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ABSTRACT: Sex estimation is an important part of creating a biological profile for skeletal remains in forensics. The commonly used meth-
ods for developing sex estimation equations are discriminant function analysis (DFA) and logistic regression (LogR). LogR equations provide a
probability of the predicted sex, while DFA relies on cutoff points to segregate males and females, resulting in a rigid dichotomization of the
sexes. This is problematic because sexual dimorphism exists along a continuum and there can be considerable overlap in trait expression
between the sexes. In this study, we used humeral measurements to compare the performance of DFA and LogR and found them to be very
similar under multiple conditions. The overall cross-validated (leave-one-out) accuracy of DFA (75.76–95.14%) was slightly higher than LogR
(75.76–93.82%) for simple and multiple variable equations, and also performed better under varying sample sizes (94.03% vs. 93.78%). Three
of five DFA equations outperformed LogR under the B index, while all five LogR equations outperformed the DFA equations under the Q
index. Both methods saw an improvement in overall accuracy (DFA: 86.74–95.79%; LogR: 86.74–95.76%) when individuals with a classifica-
tion probability lower than 0.80 were excluded. Additionally, we propose a method for calculating additional cutoff points (PMarks) based on
posterior probability values. In conclusion, we recommend using LogR over DFA due to the increased flexibility, robusticity, and benefits for
future users of the statistical models; however, if DFA is preferred, use of the proposed PMarks facilitates future analysis while avoiding unnec-
essary dichotomization.
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Discriminant function analysis (DFA) and logistic regression
(LogR) are common statistical methods for estimating sex in
both forensic (1–4) and osteoarcheological contexts (3,5,6). Sta-
tistical models are built from reference samples, which can then
be applied to future cases for sex estimation. It is important to
have many different reference samples (i.e., anatomical collec-
tions and/or archaeological samples with known sex) given that
the expression of sexually dimorphic traits varies between popu-
lations (7,8). While there have been many sex estimation equa-
tions provided from a variety of populations to deal with the
inter-population differences in sexual dimorphism (2,9–11), there
are still issues when it comes to the biological overlap that
occurs between the sexes within a population (12). One way to
offset intrasexual variability is by providing estimates associated
with a probability, which can readily be obtained from DFA and
LogR; however, the ability to obtain probabilities for predictions
does not always carry over from the original publication to
future users of the model. This is especially the case for DFA,
where future users of the model are often only provided with an
equation and a cutoff point (a point equidistant between the

sexes) from the original publication, which results in a
dichotomization of sex estimation. In reality, there should be
multiple categories to reflect the uncertainty associated with the
estimate. In this study, we explore the efficacy of DFA and
LogR for building adult sex estimation models and provide rec-
ommendations for publishing results of DFA research in the
future.

Discriminant Function Analysis

Discriminant Function Analysis (DFA) is used to predict
group membership from a single variable or multiple predictor
variables, and/or describe the relationship between a predictor
variable(s) and a criterion variable (groups). One way this is
done by using linear discriminant funtions (LDF), straight lines
that achieve maximum separation of the groups by passing
through the group centroids; this may also be referred to as Fish-
er’s linear discriminant analysis (LDA). The equation for the
straight line is determined and used to predict group member-
ship. The discriminating line may also be nonlinear, for example,
quadratic discriminant analysis (QDA). The boundary that sepa-
rates the two groups is often represented as a cutoff point (a.k.a.
demarking point, decision point, or sectioning point). The num-
ber of LDFs needed for the analysis depends on the number of
groups or variables in the analysis and is defined as the smallest
number of k�1 and p, where k is the number of groups and p is
the number of variables; thus, in sex estimation studies there is
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only one equation to discriminate between male and female indi-
viduals, using a line that is equidistant between the two group
means (or centroids). The assumptions of LDA can be found in
Table 1 (13). The discriminant score is obtained and whichever
side of zero it lands on indicates the predicted sex (e.g.,
female < 0 < male). The equation for calculating the linear dis-
criminant score (D) is the following:

D ¼ b0 þ b1x1 þ b2x2 þ . . .þ bnxn

where b0 is the constant, bn is the unstandardized coefficients,
and xn is the variables. Posterior probabilities can be obtained
using multiple methods which may differ depending on the sta-
tistical software used. The methods include Bayes’ theorem and
the Mahalanobis distance.

