unbounded-loss-yet-bounded risk case (for which
supf∈F E[`f ] < ∞), Theorem 31 extends this result to the unbounded risk case, requiring
a slight generalization of the witness condition. Examples 11 and 12 illustrate our results
by considering regression with heavy-tailed losses, the latter example further linking the
aforementioned small-ball assumption to our generalized witness condition.
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The Picture that Emerges Our results point to three separate factors that determine
achievable convergence rates for generalized Bayesian, two-part MDL, and empirical risk
minimization (ERM) estimators, which often, but not always (see below) coincide with
minimax rates:

1. The information complexity ICn,η, which determines the “richness” of the model. It
is data- and algorithm- dependent, but we can often bound it with high probability or
even independently of the underlying P . In addition, to see what rates can be achieved,
we can plug in the (η-generalized Bayesian) learning algorithms that minimize it.

2. The interaction between P , `, and F that determines, for each f ∈ F , the distribution
of the lower tail of the excess loss Lf . This interaction is sometimes called the easiness
of the problem (Koolen et al., 2016); it determines the optimal η at which a bound on
η-information complexity implies a bound on the generalized Hellinger-type metric.
This is captured by our v-GRIP conditions, which generalize several existing easiness
conditions.

3. The interaction between P , `, and F that determines the distribution of the upper
tail of the excess loss. This interaction plays no role for bounded excess losses and
no role for density estimation if one only cares about convergence in the weak mis-
specification metric. Yet for unbounded excess losses with the excess risk target (or
density estimation with KL-type target), this interaction becomes crucial to take into
account and is done so via the witness condition.

In the Discussion (Section 7), Figure 1 summarizes how the various conditions hang together
and are in some special cases (e.g. squared loss) implied by existing, better-known easiness
conditions imposed in other works.

What We Do Not Cover We stress at the outset that we do not cover everything there
is to know about the type of convergence bounds we prove. First of all, our bounds are
most useful for ERM, η-generalized Bayesian, and MDL estimators, for a specific η that
depends on the learning problem (P, `,F) and often also on n. Thus to apply generalized
Bayes/MDL in practice, η needs to be determined in some data-driven way; we discuss
various ways to do this in Section 7. Note though that our bounds can be directly used for
ERM, which can be implemented without knowledge of η.

We also leave untouched the fact that for parametric models, Zhang’s bounds lead to an
unnecessary logn-factor in the convergence rates. Zhang (2006b; 2006a), following Catoni
(2003), addresses this issue by a relatively straightforward “localized” modification of his
bound; since it distracts from our main points (the witness and GRIP conditions, which
lead to polynomial gains in rate), we will simply ignore all logarithmic factors in this paper.

Third, the new convergence rates for η-generalized Bayesian, MDL, and ERM estimators
that we establish are in some cases, but not always, minimax optimal. We do explicitly dis-
cuss for each example below whether the obtained rates are optimal and discuss exceptions,
unknowns, and potential remedies in Section 7.

Finally, we only discuss proper and randomized proper learning algorithms and estima-
tors here. This means that our estimators either output an f̂ ∈ F or, if they output a
distribution Π ∣ Zn, it is always a distribution on F , and the quality of this distribution
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is evaluated by the expected loss incurred if one draws an f randomly from Π ∣ Zn. The
terminology “proper” is from learning theory (Lee et al., 1996); in statistics such estimators
are sometimes called “in-model” (Grünwald, 2007). In learning theory, one often considers
more general “improper” set-ups in which one can play an element of (say) conv(F), the
convex hull of F , which sometimes improves the obtainable rates. We briefly return to this
issue in Example 11 and Section 7.
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Notation Description Page

General notation

Zn i.i.d. sample; Zn = (Z1, Z2, . . . , Zn) ∼ P
n 2

P Probability distribution over Z 2

f̂ Deterministic estimator or learning algorithm; f̂ ≡ f̂(Zn) 2

(P, `,F) Learning problem for distribution P , loss function `, and model F 2

`f Loss of hypothesis f ; `f(z) ≡ `(f, z) and `f ≡ `f(Z) 11

f∗ Risk minimizer within F 2

Lf Excess loss (w.r.t. f∗) of f ; Lf(z) ≡ `f(z)− `f∗(z) and Lf ≡ Lf(Z) 2

ΠB
n (and πBn ) η-generalized Bayesian posterior (and its density relative to Π0) 4

⊴η Exponential stochastic inequality (E.S.I.) 14

Π∣ Randomized estimator or learning algorithm; Π∣ ∶ ⋃
∞
n=0Z

n →∆(F) 11

Πn Output of algorithm Π∣ based on sample Zn; Πn ≡ Π ∣ Zn 11

Π0 Prior; Π0 ≡ Π ∣ {} 13

µ Common dominating measure for {pf}f∈F in the case of log loss 12

f̈2-p η-generalized two-part MDL estimator for prior Π0 at sample size n 13

(f̂ ,Π0) Deterministic estimator f̂ viewed as randomized estimator 13

Ehe(η) [U] Hellinger-transformed expectation; Ehe(η) [U] = 1
η
(1 −E [e−ηU ]) 14

Eann(η) [U] Annealed expectation; Eann(η) [U] = − 1
η

log E [e−ηU ] 14

ICn,η(Π∣) Information complexity 15

pf,η Entropified loss; pf,η(z) = p(z)
exp(−ηLf (z))

E[exp(−ηLf (Z))] 19

dη̄(⋅, ⋅) Misspecification metric 20

N (A, ∥ ⋅ ∥, ε) ε-covering number of (A, ∥ ⋅ ∥) 32

Divergences

KL(⋅ ∥ ⋅) Standard Kullback-Leibler divergence 13

H1/2(⋅ ∥ ⋅) Standard (squared) Hellinger distance 20

Hη(⋅ ∥ ⋅) η-generalized Hellinger divergence 20

Dα(p∥q) Rényi divergence of order α; Dα(p∥q) =
1
α−1

log ∫ p
αq1−αdµ 47

Pseudo-predictors

F̄ enlarged action space F̄ ⊇ F that also contains pseudo-predictors 30

f∗ε pseudo-predictor, defined via its loss by `f∗ε (z) = `f∗(z) − ε, ∀z ∈ Z 31

EF,η set of pseudoprobability densities; EF,η = {e−η`f ∶ f ∈ F} 33

ξQ mixture of pseudoprobability densities; ξQ = Ef∼Q[e−η`f ] 33

mη
F or `gη GRIP; E[mη

F ] = infQ∈∆(F) E [− 1
η

log Ef∼Q[e−η`f ]] 33

mη
Q mix loss for Q ∈ ∆(F); mη

Q = − 1
η

log Ef∼Q[e−η`f ] 33

mη
A generalized GRIP w.r.t. A ⊆ F̄ ; E[mη

A] = inf
Q∈∆(A∪{f∗})

E[mη
Q] 33

mη
f mini-grip w.r.t. f ; E[mη

f ] = inf
α∈[0,1]

E [−
1

η
log ((1 − α)e−η`f∗ + αe−η`f )] 58

gηF and gηf pseudo-actions for GRIP losses mη
F and mη

f respectively 59
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Notation Description Page

Conditions

(β,B)-Bernstein E[L2
f ] ≤ B (E[Lf ])

β
for all f ∈ F 28

strong η̄-central ∃f∗ ∈ F s.t. `f∗ − `f ⊴η̄ 0 for all f ∈ F 19

η-central up to ε ∃f∗ ∈ F s.t. `f∗ − `f ⊴η ε for all f ∈ F 31

v-central for all ε ≥ 0, ∃f∗ ∈ F s.t. `f∗ − `f ⊴v(ε) ε for all f ∈ F 31

η-PPC up to ε ∃f∗ ∈ F s.t. EZ∼P [`f∗ −m
η
F] ≤ ε 34

v-PPC for all ε ≥ 0, ∃f∗ ∈ F s.t. EZ∼P [`f∗ −m
v(ε)
F ] ≤ ε 34

(u, c)-witness E [(`f − `f∗) ⋅ 1{`f−`f∗≤u}] ≥ cE[`f − `f∗] for all f ∈ F 24

(τ, c)-witness generalized version of (u, c)-witness condition (see Definition 12) 25

witness w.r.t. φ (u, c)-witness condition with dynamic comparator (see Assump. 1) 58

weak witness w.r.t. φ weakened version of the previous condition (see Assumption 1) 58

unif. exp. upper tail Uf (for f ∈ F) has condition if ∃κ ∈ (0,∞) s.t. supf∈F E [eκUf ] <∞ 27

small-ball assumption ∃κ > 0 and ε ∈ (0,1) s.t. ∀f, h ∈ F , Pr (∣f − h∣ ≥ κ∥f − h∥L2(P )) ≥ ε 29

convex luckiness (for squared loss); arg minf∈F E[`f ] = arg minf∈conv(F) E[`f ] 28

2. Setting, Technical Preliminaries, Global Assumptions

We now formally introduce the problem setting, cover some preliminaries, and state the
assumptions used throughout this work. A glossary appearing on this page and the last one
describes all frequently used symbols and conditions.

Let `f(z) ∶= `(f, z) ∈ R∪{∞} denote the loss of action f ∈ F under outcome z ∈ Z. In the
classical statistical learning problems of classification and regression with i.i.d. samples, we
have Z = X ×Y. Classification (0-1 loss) is recovered by taking Y = {0,1} and `f(x, y) = ∣y−
f(x)∣, and we obtain regression with squared loss by taking Y = R and `f(x, y) = (y−f(x))2.
In either case, the class F is some subset of the set of all functions f ∶ X → Y, such as the set
of decision trees of depth at most 5 for classification. Our setting also includes conditional
density estimation (see Example 1). Unless we explicitly state otherwise, whenever we
introduce a random variable we assume it is a function of Z,Z1, . . . , Zn which are i.i.d. ∼ P .
If we write `f we mean `f(Z).

While in frequentist statistics one mostly considers learning algorithms (often called
“estimators”) that always output a single f ∈ F , we also will consider algorithms that
output distributions on F . Such distributions can, but need not, be Bayesian or generalized
Bayesian posteriors as described below. Formally, a learning algorithm based on a set of
predictors F is a function Π∣ ∶ ⋃

∞
n=0Z

n → ∆(F), where ∆ is the set of distributions on
F . The output of algorithm Π∣ based on sample Zn is written as Π ∣ Zn and abbreviated
to Πn. Πn is a function of Zn and hence a random variable under P . For fixed given zn,
Π ∣ zn is a measure on F . Importantly, our learning algorithms are always defined such
that they can also output a distribution Π0 based on an empty data sequence; we may
think of this as a “prior” guess of f . We explain below how to recast standard estimators
such as ERM, for which Π0 is undefined, in this framework. Whenever we consider a
distribution Π on F for a problem (P, `,F), we denote its outcome, a random variable, as
f . Whenever we compare the performance of a learning algorithm Π∣ to a fixed f̃ ∈ F , we

11
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call f̃ a comparator. f̃ is called optimal or risk-minimizing if E[`f(Z) − `f̃(Z)] ≥ 0 for all
f ∈ F ; under the assumptions below, this expectation is always well-defined. We usually
(but not in Section 6 and the proofs) take as our comparator f̃ = f∗, where f∗ is a risk
minimizer. Whenever this cannot cause confusion, we write Lf = `f − `f∗ for the excess loss
relative to f∗.

Assumptions on Learning Algorithms Π∣ Whenever in the sequel we mention a learn-
ing algorithm Π∣, we make the following (very mild) assumptions: (1) for all n, zn ∈ Zn, Πn

has a density πn ≡ π ∣ zn relative to the prior distribution Π0; (2) Π0 satisfies the natural
requirement that for all z ∈ Z, Π0(f ∈ F ∶ `f(z) <∞) > 0.

Assumptions on and Conventions for Learning Problems (P, `,F) All of our math-
ematical results concern learning problems (P, `,F) for which we invariably make the fol-
lowing assumptions:

1. Unless the loss function ` is log-loss or conditional log-loss (see the example below),
it is is uniformly bounded from below in the sense that inff∈F infz∈Z `f(Z) > −∞.

2. For (conditional) log-loss, we assume for all f ∈ F that pf is a probability density
relative to some fixed common dominating measure µ, so that Pf , the distribution
with density pf , is absolutely continuous with respect to µ; we also assume that P
itself is absolutely continuous with respect to µ. Moreover, we additionally assume
that

KL(P ∥Pf∗) <∞ (8)

and, with H(P ) the differential entropy of P relative to µ,

H(P ) > −∞. (9)

3. The learning problem is nontrivial in the sense that for some f ∈ F , EZ∼P [`f(Z)] <∞

(we require this irrespective of whether ` is log-loss).

4. There exists an optimal f ∈ F . We fix any one among these (our results hold no
matter which we take) and denote it by f∗.

Some of our results continue to hold without the final assumption; we shall in all cases say
so explicitly. Since we invariably want to impose these assumptions, from now on learning
problems (P, `,F) are defined to be such that they satisfy these four assumptions, and we
will not explicitly mention them any more. The assumptions, and all other issues concerning
unboundedness and infinities, are discussed in detail in Appendix H. The requirement that
the loss is bounded from below ensures that there are no issues involving undefined expec-
tations or problems with interchanging order of expectations, as we show in Appendix H.1.
It holds for just about all loss functions encountered in the literature, except for log-loss de-
fined on continuous outcome spaces, where the log-loss can be unbounded both from above
and below; in Appendix H.2 we motivate the requirements we impose on log-loss and show
that, while very mild, they are still sufficient to make all expectations well-defined.
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Example 1 (Conditional Density Estimation) Let Z = X × Y and let {pf ∣ f ∈ F}

be a statistical model of conditional densities for Y ∣ X, i.e., for each x ∈ X , pf(⋅ ∣ x) is
a probability density on Y relative to a fixed underlying measure µ. Take (conditional)
log loss, defined on outcome z = (x, y) as `f(x, y) = − log pf(y ∣ x). The excess risk, now

E[Lf ] = EZ∼P [log
pf∗(Y ∣X)
pf (Y ∣X) ], is formally equivalent to the generalized KL divergence, as

already defined in the original paper by Kullback and Leibler (1951) that also introduced
what is now the “standard” KL divergence. Assuming that P has a density p relative to the
underlying measure, and denoting standard KL divergence by KL, we have KL(p ∥pf) =

EZ∼P [log
p(Y ∣X)
pf (Y ∣X)], so that E[Lf ] = KL(p ∥pf) −KL(p ∥pf∗). Thus, minimizing the excess

risk under log loss is equivalent to learning a distribution minimizing the KL divergence
from P over {pf ∶ f ∈ F}. We have inff∈F KL(p ∥pf) = KL(p ∥pf∗) = ε ≥ 0. If ε = 0, we
must have pf∗ = p, so we deal with a standard well-specified density estimation problem,
i.e., the model {pf ∣ f ∈ F} is “correct” and f∗ ∈ F represents the true P . If ε > 0, we still
have inff∈F E[Lf ] = 0 and may view our problem as learning an f that is closest to f∗ in
generalized KL divergence. ◻

Generalized (PAC-) Bayesian, Two-Part, and ERM Estimators Although our
main results hold for general estimators, Proposition 6 below indicates that they are es-
pecially suited for generalized Bayesian, two-part MDL, or ERM estimators, since these
minimize the bounds provided by our theorems under various constraints. To define these
estimators, fix a distribution Π0 on F , henceforth called prior, and a learning rate η > 0.
The η-generalized Bayesian posterior based on prior Π0, F and sample z1, . . . , zn is the
distribution ΠB

n on f ∈ F , defined by (2). By our requirement that for all z ∈ Z, Π0(f ∈ F ∶

`f(z) <∞) > 0, (2) is guaranteed to be well-defined.

Now, given a learning problem as defined above, fix a countable subset F̈ of F , a
distribution Π0 concentrated on F̈ and define the η-generalized two-part MDL estimator for
prior Π0 at sample size n as

f̈2-p ∶= arg min
f∈F̈

n

∑
i=1

`f(Zi) +
1

η
⋅ (− log Π0({f})) , (10)

where, if the minimum is achieved by more than one f ∈ F̈ , we take the smallest in the
countable list, and if the minimum is not achieved, we take the smallest f in the list that
is within 1/n of the minimum. Note that the η-two part estimator is deterministic: it
concentrates on a single function. ERM is recovered for finite F by setting the prior Π0 to
be uniform over F̈ . We may view the η-two part estimator as a learning algorithm Π∣ in our

sense by defining Π0 to be the prior on F̈ as above and, for each n, Πn as the distribution
that puts all of its mass at f̈2-p at sample size n. While we could denote this estimator as
Π∣2-p, it will be convenient to write (f̈2-p,Π0) so as to also specify the prior. In the same

way, general priors Π0 combined with general deterministic estimators f̂ defined for samples
of length ≥ 1 may be viewed as learning algorithms Π∣ which we will denote as (f̂ ,Π0).

Finally, we formally define the ERM estimator as the f ∈ F that minimizes ∑nj=1 `f(Zj);
whenever we refer to ERM we will make sure that at least one such f exists; ties can then
be broken in any way desired. It is important to note that ERM can be applied without
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knowledge of η; however, for general two-part and Bayesian estimators we need to know η
— we return to this issue in Section 7.

3. Annealed Risk, ESI, and Complexity

In this section we present Lemma 5, a PAC-Bayesian style bound that underlies all our
results to follow. Remarkably, it holds without any regularity conditions. However, on the
left hand side it has an “annealed” version of the risk rather than the actual risk. In Sec-
tions 4, 5, and 6 we give conditions under which the annealed risk can be replaced by either
a Hellinger-type distance or the standard risk, which is what we are really interested in.
Lemma 5 relates the annealed risk to an information complexity via exponential stochastic
inequality (ESI). We now introduce the technical notions of annealed expectation and ESI.
We then present Lemma 5 and discuss its right-hand side, the information complexity. We
do not claim any novelty for the technical results in this section — the lemma below can be
found in (Zhang, 2006b,a), for example. Still, we need to treat these results in some detail
to prepare the new results in subsequent sections.

3.1. Main Concepts: Annealed and Hellinger Risk, ESI

For η > 0 and general random variables U , we define, respectively, the Hellinger-transformed
expectation and the annealed expectation (terminology from statistical mechanics; see e.g.
(Haussler et al., 1996)), also known as Rényi-transformed expectation (terminology from
information theory, see e.g. (Van Erven and Harremoës, 2014)) as

Ehe(η)
[U] ∶=

1

η
(1 −E [e−ηU ]) ; Eann(η)

[U] ∶= −
1

η
log E [e−ηU ] , (11)

with log the natural logarithm. We will frequently use that for η > 0,

Ehe(η)
[U] ≤ Eann(η)

[U] ≤ E[U] (12)

where the first inequality follows from − logx ≥ 1 − x and the second from Jensen. We also
note that if, for example, U is bounded, then the inequalities become equalities in the limit:

Proposition 1 If E[e−ηX] < ∞, we have limη↓0 Ehe(η)[X] = E[X] and we also have that
η ↦ Eann(η)[X] is non-increasing.

All our results below may be expressed succinctly via the notion of exponential stochastic
inequality.

Definition 2 (Exponential Stochastic Inequality (ESI)) Let η > 0 and let U,U ′ be
random variables on some probability space with probability measure P . We define

U ⊴η U ′
⇔ EU,U ′∼P [eη(U−U

′)
] ≤ 1. (13)

In all our applications of this notation, P is the distribution appearing in a given learning
problem (P, `,F) that will be clear from the context; hence, we omit it in the ESI notation.
An ESI simultaneously captures “with (very) high probability” and “in expectation” results.
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Proposition 3 (ESI Implications) For all η > 0, if U ⊴η U
′ then, (i), E[U] ≤ E[U ′];

and, (ii), for all K > 0, with P -probability at least 1 − e−K , U ≤ U ′ +K/η (or equivalently,
for all δ ≥ 0, with probability at least 1 − δ, U ≤ U ′ + η−1 ⋅ log(1/δ)).

Proof Jensen’s inequality yields (i). Apply Markov’s inequality to e−η(U−U
′) for (ii).

The following proposition will be extremely convenient for our proofs:

Proposition 4 (Weak Transitivity) Let (U,V ) be a pair of random variables with joint
distribution P . For all η > 0 and a, b ∈ R, if U ⊴η a and V ⊴η b, then U + V ⊴η/2 a + b.

Proof From Jensen’s inequality: E[e
η
2
((U−a)+(V −b))] ≤ 1

2 E[eη(U−a)] + 1
2 E[eη(V −b)].

3.2. PAC-Bayesian Style Inequality

All our results are based on the following lemma due to Zhang (2006b):

Lemma 5 Let (P, `,F) represent a learning problem with Lf the excess loss relative to an
optimal f∗. Let Π∣ be a learning algorithm (defining a “prior” Π0) for this learning problem
that outputs distributions on F . For all η > 0, n ∈ N, we have:

Ef∼Πn [E
ann(η)
Z∼P [Lf]] ⊴η⋅n ICn,η (Π∣) . (14)

where ICn,η is the information complexity, defined as:

ICn,η(Π∣) ∶= Ef∼Πn [
1

n

n

∑
i=1

Lf(Zi)] +
KL(Πn ∥Π0)

η ⋅ n
. (15)

By the finiteness considerations of Appendix H, ICn,η(Π∣) is always well-defined but may
in some cases be equal to −∞ or ∞. We prove a generalized form of this result, which does
not require existence of an optimal f∗, in Appendix A.1 The proof is essentially taken from
the proof of Theorem 2.1 of Zhang (2006b) and is presented only for completeness.

This result is similar to various results that have been called PAC-Bayesian inequalities,
although this name is sometimes reserved for a different type of inequality involving an
empirical (observable) quantity on the right that does not involve f∗ (McAllester, 2003).
Lemma 5 generalizes earlier in-expectation results by Barron and Li (1999) for determin-
istic estimators rather than (randomized) learning algorithms; these in-expectation results
further refine in-probability results of Barron and Cover (1991), arguably the starting point
of this research.

To explain the potential usefulness of Lemma 5, let us weaken (14) to an in-expectation
statement via Proposition 3, so that it reduces to:

EZn∼P [Ef∼Πn [Eann(η)
[Lf ]]] ≤ EZn∼P [ICn,η (Π∣)] . (16)

If the annealed expectation were a standard expectation, the left-hand side would be an
expected excess risk. Then we would have a great theorem: by (16), the lemma bounds
the expected excess risk of estimator Π∣ by a complexity term, which, as we will see below,
generalizes a large number of previous complexity terms (and allows us to get the same
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rates), both for well-specified density estimation and for general loss functions. The non-
standard inequality ⊴ implies that we get such bounds not only in expectation but also in
probability. The only problem is that the left-hand side in Lemma 5 is not the standard
risk but the annealed risk, which is always smaller and can even be negative. It turns out
however that — as already suggested, but not proved by Proposition 1 — by making η
small enough, the left-hand side can in many cases be related to the standard excess risk or
another divergence-like measure after all. The conditions which allow this are the subject
of Sections 4–6; but first, in the remainder of the this section we study the complexity term
in detail.

3.3. Information Complexity

The present form of the information complexity is due to Zhang (2006b), with precur-
sors from Rissanen (1989); Barron and Cover (1991); Yamanishi (1998). For generalized
Bayesian, two-part MDL and standard ERM, a first further bound is given via the following
proposition, the first part of which is also from Zhang (2006b); we note that this result can
be extended to the generalized definition of ICn,η given in Section A.1; the extended result
does not rely on the existence of f∗.

Proposition 6 Consider a learning problem (P, `,F) and let Zn ≡ Z1, . . . , Zn be any sample
with ∑ni=1 `f∗(Zi) < ∞ (this will hold a.s. if Zn ∼ P ). Let Π0 be a distribution on F . and
let ΠB

∣ be the corresponding η-generalized Bayesian posterior, with, for each n, πBn given by

(2). We have for all η > 0 that ICn,η(Π
B
∣ ) is non-increasing in η, and that

n ⋅ ICn,η(Π
B
∣ ) = n ⋅ inf

Π∣∈RAND
ICn,η(Π∣) = −

1

η
log Ef∼Π0 exp(−η

n

∑
i=1

Lf(Zi)) (17)

≤ inf
A

{−
1

η
log Π0(A) + n ⋅ ICn,η(Π

B
∣ ∣ f ∈ A)} (18)

≤ inf
A

{−
1

η
log Π0(A) +Ef∼Π0∣A [

n

∑
i=1

Lf(Zi)]} , (19)

where RAND is the set of all learning algorithms Π′
∣ that can be defined relative to (P, `,F)

with Π′
0 = Π0 and the second infimum is over all measurable subsets A ⊆ F . In the special

case that Π0 has countable support F̈ so that the η-two part estimator (10) is defined, we
further have

n ⋅ ICn,η(Π
B
∣ ) ≤ n ⋅ inf

ḟ∈DET
ICn,η((ḟ ,Π0)) (20)

= n ⋅ ICn,η(f
∗
∥(f̈2-p,Π0)) ≤ inf

f∈F̈
{−

1

η
log Π0({f}) +

n

∑
i=1

Lf(Zi)} ,

where DET is the set of all deterministic estimators with range F̈ .

