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Non-Euclidean origami
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Traditional origami starts from flat surfaces, leading to crease patterns consisting of Euclidean vertices.
However, Euclidean vertices are limited in their folding motions, are degenerate, and suffer from misfolding.
Here we show how non-Euclidean 4-vertices overcome these limitations by lifting this degeneracy, and that when
the elasticity of the hinges is taken into account, non-Euclidean 4-vertices permit higher order multistability. We
harness these advantages to design an origami inverter that does not suffer from misfolding and to physically
realize a tristable vertex.
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Origami provides a vast space to design novel mechanical
metamaterials and folding devices [1–20]. The exceptional
geometrical, shape-shifting, and mechanical functionalities
of these systems ultimately spring from the nonlinear fold-
ing motions of the building blocks of origami [1–14,20–
30]. These building blocks are n-vertices—units where n
straight folds connected to n rigid plates meet at a point
[1,2,4,5,17,18,20,28,31–33]. Most attention has been on Eu-
clidean vertices—which in their unfolded state lie flat in the
plane—and in particular 4-vertices, as these have a single
degree of freedom [Fig. 1(a)]. However, the folding mo-
tions of Euclidean 4-vertices are limited and degenerate.
This degeneracy follows from fold-inversion symmetry: If
the folded state of a vertex, specified by the folding an-
gles {ρi}, constitutes a valid configuration, so does {−ρi}.
Hence, the unfolded {ρi =0} state of Euclidean 4-vertices is
self-symmetric and nongeneric. This leads to a dual-branch
structure, where two folding motions, I and II, intersect at
the flat state [17,22,28,34]. In turn, this degeneracy makes
Euclidean crease patterns prone to misfolding [34–36].

To lift this degeneracy, we consider non-Euclidean 4-
vertices [37], i.e., those where the sector angles, αi, add
to 2π + ε (Fig. 1). It is known that for ε �= 0, the folding
branches of 4-vertices split and recombine into new branches
[22,38], and that non-Euclidean vertices can form “bowls”
or “cones” in the case of a negative angular surplus (ε <

0), and “saddles” in the case of a positive angular surplus
(ε > 0)—in contrast, Euclidean 4-vertices only admit “bird
foot” mountain-valley (MV) patterns with one mountain and
three valley folds (or vice versa, e.g., {±∓±±}) [5,17,39–
41]. However, a complete picture of the folding motions of
non-Euclidean vertices is missing, and their potential has been
overlooked.

Here we show how non-Euclidean vertices enhance the
functionality of origami-based devices and materials. First, we
systematically evaluate the folding motions of non-Euclidean
4-vertices to show exactly how the branch splitting occurs and
find that non-Euclidean 4-vertices feature two distinct types
of nonmonotonic folding motions, in striking contrast to the

monotonicity of the folding motions of Euclidean 4-vertices
[17,39]. We then consider how the absence of misfoldings
leads to more robust nonlinear mechanisms and leverage this
to design an origami inverter. Finally, we show how branch
splitting leads to a tuneable energy barrier which can be har-
nessed to control the stability landscape and physically realize
a tristable vertex. Together, our work shows the versatility
of non-Euclidean origami as building blocks for advanced
mechanical metamaterials.

Branch splitting and folding curves. We start by determin-
ing the qualitative nature of the folding branches for generic
vertices with ε �= 0. For Euclidean vertices, the unique folds
(the one with opposite folding angle from the others) follow
from inequalities on the sector angles αi [5,17], and we ori-
ent these vertices such that α2 > α4 and folds 1 and 2 are
the unique folds on branch I and II, respectively (see the
Supplemental Material for details [42]). The non-Euclidean
vertices we consider are nearly flat (small |ε|) and are derived
from shrunken or expanded Euclidean ones. Maintaining our
conventions during shrinkage-expansion, we isolate generic
features even while working with specific examples.