Logistic Regression

LogR relies on the same concept as linear regression; how-
ever, since it uses categorical variables, a transformation of the
data is needed. This transformation, or link function, is a loga-
rithmic transformation (logit) of the outcome variable, which
allows the analysis to maintain linearity in nonlinear categorical
data. When predicting membership of two groups, LogR is
referred to as binomial logistic regression, and the results are
expressed as the probability of group membership in the form of
a value between zero and one. LogR also enables the user to
examine the odds ratio (OR) for each predictor variable, which
allows you to see the effect a certain variable has on the out-
come, with an OR of 1 being no effect (i.e., chance alone), and
anything above (as OR approaches infinity) or below 1 (as OR
approaches 0) represents an increasing effect on the outcome.
LogR uses maximum likelihood to calculate the coefficients of
the equation, that is, a model is created that maximizes the prob-
ability of an outcome based on the data. The assumptions of
LogR can be found in Table 1 (13,14). The probability of mem-
bership to the group coded as 1 (p1) can be calculated as:

P1 ¼ 1
1þ e� b0þb1x1þb2x2þ...þbnxnð Þ

where b0 is the intercept, bn is the coefficients, and xn is the
variables. The probability obtained is the probability of assign-
ment to the group that was coded as 1. The probability of

assignment to the group coded 0 can be obtained with the proba-
bility of not being in group 1: p0 = 1�p1.

The Problem

Forensic and osteoarcheological analyses require accurate sex
estimation equations for identification of a body, or for other
methods (e.g., stature and age at death) that often rely on a classi-
fication of sex for precision (15). The problem with DFA arises
when the developed sex estimation equations are published. Often,
the equation will be presented with an accompanying cutoff point,
which allows users to discriminate between male and female indi-
viduals. When the measurement(s) is inserted into the equation,
the result determines whether the individual is male or female
based on which side of the cutoff point the result lands. This cre-
ates an illusion of certainty in a practice where uncertainty is
inherent, and limits future users of the model by not providing
them with a quantifiable reliability measure.
Classification probabilities for future unknown cases can be

directly obtained from the LogR equations, and posterior proba-
bilities can be calculated for DFA. This is a convenient solution
to the problem of dichotomization, as it provides the ability to
make an informed prediction. While LogR allows for convenient
calculation of classification probabilities directly from the pro-
vided equation, DFA, however, relies on authors of the discrimi-
nant functions making their data available to calculate posterior
probabilities. Hence, merely providing the DFA equation(s) and
a cutoff point does not allow future users to properly quantify
the uncertainty of the estimate, as these cutoff points merely rep-
resent an assignment probability of 0.50. This ultimately results
in a dichotomous decision which is not suited for sex estimation
of skeletal remains. Methods to calculate the reliability of an
estimate (in the absence of posterior probabilities) have been
proposed in previous studies (9,16,17), but have not experienced
widespread implementation.
Our aim is to compare the performance of both DFA and

LogR when applied to the same reference sample and show the
benefits when sex estimates are associated with a probability
and/or multiple categories rather than a simple male or female
determination. We also provide a method to calculate more
appropriate cutoff points for both simple and multiple variable
DFA equations using bootstrapping. We use three humeral mea-
surements to illustrate our point by determining the number of
misclassifications occurring below a probability of 0.80, and the
improved accuracy rate and reliability of a model when only
considering sex classifications with a higher probability, thus
emphasizing the benefit of LogR over DFA and the need for
additional cutoff points and/or sharing of data.