From Lemma 5 and this result, we see that we have three equivalent characterizations of
information complexity for η-generalized Bayesian estimators. First, there is just the basic
definition (15) with Πn instantiated to the η-generalized Bayesian posterior. Second, there
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is the characterization as the minimizer of (15) for the given data, over all distributions Πn

on F . And third, there is the characterization in terms of a generalized Bayesian marginal
likelihood: (19) shows that for η = 1 and ` the log loss, the information complexity ICn,η(Π

B
∣ )

is the log Bayes marginal likelihood of the data relative to f∗, divided by n. If furthermore
F is a sufficiently regular k-dimensional parametric probability model equipped with a prior
Π0 with full support on F , and the model is correct, i.e., Z1, Z2, . . . are sampled i.i.d. from
a distribution with density in F , then, as is well-known, the information complexity will
almost surely coincide, up to O(1/n), with the BIC penalty: n ⋅ ICn,η(Π

B
∣ ) = (k/2) logn +

O(1); see Grünwald (2007) for precise results.

3.3.1. Bounds on Information Complexity for η-Generalized Bayes

Ghosal et al. (2000) (GGV from now on) presented several theorems implying concentra-
tion of the (standard) Bayesian posterior around the true distribution in the well-specified
i.i.d. case; their results were employed in many subsequent papers such as, for example,
(Ghosal and Van Der Vaart, 2007; Ghosal et al., 2008; Bickel and Kleijn, 2012). We com-
pare our results to theirs in Example 2 in Section 4. One of the conditions they impose is
the existence of a sequence (εn)n≥1 such that nε2n → ∞, and, for some constant C > 0, for
all n, a certain ε2n-ball around the true distribution has prior mass at least exp(−nCε2n).
Generalizing from log loss to arbitrary loss functions, their condition reads

Π0 (f ∶ E[Lf ] ≤ ε
2
n ; E (Lf)

2
≤ ε2n) ≥ e

−nCε2n . (21)

They then show that, under this and further conditions, the posterior concentrates with
Hellinger rate εn (see Example 2 of Section 4 for the precise meaning). Now note that (21)
implies the weaker

Π0 (f ∶ E[Lf ] ≤ ε
2
n) ≥ e

−nCε2n , (22)

which in turn implies, via (19), for any 0 < η ≤ 1, the following bound on IC for the
η-generalized Bayesian estimator:

EZn∼P [ICn,η (Π∣)] ≤ ε
2
n ⋅ (1 + (C/η)), (23)

To see this, note that (19) and (22) imply

ICn,η(Π
B
∣ )

≤ −
1

n

n

∑
i=1

`f∗(Zi) −
1

nη
log Π0{f ∶ E[Lf ] ≤ ε

2
n} +

1

n
Ef∼Π0∣{f ∶E[Lf ]≤ε2n} [

n

∑
i=1

(`f(Zi))]

≤ C
ε2n
η
+

1

n
Ef∼Π0∣{f ∶E[Lf ]≤ε2n} [

n

∑
i=1

(Lf(Zi))] . (24)

This implies (23).

All the examples of nonparametric families provided by GGV (including priors on sieves,
log-spline models and Dirichlet processes) rely on showing that condition (21) above holds
for specific priors, and hence in all these cases we get bounds on the expected-information
complexity which, by (16) allows us to establish comparable rates in expectation for the
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η-generalized Bayesian estimator in the well-specified case, for any η such that the left-hand
side can be linked to an actual distance measure — see Example 2 in Section 4.

We also would like to bound the excess risk in probability in terms of the expected
information complexity. For this, we can proceed in either of two ways: we either start
with an expectation bound such as (16) and then use Markov’s inequality (since the excess
risk of any estimator is a.s. nonnegative) to go back from expectation to in-probability.
However, under GGV’s condition (21) (the weaker (22) is not sufficient here), we can also
use the in-probability version of Lemma 5 directly. In combination with Lemma 8.1 of GGV
(which straightforwardly extends to our setting with general loss and η) this implies that
for all δ > 0:

P (ICn,η (Π∣) ≥ (1 + δ−1/2
) ε2n) ≤

δ

nε2n
. (25)

It follows that under (21), since nε2n →∞, ε2n is, up to constant factors depending on δ, an
upper bound both on E [ICn,η (Π∣)], and, for every δ, with probability at least 1 − δ, on

ICn,η (Π∣) — see the discussion below Theorem 31 in Section 6.

Finally, there often exist nontrivial worst-case (sup norm) or almost-sure bounds on the
information complexity; such bounds — mostly developed for parametric models but also,
e.g., for Gaussian processes (Seeger et al., 2008) have historically mostly been established
within the MDL literature; see (Grünwald, 2007) for an extensive overview. While we will
not go into such bounds in detail here, below we provide a very simple such bound for
countably infinite classes, which shows the ease by which IC allows for model aggregation.

Suppose that we have a countably infinite collection of classes F1,F2, . . . and a corre-

sponding set of priors Π
(1)
0 ,Π

(2)
0 , . . .. Let us select a new prior q ∶ N→ R+ over the collection

F ∶= ⋃j∈NFj . Then we may define a new prior Π0 = ∑j∈N q(j)Π
(j)
0 over F . We will assume

that the risk minimizer in the full class, f∗, is equal to f∗j∗ for some j∗ ∈ N. By Proposition 6,
Eq. (18), we must now have, for all data Z1, . . . , Zn, that

n ⋅ ICn,η (Π∣) ≤ −
1

η
log q(j∗) + n ⋅ ICn,η(Π ∣ f ∈ Fj∗), (26)

where Π ∣ f ∈ Fj∗ is the η-generalized Bayesian estimator based on the prior Π
(j∗)
0 within

Fj∗ .

If we now further assume that, for each j, the GGV-type condition (22) is satisfied (with

prior Π
(j)
0 and with f∗ replaced by f∗j , the risk minimizer over Fj), then taking expectations

in (26) implies that (22) holds for Π0, with f∗ = f∗j∗ , with the RHS scaled by a factor q(j∗).
A simple adaptation of (23) then gives

EZn∼P [ICn,η (Π∣)] ≤ ε
2
n ⋅ (1 + (C/η)) +

− log q(j∗)

nη
. (27)

Thus, the overhead in information complexity for combining the classes is simply
− log q(j∗)

nη .
Moreover, in the case of a finite collection of M classes, we may take q uniform and the
overhead becomes logM

nη .
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4. The Strong Central Condition

As we explained below Lemma 5, our strategy in proving our theorems will be to determine
conditions under which the η-annealed excess risk is similar enough to either the standard
risk or a meaningful weakening thereof for Lemma 5 to be useful. In this section we present
the simplest such condition, which is still quite strong — it requires an exponentially small
upper tail of the distribution of `f∗ − `f . This strong central condition has a parameter
η̄ > 0, and whenever we want to make this explicit we refer to it as “the η̄-central condition”.
Intuitively, its usefulness for learning is obvious: it ensures that the probability that a “bad”
f outperforms f∗ by more than L is exponentially small in L. Technically, its use is that it
ensures that the annealed risk is positive for all η < η̄. This allows us to turn Lemma 5 into
a useful result by replacing its left-hand side by a metric which (for log loss) generalizes the
squared Hellinger distance.

4.1. Definitions and Main Results

We now turn to the strong central condition, which, along with its weakened versions
discussed in Section 6 was introduced by Van Erven et al. (2015).

Definition 7 (Central Condition) Let η̄ > 0. We say that (P, `,F) satisfies the strong
η̄-central condition if there exists some f̃ ∈ F such that

E [e−η̄(`f−`f̃ )] ≤ 1, i.e., `f̃ − `f ⊴η̄ 0 for all f ∈ F . (28)

Jensen’s inequality implies that if a f̃ exists satisfying (28), it must be optimal; hence
we can take f̃ = f∗. The special case of this condition with η̄ = 1 under log loss has
appeared previously, often implicitly, in works studying rates of convergence in density
estimation (Barron and Cover, 1991; Li, 1999; Zhang, 2006a; Kleijn and van der Vaart,
2006; Grünwald, 2011). For details about the myriad of implications of the central condition
and its equivalences to other conditions we refer to Van Erven et al. (2015). Here we
merely highlight the most important facts. First, trivially, the strong central condition
automatically holds for density estimation with log loss in the well-specified setting since
then pf∗ is the density of P (see Example 1), as we then have

EZ∼P [e−η̄(`f−`f∗)] = EZ∼P [
pf(Z)

pf∗(Z)
] = 1 (29)

Second, less trivially, it also automatically holds under a convex model in the misspecified
setting (see Li (1999) and Example 2.2 of Van Erven et al. (2015)). Third, for classification
and other bounded excess loss cases, it can be related to the Massart condition, a special case
of the Bernstein condition (Audibert, 2004; Bartlett and Mendelson, 2006) (as discussed
immediately before Definition 17 in Section 5).

We now introduce a new metric which is derived from the Hellinger metric, introduced
below (as is common) in terms of its square.

Definition 8 (Misspecification Metric) For a given learning problem (P, `,F), asso-
ciate each f ∈ F and η > 0 with a probability density

pf,η(z) ∶= p(z)
exp(−ηLf(z))

E[exp(−ηLf(Z))]
, (30)
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where p is the density of P . Now define dη̄(f, f
′) as the Hellinger distance between pf,η̄ and

pf ′,η̄:

d2
η̄(f, f

′
) ∶=

2

η̄
(1 − ∫

√

pf,η̄(z)pf ′,η̄(z)dµ(z))

= Ehe(η̄/2)
[Lf −Eann(η̄) [Lf ] +Lf ′ −Eann(η̄) [Lf ′]] . (31)

The following result is obvious:

Proposition 9 If ` is log loss and F is well-specified relative to P we can take η̄ = 1
and then for every f ∈ F , d2

η̄(f
∗, f) coincides with the standard squared Hellinger distance

H1/2(Pf∗∥Pf) defined by H1/2(Pf∥Pf ′) ∶= 2 (1 − ∫
√
pf(z)pf ′(z)dµ(z)) .

Since dη̄ is always interpretable as a Hellinger distance, it is clearly a metric. This is
different from an existing, more well-known generalization of the Hellinger distance for
the well-specified case (Sason and Verdú, 2016), Hη(P ∥Q) ∶= η−1 (1 −EZ∼P (q(z)/p(z))η)
which does not define a metric except for η = 1/2 (and then coincides with d1). The dη̄
metric is of interest in the misspecified density estimation setting — with density estimation,
we may not necessarily be interested in log loss prediction and a metric weaker than excess
risk (i.e. generalized KL divergence) may be sufficient for our purposes. With other loss
functions, the main interest will usually be learning an f̂ with small prediction error. Then
the metric above, while still well-defined, may not be appropriate, and one is interested in
the excess risk bounds of the next section instead.

Theorem 10 Suppose that the η̄-strong central condition holds. Then for any 0 < η < η̄,
the metric dη̄ satisfies

Ef∼Πn [d2
η̄(f

∗, f)] ⊴η⋅n Cη ⋅ ICn,η (Π∣) ,

with Cη = η/(η̄ − η). In particular, Cη <∞ for 0 < η < η̄, and Cη = 1 for η = η̄/2.

Example 2 (Comparison to Results by GGV) Following (Zhang, 2006a) we illustrate
the considerable leverage provided in the well-specified density estimation case by allowing η-
generalized Bayesian estimators for η < 1. GGV show that for the standard Bayesian estima-
tor, under condition (21) (which only refers to local properties of the prior in neighborhoods
of the true density pf∗), in combination with a rather stringent global entropy condition,
the following holds: there exists a constant C ′ such that Πn (f ∈ F ∶ d2

1(f
∗, f) > C ′ε2n) → 0

in P -probability, i.e., for every B > 0,

P (Πn (f ∈ F ∶ d2
1(f

∗, f) > C ′ε2n) > B)→ 0.

Now, suppose the model is correct so that the η̄-central condition holds for η̄ = 1. Then
we get from Theorem 10 that for any η < η̄, using only condition (22), the following
holds: for any γ1, γ2, . . . such that γn/εn → ∞, the generalized Bayesian estimator satis-
fies Πn (f ∈ F ∶ d2

1(f
∗, f) > C ′γ2

n)→ 0 in P -probability, i.e., for every B > 0,

P (Πn (f ∈ F ∶ d2
1(f

∗, f) > C ′γ2
n) > B)→ 0, (32)
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as immediately follows from applying Markov’s inequality twice as done below. Thus, by
taking η < 1 we need neither the stronger condition (21) nor the much stronger GGV global
entropy condition; for this we pay only a slight price since our bound is not in terms of ε2n
but is instead in terms of γ2

n, which we have to take slightly larger (a factor log logn is of
course sufficient). Under well-specification, we thus obtain the same rates as GGV for all
the statistical models they consider, up to a log logn factor; as GGV show, these rates are
usually minimax optimal. Interestingly, other works on Bayesian and MDL nonparametric
consistency for the well-specified case also consider η < 1 (Barron and Cover, 1991; Zhang,
2006a; Walker and Hjort, 2002; Martin et al., 2017) or invoke an alternative stringent
condition to deal with η = 1 ((Zhang, 2006a, Section 5.2), Barron et al. (1999)); see Zhang
(2006a) for a very detailed discussion. While it may be argued that one should be able to
deal with standard Bayes (η = 1), in this paper we also aim to deal with misspecification
where we need to take η < 1 (and cannot take it arbitrarily close to 1) even for simple
problems (Grünwald and Van Ommen, 2017), and then there is no special reason to handle
η = 1 via additional conditions.

To show (32), note that, if the η̄-central condition holds, then for general A,B > 0, we
have

P (Πn(f ∈ F ∶ d2
η̄(f

∗, f) > A) > B) ≤ B−1 EZn [Πn(f ∈ F ∶ d2
η̄(f

∗, f) > A)]

≤ (AB)
−1 EZn Ef∼Πn [d2

η̄(f
∗, f)] ≤ (AB)

−1 EZn [ICn,η̄/2 (Π∣)] ,

where we applied Markov’s inequality twice, and the final inequality is from Theorem 10.
Plugging in A = C ′γ2

n and ε2n ≥ E [ICn,η̄/2 (Π∣)] (using (23)), this can be further bounded as
B−1ε2n/γ

2
n → 0. ◻

4.2. Applying Theorem 10 in Misspecified Density Estimation

From the above it is clear that Theorem 10 has plenty of applications whenever the model
under consideration is correct. We now consider applications of Theorem 10 to misspecified
models of probability densities F with generalized Bayesian estimators ΠB

∣ . For this we

must establish (a) that the central condition holds for F , and (b) suitable bounds on the
information complexity relative to ΠB

∣ . As to (a), we know that the η̄-central condition

holds for η̄ = 1 whenever the set of distributions {pf ∶ f ∈ F} is correct or convex; as shown
elsewhere and illustrated in Example 3 below, it also holds for 1-dimensional (nonconvex)
exponential families and high-dimensional generalized linear models (GLMs) under poten-
tially severe misspecification of the noise, as long as the regression function is well-specified
and P has exponentially small tails. As to (b), we may consider priors such that in the
well-specified case, the GGV condition holds for some sequence ε21, ε

2
2, . . . as in Example 2.

As explained in the example, the GGV condition then automatically holds for GLMs under
misspecification as well, so that the same bounds on information complexity can be given as
in the well-specified case. It appears that this is a special property of GLMs though — for
general F , we only have the following proposition which shows that, if the GGV condition
holds for some specific prior in the well-specified case with some bounds ε1, ε2, . . ., then, as
long as pf∗ dominates p, it must still hold in the misspecified case for the same prior for a
strictly larger sequence ε′1, ε

′
2, . . ., leading to a potential deterioration of the bound given by

Theorem 10.
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Proposition 11 Consider a learning problem (P, `,F) where F indexes a set of probability

distributions {Pf ∶ f ∈ F} with densities pf , and suppose that supz∈Z
dP (z)
dPf∗(z)

= C <∞. Then

for all f ∈ F ,

EZ∼P [Lf ] ≤ C ⋅ (EZ∼Pf∗ [Lf ] +
√

2EZ∼Pf∗ [Lf ]) . (33)

Proof Observe that

EZ∼P [Lf ] ≤ EZ∼P [0∨Lf ] ≤ CEZ∼Pf∗ [0∨Lf ] ≤ C ⋅ (D(f∗∥f) +
√

2D(f∗∥f)) ,

where EZ∼Pf∗ [Lf ] =D(f∗∥f) is the KL divergence between f∗ and f and the last inequality
is from Yang and Barron (1998) (see the remark under their Lemma 3); for completeness
we provide a proof in the appendix.

As a trivial consequence, whenever the weakened GGV condition (22) holds for all Pf
with f ∈ F for a sequence ε1, ε2, . . ., it will still hold for a sequence ε′1, ε

′
2, . . . with ε′j ≍

√
εj . It follows from (23) that we now automatically have a bound of order ε′n/n on the

misspecified expected information complexity. Theorem 10 now establishes that whenever
the GGV condition holds in the well-specified case, under the further (weak) condition that
supz∈Z dP (z)/dPf∗(z) = C <∞, we automatically get a form of consistency for η-generalized
Bayes, for η < η̄. The question whether we get the same rates of convergence is obfuscated
in two ways: first, the misspecification metric is in general incomparable to the Hellinger
metric; second, even in cases in which the misspecification metric dominates the standard
Hellinger, for nonparametric F with E[ICn,η] ≍ n

−γ , the conversion ε′j ≍
√
εj worsens the

rates obtained by Theorem 10 to n−γ/2. To deal with the first problem, one could establish
a condition under which the misspecification metric dominates standard Hellinger; but this
is tricky and will be left for future work. The second problem is still of interest in the next
section, in which the misspecification metric is replaced by the excess risk, which has the
same meaning irrespective of whether F is well-specified. As indicated below, for generalized
linear models we can get rid of the square root in (33), but whether this can be done more
generally also remains an important open problem for future work. An alternative, also
to be considered for future work, is to refrain from using the priors constructed for the
well-specified case altogether and instead directly design priors for the misspecified case,
with hopefully better bounds on information complexity.

Example 3 (Exponential Families and Generalized Linear Models) Consider a
learning problem (P, `,F) in the conditional density estimation setting of Example 1, so that
` is the conditional log-loss; Z = (X,Y ) with X taking values in X ⊂ Rk; and {pf ∶ f ∈ F}

for some F ⊂ Rk represents a k-dimensional generalized linear model (GLM), given in its
standard parameterization (so that ⟨x, f⟩ is the linear predictor fed into the link function)
(McCullagh and Nelder, 1989). Heide et al. (2019, Theorem 2) show2 that, under three
further conditions on (P, `,F), the central condition holds for some η̄ > 0, even under
misspecification. In essence, the conditions require (1) that Y has exponential tails, in

2. In previous arXiv versions of this paper, we gave these results in full detail, adding 7 pages to its length.
Following referee’s comments and consultation with the associate editor, we moved them to the paper
(Heide et al., 2019), where they are further illustrated by means of actual experiments with misspecified
GLMs.
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the sense that supx∈X E[exp(η∣Y ∣) ∣ X = x] < ∞ for some η > 0 (a requirement that is
automatically satisfied for, e.g., logistic regression, for which Y is finite); (b) that F is
restricted to a compact (though possibly very high dimensional) set, and (c), that the
misspecification is of a certain type: the noise may be misspecified in arbitrary ways, but
the GLM should contain the distribution with the correct generalized regression function.
That is, there should be an f ∈ F indexing distribution Pf with the correct conditional
mean, so that EPf [Y ∣ X] = EP [Y ∣ X]. This f will then in fact be equal to the risk-
optimal f∗. By taking X to be a singleton, a GLM becomes a 1-dimensional natural
exponential family, and the result thus also applies to such families. For this simplified
case, Heide et al. (2019) show that the smallest η̄ for which the η̄-central condition holds
is upper bounded by, and in some cases not much smaller than, the ratio of variances
EPf∗ [(Y −EPf∗ [Y ])2]/EP [(Y −EP [Y ])2].

Heide et al. (2019, Proposition 2) shows that, if F represents a GLM, then under the
same three conditions, we have EZ∼P [Lf ] = EZ∼Pf∗ [Lf ], so that there is no need to resort
to Proposition 11. This implies that for any prior satisfying the GGV condition in the well-
specified case, the same prior can be used in the misspecified case and, using Theorem 10,
we can prove the same risk bounds, up to a constant factor, as in the well-specified case for
generalized Bayes with any fixed η < η̄. In particular, k-dimensional GLMs being sufficently
general parametric models, we can use any continuous prior on F that is bounded away
from 0 and obtain that, for any fixed η, n ⋅ ICn,η(Π

B
∣ ) ≤ (k/2η) logn +O(1), cf. the remark

after Proposition 6. Theorem 10 then gives a bound of Õ(k/n), which is within a log
factor of the minimax optimal parametric rate O(k/n) for squared Hellinger distance in the
well-specified case. ◻

Example 4 (Comparison to Bhattacharya et al. (2019)) After our submission of the
present paper, we became aware of (Bhattacharya et al., 2019). The analysis and results of
that paper (first submitted to arXiv in 2016, around the same time as the present paper)
overlap with our Theorem 10, and some of their examples have implications for our work
as well. Bhattacharya et al. (2019) focus exclusively on generalized Bayesian estimators
ΠB

∣ . Their Theorem 3.6 is a variation of Zhang’s Lemma 5, extended to handle non-i.i.d. P .
Their α-Rényi divergence is just our η-annealed excess risk, with η = 1 − α. For F sat-
isfying the η̄-central condition, they provide Theorem 3.1, which has some similarity to
Theorem 10: their result extends ours in that it allows non-i.i.d. P ; it rephrases ours so
that the result is directly stated in terms of GGV-style conditions on Π0 rather than on
bounds on ICn,η(Π

B
∣ ), similar to our (32); and it stays closer to Lemma 5 in that it keeps

the annealed excess risk on the left (a nonsymmetric divergence) where Theorem 10 has a
(symmetric) metric. In their Lemma 2.1. they re-prove the result of Li (1999) and Van
Erven et al. (2015) that 1-strong central holds for convex probability models. Also, they
provide (Section 5.1) an interesting novel example in which the strong 1-central condition
holds: Gaussian regression, with probability densities pf(y ∣ x) ∝ exp(−(y − f(x))2/2σ2)

with fixed variance σ2, where the true noise is Gaussian and the set of regression functions
F is convex (but the corresponding density functions {pf ∶ f ∈ F} are not, so Li’s result
does not apply). The model is misspecified in that F does not contain the true regression
function; in contrast, in Example 3 above we considered the reverse case in which the noise
is misspecified yet the regression function is not. They show that in their setting, bounds
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on the annealed excess risk imply bounds on the L2(P )-parameter estimation error that
we consider in Example 9. They do not consider the non-annealed excess risk bounds and
weaker forms of the central condition that we will turn to in the following sections. ◻

5. The Witness Condition

We have seen via Theorem 10 that under the η̄-central condition, Lemma 5 provides a
bound on a weak Hellinger-type metric. For problems different from density estimation,
i.e., loss functions different from log loss, we often mainly are interested in a bound on
the excess risk. To get such bounds, we need a second condition on top of the η̄-central
condition. To see why, consider again the density estimation example (Example 1). If we
assume a correct model, p = pf∗ , then from (29) the η̄-central condition holds automatically
for all η̄ ≤ 1, and so Theorem 10 gives a bound on the Hellinger distance. Yet, while the
Hellinger distance is bounded, in general we can have KL(p ∥pf) =∞. If, for example, F is
the set of densities for the Bernoulli model, P is Bernoulli(1/2), and we use ERM for log
loss (so that f̂ is the maximum likelihood estimator for the Bernoulli model), we observe
with positive probability only 0’s. In this case, we will infer f̂ with pf̂(Y = 0) = 1, and thus

with positive probability the excess risk between f̂ and f∗ is ∞ even though the expected
Hellinger distance is of order O(1/n). We thus need an extra condition.

For log loss, the simplest such condition is that the likelihood ratio of pf∗ to pf is uni-
formly bounded for all f ∈ F . For that case, Birgé and Massart (1998) proved a tight bound
on the ratio between the standard KL divergence and the standard (η = 1/2) Hellinger
distance. Lemma 13 below represents a generalization of their result to arbitrary η, mis-
specified F , and general loss functions under the witness condition which we introduce
below, and which is a significant weakening of the bounded likelihood ratio condition. It is
the cornerstone for proving our subsequent results: Theorems 14, 22, 29, and 31. Whereas
the strong central condition imposes exponential decay of the lower tail of the excess loss
`f − `f∗ , the witness condition imposes a much weaker type of control on the upper tail of
`f − `f∗ .

Below, we show that the witness condition generalizes not only conditions of Birgé and
Massart (1998) but also of Sason and Verdú (2016) and Wong and Shen (1995) (Example 6).
We also show that it holds in a variety of settings, e.g., with exponential families with
suitably restricted parameter spaces in the well-specified setting and when the log likelihood
has exponentially small tails (Example 5), but also with bounded regression under heavy-
tailed distributions (Example 7). Moreover, although the conditions are not equivalent,
there is an intriguing similarity to the recent small-ball assumption of Mendelson (2014)
(Example 9).