We start by examining the branch splitting for
a family of vertices with sector angles αi = [1 +
ε/(2π )]{π/3, π/2, 3π/4, 5π/12}. We numerically calculate
the folding curves, ρi(ρ j ), for ε = 0 and several values of
ε �= 0 and plot these in Fig. 2 (for derivations of the folding
curves, see, e.g., Refs. [16,17]). For ε �= 0, distortion causes
the Euclidean branches I and II to split into four disconnected
branches that we label A–D [Figs. 2(b)–2(d)]. For ε < 0,
the vertex is either on branch A or C, and for ε > 0 the
vertex is on branch B or D (see the Supplemental Material
[42]). Pairs of branches are related by the fold-inversion
symmetry discussed above. Clearly, the folding motions
of non-Euclidean 4-vertices do not have any branch points
and are smooth. Assuming rigid folding, a non-Euclidean
vertex’s branch designation is fixed and cannot change (e.g.,
a rigid vertex on branch A cannot switch to branch C). As a
consequence, a non-Euclidean vertex is specified by both its
sector angles and its branch label.
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FIG. 1. (a) Folded states of an Euclidean 4-vertex (top) and
corresponding MV patterns (bottom). (b) Non-Euclidean vertex
with a negative angular surplus in a bowl or cone configuration.
(c) Non-Euclidean vertex with a positive angular surplus in saddle
configurations. In all cases, the given 4-vertex is specified by four
sector angles, αi, and its folded states are described by four folding
angles, ρi, which are the complements to the dihedral angles between
plates i and i−1.

Although corresponding to a specific choice of sector
angles, the qualitative features of this splitting (up-down,
right-left, four branches A–D) are completely general. To
show this, and to connect the branches to qualitative shapes—
cones, bowls, saddles, and bird’s feet—we consider the sign of
the folding angles along each branch, starting from their max-
imally folded states. We label the endpoints of the Euclidean
folding branches as I+:{− + ++}, I−:{+ − −−}, II+:{+ −
++}, and II−:{− + −−} [Figs. 2(b)–2(d)]. For small ε, the
non-Euclidean folding branches must have the endpoints close
to their Euclidean parent, with the same MV patterns. The
six possible folding branches of 4-vertices therefore fol-
low from connecting pairs of endpoints. Euclidean folding
branches I and II connect I+ ↔ I− and II+ ↔ II−, respec-
tively, and intersect at the flat state. The remaining four
endpoint-pair combinations correspond to the non-Euclidean
folding branches A–D that avoid the flat state (Fig. 2). We
determine the MV patterns on each branch by noting that
generically, one cannot have two fold angles pass through
zero, or in other words, folds change between mountain and
valley one by one along these branches. For example, on
branch A, the endpoints {− + ++} and {+ − ++} must be
connected by the bowl {+ + ++}, and therefore this branch
must correspond to ε < 0; similarly, on branch B, the end-
points {+ − ++} and {+ − −−} must be connected by the
saddle {+ − +−} and this branch must have ε > 0; we sum-
marize all six branches in Table 1 [43]. (Patterns with cyclic
permutations of {+ + −−} are not allowed as they create
intersections—see the Supplemental Material [42].)

Now that we have established how branches A–D arise, we
can determine how the folding motions along these branches
differ qualitatively from those of Euclidean 4-vertices. For an

TABLE I. Folding branches and MV patterns.

Endpoints MV patterns

I I+ ↔ I− {− + ++}↔{0, 0, 0, 0}↔{+ − −−} ε=0
II II+ ↔ II− {+ − ++}↔{0, 0, 0, 0}↔{− + −−} ε=0
A I+ ↔ II+ {− + ++}↔{+ + ++}↔{+ − ++} ε<0
B II+ ↔ I− {+ − ++}↔{+ − +−}↔{+ − −−} ε>0
C I− ↔ II− {+ − −−}↔{− − −−}↔{− + −−} ε<0
D II− ↔ I+ {− + −−}↔{− + −+}↔{− + ++} ε>0