Materials and Methods

Reference Sample

The sample is comprised of 84 individuals with documented
age and sex from Middenbeemster, a 19th-century rural site
located in the Netherlands. The cemetery was in use from AD
1612 to 1866, and a cemetery ledger is available for individuals
interred between 1829 and 1866, which includes name, sex, date
of birth, and date of death. More information on the population
can be found elsewhere (18–20). The sample consists of 48
(57.14%) females with mean age 48.73 years (SD = 18.51), and
36 (42.86%) males with mean age 52.89 years (SD = 21.01).
The ages range from 19 to 84 years. All available adults with

TABLE 1––Assumptions of discriminant function analysis and logistic
regression.

Model Assumptions

Discriminant function
analysis

Multivariate normality.
Absence of outliers.
Independence of errors (each response comes from
independent case).

Homogeneity of variance–covariance matrices
within groups.

Linearity of pairs of predictors within groups.
Absence of multicollinearity among predictors.

Logistic regression Absence of outliers.
Independence of errors (each response comes from
independent case).

Linearity between logit of the outcome and
predictor variables.

Absence of multicollinearity among predictors.
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known sex and preserved humeri were included. The collection
is curated at Leiden University, Laboratory for Human
Osteoarcheology.

Measurements

Three humeral measurements were taken: max length, head
diameter, and epicondylar breadth (21). The second author (ES)
performed all measurements without prior knowledge of the sex
of each individual. In order to facilitate a direct comparison
between all the developed models, we only include individuals
with all three measurements. Measurements were taken on the
right side. If a measurement was not available on the right side,
the left side measurement was substituted.

Assumption Tests

Assumptions were tested using a Shapiro–Wilk test for multi-
variate normality, Mahalanobis distances for outliers, a variance
inflation factor (VIF) test for multicollinearity, and Box’s M test
for homogeneity of covariance matrices. Linearity between logit
of the outcome and predictor variables was tested by running a
logistic regression with the interaction terms of the predictors
and their log (22).

Model Comparison

Both simple (one predictor variable) and multiple variable
(2 + predictor variables) LogR and LDA models were devel-
oped. Variable selection has become important with the philoso-
phy of transition analysis (23,24), especially in explanatory
research. We have chosen the conventional variable selection for
LogR, that is, sex as the grouping variable and the measure-
ments as the predictors, and to facilitate direct comparison
between DFA and LogR. DFA employs canonical correlation,
and therefore, the variables do not take on an independent–de-
pendent designation.
Linear discriminant analysis (LDA) was conducted with an

uninformative prior. Accuracy rates were obtained from both mod-
els using leave-one-out cross-validation (LOOCV). The effect of
sample size on accuracy for both methods was explored by taking
random subsamples, with replacement, of increasing sizes
(n = 10, 11, . . ., 84). The methods were also compared using the
Brier score, B (25,26), and the logarithmic probability scoring rule,
Q (27). Both scores provide a predictive index that takes into
account the prediction accuracy as well as the classification proba-
bility. In the case of both scales, a score of 1 indicates perfect pre-
dictive ability, and scores based on chance alone are indicated by
0; for the Q index, negative scores indicate worse than chance.

B ¼ 1�
Pn

i¼1 Pi � Yið Þ2
n

Q ¼
Pn

i¼1 1þ log2 PYi
i 1� Pið Þ1�Yi

� �h i

n

Calculation of Additional Cutoff Points

Additional cutoff points (referred to as PMarks hereafter) were
calculated for LDA to represent a sex classification probability of
0.80 using a custom-made function in R v. 3.5.2 (28). The sample

was bootstrapped (1000 iterations), and the discriminant scores for
individuals from each sex that had a 0.80 posterior probability
were found, and the mean values for the discriminant scores were
used as the PMarks. Here, we calculate 0.80 PMarks, but this can
be customized to suit the user’s need. See https://github.com/bba
rtholdy/pmarkr for information on how to download the R pack-
age, pmarkr, used to calculate PMarks (and the R script for statis-
tics conducted in this study). The R package also contains a user-
friendly interface for those who are unfamiliar with R.