5.1. Definition and Main Result

Definition 12 (Empirical Witness of Badness) We say (P, `,F) satisfies the (u, c)-
empirical witness of badness condition (or witness condition) for constants u > 0 and c ∈
(0,1] if for all f ∈ F

E [(`f − `f∗) ⋅ 1{`f−`f∗≤u}] ≥ cE[`f − `f∗]. (34)
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More generally, for a function τ ∶ R+ → [1,∞) and constant c ∈ (0,1) we say (P, `,F)

satisfies the (τ, c)-witness condition if for all f ∈ F , E[`f − `f∗] <∞ and

E [(`f − `f∗) ⋅ 1{`f−`f∗≤τ(E[`f−`f∗ ])}] ≥ cE[`f − `f∗]. (35)

The (u, c)-witness condition (34) is just the (τ, c)-witness condition for the constant func-
tion τ identically equal to u. In our results we frequently use the fact that, by adding

E [(`f − `f∗) ⋅ 1{`f−`f∗>u}] to both sides of (34) and rearranging, the (u, c)-witness condi-

tion holds if and only if for c′ = 1 − c (and hence c′ ∈ (0,1)),

E [(`f − `f∗) ⋅ 1{`f−`f∗>u}] ≤ c
′E[`f − `f∗], (36)

and similarly for the τ -version.
The intuitive reason for imposing this condition is to rule out situations in which learn-

ability simply cannot hold. For instance, consider a setting with F = {f∗, f1, f2, . . .} where
`f∗ = 1 with probability 1 and, for each j ≥ 1, `fj is equal to 0 with probability 1 − 1

j and

equal to 2j with probability 1
j . Then for all j, E[`fj − `f∗] = 1, but as j → ∞, empirically

we will never witness the badness of fj as it almost surely achieves lower loss than f∗. On
the other hand, if the excess loss is upper bounded by some constant b, we may always
take u = b and c = 1 so that a witness condition is trivially satisfied. Below we provide
several nontrivial examples besides bounded excess losses and finite F in which the witness
condition holds.

The following result shows how the witness condition, combined with the strong central
condition, leads to fast-rate excess risk bounds:

Lemma 13 Let η̄ > 0. Assume that the η̄-strong central condition (28) holds and let, for
arbitrary 0 < η < η̄, cu ∶=

1
c
ηu+1
1− η

η̄

. Suppose further that the (u, c)-witness condition holds for

u > 0 and c ∈ (0,1]. Then for all f ∈ F , all η ∈ (0, η̄):

E[Lf ] ≤ cu ⋅E
he(η) [Lf ] ≤ cu ⋅E

ann(η) [Lf ] . (37)

More generally, suppose that the η̄-central condition and the (τ, c)-witness condition hold
for c ∈ (0,1] and a non-increasing function τ . Then for all λ > 0, all f ∈ F ,

E[Lf ] ≤ λ∨ (cτ(λ) ⋅E
he(η) [Lf ]) ≤ λ∨ (cτ(λ) ⋅E

ann(η) [Lf ]) . (38)

Note that for large u, cu is approximately linear in u/c.
The following theorem is now an almost immediate corollary of Lemma 5 and Lemma 13:

Theorem 14 Consider a learning problem (P, `,F) and a learning algorithm Π∣. Suppose
that the η̄-strong central condition holds. If the (u, c)-witness condition holds, then for any
η ∈ (0, η̄),

Ef∼Πn [E[Lf ]] ⊴ η⋅n
cu

cu ⋅ ICn,η (Π∣) ,

with cu as in Lemma 13. If instead the (τ, c)-witness condition holds for some non-increasing
function τ as above, then for any λ > 0

Ef∼Πn [E[Lf ]] ⊴ η⋅n
cτ(λ)

λ + cτ(λ) ⋅ ICn,η (Π∣) . (39)
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Proof The first and second inequalities are from chaining Lemma 5 with Lemma 13 ((37)
and (38) respectively). The first inequality is immediate using that for general random
variables U,V , we have U ⊴a V ⇔ cU ⊴a/c cV . For the second inequality, we first upper
bound the max on the RHS of (38) by the sum of the terms.

This theorem is applicable if the (τ, c)-witness condition holds for a non-increasing τ . If the
risk supf∈F E[Lf ] is unbounded, we can only expect the witness condition to hold for τ such
that for large x, τ(x) is increasing; such τ are considered in Section 6.3. Non-increasing
τ are often appropriate for scenarios with bounded risk (even though the loss may be
unbounded and even heavy-tailed); we encounter one instance thereof in the exponential
family example below. There, limx↓0 τ(x) = ∞, but the increase as x ↓ 0 is so slow that
the optimal λ at sample size n is of order O(1/n) and cτ(δ) = O(logn), leading only to an
additional log factor in the bound compared to the case where the (u, c)-witness condition
holds for constant u.

Some Existing Bounds Generalized by Lemma 13 Lemma 13 generalizes a result
of Birgé and Massart (1998, Lemma 5) (also stated and proved in Yang and Barron (1998,
Lemma 4)) that bounds the ratio between the standard KL divergence KL(P ∥Q) and the
(standard) 1/2-squared Hellinger distance H1/2(P ∥Q) for distributions P and Q. To see
this, take density estimation under log loss in the well-specified setting with η < η̄ = 1,
so that f∗ = p and f = q; then the left-hand side becomes KL(P ∥Q) and the right-hand
side 1

η E[1 − e−ηLf ] = 1
η (1 −E[(q/p)η]) = Hη(P ∥Q) (this notation was introduced below

Proposition 9). Under a bounded density ratio p/q ≤ V , we can take u = logV and c = 1 (the
(u, c)-witness condition is then trivially satisfied), so that cu =

η logV +1
1−η , which for η = 1/2

coincides with the Birgé-Massart bound. The case of general η ∈ (0,1) first was handled by
Haussler and Opper (1997) (see Lemma 4 therein), but their bound stops short of providing
an explicit upper bound for the ratio.

Sason and Verdú (2016) independently obtained an upper bound (see Theorem 9 therein)
on the ratio of the standard KL divergence KL(P ∥Q) to the η-generalized Hellinger diver-
gence in the case of bounded density ratio ess sup dP

dQ , for general η. Theorem 13 generalizes

Theorem 9 of Sason and Verdú (2016) by allowing for misspecification in the case of density
estimation with log loss, allowing for general losses, and, critically for our applications,
allowing for unbounded density ratios under a witness condition. We note that in the case
of bounded density ratio dP

dQ and the regime η ∈ (0,1) (corresponding to α = 1 − η ∈ (0,1)

in Theorem 9 of Sason and Verdú (2016)), their bound and the unsimplified form of our
bound (see C0←η(V ) in Lemma 36 in Appendix C) are identical, as they should be since
both bounds are tight. The additional, slightly looser simplified bound that we provide
greatly helps to simplify the treatment for unbounded excess losses under the witness con-
dition. We stress though that Sason and Verdú (2016) treat general F -divergences under
well-specification, including a wide array of divergences beyond η-generalized Hellinger for
η ∈ (0,1), so in that respect, their bounds are far more general. In the next section we
establish that Lemma 13 also generalizes a bound by Wong and Shen (1995).
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5.2. Example Situations in which the Witness Condition Holds

We now present some examples of common learning problems in which the (τ, c)-witness
condition holds for a suitable τ . We first consider a case where the distribution of the excess
loss has exponentially decaying tails in both directions. The (u, c)-witness condition (34)
does not always hold for such excess losses, but we now show that the τ -witness condition
is always guaranteed to hold in such cases for a non-increasing function τ , which leads to a
bound on excess risk that is only a log factor worse than the direct bound on the annealed
risk of Lemma 5.

Definition 15 Suppose that for given (P, `,F) and a collection of random variables {Uf ∶
f ∈ F}, there is a 0 < κ < ∞ such that supf∈F E [eκUf ] < ∞. Then we say that Uf has a
uniformly exponential upper tail.

The name reflects that Uf has uniformly exponential upper tails if and only if there are
constants c1, c2 > 0 such that for all u > 0, f ∈ F , P (Uf ≥ u) ≤ c1e

−c2u, as is easily shown
(we omit the details).

Lemma 16 Define Mκ ∶= supf∈F E [eκLf ] and assume that Lf has a uniformly exponential

upper tail, so that Mκ <∞. Then, for the map τ ∶ x↦ 1∨κ−1log 2Mκ

κx = O(1∨ log(1/x)), the
(τ, c)-witness condition holds with c = 1/2.

Now let η̄ > 0. Assume both the η̄-strong central condition, i.e., E [e−η̄Lf ] ≤ 1, and that Lf
has a uniformly exponential upper tail. As an immediate consequence of the lemma above,
Theorem 14 now gives that for any learning algorithm Π∣ for any η ∈ (0, η̄), (using λ = 1/n),
there is Cη <∞ such that

Ef∼Πn [E[Lf ]] ⊴ η⋅n
Cη logn

1

n
+Cη ⋅ (logn)ICn,η (Π∣) , (40)

so we obtain an excess risk bound that is only a log factor worse than the bound that can
be obtained for the generalized Hellinger metric in Theorem 14.

Example 5 (Generalized Linear Models and Witness) Consider again Example 3,
about GLMs. Heide et al. (2019, Appendix B) show that, under the three assumptions
that we informally listed in Example 3, the conditions of Lemma 16 are satisfied. We can
thus use (40) to give us that, up to log-factors, for misspecified GLMs satisfying the three
conditions mentioned in Example 3 and generalized Bayesian estimators based on priors
that are continuous and bounded away from 0 on F , we can prove a rate of order Õ(d/n),
which, up to log factors, is equal to the minimax parametric rate. ◻

As a second consequence of Lemma 16, this time combined with (38) from Lemma 13
with λ = Ehe(η) [Lf ], we find that under the conditions of Lemma 16, there is Cη <∞ such
that

E[Lf ] ≤ max

⎧⎪⎪
⎨
⎪⎪⎩

Ehe(η) [Lf ] ,Cη ⋅E
he(η) [Lf ] ⋅ log

1

Ehe(η) [Lf ]

⎫⎪⎪
⎬
⎪⎪⎭

. (41)

The above result generalizes a bound due to Wong and Shen (1995), as we now show.
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Example 6 The bound (41) generalizes a bound of Wong and Shen (1995). Their result,
the first part of their Theorem 5, allows one to bound KL divergence in terms of Hellinger
distance, i.e., it holds in the special case of well-specified density estimation under log loss
with the choice η̄ = 1, η = 1/2. Formally, consider probability model {Pf ∣ f ∈ F} where
each Pf has density pf , and assume the model is well-specified in that Z ∼ P = Pf∗ with
f∗ ∈ F . Wong and Shen (1995) consider the condition that for some 0 < κ < 1, it holds
that M ′

κ ∶= supf∈F ∫(pf /pf∗)≥e1/κ pf
∗(pf∗/pf)

κ < ∞. They show that, under this condition,

the following holds for all f ∈ F in the regime H1/2(Pf∗ ∥Pf) = Ehe(η) [Lf ] ≤
1
2
(1 − e−1)

2
:

E[Lf ] ≤
⎛

⎝
6 +

2 log 2

(1 − e−1)2
+

4

κ
max

⎧⎪⎪
⎨
⎪⎪⎩

2, log
M ′
κ

Ehe(η) [Lf ]

⎫⎪⎪
⎬
⎪⎪⎭

⎞

⎠
Ehe(η) [Lf ] , (42)

where `f = − log pf is log loss. Now, note that for this loss function and in the case η̄ = 1
(where their result applies too), Mκ in Lemma 16 and M ′

κ in (42) satisfy M ′
κ ≤Mκ ≤M

′
κ+e.

Comparing (42) to (41), we see that up to values of the constants, our result generalizes
Wong and Shen’s. ◻

We just showed that a τ -witness condition always holds under exponential tails of the
loss. The following example shows that even if the loss random variables `f have fat (poly-
nomial) tails, the witness condition often holds, even for constant τ . Before providing the
example, we first recall the Bernstein condition (Audibert, 2004; Bartlett and Mendelson,
2006) and a useful proposition that will be leveraged in the example.

Definition 17 (Bernstein Condition) For some B > 0 and β ∈ (0,1], we say (P, `,F)

satisfies the (β,B)-Bernstein condition if, for all f ∈ F , E[L2
f ] ≤ B (E[Lf ])

β
.

The best case of the Bernstein condition is when the exponent β is equal to 1. In past works,
the Bernstein condition has mostly been used to characterize fast rates in the bounded
excess loss regime, where the (u, c)-witness condition holds automatically. In that regime,
the Bernstein condition for β = 1 and the central condition become equivalent (i.e. for each
(β,C) pair there is some η̄ and vice versa, where the relationship depends only on the upper
bound on the loss; see Theorem 5.4 of Van Erven et al. (2015)). The following proposition
shows that with unbounded excess losses, the Bernstein condition can also be related to the
witness condition:

Proposition 18 (Bernstein implies Witness) If (P, `,F) satisfies the (β,B)-Bernstein
condition, then, for any u > B, (P, `,F) satisfies the (τ, c)-witness condition with τ(x) =
u ⋅ (1/x)1−β and c = 1 − B

u . In particular, if β = 1 then (P, `,F) satisfies the (u, c)-witness
condition with constant u.

The special case of this result for β = 1 will be put to use in Example 11 in Section 6.

Example 7 (Heavy-tailed Regression with Bounded Predictions) Consider a
regression problem with squared loss, so that Z = X × Y. Further assume that the risk
minimizer f∗ over F continues to be a minimizer when taking the minimum risk over
the convex hull of F . We call this assumption convex luckiness for squared loss. It is
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implied, for example, when F is convex or when the model is well-specified in the sense
that Y = f∗(X) + ξ for ξ a zero-mean random variable that is independent of X. Thus,
when F is convex, we can enforce it; if we are not willing to work with a convex F (for
example, because this would blow up the compn in (4)), then we are “lucky” if it holds —
since it allows, in general, for better rates (see Section 7 for additional discussion).

Now assume further that E[Y 2 ∣X] ≤ C a.s. and the function class F consists of functions
f for which the predictions f(X) are bounded as ∣f(X)∣ ≤ r almost surely. Proposition 19
shows that in this setup, the Bernstein condition holds with exponent 1 and multiplicative
constant 8(

√
C + r)2. Proposition 18 then implies that the (u, c)-witness condition holds

with u = 16(
√
C + r)2 and c = 1

2 . ◻

Proposition 19 Under the assumptions of the example above, the (1,8(
√
C+r)2)-Bernstein

condition holds.

We note that Theorem 14 cannot be used with squared loss when Y is heavy-tailed as then
the strong central condition cannot hold. Thus, while Example 7 might imply in this case
that a (u, c)-witness condition holds, we do not yet have the machinery to put this fact to
use. However, in Example 11, we show that weaker easiness conditions can still hold and
fast rates can still be obtained.

Example 8 (Example 7 and Lemma 13 in Light of Birgé (2004)) Proposition 1 of
Birgé (2004) shows that, in the case of well-specified bounded regression with Gaussian noise
ξ, the excess risk is bounded by the 1/2-annealed excess risk times a constant proportional
to r2, where r is the bound on ∣f(X)∣ as in Example 7. This result thus gives an analogue
of Lemma 13 for bounded regression with Gaussian noise and also allows us to apply one of
our main results, Theorem 29 below (excess risk bounds with heavy-tailed losses), for this
model. Our earlier Example 7 extends Birgé’s result, since it shows that the excess risk
can be bounded by a constant times the annealed excess risk if the target Y has an almost
surely uniformly bounded conditional second moment, which, in the well-specified setting
in particular, specializes to ξ ∣X almost surely having (uniformly) bounded second moment
(and thus potentially having quite heavy tails) rather than Gaussian tails. On the other
hand, (Birgé, 2004, Section 2.2) also gives a negative result for sets F that are not bounded
(i.e. supx∈X ,f∈F ∣f(x)∣ =∞): even in the “nice” case of Gaussian regression, there exist such
sets for which the ratio between excess risk and annealed excess risk can be arbitrarily large,
i.e., there exists no finite constant cu for which (37) holds for all f ∈ F . From this we infer,
by using Lemma 13 in the contrapositive direction, that for such F the witness condition
also does not hold. ◻

Example 9 (Witness vs. the Small-ball Assumption) Intriguingly, the witness con-
dition intuitively bears some similarity to the small-ball assumption of Mendelson (2014).
This assumption states that there exist constants κ > 0 and ε ∈ (0,1) such that, for all
f, h ∈ F , we have

Pr (∣f − h∣ ≥ κ∥f − h∥L2(P )) ≥ ε. (43)

Under this assumption, Mendelson (2014) established bounds on the L2(P )-parameter es-
timation error ∥f̂ − f∗∥L2(P ) in function learning. For the special case that h = f∗, one can
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read the small-ball assumption as saying that “no f behaving very similarly to f∗ with high
probability is very different from f∗ only with very small probability so that it is still quite
different on average.” The witness condition reads as “there should be no f that is no worse
than f∗ with high probability and yet with very small probability is much worse than f∗, so
that on average it is still substantially worse”. Despite this similarity, the details are quite
different. In order to compare the approaches, we may consider regression with squared
loss in the well-specified setting as in the example above. Then the L2(P )-estimation error
becomes equivalent to the excess risk, so both Mendelson’s and our results below bound the
same quantity. But in that setting one can easily construct an example where the witness
and strong central conditions hold (so Theorem 14 applies) yet the small-ball assumption
does not (Example 16 in Appendix I); but it is also straightforward to construct examples of
the opposite by noting that small-ball assumption does not refer to Y whereas the witness
condition does. In Section 6.3 we will see that, nevertheless, the small-ball assumption can
be related to the τ -witness condition for a particular τ that is needed in the unbounded
risk scenario (Theorem 31). ◻

6. Bounds under Weaker Easiness Conditions

In many learning problems, there is no η > 0 such that the strong η-central condition is
satisfied. Yet, it turns out that in many cases of interest there still exist weaker conditions
under which fast convergence rates are possible. We consider two types of conditions. Both
are best understood by generalizing the notion of excess risk: whereas hitherto, this was
invariably defined as the risk (expected loss of some learner Π∣) relative to the comparator
f∗ that was optimal within F , we will now also allow more general comparators that lie
outside F . In particular we will consider as comparator a pseudo-predictor g with risk
E[`g] = E[`f∗] − ε for some small ε > 0. Being better than f∗, g does not correspond to an
action that can be actually played, but one can often find a g such that, with f∗ replaced
by g, the η-central condition does hold for some η > 0 while, simultaneously, ε is so small
that an excess risk bound relative to g implies also a good excess risk bound relative to the
original comparator f∗. We will soon introduce a function v that modulates how large one
can take η for a desired ε (the larger η, the better the bounds that ensue).

In order to work with comparators that are pseudo-predictors, we now introduce F̄ , an
enlarged action space that is a superset of F and that also contains the pseudo-predictors
we use in the remainder of this work. These pseudo-predictors always will be deterministic
and typically will be constant-shifted versions of `f (for some f ∈ F) or versions of a GRIP
(introduced in Definition 23). Although a given pseudo-predictor f ∈ F̄ can fail to be well-
defined as a playable action, the loss `f of any pseudo-action we employ will always be
well-defined. We thus extend our loss notation `f(z) to all f ∈ F̄ .

We first consider the v-central condition, a strict weakening of the strong central condi-
tion which applies if the excess loss is bounded or has exponential tails; here the comparator
can be taken to be a trivial modification of f∗. We next consider the v-PPC condition, a
strict weakening of the v-central condition, which applies if the losses have polynomial tails.
It is based on using a new type of comparator, the generalized reversed information pro-
jection (GRIP), which generalizes a concept from Barron and Li (1999). In Section 6.1 we
present the v-central condition and a corresponding excess risk bound for bounded excess
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risks. Section 6.2 presents the v-PPC condition, the GRIP, and the corresponding excess
risk bound for bounded excess risks. Finally, Section 6.3 shows risk bounds under the v-PPC
and v-central conditions for unbounded excess risks.

6.1. The v-Central Condition

Definition 20 (v-Central Condition (Van Erven et al., 2015)) Let η > 0 and ε ≥ 0.
We say that (P, `,F) satisfies the η-central condition up to ε if there exists some f̃ ∈ F

such that

`f̃ − `f ⊴η ε for all f ∈ F . (44)

Let v ∶ [0,∞) → [0,∞) be a bounded, non-decreasing function satisfying v(ε) > 0 for all
ε > 0. We say that (P, `,F) satisfies the v-central condition if, for all ε ≥ 0, there exists a
function f̃ ∈ F such that (44) is satisfied with η = v(ε).

The special case with constant v(ε) ≡ η̄ reduces to the earlier strong η̄-central condition
(and then f̃ must be optimal so we can take f̃ = f∗); for nonconstant v, the condition is
weaker in that it allows a little slack ε, and to make ε small, we need to take η small. For
each ε ≥ 0, we now define f∗ε in terms of its loss by ∀z ∈ Z ∶ `f∗ε (z) ∶= `f∗(z) − ε. This f∗ε
plays the role of alternative comparator referred to above. We can now apply Lemma 5
with f∗ε instead of f∗ to get a bound on the annealed excess risk:

Ef∼Πn [Eann(η) [`f − `f∗ε ]] ⊴η⋅n ICn,η(Π∣) + ε. (45)

Analogous to the story in Section 5.1, we want to turn this bound into an actual excess risk
bound. This is done by the following lemma, which is a straightforward consequence from
the first part of Lemma 13 and only differs from it in that it has `f∗ on the right-hand side
replaced by `f∗ε and a slightly larger constant factor.

Lemma 21 Let (P, `,F) be a learning problem that satisfies the v-central condition for
some v. Let f ∈ F . Suppose that (34) holds for some u > 0 and c ∈ (0,1], i.e., (P, `,{f, f∗})
satisfies the (u, c)-witness condition. Fix ε ≥ 0 and let η̄ = v(ε). As in Lemma 13, let
cu =

1
c
ηu+1
1− η

η̄

. Then for all η ∈ (0, η̄),

E[Lf ] ≤ cu+ε ⋅E
ann(η) [`f − `f∗ε ] . (46)

In particular, if (P, `,F) satisfies the (u, c)-witness condition then (46) holds for all f ∈ F .

The key to the proof is that, if (P, `,F) satisfies the v-central condition, then we have that

(P, `,F ∪ {f∗ε }) satisfies the η-central condition with η = v(ε). (47)

We now show how Lemma 21 straightforwardly implies a strict strengthening of Theorem 14,
one which holds under the v-central condition rather than just the η̄-central condition: since
(46) holds for all f ∈ F , it also holds in expectation over f , under any arbitrary distribution
Π over f . We can thus take expectations over Πn on both sides of (46) and chain the
resulting inequality with ESI (45). Using that for general random variables U,V and c > 0,
U ⊴a V ⇔ cU ⊴u/c cV , this gives:
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Theorem 22 (v-Central Excess Risk Bound - Bounded Excess Risk Case) Let Π∣
be an arbitrary learning algorithm based on F . Assume that (P, `,F) satisfies the (u, c)-
witness condition (34) and let cu be defined as in Lemma 21. Then under the v-central
condition, for any ε ≥ 0, any 0 < η < v(ε):

Ef∼Πn [E[Lf ]] ⊴ η⋅n
cu+ε

cu+ε ⋅ (ICn,η(Π∣) + ε) . (48)

Analogously to the second part of Lemma 13 and Theorem 14, one can give versions of
this result for the τ -witness condition as well, but for simplicity we will not do so. This
theorem allows unbounded losses but is only useful when the excess risk is bounded, i.e.,
supf∈F E[Lf ] < ∞, because for unbounded risk, the required (u, c)-witness condition is
excessively strong; see Section 6.3.

The factor cu+ε explodes if η ↑ v(ε). If the v-central condition holds for some v, it clearly
also holds for any smaller v, in particular for v(ε) ∶= v(ε)∧1. Applying the theorem with
v (which will not affect the rates obtained), we may thus take η = v(ε)/2, so that cu+ε is
bounded by 1

c (u+ ε+2). The ESI in (48) then implies that with probability at least 1−e−K

the left-hand side exceeds the right-hand side by at most
(u+ε+2)K

cηn . For the case of bounded

excess loss, we can further take u to be supf∈F ∥Lf∥∞ and c = 1. Finally, in the special case
when the strong η̄-central condition holds, we can take ε = 0 and v(0) = η̄ and Theorem 22
specializes to Theorem 14.

In Section 6.2 below we introduce the v-PPC condition. One of the main results of
Van Erven et al. (2015) (in their Section 5) is that, for bounded excess losses, the v-central
condition holds for some v with v(ε) ≍ ε1−β if and only if the v-PPC condition hold for some
v with v(ε) ≍ ε1−β if and only if the Bernstein condition holds for exponent β and some
B > 0; the three conditions are thus equivalent up to constant factors in the bounded excess
loss case. The best case of the Bernstein condition of β = 1 corresponds to a v with v(0) > 0,
i.e., to the strong central condition. The Bernstein condition is known to characterize the
rates that can be obtained in bounded excess loss problems for proper learners, and the
same thus holds for the v-central and v-PPC conditions. It is also implied by the well-known
Tsybakov margin condition as long as F contains the Bayes optimal classifier (see (Lecué,
2011) and (Van Erven et al., 2015) for discussion).

We now illustrate Theorem 22 for the case of ERM over certain parametric classes when
the v-central condition holds for v of the form v(ε) ≍ ε1−β, so that a Bernstein condition
holds with exponent β. We will see that for bounded losses our result recovers, up to log
factors, rates that are known to be minimax optimal. We first need some notation. For a
pseudo-metric space (A, ∥ ⋅ ∥) and any ε > 0, let N (A, ∥ ⋅ ∥, ε) be the ε-covering number of
(A, ε), defined as the minimum number of radius-ε balls whose union contains A.