Euclidean vertex, the folding relations between any pair of ρi

on branches I or II are always monotonic and always capable
of having positive or negative sign [17]. However, Table 1
and Fig. 2 show that for non-Euclidean vertices the qualitative
nature of the folding motion depends on the branch and the
pair of folding angles considered. First, monotonic folding
curves with negative slope occur between the unique folds 1
and 2 for ε < 0, or with positive slope between the nonunique
folds 3 and 4 for ε > 0 [Figs. 2(b) and 2(d)]. Between a unique
(1,2) and a nonunique (3,4) fold, all curves are nonmono-
tonic. For ε < 0, the unique fold monotonically changes sign,
whereas the nonunique fold is nonmonotonic and has a fixed
sign; for ε > 0, the nonunique fold monotonically changes
sign and the unique fold is nonmonotonic with fixed sign
[see Fig. 2(c) for one such example]. Finally, between folds
1 and 2 for ε > 0 and between the folds 3 and 4 for ε < 0,
both folds have a fixed sign and are nonmonotonic [Figs. 2(b)
and 2(d)]. These qualitatively different folding motions open
up new design possibilities for folding mechanisms, as well
as rational design of multistable structures, as we show
below.

Designer mechanisms.—We now show how the folding
curves of a non-Euclidean vertex can be used to design
nonlinear mechanisms. We illustrate this general point by
designing an inverter, where a high input signal is mapped
to a low output signal and vice versa [Fig. 3(a)]. In our
origami inverter, the input and output signals correspond to
fold angles. An Euclidean Miura vertex with sector angles
αi = {α, π − α, π − α, α} has one branch with a curve (ρi

versus ρ j) that reproduces a step function with infinite slope
and sharp corners [1,4,5,32,33,44]—close to the behavior de-
sired for an inverter. However, the intersection of this branch
at the flat state with the other distractor branch precludes the
necessary one-to-one functionality.

To resolve this, we consider near-Miura, non-
Euclidean candidates given by the sector angles αi =
[1 ± |ε|/(2π )]{α − δ, π − α, π − α + δ, α}. The parameter
δ breaks the Miura symmetry, allowing us to (i) stay within
our generic framework and (ii) control the sharpness of
the step function. The general qualitative properties of the
folding curves of non-Euclidean vertices (e.g., the curvature
of the monotonic branch) prevent a single non-Euclidean
vertex from achieving a folding branch with an S shape and
inverter functionality. However, the absence of misfolding
allows us connect multiple vertices without possible branch
switching. By joining two vertices (V1 and V2) and choosing
their design and branches appropriately, we can achieve an
origami inverter [Fig. 3(b)] as follows. Considering the input
angle (ρ1

in), the connecting angle (ρ1
out = ρ2

in), and the output
angle (ρ2

out), the transfer curve is given by

F
(
ρ1

in

) = ρ2
out

(
ρ1

out

(
ρ1

in

))
. (1)

The slope of a inverter curve must be negative, which ac-
counting for the previously discussed (non-)monotonic nature
of the non-Euclidean branches, is possible if for one vertex
we use folds 1 and 2 and take ε > 0, and for the other we
use folds 3 and 4 and take ε < 0. We therefore use as our
input signal ρ1

2 of vertex V1 with αi = [1 − |ε|/(2π )]{α −
δ, π − α, π − α + δ, α}, and as our output signal ρ2

3 of ver-
tex V2 with αi = [1 + |ε|/(2π )]{α − δ, π − α, π − α + δ, α}

031001-2



NON-EUCLIDEAN ORIGAMI PHYSICAL REVIEW E 102, 031001(R) (2020)
2,

3,
4

- - /2 /20
-

- /2

I
II

0

1

/2

1
2

/10

/20

0

- /20

- /10
/10/200- /20- /10

1

3

/10

/20

0

- /20

- /10
/10/200- /20- /10

4

3

/10

/20

0

- /20

- /10
/10/200- /20- /10

1

3

-+++

- + -+

- - - -

+-++
++++

+- + -

+ - - -
- + - -

(a) (b) (c) (d) (e)
I+

I-

II-

II+

I+

I-II-

II+

I+

I-

II-

II+

A

B
C

D A

B

C

D

A
B

C
D

 < 0

 > 0

 < 0

 > 0

 < 0
 > 0

FIG. 2. (a) Folding curves ρ2 (blue), ρ3 (green), and ρ4 (magenta) vs ρ1 for branch I (solid) and II (dashed) of an Euclidean vertex
with sector angles αi = {π/3, π/2, 3π/4, 5π/12}. The box in the center highlights enlarged views corresponding to panels (b)–(e), which
also include curves for non-Euclidean vertices created by uniform shrinkage and expansion of αi. Open and closed arrows indicate splitting
directions for ε < 0 and ε > 0, respectively. The branch endpoints I−, I+, II−, and II+ are indicated, as well as the resulting non-Euclidean
branch designations A, B, C, and D (see Table I). (e) Schematic plot of ρ3 vs ρ1 with different MV assignments indicated with shading allows
to visualize the sequence of MV patterns along each branch.