Statistics

All statistical analyses were conducted in R v. 3.5.2 (28).
LDA was conducted using the lda function in the MASS pack-
age with the "plug-in" method for computing posterior probabil-
ity (29), and LogR was conducted using glm function in the
stats package (28). Plots were created using ggplot2 (30).
Assumptions were tested using the mvnorm package (31), the
heplot package (32), and the mvoutlier package (33). Other
packages used include doParallel (34) and foreach (35).

Results

Tests of Assumptions

The multivariate normality assumption holds for the male
group, W = 0.9570, p = 0.1730, while it is violated for the
female group, W = 0.8953, p < 0.001. Only four outliers were
identified: three females (MB5, MB8, MB96) and one male
(MB13). None of the outliers were removed from the models.
No multicollinearity was detected for any of the variables: max
length = 1.418; head diameter = 1.745, epicondylar
breadth = 1.5863. Homogeneity of covariance matrices was not
violated: v2(3) = 7.0388, df = 3, p = 0.3173. Linearity between
the logit of the outcome and the predictors was also met. Max
length: z = �0.137, p = 0.8908; head diameter: z = 1.160,
p = 0.2461; epicondylar breadth: z = �1.713, p = 0.0867.

Linear Discriminant Analysis

The descriptive statistics for the humeral measurements from
male and female individuals can be found in Table 2. The max
length variable had the lowest cross-validated accuracy of all the
variables, and contributed nothing to the predictive accuracy (as
seen by comparison of models LDF4 and LDF5); the variable
was, therefore, excluded from the model. The model with the
head diameter and epicondylar breadth variables (LDF4) and the
model with all variables performed equally well, so LDF4 was
chosen as the optimal model (Table 3).

D ¼0:3381� head diameter½ � þ 0:06205�
epicondylar breadth½ � � 19:07

:

The traditional cutoff point for LDF4 is at 0
(Female < 0 < Male). The 0.80 PMarks are �0.45 for females
and 0.45 for males. Scores in between these two values represent a
posterior probability below 80% and should therefore be classified
as either indeterminate, or probable male for values between 0 and
0.45, and probable female for values between 0 and �0.45. The
0.90 and 0.95 PMarks are �0.76 and �0.99, respectively. The
posterior probability of all individuals can be found in Table S1.
Figure 1 shows the plot for LDF4 and the calculated PMarks.
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Logistic Regression

The variable max length had an OR value close to 1 in model
LogR5 and was excluded. The model containing the head diame-
ter and epicondylar breadth variables (LogR4) was chosen as the
optimal model, as it scored better in log-likelihood (LogLik) and
to facilitate comparison with LDA. LogR2 scored best in
Akaike’s information criterion (AIC) and LogR2 and LogR4 per-
formed equally well in cross-validated accuracy (Tables 4 and
5). The probability of a female prediction can be calculated
using the following equation:

P Femaleð Þ ¼
1

1þ e� 43:42þ �0:8329� head diameter½ �ð Þ þ �0:09285� epicondylar breadth½ �ð Þð Þ

The probability of a male prediction can then be calculated as
the probability of not being female: P(Male)=1 � P(Female).

Model Comparison

Linear discriminant analysis (LDA) outperformed LogR in
overall accuracy across most of the simple and multiple variable
equations (Tables 5 and 6) as well as with the B index, while
LogR performed better with the Q index for all simple and mul-
tiple variable equations (Table 6). The differences were minor,
and often the accuracy rate was only differentiated by the first
or second decimal point. By moving the decision cutoff from
0.50 to 0.80 probability, the total classification accuracy
increased for all models. The classification rate for female indi-
viduals increased for all models, whereas the male classification
accuracy decreased for LDF4 and LDF5 (Table 5). Both models

had a classification accuracy ranging from 50.00 to 83.33%
when only including individuals with classification probabilities
lower than 0.80. Female accuracies ranged from 0.00 to 76.47%,
and male accuracies ranged from 66.67 to 100%. The male accu-
racies were higher in all models except for LogR3 (Table 7).
Both methods provide similar accuracy rates under varying sam-
ple sizes, with LDF4 slightly outperforming LogR4 overall
(Fig. 2). The overall mean accuracy across all sample sizes for
LDF4 was 93.81% (SD = 0.05498), and for LogR4 it was
93.53% (SD = 0.05980).