Example 10 (Lipschitz (and Bounded) Loss) Suppose that (i) for each z ∈ Z, the
loss ` is G-Lipschitz as a function of f ∈ F ; (ii) F has bounded metric entropy in some
pseudometric ∥⋅∥; and (iii) the loss is uniformly bounded over F (so that a witness condition
holds). Let Fε be an optimal ε-net with respect to ∥ ⋅ ∥. Take a uniform prior over F , and
(purely for the analysis) consider the randomized predictor Π∣ that predicts by drawing an

f uniformly from a radius-ε ball around f̂ , the ERM predictor. If the v-central condition

holds, it follows that the information complexity of Π∣ is bounded as Gε +
logN (F ,∥⋅∥,ε)

v(ε)n . To
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see this, for any A ⊂ F let Aε be the ε-extension of A, defined as {f ∈ F ∶ inff ′∈A ∥f − f ′∥ ≤ ε}.
Then observe that

eKL(Πn ∥Π0) =
vol(F)

vol({f̂}ε)
≤

vol(⋃f∈Fε{f}
ε)

vol({f̂}ε)
≤
∑f∈Fε vol({f}ε))

vol({f̂}ε)
= N (F , ∥ ⋅ ∥, ε).

Moreover, it is easy to see that the risk of standard ERM (rather than its randomized
version) over the entire class F is at most the risk of Πn plus an additional Gε. Hence,
if v satisfies v(ε) = Cε1−β for some β ∈ [0,1] and if the metric entropy is logarithmic in ε,
then by tuning ε and η as in (7) we see from (48) that ERM obtains a rate of Õ(n−1/(2−β))
(suppressing log-factors) with high probability — which is the minimax optimal rate in
this setting (Van Erven et al., 2015). Note that the Bernstein condition is automatically
satisfied for β = 0, yielding the slow rate of Õ(1/

√
n), and the other extreme of β = 1 yields

the fast rate of Õ(1/n). ◻

6.2. The v-PPC Condition and the GRIP

Trivially, if the v-central condition holds for some function v, then there exists ε > 0 such
that, with c = eεv(ε), for all f ∈ F , E[e−v(ε)Lf ] ≤ c, so that −Lf must have a uniformly
exponential upper tail as in Definition 15. Thus, if −Lf has a polynomial upper tail,
the v-central condition cannot hold. The v-PPC condition is a further weakening of the
v-central condition which can still hold in the latter case. We achieve this by replacing
the comparator f∗ε by a more sophisticated pseudo-predictor mη

F , the generalized reversed
information projection (GRIP). The original projection (Li, 1999) was used in the context
of density estimation under log loss. We now extend it to general learning problems:

Definition 23 (GRIP) Let (P, `,F) be a learning problem. Define3 the set of pseudo-

probability densities EF ,η ∶= {e−η`f ∶ f ∈ F}. For Q ∈ ∆(F), define ξQ ∶= Ef∼Q[e
−η`f ]. The

generalized reversed information projection of P onto conv(E) is defined as the pseudo-loss
`gη satisfying

E[`gη] = inf
Q∈∆(F)

E [−
1

η
log Ef∼Q[e

−η`f ]] = inf
ξQ∈conv(E)

E [−
1

η
log ξQ] .

Following terminology from the individual-sequence prediction literature, we call the quantity
appearing in the center expectation above a “mix loss” (De Rooij et al., 2014) defined for a

distribution Q ∈ ∆(F) as mη
Q ∶= − 1

η log Ef∼Q[e
−η`f ]. The notion of mix loss can be extended

from distributions to sets by defining, for any A ⊆ F̄ , the object mη
A as the pseudo-loss

satisfying E[mη
A] = infQ∈∆(A∪{f∗}) E[mη

Q].
4 We thus have that `gη = mη

F , and we use the
latter notation from here on out.

3. This transformation is known as entropification (Grünwald, 1999). For η = 1 and log-loss, pseudo-
probability densities are just standard probability densities, while for general η and `, the analogy to
probability densites is still useful, hence the name; in particular, ξQ shares some properties of mixture
distributions (Van Erven et al., 2015).

4. The reason for automatically taking the union of A with f∗ is to lessen the notation for the mini-grip,
introduced in Appendix E.2.1.

33



Grünwald and Mehta

Even though the GRIP is only a pseudo-predictor, meaning that it may fail to correspond
to any actual prediction function, the corresponding loss for a GRIP is well-defined, as
shown in Appendix G. The main use of the GRIP lies in the fact that the probability that
its loss exceeds that of any f ∈ F is exponentially small:

Proposition 24 For all f ∈ F , for every η > 0, we have mη
F − `f ⊴η 0.

The proposition implies that mη
F ⊴η `f∗ and hence E[mη

F ] ≤ E[`f∗] and, for any η > 0,
F ∪ {mη

F} satisfies the η-central condition, with mη
F in the role of f∗. We can now define

the v-PPC condition:

Definition 25 (Pseudoprobability Convexity (PPC) Condition) Let η > 0 and ε ≥
0. We say that (P, `,F) satisfies the η-PPC condition up to ε if there exists some f̃ ∈ F

such that

EZ∼P [`f̃] − inf
Q∈∆(F)

E [−
1

η
log Ef∼Q[e

−η`f ]] ≤ ε, i.e., EZ∼P [`f̃ −m
η
F] ≤ ε. (49)

Let v ∶ [0,∞) → [0,∞) be a bounded, non-decreasing function satisfying v(ε) > 0 for all
ε > 0. We say that (P, `,F) satisfies the v-PPC condition if, for all ε ≥ 0, there exists a
function f̃ ∈ F such that (49) is satisfied with η = v(ε).

In both the v-central and v-PPC conditions, we look at pairs (η, ε) such that there exists a
comparator g which has risk no better than E[`f∗]−ε, and for which (P, `,F ∪{g}) satisfies
the η-central condition. We achieve this for any (η, ε) with 0 < η ≤ v(ε), where for the
v-central condition, the comparator was g = f∗ε (see (47)) and for the v-PPC condition, it
is g =mη

F .

The name “PPC” stems from the fact that the condition expresses a pseudo-convexity
property of the set of pseudoprobability densities mentioned in Definition 23; see Van
Erven et al. (2015) for a graphical illustration and for the proof that the v-central condition
implies the v-PPC condition for the same v. We already mentioned that Van Erven et al.
(2015) (in their Section 5) proved the reverse implication, hence equivalence of the v-central
and v-PPC conditions, up to constant factors, for bounded excess losses. To give some
initial intuition for the unbounded case, we note that the v-PPC condition is satisfied for
v(ε) = C ⋅ ε for a suitable constant C whenever the witness condition holds. While this
was known for bounded excess losses (where linear v corresponds to the weakest Bernstein
condition, which automatically holds), by Proposition 26 below it turns out to hold even if
the excess losses are heavy-tailed (so the v-central condition can never hold) and the risk
can be unbounded, as long as the second moment of the risk of f∗ is finite. This will imply,
for example, (Theorem 31 below and discussion) that the “slow” Õ (1/

√
n) excess risk rate

for parametric models can be obtained in-probability by ηn-generalized Bayes (with the
optimal ηn depending on the sample size as ηn ≍ 1/

√
n) under hardly any conditions.

Proposition 26 Let (P, `,F) be such that for all f ∈ F , all z ∈ Z, `f(z) ≥ 0 and such that
for some fixed u > 0, for all f ∈ F with E[Lf ] > 0,

E [(`f − `f∗) ⋅ 1{`f−`f∗≤u}] ≥ 0. (50)
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(in particular this is implied by the (u, c)-witness condition (34)). Then for all η ≤ 1/E[`f∗],

EZ∼P [`f∗ −m
η
F] ≤ η ⋅ e ⋅ (u

2
+

3

2
E[`2f∗]) .

As a consequence of this result, if we have EZ∼P [`2f∗] <∞, then the v-PPC condition holds

with v(ε) = (Cε)∧(1/E[`f∗]), where C = e−1 ⋅ (u2 + 3
2 E[`2f∗])

−1.

The proof of this proposition is based on the following fact, interesting in its own right and
also used in the proof of later results:

Proposition 27 For given learning problem (P, `,F), let `′ be such that (a) for all f ∈ F ,
all z ∈ Z, `′f(z) ≤ `f(z), and (b), `′f∗(z) = `f∗(z). If the “smaller-loss” learning problem
(P, `′,F) satisfies the v-PPC condition for some function v, then so does (P, `,F).

We now work towards a first risk bound under the v-PPC condition, using the GRIP.
The development is entirely analogous to that leading up to Theorem 22, our risk bound
under the v-central condition. We start with the following result, which essentially only
differs from Lemma 13 and the corresponding lemma for the v-central condition and f∗ε -
comparator, Lemma 21, in that it has `f∗ (as in Lemma 13) and `f∗ε (as in Lemma 21) on

the right-hand side replaced by the GRIP loss mη̄
F and requires η < η̄/2. The proof is much

more involved though since the comparators on the left and the right are not connected in
a straightforward manner.

Lemma 28 Let (P, `,F) be a learning problem and let f ∈ F . Let η̄ > 0. Suppose that (34)
holds for some u > 0 and c ∈ (0,1], i.e., (P, `,{f, f∗}) satisfies the (u, c)-witness condition.
Let c′u ∶=

1
c
η⋅u+1

1− 2η
η̄

. Then for all η ∈ (0, η̄/2),

E[Lf ] ≤ c′2u ⋅E
ann(η) [`f −m

η̄
F] . (51)

In particular, if (P, `,F) satisfies the (u, c)-witness condition then (51) holds for all f ∈ F .

Based on this lemma it is now easy to prove analogues of Theorem 14. Below we first
present our second main result, an excess risk bound that holds under the basic witness
condition. The result allows unbounded and heavy-tailed losses but is only useful when the
excess risk is bounded; see Section 6.3.

Theorem 29 (Excess Risk Bound - Bounded Excess Risk Case) Let Π∣ be an ar-
bitrary learning algorithm based on F . Assume that (P, `,F) satisfies the (u, c)-witness
condition (34). Let c′u be as in Lemma 28. Then under the v-PPC condition, for any

η <
v(ε)

2 ,

EZn1
[Ef∼Πn [E[Lf ]]] ≤ c

′
2u (EZn1

[ICn,η(Π∣)] + ε) . (52)

The result is entirely analogous to Theorem 22 (and the remarks made there apply here
as well), with two differences: first, v is replaced by v/2, which will worsen the obtainable
bounds by a factor of 2 and hence will not affect the rates. Second, the ESI in (48) is
replaced by an expectation. Thus, we have an exponential in-probability bound (holding
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with probability 1−δ up to anO(log(1/δ))-term) under the v-central condition but not under
the v-PPC condition. That such a deviation bound does not hold under the v-PPC condition
is inevitable since all of our bounds are valid for ERM estimators, which, under heavy-tailed
loss distributions, are known to behave poorly in probability (Catoni, 2012, Proposition
6.2). There exist specialized M -estimators for mean estimation problems (Catoni, 2012)
or more generally (for regression problems) that achieve better high-probability bounds by
employing a variation of the median-of-means idea (Nemirovskii and Yudin, 1983; Hsu and
Sabato, 2016; Lugosi and Mendelson, 2019).

To illustrate Theorem 29, we now provide an example where the v-central condition can-
not hold because the excess risk has polynomially decaying tails; yet, the v-PPC condition
may still hold for v that allow for faster rates than the “slow” Õ(1/

√
n).

Example 11 (Heavy-tailed Regression with Bounded Predictions, Continued)
We continue with the setting of Example 7. In addition to assuming that E[Y 2 ∣ X] ≤ C
a.s. for a constant C, we also assume that E[∣Y ∣s] < ∞ for some s ≥ 2; note that the first
assumption already implies the second for s = 2. We further assume that F has bounded
metric entropy in sup-norm, with covering numbers N (F , ∥ ⋅ ∥∞, ε) growing polynomially
in ε. Without subexponential tail decay, the v-central condition fails to hold for any non-
trivial v; however, as shown by Van Erven et al. (2015, Example 5.10) (based on a result
of Juditsky et al. (2008)), if E[∣Y ∣s] < ∞ for some s ≥ 2, then the v-PPC condition holds
for v(ε) = O(ε2/s).5 Moreover, as we showed in Example 7, the witness condition holds if
E[Y 2 ∣X] <∞ a.s.; there, we also established that the Bernstein condition holds with β = 1.

Now, take a uniform prior over F , and take the randomized predictor Π∣ as in Example 10

which randomizes over an ε-ball around the ERM predictor f̂ . Then, for s ≥ 2, Theorem 29
implies that the expected excess risk of Πn is at most

EZn1

⎡
⎢
⎢
⎢
⎢
⎣

Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

Lf(Zj)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

+
logN (F , ∥ ⋅ ∥, ε)

v(ε)n
+ ε.

The first term can be bounded as

EZn1

⎡
⎢
⎢
⎢
⎢
⎣

Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(Lf̂(Zj) + `f(Zj) − `f̂(Zj))

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

≤ EZn1

⎡
⎢
⎢
⎢
⎢
⎣

Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(`f(Zj) − `f̂(Zj))

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

= EZn1

⎡
⎢
⎢
⎢
⎢
⎣

Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(f2
(Xj) − f̂

2
(Xj) + 2Yj(f̂(Xj) − f(Xj)))

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

≤ EZn1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2ε
⎛
⎜
⎝
∥F∥∞ +

⎛

⎝

1

n

n

∑
j=1

Y 2
j

⎞

⎠

1/2
⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

5. What is actually shown there is that a property called v-stochastic exp-concavity holds, but, the results of
that paper imply then that v-stochastic mixability holds which in turn implies that the v-PPC condition
holds.
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which is at most 2ε (∥F∥∞ + ∥Y ∥L2(P )) = O(ε), and it is simple to verify that the ERM

predictor f̂ satisfies the same bound. Tuning ε in O (ε +
logN (F ,∥⋅∥,ε)

ε2/sn
) yields a rate of

Õ(n−s/(s+2)) in expectation, where the notation hides log factors. ◻

Two remarks are in order about the rate obtained in the above example.

First, Juditsky et al. (2008) previously obtained this rate for finite classes F without the
assumption that E[Y 2 ∣ X] is almost surely uniformly bounded; their result is achieved by
an online-to-batch conversion of a sequential algorithm which, after the conversion, plays
actions in the convex hull of F . It is unclear if we truly need the assumption on the
conditional second moment of Y or if the need for this assumption is just an artifact of
our analysis. In the regime where our stronger assumption holds, in the case of convex
luckiness (see Example 7) the rates obtained in the present paper match those of Juditsky
et al. (2008). However, if convex luckiness does not hold, then the results of Juditsky et al.
(2008) still enjoy the rate of Õ(n−s/(s+2)) whereas we cannot guarantee this rate. This is
not surprising: without convex luckiness, “improper learners” that play in the convex hull
of F are inherently more powerful than (randomized) proper learners.

Second, even when convex luckiness does hold, the rate obtained in Example 11 above
is not optimal. The reason is that in the setting of this example, a Bernstein condition with
β = 1 does hold, as was established earlier in Example 7. Thus, via Corollary 6.2 of Audib-
ert (2009) it is possible to obtain the better rate of Õ(1/n) in expectation using Audibert’s
SeqRand algorithm. Notably, the SeqRand algorithm for statistical learning involves using
a sequential learning algorithm which incorporates a second-order loss-difference term. For
new predictions, SeqRand employs an online-to-batch conversion based on drawing functions
uniformly at random from the set of previously played functions. It is thus a randomized
proper learning algorithm. There are now two possibilities. The first is that there exist F
satisfying the condition of Example 7 for which ERM and η-generalized Bayes simply do
not achieve the rate of Õ(1/n); in that case either SeqRand’s second-order nature or its
online-to-batch step may be needed to get the fast rate. The other possibility is that ERM
and η-generalized Bayes do generally attain the fast rate under the Bernstein condition and
a.s. bounded E[Y 2 ∣X]-condition, in which case Theorem 29 is suboptimal for this situation
— we return to this issue in the Discussion (Section 7). In any case, SeqRand is computa-
tionally intractable for most infinite classes, and we are not aware of any polynomial-time
learning algorithms that match the rate of SeqRand.

6.3. Bounds for Unbounded Excess Risk

We now present a result for a learning problem (P, `,F) with unbounded excess risk. Once
again, the result follows (now with some work) from Lemma 28, but now we need to be
careful because the (u, c)-witness condition with fixed u and c cannot be expected to hold:
it would become an exceedingly strong condition for E[Lf ] →∞. We will thus require the
τ -witness condition for a particular, easier τ , namely τ(x) = u(1∨x) for some u ≥ 1, so that
for large x, τ(x) ≍ x. We first show, in Proposition 30 below, that at least for the squared
loss this condition can be expected to hold in a variety of situations. The price to pay for
using this τ is that we only get in-probability results — we show those in Theorem 31 (we
do not know whether in-expectation results hold as well). Note that one could obtain better
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constants in that theorem if one employed τ(x) = a∨(bx) for the best possible a and b, but
for simplicity we did not do this.

Proposition 30 (Bernstein plus small-ball implies unbounded witness) Consider
the setting of Example 7, i.e., regression with ` the squared loss and convex luckiness. We
still assume convex luckiness and make the weaker assumption E[Y 2] <∞, but now we do
not not assume that the risk is bounded; i.e., we can have supf∈F E[`f ] =∞. Fix some b > 0
and suppose that there exists constants κ > 0, ε ∈ (0,1) such that

1. for all f ∈ F with E[Lf ] > b, Mendelson’s (2014) small-ball assumption (43) holds
with constants ε, κ for f, f∗ (i.e. with f∗ in the role of h),

2. For all c0 > b, all f ∈ F with E[Lf ] ≤ c0, there is a B such that the (1,B)-Bernstein
condition holds, i.e., E[L2

f ] ≤ BE[Lf ].

Then (P, `,F) satisfies the (τ, c)-witness condition, with τ(x) = u(1∨x) for some u ≥ 1 and
with c ∈ (0,1] which depends only on κ, ε, b, and E[`f∗].

Example 12 (Heavy-tailed Regression, Continued) Mendelson provides several ex-
amples of convex F for which the small-ball assumption holds; the proposition above shows
that for all these examples, the τ -witness condition holds as well as soon as, for f with
small excess risk, the Bernstein condition holds. For example, under the following “meta”-
condition the small-ball assumption holds (see (Mendelson, 2014, Lemma 4.1)) and, as we
show in Appendix C.3, the Bernstein condition holds as well for Fc0 ∶= {f ∈ F ∶ E[Lf ] < c0},
for all c0 ≥ b, as long as we assume convex luckiness (see Example 7).

E[`2f∗] <∞ and for some A > 0, for all f ∈ Fc0 ,

E[(f(X) − f∗(X))
4
]
1/2

≤ A ⋅E[(f(X) − f∗(X))
2
].

We stress however that our theorem below does not recover Mendelson’s rates for L2(P )-
estimation error (Section 7), which rely on further highly sophisticated analysis of the
squared loss situation; our goal here is merely to show that our τ -witness condition for the
unbounded risk case is not a very strong one. ◻

Theorem 31 (Excess Risk Bound - Unbounded Excess Risk Case) Assume that
(P, `,F) satisfies the (τ, c)-witness condition (35) with τ ∶ x ↦ u(1∨x) for some u ≥ 1 and
constant c. Let ε1, ε2, . . . and η1, η2, . . . be sequences such that

εn → 0, nηn →∞.

Let cu ∶=
u
c

ηn+1
1− ηn

v(εn)
and c′u ∶=

u
c

ηn+1

1− 2ηn
v(εn)

. Suppose that ICn,η ∶= ICn,η(Π∣) is nontrivial in the

sense that E[ICn,ηn]→ 0.

1. Let Π∣ ≡ (f̂ ,Π0) represent a deterministic estimator. Suppose that, for given function
v, the v-PPC condition holds and that for all n, 0 < ηn < v(εn)/2. Then for all n
larger than some n0, the right-hand side of the following equation is bounded by 1,
and for all such n, for all δ > 0, with probability at least 1 − δ,

E[Lf̂ ] ≤ (c′2u ⋅
1

δ
) ⋅ bound, with bound = (E [ICn,ηn] + εn) . (53)
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Now suppose that, more strongly, the v-central condition holds as well. Let ICn,η be
any upper bound on ICn,η(f

∗∥Π∣) that is nontrivial in that E[ICn,ηn]→ 0. Let Cn,δ be
a function of δ ∈ (0,1) such that for all δ ∈ (0,1), Cn,δ > 2 log(2/δ) and

P (ICn,ηn ≥ Cn,δ ⋅E [ICn,ηn]) ≤ δ. (54)

Then for all n larger than some n0, the right-hand side of the following equation is
bounded by 1, and for all such n, for all 0 < δ < 1, with probability at least 1 − δ,

E[Lf̂ ] ≤ (c′u+εn ⋅Cn,δ) ⋅ bound, with bound = (E [ICn,ηn] + εn +
2

nηn
) . (55)

2. Now let Π∣ be a general, potentially nondeterministic estimator, suppose that the v-

PPC condition holds and let ICn,ηn be any bound on IC(Π∣) that is slightly larger
than ICn,ηn, i.e., there exist a sequence a1, a2, . . . → ∞ such that, for all n, all zn,
ICn,ηn ≥ anICn,ηn. Then

Πn ({f ∈ F ∶ E[Lf ] > c
′
2u ⋅ bound})→ 0 in P -probability, (56)

with bound = E [ICn,ηn] + εn.

When Π∣ represents a deterministic estimator f̂ such as an η-two part MDL estimator, the
result is just a standard convergence-in-probability result. For learning algorithms that
output a distribution such as generalized Bayes, the result seems fairly weak as nothing is
said about the rate at which the deviation probability goes to 0. Note, however, that the
same holds for most standard results about posterior convergence in Bayesian statistics; for
example, the results of GGV (see Example 2) are stated in exactly the same manner.

Note that the factor for the PPC-results increases quickly with δ; depending on how
strong a bound (54) can be given, the v-central results can thus become substantially
stronger asymptotically. This is the case even though their bound has an additional 1/(nηn)
term. Indeed, this extra term is of the right order, comparable to the upper bound on ICn,ηn

given by (4). Therefore, for v(x) ≍ x1−β, optimization of εn and ηn can be done in the same
way as for the bounded risk case, leading to a rate of Õ(n−1/(2−β)) as in (7). To give an
example in which the bound for the v-central condition gets a better dependence on δ than
v-PPC consider generalized Bayesian posteriors under the GGV condition (21) discussed
in Section 3.3; in that case, we get the bound (25) which implies (54) for a Cn,δ = o(δ

−1/2)
(rather than the O(δ−1) in the PPC-result) and with εn, as defined there used as an upper
bound on ICn,η. Still, in this example Cn,δ is polynomial in δ whereas Theorem 22 had
only a logarithmic dependence on δ. As mentioned earlier, this stronger dependence on δ is
unavoidable as the results under the v-PPC condition apply to methods like ERM, which
have poor deviation properties.

To derive further corollaries from this theorem, we mention the following extension of
Proposition 26:

Proposition 32 (When (τ, c)-witness implies v-PPC) Suppose that the (τ, c)-witness
condition holds for given learning problem (P, `,F) with τ ∶ x ↦ u(1∨x) for some u ≥ 1
and constant c ∈ (0,1] as in Theorem 31. Further suppose that that `f(z) ≥ 0 for all
f ∈ F and all z ∈ Z. Then the v-PPC condition holds with v(ε) = (Cε)∧(1/E[`f∗]), where

C = e−1 ⋅ (u2 (1∨ (E[`f∗]/c)
2
) + 3

2 E[`2f∗])
−1.
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The above proposition implies that if the τ -witness condition holds with τ as in Theorem 31
above, then the results (53) and (56) automatically hold with choice 2ηn < (Cεn)∧(1/E[`f∗]),
which for large n is equivalent to ηn < Cεn/2. For parametric F we can take εn ≍ 1/

√
n, so

that the v-PPC condition is satisfied with ηn ≍ 1/
√
n. Thus, under quite weak conditions

(for all f, z, `f(z) ≥ 0, E[`2f∗] < ∞, and the τ -witness condition holds as above), but with
unbounded, heavy tailed losses and without explicitly imposing any GRIP conditions, we
get in all three cases of Theorem 31, by choosing ηn ≍ 1/

√
n, that bound = Õ (1/

√
n).

Consequently, even under very weak assumptions, we still get convergence for generalized
ηn-Bayesian estimators, albeit at the “slow” rate.

7. Discussion & Open Questions

In this paper we presented several theorems that gave convergence rates for general estima-
tors, including pseudo-Bayesian and ERM estimators, under general “easiness conditions”.
We end by putting these conditions in context and discussing some of the limitations of our
approach, thereby pointing to avenues for future work.

Easiness Conditions We proved our convergence rates under the GRIP conditions (the
v-central and v-PPC conditions) and the τ -witness condition, and we provided some rela-
tions to other conditions such as convex luckiness for squared loss (defined in Example 7),
Bernstein conditions (Definition 17), and uniformly exponential tails (Definition 15). As
promised in the beginning of this paper, our conditions and results complement those of Van
Erven et al. (2015) which are mostly for the bounded case. The most important conditions
of that paper that did not show up here are (a) the extension of convex luckiness beyond
the squared loss (it is formally defined for general losses by Van Erven et al. (2015) under
the name “Assumption B”) and (b) the v-stochastic mixability condition (see Definition
5.9 of Van Erven et al. (2015)). We will restrict discussion of the v-stochastic mixability
condition to the case where the decision set Fd from Van Erven et al. (2015) is equal to
conv(F). In the present paper, where the set P from Van Erven et al. (2015) is always
equal to the singleton {P}, it is easy to see that v-stochastic mixability is equivalent to
the v-PPC condition but with the minimizer f∗ over F replaced by the minimizer f∗conv

over conv(F). Van Erven et al. (2015) show that for bounded excess losses, v-stochastic
mixability characterizes obtainable rates for improper learners that are allowed to play in
the convex hull of F . v-stochastic mixability is in turn implied by the easiness conditions of
Juditsky et al. (2008), (for constant v) by conditions on the loss function such as mixability
and exp-concavity (Cesa-Bianchi and Lugosi, 2006), and by strong convexity. For clarity
we give an overview of the relevant implications between our conditions and those of Van
Erven et al. (2015) in Figure 1.