Discussion

Sexual dimorphism in most skeletal elements occurs on a gra-
dient with an area of considerable overlap between males and
females, which is the main source of prediction inaccuracy in
any sex estimation study. Methods relying on morphology of

TABLE 2––Mean values for the humeral measurements of male and female
individuals including the mean difference with 90% confidence intervals cal-

culated using Welch’s two sample t-test.

Measurement
Mean
(mm) SD

Mean
Difference 90% CI

Max length F: 311.8 19.49 27.65 20.53–34.77
M: 339.4 19.33

Head diameter F: 41.62 2.312 7.726 6.773–8.678
M: 49.34 2.781

Epicondylar
breadth

F: 55.31 3.282 8.441 6.883–10.00
M: 63.75 4.819

90% CI, 90% confidence intervals; SD, standard deviation.

TABLE 3––LDA results for simple and multiple variable models.

Model Measurement(s) Coefficients CV Accuracy (%)

LDF1 Max length 0.05149 75.76
(intercept) –16.77

LDF2 Head diameter 0.3963 92.71
(intercept) –17.81

LDF3 Epicondylar breadth 0.2493 86.67
(intercept) –14.84

LDF4 Head diameter 0.3382 95.14
Epicondylar breadth 0.06205
(intercept)

LDF5 Max length �0.001785 95.14
Head diameter 0.3431
Epicondylar breadth 0.06354
(intercept) –18.58

CV, cross-validated.

FIG. 1––Density plot for LDF4. The straight line (–––) represents the tra-
ditional cutoff point; the dotted lines (∙∙∙), 0.80 PMarks; the dashed lines
(---), 0.90 PMarks; the dashed and dotted lines (∙-∙-∙), 0.95 PMarks. F,
female; LD4, discriminant scores; M, male.

TABLE 4––LogR results and model evaluation.

Model Measurement Coefficients OR LogLik AIC

LogR1 Max length �0.07356 0.9291 �40.54 85.07
(intercept) 24.19

LogR2 Head diameter �0.9423 0.3897 �15.16 34.32
(intercept) 42.88

LogR3 Epicondylar breadth �0.5220 0.5933 �27.77 59.54
(intercept) 31.16

LogR4 Head diameter �0.8329 0.4348 �14.93 35.87
Epicondylar breadth �0.09285 0.9113
(intercept) 43.42

LogR5 Max length �0.003169 0.9968 �14.93 37.86
Head diameter �0.8254 0.4381
Epicondylar breadth �0.09060 0.9134
(intercept) 43.97

AIC, Akaike information criterion; LogLik, log-likelihood; OR, odds ratio.
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traits generally divide them into five categories for sex estima-
tion (female, probable female, indeterminate, probable male,
male) (21). These categories can partially account for the over-
lapping expression of traits between the sexes, which cannot be
perfectly dichotomized. Both males and females can show inter-
mediate expression of metric and discrete traits (3), and sexual
dimorphism can increase or decrease based on acquired nutrition,
hormone levels, activity levels, and age (36,37). Intrasexual vari-
ability among skeletal traits can heavily influence the accuracy
of a method (3,12), and there currently exists no skeletal trait, or
combination of traits, that can discriminate perfectly between the
sexes. In this study, the probabilities obtained from both meth-
ods show that the individuals within the sample follow the entire
spectrum from a probability close to 1 (e.g., individual MB5;
0.9997 female) to a probability close to 0.50 (e.g., individual
MB16; 0.5463 female), that is, chance alone. The considerable
overlap in the skeletal traits of males and females needs to be
accounted for when reporting sex estimation results.
When LDA models for sex estimation are built from reference

populations, they are often presented in publications as an

equation accompanied by a cutoff point that discriminates
between males and females depending on what side of the cutoff
point the discriminant score lands (1,11,38). Ideally, the predic-
tion will be associated with a posterior probability value; how-
ever, when using equations from DFA models, the calculation of
posterior probabilities for new cases requires the data from the
reference sample (which are rarely shared) used to develop the
model. In the absence of posterior probabilities, the prediction is
necessarily treated as a dichotomous decision, and this can lead
to misclassifications. When individuals with a classification
probability lower than 0.8 are excluded, the number of misclassi-
fications decreases and the accuracy increases in all models, with
increases in accuracy ranging from 0.89 to 12.38% (Table 5).
We also showed that the classification accuracy for individuals
whose classification probability is lower than 0.80, ranges
between 50% and 83%, which is unacceptable for both forensics
and osteoarcheology (Table 7). LDA may perform better on
smaller sample sizes and when assumptions are met (13,39);
often, however, these two methods will provide similar results
(5,6,39,40). In our study, LDA slightly outperformed LogR in
overall accuracy and the B index for most models, while all

TABLE 5––LDA and LogR models with cross-validated accuracy.

Model

Decision
Probability
(cutoff)

Misclassifications
(total)

CV
Accuracy

(%)
Female
(%)

Male
(%)

LDF1 0.5 (0) 20 (84) 76.19 78.00 73.53
0.8 (� 0.97) 4 (35) 88.57 91.67 81.82

LDF2 0.5 (0) 6 (84) 92.86 93.75 91.67
0.8 (� 0.46) 3 (78) 96.15 97.83 93.75

LDF3 0.5 (0) 12 (84) 85.71 83.33 90.00
0.8 (� 0.70) 3 (63) 95.24 94.87 95.83

LDF4 0.5 (0) 4 (84) 95.24 95.83 94.44
0.8 (� 0.45) 3 (78) 96.15 97.83 93.75

LDF5 0.5 (0) 4 (84) 95.24 95.83 94.44
0.8 (� 0.45) 3 (78) 96.15 97.83 93.75

LogR1 0.5 20 (84) 76.19 78.00 73.53
0.8 4 (35) 88.57 91.67 81.82

LogR2 0.5 5 (84) 94.05 95.74 91.89
0.8 3 (77) 96.10 97.78 93.75

LogR3 0.5 11 (84) 86.90 87.76 85.71
0.8 3 (56) 94.64 93.75 95.83

LogR4 0.5 5 (84) 94.05 95.74 91.89
0.8 3 (77) 96.10 97.78 93.75

LogR5 0.5 5 (84) 94.05 95.74 91.89
0.8 3 (77) 96.10 97.78 93.75

Decision probability represents the probability level (between 0 and 1) at
which the male and female assignment was made, and the cutoff is the dis-
criminant score associated with the probability level. Bold indicates the
model that performed best.

TABLE 6––Overall accuracy for individuals with lower than 0.8 classifica-
tion probability.

Model Accuracy (%) Female Accuracy (%) Male Accuracy (%)

LDF1 67.35 65.38 69.57
LDF2 50.00 0 75.00
LDF3 57.14 53.33 66.67
LDF4 83.33 50.00 100
LDF5 83.33 50.00 100
LogR1 67.35 65.38 69.57
LogR2 71.43 50.00 80.00
LogR3 71.43 76.47 63.63
LogR4 71.43 50.00 80.00
LogR5 71.43 50.00 80.00

Bold indicates the model that performed best.

TABLE 7––B and Q indices for all LDA and LogR models

Equation B index Q index

LDF1 0.8410 0.2973
LDF2 0.9496 0.7277
LDF3 0.9071 0.5225
LDF4 0.9559 0.7228
LDF5 0.9559 0.7222
LogR1 0.8412 0.3038
LogR2 0.9495 0.7396
LogR3 0.9071 0.5231
LogR4 0.9533 0.7435
LogR5 0.9532 0.7436

Bold indicates the model that performed best.