Misspecification We showed that our methods are particularly well-suited for proving
a form of consistency for (generalized Bayesian) density estimation under misspecification;
under only the η̄-central condition, a weak condition on the support of pf∗ , and using a
prior such that the weakened GGV condition (22) holds, we can show that for any η < η̄,
the η-generalized Bayesian posterior is consistent in the sense of our misspecification metric
(see Proposition 11 and discussion below it). As stated there, an interesting open question
is under which conditions the metric entropy for the misspecified case is of the same order as
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excess
loss is...

condition
type

loss function result

bounded GRIP general v-PPC ⇔ v-central (vE)

x1−β-PPC ⇔ xβ-Bernstein (vE)

witness general (u, c)-witness always holds (trivial)

unbounded GRIP general convex luckiness + v-stochastic mixability ⇒ v-
PPC (vE)

general v-central ⇒ v-PPC (vE)

general v-central ⇒ Lf has uniformly exponential lower
tail (vE)

log loss convex luckiness ⇒ 1-central (vE)

squared loss convex luckiness + bounded predictions + Y ∣ X
has a.s. uniformly bounded 2nd moment⇒ (1,B)-
Bernstein (GM, Example 7)

unbounded witness general (β,B)-Bernstein ⇒ (τ, c)-witness, τ(x) ≍ xβ−1

(GM, Proposition 18)

general Lf has uniformly exponential upper tail⇒ (τ, c)-
witness, τ(x) ≍ 1∨ log(1/x) (GM, Lemma 16)

log loss, cor-
rect model

Wong-Shen⇔ Lf has uniformly exponential tails
(GM, Example 6)

Figure 1: GM stands for “established in the present paper”, vE refers to Van Erven et al.
(2015). All implications hold up to constant factors. Note that boundedness
always refers to excess loss. For example, for Lipschitz losses on a bounded
domain, the losses themselves may have heavy tails but the excess loss will be
bounded.
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the metric entropy for the well-specified case, as then the misspecification metric dominates
the standard Hellinger metric.

Proper vs. Improper There exist learning problems (P, `,F) on which no proper learner
— one which always predicts inside F — can achieve a rate as good as that of an improper
learner, which can select f̂n /∈ F (Audibert, 2007; Van Erven et al., 2015). In this paper we
considered randomized proper estimators, to which the same lower bounds apply; hence,
they cannot in general compete with improper methods such as exponentially weighted
average forecasters and other aggregation methods. Such methods achieve fast rates un-
der conditions such as stochastic exp-concavity (Juditsky et al., 2008), which imply the
“stochastic mixability” condition that, as explained by Van Erven et al. (2015), is sufficient
for fast rates for aggregation methods. To get rates comparable to those of improper learn-
ers, we invariably need to make a “convex luckiness” assumption under which, as again
shown by Van Erven et al. (2015), v-stochastic mixability implies the v-PPC condition (see
also Figure 1); the latter allows for fast rates for randomized proper learners. An interesting
question for future work is whether our proof techniques can be extended to incorporate,
and get the right rates for, improper methods such as the empirical star estimator (Au-
dibert, 2007) and Q-aggregation (Lecué and Rigollet, 2014). Since the original analysis of
these methods bears some similarity to our techniques, this might very well be possible.

While superior rates for improper learners are inevitable, it is more worrying that the
rate we showed for ERM in heavy-tailed bounded regression is worse than the rate for the
SeqRand algorithm, which is also randomized proper (see Example 11 and text below it).
We do not know whether the rate we obtain is the actual worst-case rate that ERM achieves
under our conditions, or whether ERM achieves the same rate as SeqRand, or something in
between. In the latter two cases, it would mean that our bounds are suboptimal. Sorting
this out is a major goal for future work.

Empirical Process vs Information-theoretic Broadly speaking, one can distinguish
approaches to proving excess risk bounds into two main groups: on the one hand are
approaches based on empirical process theory (EPT) such as (Bartlett et al., 2005; Bartlett
and Mendelson, 2006; Koltchinskii, 2006; Mendelson, 2014; Liang et al., 2015; Dinh et al.,
2016) and most work involving VC dimension in classification. On the other hand are
information-theoretic approaches based on prior measures, change-of-measure arguments,
and KL penalties such as PAC-Bayesian and MDL approaches (Barron and Cover, 1991;
Li, 1999; Catoni, 2003; Audibert, 2004; Grünwald, 2007; Audibert, 2009). A significant
advantage of EPT approaches is that they often can achieve optimal rates of convergence
for “large” models F with metric entropy logN (F , ∥ ⋅ ∥, ε) that increases polynomially in
1/ε, where ∥ ⋅ ∥ is the L1(P ) or L2(P )-metric. Prior-based approaches (including the one in
this paper) may yield suboptimal rates in such cases (see Audibert (2009) for discussion).
A closely related advantage of EPT approaches is that they can handle empirical covers of
F , thus allowing one to prove bounds for VC classes, among others.

An advantage of prior-based approaches is that they inherently penalize, so that when-
ever one has a countably infinite union of classes F = ⋃j∈NFj , the approaches automatically
adapt to the rate that can be obtained as if the best Fj containing f∗ were known in ad-
vance; this adaptation was illustrated at various places in this paper (see final display in
Proposition 6, equation (27)). This happens even if for every n, there is a j and f ∈ Fj
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with empirical error 0; in such a case unpenalized methods as often used in EPT methods
would overfit. In the paper (Grünwald and Mehta, 2019), a companion paper to the present
one, we show for bounded excess losses that the two approaches may be combined. In fact
one can provide a single excess risk bound in which the information complexity is replaced
by a strictly smaller quantity and instead of a prior one uses a more general “luckiness
function” (Grünwald, 2007) that is better suited for dealing with penalized estimators. For
some choices of luckiness function, one gets a slight strengthening of the excess risk bounds
given in this paper; for other choices, one gets bounds in terms of Rademacher complexity,
L2(P ) and empirical L2(Pn) covering numbers. Thus, the best of both worlds is achievable,
but for the time being only for bounded excess losses.

Another major goal for future work is thus to provide such a combined EPT-information
theoretic bound for unbounded excess losses that allows for heavy-tailed excess loss. Within
the EPT literature, some work has been done: Mendelson (2014, 2017b) provides bounds
on the L2(P )-estimation error ∥f̂ − f∗∥2

L2(P ) and Liang et al. (2015) on the related squared

loss risk. For other loss functions not much seems to be known: Mendelson (2017b) shows
that improved L2(P )-estimation error rates may be obtained by using other, proxy loss
functions during training; however, the target remains L2(P )-estimation. In contrast, our
approach allows for general loss functions ` including density estimation, but we do not
specially study proxy training losses.

The last three EPT-based works can deal with (P, `,F) with unbounded excess (squared
loss) risk. This is in contrast to earlier papers in the information-theoretic/PAC-Bayes tra-
dition; as far as we know, our work is the first one that allows one to prove excess risk
convergence rates in the unbounded risk case (Theorem 31) for general models including
countable infinite unions of models as in Proposition 6. Previous works dealing with un-
bounded excess loss all rely on a Bernstein condition — we are aware of (Zhang, 2006a),
requiring β = 1; (Audibert, 2004), for the transductive setting rather than our inductive
setting; and, the most general, (Audibert, 2009). However, for convex or linear losses, a
Bernstein condition can never hold if supf∈F E[Lf ] is unbounded, as follows trivially from
inspecting Definition 17, whereas the v-central and PPC-conditions can hold. See for in-
stance Example 15 in Appendix I, where F is just the densities of the normal location
family without any bounds on the mean: here the Bernstein condition must fail, yet the
strong central condition and the witness condition both hold and thus Theorem 31 applies
(for some moderate M).

In the unbounded-excess-loss-yet-bounded-risk case, the difference between these works
and ours opaques: there may well be cases (though we have not produced one) where the
Bernstein condition holds for some β but the v-PPC condition does not hold for v(ε) ≍ ε1−β;
the opposite certainly can happen (note however that in the bounded excess loss case these
two conditions are equivalent; see Figure 1). Indeed, Example 14 in Appendix I exhibits an
F for which the excess risk is bounded but its second moment is not, whence the Bernstein
condition fails to hold for any positive exponent, while both the strong central condition and
the witness condition hold. Theorem 29 therefore applies whereas the results of Audibert
(2009) and Zhang (2006b) do not. Finally we note that Audibert (2009) proves his bounds
for his ingenious SeqRand learning algorithm, whereas Zhang’s and our bounds hold for
general estimators.
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Yet another major goal for current work is thus to disentangle the role of the PPC
condition and the Bernstein condition for unbounded excess losses; ideally we would extend
our bounds to cover faster rates under a weaker condition implied by either of the Bernstein
or PPC conditions.

Additional Future Work: Learning η A general issue with generalized Bayesian and
MDL methods, but one that is avoided by ERM, is the fact that they depend on the
learning rate parameter η. While this is often pragmatically resolved by cross-validation (see
e.g. Audibert (2009) and many others), Grünwald (2011, 2012) give a method for learning
η that provably finds the “right” η (i.e. optimal for the best Bernstein condition that holds
for the given learning problem) for bounded excess loss functions and likelihood ratios;
experiments (Grünwald and Van Ommen, 2017) indicate that this “safe Bayesian” method
works excellently in the unbounded case as well. While it seems that the proof technique
to handle learning η carries over to the present unbounded setting, actually proving that
the SafeBayes method still works remains a task for future work.
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Appendix A. Proofs for Section 3

Proof (of Proposition 1) First, we prove (a), i.e.,

lim
η↓0

−
1

η
log E[e−ηX] = lim

η↓0
1

η
(1 −E[e−ηX]) = E[X].

Define yη ∶= E[e−ηX]; we will use the fact that limη↓0 E[e−ηX] = 1 (from Fatou’s Lemma,
using the nonnegativity of e−ηx).

Now, from Lemma 2 of Van Erven and Harremoës (2014), for y ≥ 1
2 we have (y −

1) (1 + 1−y
2

) ≤ log y ≤ y − 1 . Hence,

lim
η↓0

−
1

η
log E[eηX] = lim

η↓0
−

1

η
log yη = lim

η↓0
−

1

η
(yη − 1) = lim

η↓0
1

η
E[1 − e−ηX],

which completes the proof of the first equality.

Now, for all x the function η → 1
η (1 − e

−ηx) is non-increasing, as may be verified since

sign(xe−ηx − 1−e−ηx
η ) = − sign(eηx − (ηx + 1)) ≤ 0.
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Next, we rewrite the following Hellinger-divergence-like quantity:

E [
1

αη̄
(1 − e−αη̄X)] = E [

1

αη̄
(1 − e−αη̄X) −

1

η̄
(1 − e−η̄X)] +

1

η̄
E [1 − e−η̄X] .

Now take any decreasing sequence α = αj ∈ (αi)i≥1 going to zero with α1 < 1. We have for
all j that x ↦ 1

αj η̄
(1 − e−αj η̄x) − 1

η̄ (1 − e
−η̄x) is a positive function, and the corresponding

sequence with respect to j is non-decreasing. Hence, the monotone convergence theorem
applies and we may interchange the limit and expectation, yielding

lim
α↓0

E [
1

αη̄
(1 − e−αη̄X) −

1

η̄
(1 − e−η̄X)] +

1

η̄
E [1 − e−η̄X]

= E [lim
α↓0

1

αη̄
(1 − e−αη̄X) −

1

η̄
(1 − e−η̄X)] +

1

η̄
E [1 − e−η̄X]

= E [lim
η↓0

1 − e−ηX

η
] = E [

limη↓0Xe−ηX

1
] = E[X],

where the penultimate equality follows from L’Hôpital’s rule. This concludes the proof of
the second part of (a). Next, we show (b). Observe that for any η′ ≤ η, the concavity of
x↦ xη

′/η together with Jensen’s inequality implies that

−
1

η′
log E [e−η

′X
] = −

1

η′
log E [(e−ηX)

η′/η
] ≥ −

1

η′
log (E [e−ηX])

η′/η
= −

1

η
log E [e−ηX] .

A.1. Proof of Lemma 33, Extending Lemma 5

We begin with an extension of Lemma 5. This more general result will be used in the proof
of Theorem 29. It generalizes Lemma 5 in that it allows general comparators φ(f), which
depend on the f being compared, instead of just the risk-minimizing f∗ (and it continues
to hold even if F does not contain an optimal f∗). Formally, let (P, `,F) be a learning
problem. For f ∈ F , we work with the excess loss `f −`φ(f), where φ ∶ F → F̄ is a comparator
map6 which, in the special case of Lemma 5, is simply the trivial function mapping each
f ∈ F to f∗.

Lemma 33 Let (P, `,F) represent a learning problem. Let Π∣ be a learning algorithm for
this learning problem that outputs distributions on F . Let φ ∶ F → F̄ be any deterministic
function mapping the predictor f ∼ Πn to a set of nontrivial comparators. Then for all
η > 0, we have:

Ef∼Πn [E
ann(η)
Z∼P [`f − `φ(f)]] ⊴η⋅n ICn,η (φ(f) ∥Π∣) . (57)

where ICη is the (generalized) information complexity, defined as

ICn,η (φ(f) ∥Π∣) ∶= Ef∼Πn [
1

n

n

∑
i=1

(`f(Zi) − `φ(f)(Zi))] +
KL(Πn ∥Π0)

η ⋅ n
. (58)

6. The set F̄ is defined at the beginning of Section 6.
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By the finiteness considerations of Appendix H, ICn,η(φ(f) ∥Π∣) is always well-defined but
may in some cases be equal to −∞ or ∞. The explicit use above of a comparator function
φ differs from Zhang’s statement, in which the ability to use such a mapping was left quite
implicit; however, inspection of the proof of Theorem 2.1 of Zhang (2006b) reveals that our
version above with comparator functions is also true. Comparator functions will be critical
to our application of Lemma 33. For completeness, we provide a proof of this generalized
result.

Proof (of Lemma 33) For any measurable function ψ ∶ F ×Zn → R it holds that

Ef∼Πn[ψ(f,Z
n
)] −KL(Πn ∥Π0) ≤ log Ef∼Π0 [e

ψ(f,Zn)
] . (59)

This result, a variation of the “Donsker-Varadhan variational bound” follows from convex
duality; see Zhang (2006b) for an explicit proof.

Define the function Rn∶F ×Zn → R as Rn(f, z
n) = ∑

n
j=1 (`f(zj) − `φ(f)(zj)). Then (59)

with the choice ψ(f,Zn) = −ηRn(f,Z
n) − log EZ̄n∼Pn [e−ηRn(f,Z̄

n)] yields

Ef∼Πn [−ηRn(f,Z
n
) − log EZ̄n [e−ηRn(f,Z̄

n)
]] −KL(Πn ∥Π0) ≤ log Ef∼Π0

⎡
⎢
⎢
⎢
⎣

e−ηRn(f,Z
n)

EZ̄n [e−ηRn(f,Z̄n)]

⎤
⎥
⎥
⎥
⎦
,

which, after exponentiating and taking the expectation with respect to Zn ∼ Pn, gives

EZn [exp (Ef∼Πn [−ηRn(f,Z
n
) − log EZ̄n [e−ηRn(f,Z̄

n)
]] −KL(Πn ∥Π0))]

≤ EZn

⎡
⎢
⎢
⎢
⎣
Ef∼Π0

⎡
⎢
⎢
⎢
⎣

e−ηRn(f,Z
n)

EZ̄n [e−ηRn(f,Z̄n)]

⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦
.

From the Tonelli-Fubini theorem (see e.g. (Dudley, 2002, p. 137)), we can exchange the two
outermost expectations on the RHS, and so the RHS is at most 1. Using ESI notation, we
then have

Ef∼Πn [− log EZ̄n [e−ηRn(f,Z̄
n)

]] ⊴1 Ef∼Πn [ηRn(f,Z
n
)] +KL(Πn ∥Π0).

Using that the Z̄1, . . . , Z̄n are drawn i.i.d. from P and dividing by η ⋅ n then yields

Ef∼Πn [−
1

η
log EZ [e−η(`f (Z)−`φ(f)(Z))]] ⊴η⋅n Ef∼Πn

⎡
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(`f(Zj) − `φ(f)(Zj))
⎤
⎥
⎥
⎥
⎦
+

1

η
KL(Πn ∥Π0).

Proof (of Proposition 6) Zhang (2006a) showed the first inequality in (17) and (20).
The equality of the first and third terms and the inequality in (17) are “folklore” in the
individual sequence-prediction and MDL communities. For completness we provide a proof.

The two equalities in (17) are easy to see after rewriting the center term as

n ⋅ inf
Π∣∈RAND

ICn,η(Π∣) = −
1

η
sup

Π∈∆(F)

⎧⎪⎪
⎨
⎪⎪⎩

−
n

∑
j=1

Lf(Zj) −KL(Π ∥Π0)

⎫⎪⎪
⎬
⎪⎪⎭

.
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Now, from Legendre duality, we have for some map ϕ ∶ X → R that

sup
ν∈∆(X )

{EX∼ν[ϕ(X)] −KL(ν ∥µ)} = log EX∼µ [eϕ(X)
] ,

and the supremum is achieved by taking ν(dx) =
eϕ(dx)

EX∼µ[eϕ(X)]
. This proves the equalities in

(17).
To see (18) and (19), observe that for any A ⊂ F , we have

−
1

η
log Ef∼Π0 [e

−∑nj=1 Lf (Zj)] = −
1

η
log Ef∼Π0 [(1{f∈A} +1{f∉A}) e

−∑nj=1 Lf (Zj)]

≤ −
1

η
log Ef∼Π0 [1{f∈A} ⋅e

−∑nj=1 Lf (Zj)]

= −
1

η
log Π0(A) −

1

η
log Ef∼Π0∣A [e−∑

n
j=1 Lf (Zj)]

≤ −
1

η
log Π0(A) +Ef∼Π0∣A

⎡
⎢
⎢
⎢
⎢
⎣

n

∑
j=1

Lf(Zj)

⎤
⎥
⎥
⎥
⎥
⎦

,

where the last line follows from Jensen’s inequality. Together with the second equality in
the already-established (17), the third line implies (18); the last line implies (19).

For (20), the first inequality is obvious since the infimum over DET is at least the
infimum over RAND. The equality is immediate from the definition of the two-part MDL
estimator. The second inequality follows as a special case of the inequality in (17).

Appendix B. Proofs for Section 4

Proof (of Theorem 10) The Rényi divergence (Van Erven and Harremoës, 2014) of
order α is defined as Dα(p∥q) =

1
α−1 log ∫ p

αq1−αdµ, so that, for 0 < α < 1, with η = (1−α)η̄,

Dα(pf∗,η̄∥pf,η̄) =
1

α − 1
log∫ p(z)

e−αη̄Lf∗ ⋅ e−(1−α)η̄Lf

(E[e−η̄Lf∗(Z)])α(E[e−η̄Lf (Z)])1−α
dµ

=
1

α − 1
log∫ p(z)

e−(1−α)η̄Lf

(E[e−η̄Lf (Z)])1−αdµ

= −
η̄

η
(log E[e−ηLf ] −

η

η̄
log E[e−η̄Lf (Z)

])

= η̄Eann(η)
[Lf ] + log E[e−η̄Lf (Z)

]

≤ η̄Eann(η)
[Lf ],

where we used the η̄-central condition. Van Erven and Harremoës (2014) show that the
squared Hellinger distance between two densities p and q is always bounded by their Rényi
divergence of order 1/2 and also that the latter is bounded by the Rényi divergence of order
0 < α < 1/2 via D1/2(p∥q) ≤

1−α
α Dα(p∥q), so that we get

d2
η̄(f, f

′
) ≤

1

η̄
⋅
1 − α

α
⋅ η̄Eann(η)

[Lf ] =
η

η̄ − η
Eann(η)

[Lf ].

The result is now immediate from Lemma 5.
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Proof (of Proposition 11, Cont.) We use the familiar rewrite of the KL divergence
EZ∼Pf∗ [Lf ] = D(f∗∥f) as EZ∼Pf∗ [Lf ] = E[Lf + S], with S = (pf(Z)/pf∗(Z)) − 1, where as
is well-known, Lf +S is nonnegative on Z. Using this in the second inequality below gives:

EZ∼Pf∗ [Lf ∨0] = EZ∼Pf∗ [1{Lf≥0}(Lf + S)] −EZ∼Pf∗ [1{Lf≥0} S] ≤ EZ∼Pf∗ [Lf ] +EZ∼Pf∗ [∣S∣]

= EZ∼Pf∗ [Lf ] + ∫ pf∗ ∣
pf − pf∗

pf∗
∣dµ(z) ≤D(f∗∥f) + ∫ ∣pf − pf∗ ∣dµ,

and the result follows by Pinsker’s inequality.

Appendix C. Proofs for Section 5 and Example 12

C.1. Proof of Lemma 34, Extending Lemma 13

Below we state and prove Lemma 34 which generalizes Lemma 13 in the main text in that it
allows general comparators φ(f), as introduced above Lemma 33. This extension is pivotal
for our results in Section 6 involving the GRIP.

Lemma 34 Let η̄ > 0. Let φ be any comparator map φ such that for any given f , φ(f)
satisfies E[`φ(f)] ≤ E[`f ]. Assume that the strong η̄-central condition is satisfied with respect
to comparator φ for some fixed f ∈ F , i.e.,

`f − `φ(f) ⊴η̄ 0. (60)

Furthermore assume that the (u, c)-witness condition holds for this f , relative to φ(f), for
some constants u > 0 and c ∈ (0,1], i.e.,

cE[Lf ] ≤ E[(`f − `φ(f)) ⋅ 1{`f−`φ(f)≤u}]. (61)

Then for all η ∈ (0, η̄)

E[Lf ] ≤ cu ⋅E
he(η) [`f − `φ(f)] ≤ cu ⋅E

ann(η) [`f − `φ(f)] , (62)

with cu ∶= 1
c
ηu+1
1− η

η̄

. Moreover, suppose that the (τ, c)-witness condition holds for a non-

increasing τ and c as in Definition 12, for all f ∈ F , relative to comparator φ(⋅), i.e.,
E[(`f − `φ(f)) ⋅ 1{`f−`φ(f)≤τ(E[`f−`φ(f)])}] ≥ cE[Lf ]. For all f ∈ F , all η ∈ (0, η̄), all ε > 0, we
have:

E[Lf ] ≤ ε∨ cτ(ε) ⋅E
he(η) [`f − `φ(f)] ≤ ε∨ cτ(ε) ⋅E

ann(η) [`f − `φ(f)] . (63)

Proof
Proof of (62). Define L′f ∶= `f − `φ(f). For any η ∈ [0, η̄], define:

hf,η ∶=
1

η
(1 − e−ηL

′
f ) Sf,η ∶= hf,η − hf,η̄ Hf,η ∶= Ehe(η)

[L′f ] = E[hf,η].

It is easy to verify that the map η ↦ hf,η is non-increasing, and hence Sf,η is a positive
random variable for any η ∈ [0, η̄]. It also is easy to verify that limη↓0 hf,η = L

′
f . We thus
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can define hf,0 = L′f and Sf,0 = L′f − hf,η̄ and hence can rewrite the excess risk of f (with
respect to φ(f)) as

E[L′f ] = E[hf,0 − hf,η̄ + hf,η̄] = E[Sf,0] +Hf,η̄.

Splitting up the expectation into two components, we have

E[Sf,0 ⋅ 1{L′
f
≤u}] +E[Sf,0 ⋅ 1{L′

f
>u}] +Hf,η̄.

Now, from Lemma 35 (stated and proved immediately after this proof), the positivity of
Sf,η, and using C̄ ∶= Cη̄,η,u to avoid cluttering notation, we have

E[L′f ] ≤ C̄E[Sf,η ⋅ 1{L′
f
≤u}] +E[Sf,0 ⋅ 1{L′

f
>u}] +Hf,η̄ ≤ C̄E[Sf,η] +E[Sf,0 ⋅ 1{L′

f
>u}] +Hf,η̄

= C̄ (Hf,η −Hf,η̄) +E[Sf,0 ⋅ 1{L′
f
>u}] +Hf,η̄ = C̄Hf,η − (C̄ − 1)Hf,η̄ +E[Sf,0 ⋅ 1{L′

f
>u}].

We observe that Hf,η̄ ≥ 0 since Hf,η̄ =
1
η̄ E [1 − e−η̄L

′
f ] ≥ 0, where the inequality is implied

by the strong η̄-central condition (i.e. E [e−η̄L
′
f ] ≤ 1). Therefore, since it always holds that

C̄ ≥ 1 we have

E[L′f ] ≤ C̄Hf,η +E[Sf,0 ⋅ 1{L′
f
>u}]. (64)

Next, we claim that E[Sf,0 ⋅ 1{L′
f
>u}] ≤ E[L′f ⋅ 1{L′

f
>u}]. To see this, observe that Sf,0 =

L′f +
1
η̄ (e−η̄L

′
f − 1), and that the second term is negative on the event L′f > u. We thus have

E[L′f ] −E[L′f ⋅ 1{L′
f
>u}] ≤ C̄Hf,η,

which can be rewritten as

E[L′f ⋅ 1{L′
f
≤u}] ≤ C̄Hf,η, (65)

Now, since we assume (61), the first inequality in (62) is proved, and the second then follows
from (12):

E[Lf ] ≤
C̄

c
Hf,η.