FIG. 2––The effect of sample size (x-axis) on the overall accuracy (y-axis)
for the LDF4 (solid line) and LogR4 (dotted line) models.
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LogR models slightly outperformed LDA models in the Q index.
Ultimately, however, there exists very little difference between
the performance of LDA and LogR on a number of indicators
and sample sizes.
We recommend the use of LogR due to the flexibility of the

method. Similar recommendations have also previously been
made for LogR and probit (2,5,24). The performances may vary
when additional assumptions are violated, and for different sam-
ples. Tallman and colleagues (2) found both probit and LogR to
outperform DFA in modern Thai individuals, and Walker (5)
found LogR to produce a lower sex bias than LDA. LogR also
outperformed DFA in the Athens collection (6), while the predic-
tions accuracies in this study were consistent between the two
methods. Other discriminant alternatives to LDA are quadratic dis-
criminant analysis (QDA) and nearest neighbor discriminant anal-
ysis (NNDA), both of which have fewer assumptions than LDA
and have previously seen success in sex estimation (41). While
the use of LDA can be theoretically justified when the assump-
tions are not violated, LogR is more appropriate for predicting a
small number of groups, and to develop models for sex estimation
that include traits scored on a discrete scale due to the absence of
distribution assumptions for the predictor variables (2,3,5). Addi-
tionally, if certain assumptions are not met, the reliability of a
method may be called into question by a court, for example, the
Daubert Standard (42). In this study, the LogR analysis may be
considered more reliable since its assumptions were met, whereas
the assumptions for LDA were not.
Previous studies have provided methods to calculate alterna-

tive cutoff points to improve prediction accuracies. Papaioannou
and colleagues (9) provide cutoff points for single variable mea-
surements based on 0.80, 0.90, and 0.95 posterior probability
values. Hora and Sl�adek (17) provided software to calculate
additional cutoffs from single variable measurements with a cus-
tom posterior probability threshold. For models with multiple
predictor variables, Giles and Elliot (16) calculated sectioning
points indicating confidence of classification at a 0.95 level,
assuming a normal distribution of each group’s discriminant
scores. We have built upon these methods to provide additional
cutoff points at a customizable probability (here, we used classi-
fication probabilities of 0.80, 0.90, and 0.95) for both simple
and multiple variable equations using bootstrapping, eliminating
the assumption of normality. If LDA is being used, we urge
authors creating reference equations to share their data so that
future users can calculate the posterior probabilities on their
unknown cases. If this is not possible, additional cutoff points
should be provided.
The development of software that can be used to estimate sex

and calculate posterior probabilities should make the publication
of equations and cutoff points obsolete, yet this is a practice that
seems to persist. Software for metric sex estimation includes
FORDISC (43), mainly for North America, and CADOES (44)
and SeuPF (45), which are based on Portuguese populations. As
the geographic coverage of such software increases, it will allow
for more reliable sex estimations with quantifiable uncertainty,
and the publication of dichotomy-imposing equations should
become a thing of the past.

Conclusion

Sex estimation is an important part of the biological profile in
skeletal analysis. It is an imperfect science and must be pre-
sented as such. There is considerable overlap in the skeletal traits
of females and males because sexual dimorphism is a

continuum, not a dichotomy. The uncertainty of sex estimation
due to the overlap between the sexes should be better repre-
sented in the statistical models that are published, to allow future
users to properly quantify the reliability of the estimates.
We recommend using logistic regression over discriminant

function analysis due to its flexibility and the ability for future
users to directly acquire a probability value which they then can
use to obtain an informed prediction. If the latter is used, we
suggest that the authors of the reference equations provide any
of the following information: all measurements and known sex
data; posterior probabilities for all individuals in the reference
sample; or, at very least, additional cutoff points (PMarks) based
on posterior probabilities of 0.80, 0.90, and/or 0.95 for each sex.
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