Proof of (63). Fix arbitrary f ∈ F . We know that for this particular f , either E[Lf ] ≤ ε
in which case there is nothing to prove, or E[Lf ] > ε. Then for this f , the (u, c)-witness
condition holds with u = τ(E[Lf ]) ≤ τ(ε). But then the result follows as above.

Lemma 35 (“Bounded Part” Lemma) For u, η̄ > 0 and η ∈ [0, η̄), we have

E[Sf,0 ⋅ 1{`f−`φ(f)≤u}] ≤ Cη̄,η,uE[Sf,η ⋅ 1{`f−`φ(f)≤u}],

where Cη̄,η,u ∶=
ηu+1
1− η

η̄

.
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Proof It is sufficient to show that on the set {`f − `φ(f) ≤ u}, it holds that Sf,0 ≤ CSf,η for
some constant C. This may be rewritten as wanting to show, for η0 → 0:

1

η0
(1 − e−η0(`f−`φ(f))) −

1

η̄
(1 − e−η̄(`f−`φ(f))) ≤ C (

1

η
(1 − e−η(`f−`φ(f))) −

1

η̄
(1 − e−η̄(`f−`φ(f)))) .

Letting r = e−η̄(`f−`φ(f)), this is equivalent to showing that

1

η̄
(

1

η0/η̄
(1 − rη0/η̄) − (1 − r)) ≤

C

η̄
(

1

η/η̄
(1 − rη/η̄) − (1 − r)) .

Now, for any η ≥ 0, define7 the function gη as gη(r) =
1
η (1 − r

η) − (1 − r). From Lemma 36,

for any η′ ≥ 0, if r ≥ 1
V for some V > 1 then g0(r) ≤

1
1−η′ (η

′ logV + 1)gη′(r).

Applying this inequality, taking η0 → 0 and η′ ∶= η
η̄ , and observing that on the set

{`f − `φ(f) ≤ u} we may take V = eη̄u > 1, we see that whenever `f − `φ(f) ≤ u,

(
1

η0
(1 − rη0) − (1 − r)) ≤

1

1 − η′
(η′η̄u + 1) (

1

η′
(1 − rη

′
) − (1 − r)) .

Thus, Sf,0 ≤ Cη̄,η,uSf,η indeed holds for Cη̄,η,u =
ηu+1
1− η

η̄

.

1 2 3 4

3

2

1

0

1

2

3
η= 0 (−log)

η= 1/4

η= 1/2

η= 1

Figure 2: The function r ∶→ η−1(1−rη) for various values of r. gη(r) is the difference of the
line for η at r and the line for η = 1 at r, which is always positive.

Lemma 36 Let 0 ≤ η′ < η < 1 and 1 < V < ∞. Define gη(r) ∶= η
−1 (1 − rη) − (1 − r), a

positive function. Then for η′ > 0 and r ≥ 1
V :

gη′(r) ≤ Cη′←η(V )gη(r),

7. Note that the gη used here is not a GRIP.
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where Cη′←η(V ) ≤ ((η′)−1 − 1)/(η−1 − 1), and

lim
η′↓0

gη′(r) ≤ C0←η(V )gη(r),

where C0←η(V ) =
logV −(1−V −1)

1
η
(1−V −η)−(1−V −1) ≤

η
1−η logV + 1

1−η .

Proof Let 0 ≤ η′ < η. We will prove that, for all r ≥ 1
V , we have gη′(r) ≤ C ⋅ gη(r) for some

constant C. Hence it suffices to bound

hη′,η(r) ∶=
gη′(r)

gη(r)
=

(η′)−1(1 − rη
′
) − (1 − r)

η−1(1 − rη) − (1 − r)
.

We can extend the definition of this function to η′ = 0 and r = 1 so that it becomes well-
defined for all r > 0, 0 ≤ η′ < η < 1: (0)−1(1 − r0) is defined as limη′↓0(η

′)−1(1 − rη
′
) = − log r.

hη′,η(1) is set to limr↑1 hη′,η(r) = limr↓1 hη′,η(r) which is calculated using L’Hôpital’s rule
twice, together with the fact that for 0 ≤ η ≤ 1 (note η = 0 is allowed), g′η(r) = −r

η−1 + 1,

g′′η (r) = (1 − η)rη−2. Then, because gη(1) = g0(1) = g
′
η(1) = g

′
0(1) = 0, we get:

hη′,η(1) ∶= lim
r↓1

gη′(r)/gη(r) = lim
r↓1

g′η′(r)/g
′
η(r) = lim

r↓1
g′′η′(r)/g

′′
η (r) =

1 − η′

1 − η
.

We have limr→∞ hη′,η(r) = 1, and we show below that hη′,η(r) is strictly decreasing in r
for each 0 ≤ η′ < η < 1, so the maximum value is achieved for the minimum r = 1/V . We
have hη′,η(1/V ) ≤ hη′,η(0) = (η′−1−1)/(η−1−1) and h0,η(1/V ) = (logV −(1−V −1))/(η−1(1−
V −η)− (1−V −1)). The result follows by defining Cη′←η(V ) = hη′,η(1/V ). It only remains to
show that hη′,η(r) is decreasing in r and that the upper bound on C0←η(V ) stated in the
lemma holds.

Proof that h is decreasing : The derivative of h ≡ hη′,η for fixed 0 ≤ η′ < η < 1 is given by
h′η′,η(r) = r

−1 ⋅ s(r), where

s(r) =
(−rη

′
+ r) ⋅ gη(r) + (rη − r) ⋅ gη′(r)

gη(r)2
. (66)

Although we tried hard, we found neither a direct argument that h′ ≤ 0 or that h′′ > 0 (which
would also imply the result in a straightforward manner). We resolve the issue by relating
h to a function f which is easier to analyze. (66) shows that for r > 0, r ≠ 1, h′(r) = 0, i.e.,

h reaches an extremum, iff s(r) = 0, i.e., iff the numerator in (66) is 0, i.e., iff
gη′(r)
gη(r) = rη

′−r
rη−r ,

i.e., iff

h(r) = f(r), where f(r) ∶=
rη

′−1 − 1

rη−1 − 1
.

We can extend f to its discontinuity point r = 1 by using L’Hôpital’s rule similar to its use
above, and then we find that f(1) = h(1); similarly, we find that the discontinuities of f ′(r)
and h′(r) at r = 1 are also removable, again by aggressively using L’Hôpital, which gives

f ′(1) =
1

2
⋅
1 − η′

1 − η
(η′ − η) , h′(1) =

1

3
⋅
1 − η′

1 − η
(η′ − η) , (67)
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and we note that both derivatives are < 0 and also that there is L < 1,R > 1 such that

h < f on (L,1) ; h > f on (1,R). (68)

Below we show that f is strictly decreasing on (0,∞). But then h cannot have an extremum
on (0,1); for if it had, there would be a point 0 < r0 < 1 with h′(r0) = 0 and therefore
h(r0) = f(r0), so that, since f ′(r0) < 0, h lies under f in an open interval to the left of
r0 and above f to the right of r0. But by (68), this means that there is another point r1

with r0 < r1 < 1 at which h and f intersect such that h lies above f directly to the left of
r1. But we already showed that at any intersection, in particular at r1, h′(r1) = 0. Since
f ′(r1) < 0, this implies that h must lie below f directly to the left of r1, and we have reached
a contradiction. It follows that h has no extrema on (0,1); entirely analogously, one shows
that h cannot have any extrema on (1,∞). By (67), h′(r) is negative in an open interval
containing 1, so it follows that h is decreasing on (0,∞).

It thus only remains to be shown that f is strictly decreasing on (0,∞). To this end we
consider a monotonic variable transformation, setting y = rη−1 so that rη

′−1 = y(1−η
′)/(1−η)

and, for a > 1, define fa(y) = (ya − 1)/(y − 1). Note that with a = (1− η′)/(1− η), fa(rη−1) =

f(r). Since 0 < η < 1, y is strictly decreasing in r, so it is sufficient to prove that, for all a
corresponding to some choice of 0 ≤ η′ < η < 1, i.e., for all a > 1, fa is strictly increasing on
y > 0. Differentiation with respect to y gives that fa is strictly increasing on interval (a, b)
if, for all y ∈ (a, b),

ua(y) ≡ ay
a
− ya + 1 − aya−1

> 0.

Straightforward differentiation and simplification gives that u′a(y) = ay
a−1(a − 1)(1 − y−1)

which is strictly negative for all y < 1 and strictly positive for y > 1. Since trivially, ua(1) = 0,
it follows that ua(y) > 0 on (0,1) and ua(y) > 0 on (1,∞), so that fa is strictly increasing on
(0,1) and on (1,∞). But then fa must also be strictly increasing at r = 1, so fa is strictly
increasing on (0,∞), which is what we had to prove.

Proof of upper bound on C0←η(V ): The right term in s(r) as given by (66) is positive
for r < 1, and gη′(x) > gη(x), so setting t(r) to s(r), but with gη′(r) in the right term in
the numerator replaced by gη(r), i.e.,

t(r) ∶=
(−rη

′
+ r) ⋅ gη(r) + (rη − r) ⋅ gη(r)

gη(r)2
=
−rη

′
+ rη

gη(r)
,

we have t(r) ≤ s(r) for all r ≤ 1. We already know that hη′,η is decreasing, so that s(r) ≤ 0
for all r, so we have t(r) ≤ s(r) ≤ 0 for all r ≤ 1. In particular, this holds for the case η′ = 0,
for which t(r) simplifies to t(r) = (−1+rη)/gη(r) = −(1−r

η)/(η−1(1−rη)−(1−r)). A simple
calculation shows that (a) limr↓0 t(r) = −1/(η−1 − 1) = −η/(1 − η) and (b) t(r) is increasing
on 0 < r < 1 for all 0 < η < 1.

Now define h̃ by setting h̃(r) = (1/(1−η))⋅(1−η log r) for 0 < r ≤ 1. Then h̃′(r) = −(η/(1−
η))r−1 ≤ t(r)r−1 ≤ s(r)r−1 = h′0,η(r) ≤ 0 by all the above together. Since h̃(1) = h0,η(1), and

for r < 1, h0,η is decreasing but h̃ is decreasing even faster, we must have h̃(r) ≥ h0,η(r) for
0 < r < 1. We can thus bound h0,η(1/V ) by h̃(1/V ), and the result follows.
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C.2. Proof of Lemma 16

Proof Markov’s inequality implies that for all f ∈ F , Pr(eδLf > u) <
Mδ

u for any u ≥ 0.
Therefore, for some map τ ∶ R+ → R+ to be set later:

E [Lf ⋅ 1{Lf>τ(E[Lf ])}] = ∫
∞

0
Pr(Lf ⋅ 1{Lf>τ(E[Lf ])} > t)dt =

∫

∞

τ(E[Lf ])
Pr(Lf > t)dt = ∫

∞

τ(E[Lf ])
Pr(eδLf > eδt)dt ≤ ∫

∞

τ(E[Lf ])
Mδe

−δtdt =
Mδ

δ
e−δτ(E[Lf ]).

(69)

Taking τ ∶ x ↦ 1∨
log

2Mδ
δx

δ , the last line above is bounded by 1
2 E[Lf ], and so the (τ, c)-

witness condition holds with c = 1/2.

C.3. Proofs Related to Heavy-tailed Regression

We start with some general facts. For squared loss, the excess loss can be written as
(abbreviating f(X) and f∗(X) to f and f∗, resp.),

Lf = (f(X) − f∗(X)) ⋅ (−2Y + f(X) + f∗(X)) (70)

= (f − f∗) ⋅ ((f − f∗) + 2(f∗ − Y )) (71)

= (f − f∗)2
+ 2(f∗ − Y )(f − f∗). (72)

Now, recall that in both Examples 7 and 12, we assumed that the risk minimizer f∗ over
F continues to be a minimizer when taking the minimum risk over the convex hull of F .
This implies that for all f ∈ F ,

E (f∗(X) − Y )(f(X) − f∗(X))] ≥ 0, (73)

To see this, we observe that if we instead consider the function class conv(F), then f∗ is
still a minimizer and (73) holds for all f ∈ conv(F) from Mendelson (2017a) (see the text
around equation (1.3) therein).

But now (73) with (72) implies that, under our assumptions,

E [(f(X) − f∗(X))
2] ≤ E[Lf ]. (74)

Proof (of Proposition 18) Let u > 0 be a to-be-determined constant. Then

E [Lf ⋅ 1{Lf>τ(E[Lf ])}] ≤ E [Lf ⋅
Lf

τ(E[Lf ])
⋅ 1{Lf≥0}] =

1

τ(E[Lf ])
E [L2

f ⋅ 1{Lf≥0}] ≤
1

τ(E[Lf ])
E [L2

f ] ≤
B

u

(E [Lf ])
β

(E[Lf ])β−1
=
B

u
E[Lf ],

and the result follows.
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Proof (of Proposition 19) To see that a Bernstein condition holds if E[Y 2 ∣ X] ≤ C
a.s. and ∣f(X)∣ ≤ r almost surely, observe that from (70),

L2
f ≤ 2(f(X) − f∗(X))

2 (4Y 2
+ (f(X) − f∗(X))

2) ,

and hence

E [L2
f ] ≤ 8 (E [(f(X) − f∗(X))

2 E[Y 2
∣X]] + r2 E [(f(X) − f∗(X))

2])

≤ 8(C + r2
)E [(f(X) − f∗(X))

2] .

Invoking (74), we see that a Bernstein condition does indeed hold:

E [L2
f ] ≤ 8(C + r2

)E[Lf ].

Proof (of Claim in Example 12) From (71), Cauchy-Schwarz, and our assumption,

E[L2
f ] ≤

√
E[(f(X) − f∗(X))4] ⋅

√
C ≤ AE[(f(X) − f∗(X))

2
] ⋅

√
C ≤ AE[Lf ] ⋅

√
C, (75)

where the final inequality follows from (74) and

C = E[((f − f∗) + 2(Y − f∗))4
] ≤ E[(2(f − f∗)2

+ 8(Y − f∗)2
)

2
]

≤ E[8(f − f∗)4
+ 32(Y − f∗)4

] ≤ 8A2 E[(f − f∗)2
]
2
+ 32E[`2f∗]

≤ 8A2 E[Lf ]
2
+ 32E[`2f∗] ≤ 8A2c2

0 + 32E[`2f∗],

where the third and fifth inequality follow from our assumptions and the fourth follows from
(74). This quantity is bounded, so (75) implies the Bernstein condition.

Appendix D. Proofs for Section 6.1

D.1. Proof of Lemma 21

We first prove (47) from the main text: suppose that (P, `,F) satisfies the v-central condi-
tion. We then have for all f ∈ F ,

E [e
v(ε)⋅(`f∗ε −`f )] = E [ev(ε)⋅(`f∗−`f )] ⋅ e−v(ε)ε ≤ 1,

where the inequality follows because (P, `,F) satisfies the v-central condition. Now suppose
further that (P, `,{f} ∪ {f∗}) satisfies the (u, c)-witness condition. This gives:

cE[Lf ] ≤ E[(`f − `f∗) ⋅ 1{`f−`f∗≤u}] = E[(`f − `f∗) ⋅ 1{`f−`f∗ε ≤u+ε}
]

= E[(`f − (`f∗ε + ε)) ⋅ 1{`f−`f∗ε ≤u+ε}
] ≤ E[(`f − `f∗ε ) ⋅ 1{`f−`f∗ε ≤u+ε}

],

whence the (u+ε, c) witness condition holds for (P, `,{f, f∗ε }). By this fact and (47) (proven
above), we can apply Lemma 34 (our extension of Lemma 13 from the main text), with
φ(f) set to f∗ε (i.e. φ(f) does not depend on f). The result, (46), follows.
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Appendix E. Proofs for Section 6.2

E.1. Proof of Propositions 24–27

Proof (of Proposition 24) Consider the learning problem (P, ˜̀, F̃) with

F̃ ∶= {mη
Q ∶ Q ∈ ∆(F)} ∪ {mη

F}

and ˜̀
f̃ ∶= f̃ for f̃ ∈ F̃ .

We will show that the strong η-PPC condition (Van Erven et al., 2015) holds for this
problem with mη

F taking the role of the optimal action. That is,

E [mη
F] ≤ inf

Q̃∈∆(F̃)
E [−

1

η
log Ef̃∼Q̃ [e−η

˜̀
f̃ ]] . (76)

In one of their main results, (Van Erven et al., 2015, Theorem 3.10 and Corollary 3.11),
again extending an argument of Li (1999), show that the strong η-PPC condition implies the
strong η-central condition for any tuple (P, `, F̃) under the sole assumption that F̃ contains
a risk minimizer, i.e., there exists f ′ ∈ F̃ with minf∈F̃ E[`f ] = E[`f ′]. But we construct F̃

so that this holds, since it contains mη
F . Thus, if (76) indeed holds (as we will soon show),

then (P, ˜̀, F̃) also satisfies the the strong η-central condition. But this implies that, for all
f̃ ∈ F̃ ,

E [e−η(
˜̀
f̃−m

η
F)

] ≤ 1.

The statement above holds in particular for any f̃ =mη
Q, which includes the special case of

the Dirac mix losses of the form mη
δf
= `f for any f ∈ F , and hence we have, for all f ∈ F ,

E [e−η(`f−m
η
F)

] ≤ 1 for all f ∈ F ,

which is what we wanted.
Let us now prove inequality (76). We start with the RHS of (76) and, via a sequence of

lower bounds, will arrive at the LHS. First, observe that the RHS can be rewritten as

inf
α∈[0,1]

inf
Q̃∈∆(∆(F))

E [−
1

η
log (αe−ηm

η
F + (1 − α)EQ∼Q̃ [e−ηm

η
Q])]

= inf
α∈[0,1]

inf
Q∈∆(F)

E [−
1

η
log (αe−ηm

η
F + (1 − α)mη

Q)] .

Next, for each α and Q, we introduce a function Γα,Q∶R→ R, defined as

Γα,Q(x) = −
1

η
log (αe−ηx + (1 − α)mη

Q) ,

so that the last line in the above display may be rewritten as

inf
α∈[0,1]

inf
Q∈∆(F)

E [Γα,Q(m
η
F)] .
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Now, as we show in Appendix G, there exists a sequence (Qn)n≥1 such that mη
Qn

con-

verges to mη
F in L1(P ). For any n ≥ 1, we have

E [Γα,Q(m
η
F)] = E [Γα,Q(m

η
Qn

)] +E [Γα,Q(m
η
F) − Γα,Q(m

η
Qn

)] (77)

Note that Γα,Q is 1-Lipschitz, since (for any choice of α and Q),

dΓα,Q

dx
Γα,Q(x) = −

1

η

−ηαe−ηx

αe−ηx + (1 − α)e−ηm
η
Q

=
αe−ηx

αe−ηx + (1 − α)e−ηm
η
Q

∈ [0,1].

Consequently, it holds that (77) is lower bounded by

E [Γα,Q(m
η
Qn

)] −E [∣Γα,Q(m
η
F) − Γα,Q(m

η
Qn

∣] ≥ E [Γα,Q(m
η
Qn

)] −E [∣mη
F −m

η
Qn

∣] .

Next, since mη
Qn

converges to mη
F in L1(P ), taking the limit as n→∞, the RHS of the last

line above converges to E [Γα,Q(m
η
Qn

)]. Thus, we have shown that

E [Γα,Q(m
η
F)] ≥ lim

n→∞
E [Γα,Q(m

η
Qn

)] ,

and so:

inf
α∈[0,1]

inf
Q∈∆(F)

E [−
1

η
log (αe−ηm

η
F + (1 − α)e−ηm

η
Q)]

≥ inf
α∈[0,1]

inf
Q∈∆(F)

lim
n→∞

E [−
1

η
log (αe−ηm

η
Qn + (1 − α)e−ηm

η
Q)]

= inf
α∈[0,1]

inf
Q∈∆(F)

lim
n→∞

E [mη
αQn+(1−α)Q]

≥ inf
α∈[0,1]

inf
Q∈∆(F)

lim
n→∞

E [mη
F]

= E [mη
F] ,

where we used that the quantity inside limn→∞ is equal to E[mη
Q′] for some Q′ ∈ ∆(F), and

hence by definition not smaller than E[mη
F ]. Thus, inequality (76) indeed holds.

Proof (of Proposition 26) Fix η > 0 and let u be as in (50). For each f ∈ F , let f ′ be
defined by `f ′ = `f if `f ≤ `f∗ + u and `f ′ = `f∗ otherwise and let F ′ be the resulting model.
Then mη

F ′ is the GRIP relative to η and the class F ′; from Appendix G this GRIP is
guaranteed to exist. By definition, for every δ > 0 there is a distribution Q′ on F ′ such
that EZ∼P [m

η
Q′ −m

η
F ′] ≤ δ. Define f○ such that it has constant loss, i.e., for all z ∈ Z,

`f○(z) ∶= E[`f∗]. By using − logx ≥ 1 − x and we have for each z ∈ Z, for some η′ ∈ (0, η):

mη
Q′ − `f○ = −

1

η
log Ef ′∼Q′ e−η(`f ′−`f○) ≥

1

η
(1 −Ef ′∼Q′ e−η(`f ′−`f○))

= Ef ′∼Q′ [`f ′ − `f○] −
1

2
ηE(`f ′ − `f○)

2e−η
′(`f ′−`f○)

≥ Ef ′∼Q′ [`f ′ − `f○] −
1

2
eη`f○ ⋅ ηEf ′∼Q′(`f ′ − `f○)

2.
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Now use that

Ef ′∼Q′ [(`f ′ − `f○)
2] = Ef ′∼Q′ [((`f ′ − `f∗) + (`f∗ − `f○))

2
]

≤ 2 (Ef ′∼Q′ [(`f ′ − `f∗)
2] + (`f∗ − `f○)

2)

≤ 2 (Ef ′∼Q′ [1{`f ′>`f∗}(`f ′ − `f∗)
2
+ 1{`f ′≤`f∗}(`f ′ − `f∗)

2
] + (`f∗ − `f○)

2
)

≤ 2u2
+ 2`2f∗ + (`f∗ − `f○)

2.

Combining this with the previous inequality and taking the expectation with respect to Z
yields

EZ∼P [mη
F ′ − `f∗] = EZ∼P [mη

Q′ − `f○] − δ

≥ EZ∼P Ef ′∼Q′ [`f ′ − `f∗] −
1

2
ηeη`f○ ⋅ (2u2

+EZ∼P [2`2f∗ + (`f∗ − `f○)
2]) − δ

≥ EZ∼P Ef ′∼Q′ [(`f ′ − `f∗) ⋅ 1{`f ′−`f∗≤u}] −
1

2
ηeηE[`f∗ ] ⋅ (2u2

+ 3E[`2f∗]) − δ

= Ef∼QEZ∼P [(`f − `f∗) ⋅ 1{`f−`f∗≤u}] −
1

2
ηeηE[`f∗ ] ⋅ (2u2

+ 3E[`2f∗]) − δ

≥ −
1

2
ηeηE[`f∗ ] ⋅ (2u2

+ 3E[`2f∗]) − δ,

where Q ∈ ∆(F) is the distribution defined by taking dQ(f) = dQ′(f ′) (where we make use
of the bijection between F and F ′ from the definition of `f ′ in terms of f , for all f ′ ∈ F),
and the final inequality invokes (50). We now take η ≤ 1/E[`f∗], yielding

EZ∼P [`f∗ −m
η
F ′] ≤ η ⋅ e ⋅ (u

2
+

3

2
E[`2f∗]) + δ. (78)

The result now follows from Proposition 27, using that the reasoning above holds for every
δ > 0.

Proof (of Proposition 27) Define the set F ′ such that for each f ∈ F , there is an f ′ ∈ F
with `′f = `f ′ and vice versa. Note that we must have:

EZ∼P [mη
F ′] ≤ EZ∼P [mη

F] . (79)

To see this, assume for contradiction that there exists some ε > 0 such that EZ∼P [mη
F] ≤

EZ∼P [mη
F ′] − ε. Let (Qj)j≥1 be a sequence for which EZ∼P [m

η
Qj

] ≤ EZ∼P [m
η
F ] +

ε
2 . We

will make use of the fact that, for each Q′ ∈ ∆(F ′), mη
Q′ ≤ mη

Q since for each f ′ the
corresponding f has, on all z, either the same or larger loss. This setup then implies the
following contradiction:

EZ∼P [m
η
F ′] ≤ EZ∼P [m

η
Q′
j
] ≤ EZ∼P [m

η
Qj

] ≤mη
F +

ε

2
≤mη

F ′ −
ε

2
.

Now, since by assumption `f∗ ≡ `(f∗)′ , (79) implies that

EZ∼P [`f∗ −m
η
F] ≤ EZ∼P [`f∗ −m

η
F ′]

which implies the statement of the proposition.
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E.2. Proof of Lemma 28

The proof of Lemma 28 is based on relating the loss mη̄
F of the GRIP comparator appearing

in that lemma to the loss of a related “dynamic” comparator mη̄
f (which we will call “mini-

GRIP”) that varies with f . This requires us to first re-define the witness condition for
such dynamic comparators, relate this dynamic witness condition to the standard witness
condition, and relate the GRIP loss to the mini-GRIP loss; this is all achieved in the
following subsection.

E.2.1. Witness Protection and Mini-grip

Assumption 1 (Advanced Empirical Witness of Badness) Let M ≥ 1 be a parame-
ter of the assumption. We say that (P, `,F) satisfies the empirical witness of badness
condition (abbreviated as witness condition) with respect to dynamic comparator φ if there
exist constants u > 0 and c ∈ (0,1] such that for all f ∈ F ,

E [(`f − `φ(f)) ⋅ 1{`f−`φ(f)≤u(1∨(M−1 E[Lf ]))}] ≥ cE[`f − `φ(f)]. (80)

If we modify the RHS of (80) so that the term E[`f − `φ(f)] is replaced by the poten-
tially smaller E[`f − `f∗], then we call the condition the weak empirical witness of badness
condition (abbreviated as weak witness condition).

In practice, we will assume only that the witness condition holds for the static compara-
tor ψ ∶ f ↦ f∗ (so named because the comparator does not vary with f), as can already
be handled through the simpler witness condition of Definition 12. However, because the
central condition may not necessarily be satisfied with comparator f∗, it is beneficial if
a witness condition holds for a suitably-related comparator for which the central condi-
tion does hold. The ideal candidate for this comparator turns out to be an f -dependent
pseudo-loss, mη

f , an instance of a GRIP (see Definition 23).

The main motivation for our introducing the GRIP is that (P, `,F) with comparator mη
F

satisfies the η-central condition (from Proposition 24). The GRIP arises as a generalization
of the reversed information projection of Li (1999), which is the special case of the above
with η = 1, log loss, and F a class of probability distributions. In this case, the GRIP, now
a reversed information projection, is the (limiting) distribution P ∗ which minimizes the KL
divergence KL(P ∥P ∗) over the convex hull of P; note that P ∗ is not necessarily in conv(P).
Li (1999, Theorem 4.3) proved the existence of the reversed information projection; for
completeness, in Appendix G we present a lightly modified proof of the existence of the
GRIP.

As mentioned above, in our technical results exploiting both the central and witness
conditions, we will need not only the “full” GRIP but also a “mini-grip” mη

f , for each f ,

defined by replacing F with {f∗, f} in Definition 23. The mini-grip with respect to f then
has the simple, characterizing property of satisfying

E[mη
f ] = inf

α∈[0,1]
E [−

1

η
log ((1 − α)e−η`f∗ + αe−η`f )] .

Also, as will be used to critical effect in the application of Lemma 34, for each f the learning
problem (P,{f∗, f}, `) with comparator mη

f satisfies the η-central condition.
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Although up until now it has sufficed to refer to GRIPs only via their loss, for convenience
of notation we now let gηF denote the pseudo-action obtaining the GRIP loss mη

F , and we
let gηf denote the pseudo-action obtaining the mini-GRIP loss mη

f . It should be emphasized

that neither gηF nor gηf need be well-defined; this is of no consequence, however, as we will

use both only via their losses mη
F and mη

f , which are well-defined.
We now show that if the witness condition holds with respect to the static comparator

ψ ∶ f ↦ f∗, then the weak witness condition holds with respect to the comparator φ ∶ f ↦ gηf .

Lemma 37 (Witness Protection Lemma) Assume that (P, `,F) satisfies the witness
condition with static comparator ψ ∶ f ↦ f∗ and constants (M,u, c). Then, for any η > 0,
(P, `,F) satisfies the weak witness condition with dynamic comparator φ ∶ f ↦ gηf with the

same constants (M,u, c).

Proof (of Lemma 37 (Witness Protection Lemma)) Let f be arbitrary. For brevity
we define u′ ∶= u(1∨(M−1 E[Lf ])). Observe that

E [(`f −m
η
f) ⋅ 1{`f−mηf>u′}] ≤ E [(`f − `f∗) ⋅ 1{`f−`f∗>u′}] .

Rewriting, we have

E[`f −m
η
f ] −E [(`f −m

η
f) ⋅ 1{`f−mηf≤u′}] ≤ E[Lf ] −E [(`f − `f∗) ⋅ 1{`f−`f∗≤u′}] ,

which we rearrange as

E [(`f −m
η
f) ⋅ 1{`f−mηf≤u′}] ≥ E [(`f − `f∗) ⋅ 1{`f−`f∗≤u′}] +E[`f −m

η
f ] −E[Lf ]

= E [(`f − `f∗) ⋅ 1{`f−`f∗≤u′}] +E[`f∗ −m
η
f ]

≥ E [(`f − `f∗) ⋅ 1{`f−`f∗≤u′}] .

From the assumed witness condition with static comparator ψ ∶ f ↦ f∗, the RHS is lower
bounded by cE[Lf ], and so we have established the weak witness condition with dynamic
comparator φ and the same constants (M,u, c).

From Hellinger mini-grip to GRIP

Lemma 38 For any η > 0 and f ∈ F ,

Ehe(η)
[`f −m

η
f] ≤ Ehe(η/2) [`f −m

η
F] . (81)

Proof Observe that

1

η/2
(1 −E [e−

η
2
(`f−mηF)

]) =
1

η/2
(1 −E [e−

η
2
(`f−mηf+m

η
f
−mηF)

])

≥
1

η/2
(1 −

1

2
E [e−η(`f−m

η
f
)
] −

1

2
E [e−η(m

η
f
−mηF)

])

≥
1

η/2
(

1

2
−

1

2
E [e−η(`f−m

η
f
)
]) =

1

η
(1 −E [e−η(`f−m

η
f
)
]) ,
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where the first inequality follows from Jensen’s and for the second inequality we use that,

as we will now show, E [e−η(m
η
f
−mηF)

] ≤ 1. To show that this is indeed the case, recall that

mη
f = −

1
η log ((1 − α)e−η`f∗ + αe−η`f ). Using this representation we find:

E [e−η(m
η
f
−mηF)

] = (1 − α)E [e−η(`
∗
f−m

η
F)

] + αE [αe−η(`f−m
η
F)

] ≤ 1.

Next, we chain 1−x ≤ − logx, Lemma 38, and Lemma 34 to obtain a bound that we will
use in the proofs of Theorems 29 and 31.

E.3. Actual Proof of Lemma 28

Let f ∈ F . Let u > 0 and c ∈ (0,1] be constants for which E [Lf ⋅ 1{Lf≤u}] ≥ cE[Lf ], i.e.,

the (u, c)-witness condition holds. Below we show that for all η ∈ (0, η̄2)

E[Lf ] ≤ c
′
2uE

ann(η) [`f −m
η̄
F] , (82)

with c′2u =
1
c

2ηu+1

1− 2η
η̄

.

Proof of (82). We have from (12) and Lemma 38 that

Eann(η) [`f −m
η̄
F] ≥ Ehe(η) [`f −m

η̄
F] .

Now Lemma 37 establishes the weak witness condition with respect to comparator gη̄f , and

from Proposition 24 this comparator further satisfies E [e−η̄(`f−m
η̄
f
)
] ≤ 1, so that we may

apply Lemma 34 with φ(f) = gη̄f to further lower bound the above by 1
c′2u

E[Lf ].

E.4. Proof of Theorem 29

Theorem 29 now follows easily from Lemma 28: fix some ε ≥ 0. First, Lemma 33 (our
extension of Lemma 5 from the main text) states for our particular choice of η that

Ef∼Πn [−
1

η
log E [e−η(`f−m

v(ε)
F )

]] ⊴η⋅n Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(`f(Zj) −m
v(ε)
F (Zj))

⎤
⎥
⎥
⎥
⎥
⎦

+
KL(Πn ∥Π0)

ηn
.

(83)

Weakening this to an in-expectation statement via part (i) of Proposition 3, and combining
the in-expectation version with Lemma 28, (51) implies that, for c′2u =

1
c

2ηu+1

1− 2η
v(ε)

,

EZn1
[Ef∼Πn [E[Lf ]]] ≤ c′2uEZn1

⎡
⎢
⎢
⎢
⎢
⎣

Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(`f(Zj) −m
v(ε)
F (Zj))

⎤
⎥
⎥
⎥
⎥
⎦

+
KL(Πn ∥Π0)

ηn

⎤
⎥
⎥
⎥
⎥
⎦

.

(84)

Now, the v-PPC condition implies that E[`f∗] ≤ E[m
v(ε)
F ] + ε, implying the result (52).
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Appendix F. Proofs for Section 6.3

F.1. Proof of Proposition 30

We first state another proposition that is of independent interest, relating generalized
“small-ball” assumptions to weakenings thereof which resemble the witness condition.

Definition 39 We say that a collection of nonnegative random variables {Sa ∶ a ∈ A}

satisfies the generalized small-ball condition if there exist constants C1,C2 with for all
a ∈ A, P (Sa ≥ C1 E[Sa]) ≥ C2 (Mendelson’s (2014) small-ball assumption in Example 9
and 12 is the case with A = F ×F , Sf,g ∶= (f(X) − g(X))2, C1 = κ

2,C2 = ε). We say that
{Sa ∶ a ∈ A} satisfies the generalized weakened small-ball condition if there exist constants
C ′

1,C
′
2 with for all a ∈ A, E[1{Sa<C′

1 E[Sa]} ⋅Sa] ≥ C
′
2 E[Sa].

The term “weakened” comes from the following proposition:

Proposition 40 Suppose that the generalized small-ball condition holds with constants C1

and C2. Then the generalized weakened small-ball condition holds with constants C ′
1 = 2/C2

and C ′
2 = (C1C2)/2.

Proof From Markov’s inequality, we have for all a ∈ A, P (Sa < (2/C2)E[Sa]) ≥ 1 −C2/2.
In combination with the small-ball assumption, this implies

P (C1 E[Sa] ≤ Sa <
2

C2
E[Sa]) ≥

C2

2
,

and so, since Sa ≥ 0,

E [1{Sa<(2/C2)E[Sa]} ⋅Sa] ≥ E [1{C1 E[Sa]≤Sa<(2/C2)E[Sa]} ⋅Sa] ≥
C2

2
⋅C1 ⋅E[Sa],

and the result follows.

Proof (of Proposition 30) Take some c0 > b, with a precise value to be established
later. First consider the set {f ∈ F ∶ E[Lf ] > c0}. Define the random variable Sf ∶=

(f(X) − f∗(X))2 and Tf ∶= 2(f∗(X) − Y )(f − f∗). From (72) we see that Lf = Sf + Tf .
Hence for every c > 0,

E[Lf ⋅ 1{Lf≥cE[Lf ]}]

≤ E[Sf ⋅ 1{Sf≥Tf} ⋅1{Sf+Tf≥cE[Lf ]}] +E[Sf ⋅ 1{Sf<Tf} ⋅1{Sf+Tf≥cE[Lf ]}] +E[∣Tf ∣]

≤ E[Sf ⋅ 1{Sf≥Tf} ⋅1{2Sf≥cE[Lf ]}] +E[Tf ⋅ 1{Sf<Tf} ⋅1{Sf+Tf≥cE[Lf ]}] +E[∣Tf ∣]

≤ E[Sf ⋅ 1{Sf≥Tf} ⋅1{Sf≥(c/2)E[Sf ]}] + 2E[∣Tf ∣], (85)

where the last inequality follows since E[Sf ] ≤ E[Lf ], owing to (73).
We now bound both terms further. By Cauchy-Schwarz, the second term satisfies

2E[∣Tf ∣] = 4E[∣Y − f∗∣∣f − f∗∣]

≤ 4
√

E[(Y − f∗)2] ⋅E[S2
f ] ≤ 4

¿
Á
ÁÀE[`f∗]

E[Lf ]
⋅E[Lf ] < 4

√
E[`f∗]

c0
⋅E[Lf ].
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Plugging in c′ ∶= (c/2) = 2/ε, the first term can be rewritten, by Proposition 40 and our
assumption that the small-ball assumption holds, as

E[Sf ] −E[Sf ⋅ 1{Sf<(c/2)E[Sf ]}] ≤ E[Sf ] −
κ2ε

2
E[Sf ] = (1 −

κ2ε

2
)E[Sf ] ≤ (1 −

κ2ε

2
)E[Lf ],

so that with (85) we get

E[Lf ⋅ 1{Lf≥c′E[Lf ]}] ≤ C
′E[Lf ],

for C ′ = ((1 − κ2ε
2 ) + 4

√
E[`f∗ ]
c0

). We now pick c0 large enough such that C ′ < 1. It then

follows by the characterization (36) of the witness condition that the set {f ∈ F ∶ E[Lf ] ≥ c0}

satisfies the (τ, c)-witness condition with τ(x) = c′x for c′ = 2/ε and constant c = 1 −C ′.
For the set {f ∈ F ∶ E[Lf ] < c0}, note that we have already shown (Example 7) that

the Bernstein condition implies the basic witness condition. This implies that there exists
u > 0 such that {f ∈ F ∶ E[Lf ] ≤ c0} satisfies the (u, c)-witness condition for c = 1

2 .
Putting the two statements for both subsets of F together, it follows that F satisfies the

(τ, c)-witness condition with any τ such that τ(x) ≥ u∨ 2x
ε for all x and with c = (1−C ′)∧ 1

2 ;
the result follows.

F.2. Proof of Theorem 31

We will need the following lemma, whose proof is a straightforward extension of the proofs
of Theorem 22 and Theorem 29:

Lemma 41 With τ as in the statement of Theorem 31, we get for any ε ≥ 0, any 0 < η <
v(ε)

2 :

under v-central: Ef∼Πn [ξ(E[Lf ])] ⊴ η⋅n
2cu+ε

cu+ε (ICn,η(Π∣) + ε) (86)

under v-PPC: EZn1
[Ef∼Πn [ξ(E[Lf ])]] ≤ c

′
2u (EZn1

[ICn,η(Π∣)] + ε) , (87)

where cu ∶=
u
c

η+1
1− η

v(ε)
and c′2u ∶=

u
c

2η+1

1− 2η
v(ε)

and ξ(E[Lf ]) = 1∧E[Lf ].

Proof (86) follows by following essentially the same steps as in the proof of Theorem 22,
but splitting the expectation in two parts:

Ef∼Πn [ξ(E[Lf ])] = Ef∼Πn [1{E[Lf ]<1} ⋅E[Lf ]] +Ef∼Πn [1{E[Lf ]≥1} ⋅1] . (88)

Fix some ε ≥ 0. The first term on the right of (88) can be bounded as follows, using
Lemma 21 and the fact that a (u, c)-witness condition is assumed for f with E[Lf ] < 1 in
combination with (83) and the fact that for c > 0 and general random variables U,V , we
have U ⊴a V ⇔ cU ⊴a/c cV :

Ef∼Πn [1{E[Lf ]<1} ⋅E[Lf ]] ⊴ηn/cu+ε cu+ε ⋅
⎛

⎝
Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(`f(Zj) − `f∗ε (Zj))

⎤
⎥
⎥
⎥
⎥
⎦

+
KL(Πn ∥Π0)

ηn

⎞

⎠
.
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The second term on the right of (88) can similarly be bounded, using that τ(E[Lf ]) =

uE[Lf ] for all f with E[Lf ] ≥ 1:

Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1{E[Lf ]≥1} ⋅
E[Lf ]

E[Lf ]

⎤
⎥
⎥
⎥
⎥
⎦

⊴ηn/B

B ⋅
⎛

⎝
Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(`f(Zj) − `f∗ε (Zj))

⎤
⎥
⎥
⎥
⎥
⎦

+
KL(Πn ∥Π0)

ηn

⎞

⎠
,

where B = supf ∶E[Lf ]≥1 cuE[Lf ]+ε/E[Lf ]. The result (86) now follows by adding the two
terms using Proposition 3 and bounding B by using that cu⋅a+ε/a ≤ cu+ε for a ≥ 1.

(87) follows in similar fashion, by repeating the proof of Theorem 29, but again splitting
the expectation of ξ(Lf) in two parts, just like above; we omit the details.

Proof (of Theorem 31) We start by establishing the key inequality (90) below both un-
der the v-central and the v-PPC condition, but with different values for rn in (90). For this,
we invoke Lemma 41. This gives that the v-PPC condition implies, via (87) and Markov’s
inequality, that for all δ ≥ 0, with probability at least 1 − δ,

Ef∼Πn [ξ(E[Lf ])] ≤ rn, (89)

where rn =
c′2u
δ ⋅ (E [ICn,ηn] + εn).

On the other hand, under the v-central condition, (86) holds and via Proposition 3 we
can turn it into a high probability bound. Combining this bound with (54) via a standard
union bound argument gives that, for all δ > 0, with probability at least 1 − δ, (89) holds,

with ξ as before but now with rn = cu+εnCn,δ (E [ICn,ηn] + εn +
2
nηn

) . Rewriting (89) gives

that, with probability at least 1 − δ,

Πn ({f ∶ E[Lf ] ≥ 1}) +Ef∼Πn [1{E[Lf ]<1} ⋅E[Lf ])] ≤ rn. (90)

Part 1, Deterministic Estimators. For deterministic Π∣ ≡ (f̂ ,Π0),
(90) simplifies to 1{E[L

f̂
]≥1} +1{E[L

f̂
]<1} ⋅E[Lf̂ ] ≤ rn, which further implies that with prob-

ability at least 1 − δ, simultaneously,

1{E[L
f̂
]≥1} ≤ rn and 1{E[L

f̂
]<1} ⋅E[Lf̂ ] ≤ rn, (91)

and both the result for the v-PPC condition (53) and the v-central condition (55) follow by
noting that we may assume n large enough so that rn < 1, so that (91) is logically equivalent
to

E[Lf̂ ] < 1 and 1{E[L
f̂
]<1} ⋅E[Lf̂ ] ≤ rn,

which in turn is equivalent to E[Lf̂ ] ≤ rn, and thus the results are implied.
Part 2, General Learning Algorithms. Here we assume the v-PPC condition, so we can

use (90) with rn as in the v-PPC case.
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By Markov’s inequality, for any sequence b1, b2, . . . of positive numbers tending to ∞,

Πn ({f ∈ F ∶ 1 > E[Lf ] > bnrn}) = Πn (1{E[Lf ]<1} ⋅E[Lf ] > bnrn)

≤
Ef∼Πn [1{E[Lf ]<1} ⋅E[Lf ]]

bnrn
.

Combining this with (90) (dropping the leftmost term in that inequality) gives that with
probability at least 1 − δ,

Πn ({f ∈ F ∶ 1 > E[Lf ] > bnrn}) ≤
1

bn
.

Combining this again with (90), now dropping the second term in the inequality and using
a standard union bound, gives that with probability at least 1 − 2δ,

Πn ({f ∈ F ∶ E[Lf ] > bnrn}) ≤
1

bn
+ rn,

which, plugging in the definition of rn and ICn,η on the left, can be rewritten as, for each
n, each δ, with an as in the theorem statement:

With probability ≥ 1 − 2δ: Πn ({f ∈ F ∶ E[Lf ] >
bn
an

⋅
c′2u
δ

⋅ (E[ICn,η + εn])}) ≤
1

bn
+rn. (92)

Now choose δ = 1/
√
an → 0 as a function of n, and choose bn =

√
an →∞. Then (92) implies

the result.

F.3. Proof of Proposition 32

Proof Let c, u and τ be as in the statement of the proposition. For each f ∈ F , we will
define modified predictors f ′, defined in terms of their losses `f ′ so that for all such f ′, we
have

E[(`f ′ − `f∗) ⋅ 1{`f ′−`f∗≤u′}] ≥ 0, for u′ = u ⋅ (
E[`f∗]

c
∨1) , (93)

which allows us to apply Proposition 26 to the set of f ′; we will also ensure that for all
z ∈ Z,

`f ′(z) ≤ `f(z) and `(f∗)′(z) = `f∗(z), (94)

which will allow us to apply Proposition 27 so that results for f ′ transfer to the original f .
Once we have shown (93) and (94), the result follows.

Case 1: E[Lf ] ≤ (E[`f∗]/c)∨1. For all f with E[Lf ] ≤ (E[`f∗]/c)∨1 (including f∗), we
simply set f ′ = f . Then (94) holds trivially. To see that (93) holds, note that the assumed
τ -witness condition holds for τ(E[Lf ]) = u(1∨E[Lf ]) ≤ u(1∨(E[`f∗]/c∨1)), which is no
larger than the u′ mentioned in (93), which then immediately follows by the assumed witness
condition.
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Case 2: E[Lf ] > (E[`f∗]/c)∨1. For these f , we define

`f ′(z) =

⎧⎪⎪
⎨
⎪⎪⎩

`f(z) if `f(z) ≤ `f∗(z)
`f (z)−`f∗(z)

c′ + `f∗(z) if `f(z) > `f∗(z),

with c′ ∶= E[Lf ]/(E[`f∗/c]∨1), which by construction must satisfy c′ > 1. This implies
after rearranging terms that (94) holds. It thus remains to prove (93). To see that it holds,
first note that `f ′ > `f∗ ⇔ `f > `f∗ and that `f ≥ 0 on all z. Using these facts we find that:

E[(`f ′ − `f∗) ⋅ 1{`f ′−`f∗≤u′}]

≥ −E[1{`f ′−`f∗≤0} `f∗] +E[(`f ′ − `f∗) ⋅ 1{`f ′−`f∗>0} ⋅1{`f ′−`f∗≤u′}]

≥ −E[`f∗] +E[(`f ′ − `f∗) ⋅ 1{`f>`f∗} ⋅1{`f ′−`f∗≤u′}]

= −E[`f∗] +E [(
`f − `f∗

c′
) ⋅ 1{`f>`f∗} ⋅1{`f−`f∗≤u′c′}]

= −E[`f∗] +
1

c′
E[(`f − `f∗) ⋅ 1{`f>`f∗} ⋅1{`f−`f∗≤u′E[Lf ]/((E[`f∗ ]/c)∨1)}]

= −E[`f∗] +
1

c′
E[(`f − `f∗) ⋅ 1{`f>`f∗} ⋅1{`f−`f∗≤uE[Lf ]}].

= −E[`f∗] +
1

c′
E[(`f − `f∗) ⋅ 1{`f>`f∗} ⋅1{`f−`f∗≤u(E[Lf ]∨1)}]. (95)

≥ −E[`f∗] +
1

c′
E[(`f − `f∗) ⋅ 1{`f−`f∗≤u(E[Lf ]∨1)}]

≥ −E[`f∗] +
1

c′
⋅ cE[Lf ] ≥ −E[`f∗] +E[`f∗] = 0, (96)

where (95) follows because all f ’s we consider here have E[Lf ] > 1 and (96) follows by our
assumption of the τ -witness condition.

Appendix G. The Existence of the Generalized Reversed Information
Projection

Recall that EF ,η is the the entropification-induced set {e−η`f ∶ f ∈ F}. In this section,
we prove the existence of the generalized reversed information projection mη

F of P onto
conv(EF ,η). Because F and η are fixed throughout, we adopt the notation E ∶= EF ,η and
C ∶= conv(EF ,η).

Formally, we will show that there exists q∗ (not necessarily in C) satisfying

E[− log q∗(Z)] = inf
q∈C

E[− log q(Z)].

One might think that there is an easy proof by simply taking q∗ to lie in the closure of C
under some appropriate topology, but it is not evident what topology to take. For example,
even in the simple case with η = 1 and `f is the log-loss so that E and C are sets of probability
densities, it may happen that q∗ is a sub-density (integrating to less than 1) (Li, 1999) so
that it would not lie in the closure of any standard topology which we may impose on C. We
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thus follow a different approach. We first rewrite the above in the language of information
geometry. To provide easier comparison to Li (1999) we use the following modified KL
notation here for a generalized KL divergence, which in particular makes the underlying
distribution P explicit:

KL(p; q0 ∥ q) ∶= EZ∼P [log
q0(Z)

q(Z)
] ,

where q0 and q are nonnegative but neither need be a normalized probability density. Then
the existence question above is equivalent to the existence of q∗ such that

KL(p; q0 ∥ q
∗
) = inf

q∈C
KL(p; q0 ∥ q);

here, the only restriction on q0 is that EZ∼P [log q0] be finite.

Now, Li (1999) already showed the above in the case of density estimation with log
loss, η = 1, and q0 = p; in that setting, we have e−η`f = f , and so mixtures of elements
of E correspond to mixtures of probability distributions in F . Hence, our setting is more
general, yet Li’s argument (with minor adaptations) still works. To be sure, we go through
his argument step-by-step and show that it all still works in our setting.

In the remainder of this section, we treat two cases simultaneously unless a separate
treatment is indicated: the case when the loss is uniformly bounded from below (as in
Appendix H.1) and the case of log loss (with the loss not uniformly bounded from below,
as in Appendix H.2). In the former case, we always take q0 = e

−η`f∗ . In the latter case, we
always take q0 = p.

G.1. Proving q∗ Exists

Throughout, we will need to assume the existence of a certain sequence (qn)n≥1 in C, sat-
isfying KL(p; q0 ∥ qn) → infq∈CKL(p; q0 ∥ q), for which KL(p; q0 ∥ qn) is finite for all n. This
is not problematic, as we now explain. We treat separately the case of losses uniformly
bounded from below and the case of log loss without a uniform lower bound on the loss.

Losses uniformly bounded from below. First, observe that for any qn ∈ C,

KL(p; q0 ∥ qn) ≥ −∥`−∥∞ −E[`f∗] > −∞.

To see this, observe that qn = Ef∼Rn[e
−η`f ] for some distribution Rn ∈ ∆(F); then as-

sumption (98) gives the first inequality. The second inequality holds because we only deal
with non-trivial learning problems, and so f∗ obtains risk less than +∞. Next, since the
particular choice qn = e−η`f∗ yields KL(p; q0 ∥ qn) = 0, we may always restrict to sequences
for which we have KL(p; q0 ∥ qn) < ∞ for all n. Hence, we indeed can take the sequence
satisfying the finiteness requirement.

Log loss. First, we show for any qn that KL(p; q0 ∥ qn) is well-defined; its well-definedness
is not immediately clear since each qn need not be a probablity density. For convenience,
we introduce the notation that, for any n, the distribution Rn satisfies qn = Ef∼Rn[e

−η`f ].
Therefore, − log qn =m

η
Rn

.
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Now, defining the pseudo-loss `p(Z) = − log p(Z) corresponding to playing the pseudo-
action p, our present goal is to show that E [mη

Rn
− `P ] is well-defined for each j. To this

end, we make the following claim:

EZ∼P [(mη
Rn

(Z) − `p(Z))
−
] > −

1

η
log 2. (97)

To see the claim, define for f ∈ F the excess loss `f,p(Z) ∶= `f(Z) − `p(Z) and observe that
(we simplify by writing R instead of Rn)

EZ∼P [(mη
R − `p)

−
]

= EZ∼P [−
1

η
log Ef∼R [e−η`f,p(Z)] ⋅ 1{Ef∼R[e−η`f,p(Z)]>e}]

=
1

η
EZ∼P [− log (Ef∼R [e−η`f,p(Z)] ⋅ 1{Ef∼R[e−η`f,p(Z)]>e} +1{Ef∼R[e−η`f,p(Z)]≤e})]

≥ −
1

η
log EZ∼P [Ef∼R [e−η`f,p(Z)] ⋅ 1{Ef∼R[e−η`f,p(Z)]>e} +1{Ef∼R[e−η`f,p(Z)]≤e}]

≥ −
1

η
log EZ∼P [Ef∼R [e−η`f,p(Z)] ⋅ 1{Ef∼R[e−η`f,p(Z)]>e} +1] ,

where Jensen’s inequality was applied for the first inequality. It remains to show that

EZ∼P [Ef∼R [e−η`f,p(Z)] ⋅ 1{Ef∼R[e−η`f,p(Z)]>e}] <∞.

Rewriting the LHS, we have

EZ∼P [Ef∼R [(
pf

p
)
η

] ⋅ 1{(
pf
p

)
η
>e}] ≤ EZ∼P [Ef∼R [(

pf

p
)
η

]]

≤ (EZ∼P [Ef∼R [
pf

p
]])

η

= 1,

where the inequality follows from η ≤ 1, the concavity of the map x ↦ xη, and Jensen’s
inequality. The claim thus follows.

Now that we have shown that KL(p; q0 ∥ qn) is well-defined for all n, we also conclude
from assumption (8) that we may always take a sequence such that KL(p; q0 ∥ qn) <∞ for
all n. Moreover, from (97), this can be strengthened to KL(p; q0 ∥ qn) ∈ [−η−1 log 2,∞), and
so this quantity is finite as desired.

In the remainder of this section, the two cases of loss assumptions are treated simulata-
neously (recall that q0 is defined differently for each).

Step 1: Existence of minimizer q̄n in convex hull of finite sequence

Let (qn)n≥1 be a sequence in C for which KL(p; q0 ∥ qn) → infq∈CKL(p; q0 ∥ q). From the
argument above we may restrict the sequence to one for which KL(p; q0 ∥ qn) is finite for all
n. Take Cn to be conv({q1, . . . , qn}).
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We introduce the representation D(t) ∶ ∆n−1 → R+, where D(t) = KL(p; q0 ∥ qt) with
qt = ∑

n
j=1 tjqj .

The first claim is that t ↦ D(t) is a continuous function. Li’s Lemma 4.2 proves conti-
nuity of D when q0 = p, KL(p ∥ qi) <∞ for i ∈ [n] and each qi is a probability distribution.
However, inspection of the proof reveals that the result still holds for general q0 and when
both q0 and qi are only pseudoprobability densities, as long as we still have KL(p; q0 ∥ qi) <∞
for i ∈ [n]. But we already have established the latter requirement, and so D is indeed con-
tinuous. Since D also has compact domain, it follows that D is globally minimized by an
element in Cn. Call this element q̄n.

Step 2: Beneficial properties of minimizer q̄n

We claim for all q ∈ Cn that ∫ p
q
q̄n

≤ 1. This follows from a suitably adapted version of
Li’s Lemma 4.1. First, we observe that even though Li’s Lemma 4.1 is for the case of the
KL divergence KL(p ∥ q) = ∫ p log p

q , changing the log p term to log q0 has no effect on the

proof. Therefore, this result also works for KL(p; q0 ∥ q). Next, the proof works without
modification even when its q∗ and q are only pseudoprobability densities. To apply Li’s
Lemma 4.1, mutatis mutandis, we instantiate its C as Cn, its p as p, its q as q, and its q∗ as
q̄n.

Step 3: (log q̄n)n is Cauchy sequence in L1(P )

We can find a sequence (q̄n)n≥1 such that {KL(p; q0 ∥ q̄n)} both is non-increasing and con-
verges to infq∈CKL(p ∥ q).

Next, let n ≤m throughout the rest of this step and observe that

KL(p; q0 ∥ q̄n) −KL(p; q0 ∥ q̄m) = ∫ p log
p

pq̄n
q̄m

/cm,n
+ log

1

cm,n

with cm,n ∶= ∫
pq̄n
q̄m

.

Now, due to the normalization by cm,n the first term on the RHS is a KL divergence
and hence nonnegative. Also, since cm,n ≤ 1, the second term also is nonnegative.

Next, observe that KL(p; q0 ∥ q̄n) −KL(p; q0 ∥ q̄m)→ 0 as n,m→∞, and so we have

∫ p log
p

pq̄n
q̄m

/cm,n
=KL(p ∥

pq̄n
q̄m

/cm,n)→ 0

as well as

log
1

cm,n
→ 0 ⇒ cm,n → 1.

Next, we apply the following inequality due to Barron/Pinsker, holding for any proba-
bility distributions p1 and p2:

∫ p1∣ log(p1) − log(p2)∣ ≤KL(p1 ∥p2) +
√

2KL(p1 ∥p2).
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This yields

∫ p

RRRRRRRRRRRR

log
p

pq̄n
q̄m

/cm,n

RRRRRRRRRRRR

→ 0.

Since cm,n → 1, it therefore follows that

∫ p∣ log(q̄n) − log(q̄m)∣→ 0.

Therefore (log(q̄n))n≥1 is a Cauchy sequence in L1(P ), and from the completeness of
this space, log(q̄n) converges to some log(q∗) ∈ L1(P ).

Finally, we observe that KL(p; q0 ∥ q
∗) = limn→∞KL(p; q0 ∥ q̄n) since

KL(p; q0 ∥ q
∗
) − lim

n→∞
KL(p; q0 ∥ q̄n) = lim

n→∞∫
p(log q̄n − log q∗)

≤ lim
n→∞∫

p∣ log q̄n − log q∗∣

= 0.

Appendix H. Definitions and Conventions Concerning ∞ and −∞

For general losses we allow the loss to take on the value ∞, and for density estimation
under log loss we allow the loss to take on the value ∞ and to be unbounded from below;
see Appendix H.2 for a full description of our assumptions in this latter setting. We thus
need to take care to avoid ambiguous expressions such as ∞−∞; here we follow the approach
of Grünwald and Dawid (2004). We generally permit operations on the extended real line
[−∞,∞], with definitions and exceptions as in (Rockafellar, 1970, Section 4). For a given
distribution P on some space U with associated σ-algebra, we define the extended random
variable U as any measurable function U ∶ U → R∪ {−∞,∞}. We say that U is well-defined
if either P (U = ∞) = 0 or P (U = −∞) = 0. Now let U be a well-defined extended random
variable. For any function f ∶ [−∞,∞]→ [−∞,∞], we say that f(U) is well-defined if either
P (f(U) = ∞) = 0 or P (f(U) = −∞) = 0 and we abbreviate the expectation EU∼P [f(U)]

to E[f], hence we think of f as an extended random variable itself. If f is bounded from
below and above E[f] is defined in the usual manner. Otherwise we interpret E[f] as
E[f+] + E[f−] where f+(u) ∶= max{f(u),0} and f−(u) ∶= min{f(u),0}, allowing either
E[f+] =∞ or E[f−] = −∞, but not both. In the first case, we say that E[f] is well-defined;
in the latter case, E[f] is undefined. In the remainder of this section we introduce conditions
under which all extended random variables and all expectations occurring in the main text
are always well-defined.

The quantities which we need to show to be well-defined, both in the case of general
losses and log loss, are (i) the risk for deterministic estimators; (ii) the risk for randomized
estimators; (iii) the excess risk for either deterministic or randomized estimators; and (iv)
certain ESIs and posterior expectations of annealed expectations. The GRIP is handled
separately in Appendix G.
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H.1. When the Loss is Uniformly Bounded from Below (General Losses)

Here, we show that the relevant expressions are well-defined when the loss is uniformly
bounded from below.

Risk for deterministic/randomized estimators and relevant comparators

We first show that the risk of any deterministic estimator is well-defined. Our assumption
that the loss is uniformly bounded from below is equivalent to the existence of a finite
constant ∥`−∥∞ for which

inf
f∈F

inf
z∈Z

`f(Z) ≥ −∥`−∥∞. (98)

We thus have for any f ∈ F that EZ∼P [(`f(Z))−] > −∞, and so the risk EZ∼P [`f(Z)] is
well-defined. Moreover, since inff∈F E[`f(Z)] > −∞, we also have that for any distribution
Π on F that Ef∼Π [EZ∼P [`f(Z)]] is well-defined.

For all comparators f̃ used in this paper, assumption (98) also implies that

inf
z∈Z

`f̃(Z) > −∞.

To see this, observe that the only comparators we use from the set F̄ \F are GRIPs (which
for a given z ∈ Z cannot obtain loss lower than inff∈F `f(z)) and versions of the loss of a
GRIP or some f ∈ F that are shifted by a finite constant. Thus, the risk is well-defined for
all comparators used in this paper.

Excess risk for randomized estimators

Next, the excess risk of any randomized estimator relative to a non-trivial comparator also is
well-defined, since, by definition of a non-trivial comparator f̃ and the uniformly-bounded-

below assumption, we have −∞ < EZ∼P [`f̃(Z)] <∞.

ESI / Posterior-expectation of annealed expectations

Finally, we verify that all ESIs and annealed expectations of excess losses also are well-
defined. The relevant quantities are (for all non-trivial comparators f̃)

EZ∼P [e
η(`f̃ (Z)−`f (Z))

] for all f ∈ F (99)

and

Ef∼Q [−
1

η
log EZ∼P [e

η(`f̃ (Z)−`f (Z))
]] for all Q ∈ ∆(F). (100)

A potential issue with the ESI (99) being well-defined is that we can have both `f̃(z) =
+∞ and `f(z) = +∞ for all z in some set A ⊂ Z of P -measure zero. To show that the
expectation is well-defined, we define for j = 1,2, . . . the random variable

gj(Z) = exp (η ((j ∧ `f̃(Z)) − `f(Z))) .
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Now, for each j = 1,2, . . ., the expectation E[gj(Z)] is well-defined. Moreover, letting
A be precisely the subset of Z for which `f̃(z) = +∞, it holds that {gj} converges to

exp (η(`f̃ − `f)) pointwise on Z \ A. Hence, from Levi’s monotone convergence theorem,

EZ∼P [e
η(`f̃ (Z)−`f (Z))

] is well-defined.

Next, we show that annealed expectations of the form (100) also are well-defined. From
Hölder’s inequality,

E [eη(`f̃ (Z)−`f (Z))
] = E [eη`f̃ (Z)e−η`f (Z)

]

≤ e∥`−∥∞ E [eη`f̃ (Z)
]

<∞,

where the final inequality follows because `f̃(Z) < ∞ with probability 1. Therefore, the
negative logarithm of the above is lower bounded by a finite negative constant that is
independent of f ∈ F . It follows that (100) is well-defined.

H.2. Log Loss

In the common case of log loss with uncountable sample spaces, the loss is not always
uniformly bounded from below; see Example 13 below for a concrete illustration. To allow
for this case while avoiding issues with infinities we need to make the alternative assumptions
of Section 2, which we now discuss. Recall that we assumed for all f ∈ F that pf is absolutely
continuous with respect to a common dominating measure µ, and that furthermore we have
(8) and (9). To motivate these assumptions, observe that H(P ) is the Bayes risk with
respect to all possible probability measures, whereas KL(P ∥Pf∗) is the approximation
error due to playing the optimal in-model predictor f∗ rather than P . Now, (8) is a
reasonable requirement, as it simply means that the approximation error is finite; this is
discussed further in Example 13. Now, if we have H(P ) = −∞, then in light of (8), we
would also have to have EZ∼P [`f∗(Z)] = −∞, which would imply that for any f ∈ F with
E[`f ] ≠ E[`f∗], the excess risk is infinite; this would make learning meaningless. We thus
assume (9).8

Risk for deterministic estimators

Because for log loss we do not assume that losses are bounded from below, we need to
ensure that the risk is well-defined.

We do this in two steps. First, we show that KL(P ∥Q) is well-defined for any probability

distribution Q with density q (with respect to µ). We do this by showing that E [(log p
q)

−
] >

8. A referee asked the natural question why we do not simply impose the more standard condition that
P ≪ Pf for all f ∈ F , thus avoiding use of differential entropy. But this is not sufficient, as explained
below (101).
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−∞:

E[1{q/p>1}(− log q + log p)] = E[− log(1{q/p>1} ⋅(q/p) + 1{q/p≤1} ⋅1)]

≥ − log E[1{q/p>1} ⋅(q/p) + 1{q/p≤1} ⋅1]

≥ − log 2,

where the application of Jensen’s inequality for the first inequality is legitimate because the
expectation is of a nonpositive quantity. The above holds in particular for q set to any pf
(for f ∈ F). Next, we use the decomposition

E[`f ] = E[− log pf + log p − log p] =KL(P ∥Q) +H(P ). (101)

Since the KL divergence term is nonnegative and H(P ) < −∞ (recall assumption (9)), the
above is well-defined.

We note that it is not sufficient to replace (9) by the standard requirement that P ≪ Pf
for all f ∈ F , for then (101) may become undefined. To see this, note that, for two probability
measures P and R, we may have KL(P ∥R) = ∞ even if P ≪ R (take, for example, P a
distribution on N with mass function p(i) ∝ i−1−α for 0 < α ≤ 1 and R with mass function
r(i) = 2−i). Since H(P ) defined relative to base measure R is equal to −KL(P ∥R) we may
in general also have H(P ) = −∞ even if P has a density relative to R. Thus, without the
requirement (9) we could have KL(P ∥Q) +H(P ) =∞−∞ which is undefined.

Risk for randomized estimators

The above argument can be trivially modified (adding an outer expectation over f ∼ Π
everywhere) to show that the risk of any randomized estimator Π is also well-defined.

Excess risk with respect to randomized estimators

Finally, because we only consider situations in this paper for which the GRIP obtains risk
less than positive infinity, the excess risk of any Π with respect to the GRIP is well-defined;
the same is true for the excess risk with respect to the comparator f∗, since we only consider
situations where the risk of f∗ is close to the risk of the GRIP.

ESI / Posterior-expectation of annealed expectations

Finally, we verify that all ESIs and annealed expectations of excess losses also are well-
defined. The relevant quantities are (for all non-trivial comparators f̃)

EZ∼P [e
η(`f̃ (Z)−`f (Z))

] for all f ∈ F (102)

and, taking the comparator to be the GRIP mη
F as this is all that we require for annealed

expectations in this paper,

Ef∼Q [−
1

η
log EZ∼P [eη(m

η
F(Z)−`f (Z))

]] for all Q ∈ ∆(F). (103)
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A potential issue with the ESI (102) being well-defined is that we can have `f̃(z) =

`f(z) = +∞ or `f̃(z) = `f(z) = −∞ for all z in some set A ⊂ Z of P -measure zero. To show
that the expectation is well-defined, we define for j = 1,2, . . . the random variable

gj(Z) = exp (η ([j ∧ `f̃(Z)] − [(−j)∨ `f(Z)])) .

Now, for each j = 1,2, . . ., the expectation E[gj(Z)] is well-defined. Moreover, letting A
be precisely the subset of Z for which either `f̃(z) = +∞ or `f(z) = −∞, it holds that

{gj} converges to exp (η(`f̃ − `f)) pointwise on Z \A. Hence, from Beppo Levi’s monotone

convergence theorem, EZ∼P [e
η(`f̃ (Z)−`f (Z))

] is well-defined.

Finally, we verify that (103) is well-defined. Indeed, it is well-defined as a trivial con-

sequence of EZ∼P [eη(m
η
F(Z)−`f (Z))] ≤ 1 which holds by virtue of the comparator being the

GRIP.

Example 13 (Density Estimation) Consider the Gaussian scale family with Z = R and
{pf ∣ f ∈ F} where F = R+ and pf(y) ∝ exp(−y2/2f), i.e., pf is the density, relative to
standard Lebesgue measure, of the normal distribution with mean 0 and variance σ2 ∶= f .

Then under log loss we have `f(y) =
y2

f +
1
2 log(π(f)). Obviously, we do not want to rule out

a model as standard like this, yet the loss is unbounded from below, which illustrates the
need for treating log-loss separately from other loss functions. The requirements (8) and
(9) above do allow for this model, as long as the underlying distribution P (a) has a density
relative to Lebesgue measure (otherwise (9) does not hold); (b) is not too-heavy tailed (it
needs to have a second moment, otherwise (8) does not hold), and (c) is not excessively
peaked at 0 (for example, the probability distribution P on (0,1/ exp(1)) with density
p(x) = 1/(x ⋅ log2 x) has H(P ) = −∞, but distribution P ′ with density p′(x) = 3/(x ⋅ log4 x)
has finite H(P ′). If one restricts the model to contain only f ≥ σ2

0 for some σ2
0 > 0, then

the log loss is bounded from below, and the requirements (8) and (9) do not need to be
imposed; in that situation, one could allow for an underlying distribution P with a point
mass at some outcome, so that P does not have a density relative to Lebesgue measure and
D(P ∥Pf∗) =∞, yet all our concepts remain well-defined. ◻

Appendix I. Comparative examples

Example 14 (Bernstein condition does not hold, bounded excess risk) Consider
regression with squared loss, so that Z = X×Y. Select P such that X and Y are independent.
Let X follow the law P such that P (X = 0) = P (X = 1) = a

2 , for a ∶= 2 − π2

6 ∈ (0,1), and, for
j = 2,3, . . ., P (X = j) = 1

j2
. Let Y = 0 surely. Take as F the countable class {f1, f2, . . .} such

that f1(1) = 0.5 and f1 is identically 0 for all other values of x ∈ X ; for each j = 2,3, . . ., the
function fj is defined as fj(0) = 1, fj(j) = j, and fj takes the value 0 otherwise.

It follows that f∗ = f1, and for every j > 1 we have E[Lfj ] =
3a
8 + 1. Thus, the excess

risk is bounded for all fj . The witness condition holds because for all j > 1 we have
Pr(Lfj = 1) = a and E[Lfj ⋅ 1{Lfj≤1}] ≥

3a
8 . Also, it is easy to verify that the strong central

condition holds with η = 2. On the other hand, the Bernstein condition fails to hold in this
example because E[L2

fj
] = a + j2 → ∞ as j → ∞, while the excess risk is finite. In fact,
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even the variance of the excess risk is unbounded as j →∞, precluding the use of a weaker
variance-based Bernstein condition as in equation (5.3) of Koltchinskii (2006). Therefore,
Theorem 22 still applies while, e.g., the results of Zhang (2006b) and Audibert (2009) do
not (see Section 7). ◻

Example 15 (Bernstein condition does not hold, unbounded excess risk)

The setup of this example was presented in Example 5.7 of Van Erven et al. (2015) and is
reproduced here for convenience. For fµ the univariate normal density with mean µ and
variance 1, let P be the normal location family and let F = {fµ ∶ µ ∈ R} be the set of
densities of the distributions in P. Then, since the model is well-specified, for any P ∈ P

with density fν we have f∗ = fν . As shown in Van Erven et al. (2015), the Bernstein
condition does not hold in this example, although we note that the weaker, variance-based
Bernstein condition of (Koltchinskii, 2006, equation (5.3)) does hold. However, we are
not aware of any analyses that make use of the variance-based Bernstein condition in the
unbounded excess losses regime.

Since the model is well-specified, the strong central condition holds with η = 1. Next,

we show that the witness condition holds with M = 2, u = 4, and c = 1 −
√

2
π . From

location-invariance, we assume ν > µ = 0 without loss of generality.

First, observe that the excess risk is equal to E[Lfµ] =
1
2ν

2.

As M = 2 < ∞, the witness condition has two cases: the case of excess risk at least 2
and the case of excess risk below 2. We begin with the first case, in which ν ≥ 1. Then the
contribution to the excess risk from the upper tail is

E [Lfµ ⋅ 1{Lfµ>uE[Lfµ ]}] = E [(−
ν2

2
+Xν) ⋅ 1{− ν2

2
+Xν>u ν2

2
}]

=E [(−
ν2

2
+Xν) ⋅ 1{X>uν

2
+ ν

2
}] ≤ νE [X ⋅ 1{X>uν

2
}] ,

which is at most

νE [X ⋅ 1{X−ν>(u
2
−1)ν}] = ν ∫

∞

0
Pr(X ⋅ 1{X−ν>(u

2
−1)ν} > t)dt

≤ ν
1

√
2π

e−(
u
2
−1)2ν2/2

(u2 − 1)ν
=

1
√

2π

e−(
u
2
−1)2ν2/2

(u2 − 1)
.

Since u = 4, the above is at most 1√
2π

and so, in this regime, the witness condition indeed

is satisfied with c = 1 −
√

2/π.

Consider now the case of ν < 1. In this case, the threshold simplifies to the constant u
and the upper tail’s contribution to the excess risk is

E [Lfµ ⋅ 1{Lfµ>u}] = E [(−
ν2

2
+Xν) ⋅ 1{− ν2

2
+Xν>u}]

= E [(−
ν2

2
+Xν) ⋅ 1{X>u

ν
+ ν

2
}] ≤ νE [X ⋅ 1{X>u

ν
}] ,
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which is at most

νE [X ⋅ 1{X−ν>u
ν
−ν}] = ν ∫

∞

0
Pr(X ⋅ 1{X−ν>u

ν
−ν} > t)dt

≤ ν
1

√
2π

e−(
u
ν
−ν)2/2

u
ν − ν

= ν2 1
√

2π

e−(
u
ν
−ν)2/2

u − ν2
.

Since u = 4 and ν < 1, the above is at most ν2
√

18π
, and so the value of c from before still

works and the witness condition holds in this regime as well. ◻

Example 16 (Small-ball Assumption Violated) To properly compare to the small-
ball assumption of Mendelson (2014), we consider regression with squared loss in the well-
specified setting, so that the parameter estimation error bounds of Mendelson (2014) directly
transfer to excess loss bounds for squared loss. Take X and Y be independent. The dis-
tribution of X is defined as, for j = 1,2, . . ., P (X = j) = pj ∶=

1
a ⋅

1
j2

for a = π2

6 . Let the
distribution of Y be zero-mean Gaussian with unit variance. For the class F , we take the
following countable class of indicator functions: for each j = 0,1,2, . . ., define fj(i) = 1{i=j},
for any positive integer i. Since f0(x) = E[Y ∣ X = x] = 0 for all x ∈ {1,2, . . .}, we have
f∗ = f0.

The small-ball assumption fails in this setting, since, for any constant κ > 0 and for all
j = 1,2, . . .:

Pr (∣fj − f
∗
∣ > κ∥fj − f

∗
∥L2(P )) ≤ Pr (∣fj − f

∗
∣ > 0) = pj =

1

aj2
→ 0 as j →∞.

On the other hand, the strong central condition holds with η = 1
2 , since, for all j = 1,2, . . .

and all x:

E [e
−ηLfj ] = E

⎡
⎢
⎢
⎢
⎣

e−η(fj(x)−Y )2

e−ηY 2

⎤
⎥
⎥
⎥
⎦
= ∫

1√
2πη−1

e−η(fj(x)−Y )2

1√
2πη−1

e−ηY 2
p(Y )dy

which is equal to 1 for η = 1
2 , since Y ∼ N (0,1).

It remains to check the witness condition. Observe that, for each j, we have E[Lfj ] = pj .

Next, we study how much of the excess risk comes from the upper tail, above some
threshold u:

E [Lfj ⋅ 1{Lfj>u}] = E [(f2
j (X) − 2fj(X)Y ) ⋅ 1{f2

j (X)−2fj(X)Y >u}]

= pj E [(1 − 2Y ) ⋅ 1{1−2Y >u}]

= pj (Pr(Y <
1 − u

2
) − 2E [Y ⋅ 1{Y < 1−u

2
}]) . (104)

Now, let K ∶= u−1
2 . It is easy to show that

Pr (Y >K) ≤
1

√
2π

e−K
2/2

K
.
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In addition, for u ≥ 3 (and hence K ≥ 1), we have

E [Y ⋅ 1{Y >K}] = ∫
∞

0
Pr(Y ⋅ 1{Y >K} > t)dt = ∫

∞

K
Pr(Y > t)dt

≤ ∫

∞

K

1
√

2π

e−t
2/2

t
dt ≤ ∫

∞

K

1
√

2π
e−t

2/2dt ≤
1

√
2π

e−K
2/2

K
dt.

Thus, taking u = 3, we see that (104) is at most pj
√

2
πe

−1/2 ≤
pj
2 , the witness condition

therefore holds, and so we may apply the first part of Theorem 22. ◻
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