(connected by folds ρ1
1 = ρ2

4 ). This yields the composite
structure shown in Fig. 3(e), which produces a folding curve
closely matching the target [Fig. 3(f); parameters in caption].
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FIG. 3. (a) An inverter maps a high input signal, Sin ≈ 1, to a low
output signal, Sout ≈ 0, and vice versa. (b) Composite design of two
non-Euclidean 4-vertices, V1 and V2, with input-output corresponding
to fold angles Sin and Sout (red). (c) Curve for vertex V1 on branch A
(red); folding curves for the corresponding Euclidean vertex (black
solid/dashed lines) and other branch of non-Euclidean vertex (gray)
are also shown. (d) Curves for vertex V2. (e) Origami inverter design.
(f) Composite inverter curve (red) and spurious fold curves when one
or both vertices are forced on their other branch (gray). Parameters
for the target curve are |ε| = π/50, α = π/4, and δ = 0.1.

Crucially, the other compound folding curves, obtained by
changing the branch of V1, V2, or both, are well separated,
even for small (1%) deviation of flatness. This illustrates
the potential of non-Euclidean origami for well-defined de-
signer mechanisms that circumvent the problem of distractor
branches.

Energy landscapes of non-Euclidean 4-vertices. The branch
splitting has significant consequences for the energy and
stability landscapes of non-Euclidean 4-vertices. When we
model the hinge elasticity with torsional springs and as-
sume the plates are rigid, the energy of a vertex is given by
[3,4,17,20,20,21,45–47]:

E = 1

2

4∑

i=1

κi(ρi − ρ̄i )
2 . (2)

Here κi are the torsional spring constants and ρ̄i are the rest an-
gles of each fold. For an Euclidean vertex, the existence of two
folding branches means that there are also two energy curves.
These intersect at the flat state and, as we showed previously,
this has the implication that generic Euclidean vertices are at
least bistable. While more minima are possible—theoretically
up to six [17] if there is sufficient freedom in the spring
parameters—these populate a vanishingly small volume of
design space and are too shallow to permit physical imple-
mentation [17].

To understand how non-Euclidean vertices differ, we con-
sider what happens when a single torsional spring is placed
on one of the folds. An Euclidean vertex will be able to reach
a zero-energy minimum on both branches I and II, leading to
two stable states. For a nearby non-Euclidean vertex, a differ-
ent scenario emerges, and the nature of the folding motions
suggests that the placement of the spring is critical. If ε < 0
and the spring is on a unique fold, then regardless of the
branch the vertex is on (A or C) only one stable (zero-energy)
minimum is accessible. (A similar case holds for ε > 0 with a
spring on a nonunique fold.) However, if the spring is placed
on a nonunique fold and ε < 0, as in Fig. 4(a), then one branch
(A if ρ̄ > 0) will have two zero-energy minima, while the
other will have a frustrated, finite-energy minimum near to the
flat state. (Again, a similar situation happens for branches B, D
when ε > 0 and the spring is on a unique fold.) So long as the
corresponding energy barrier can be exceeded, i.e., the plates
are not too rigid [48] and can be bent or stretched, the vertex
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FIG. 4. (a) For a vertex with ε < 0, placing a single spring on
a nonunique fold with rest angle ρ̄ > 0 (red line) yields two E = 0
minima on the A branch (red dots) and one E �= 0 frustrated min-
imum on the C branch (green dot). (b) Similar for a vertex with
ε > 0 and a spring placed on a unique fold. (c) Physical samples
(top row) and numerical model (bottom row) for a 4-vertex αi =
119/120 {π/3, π/2, 3π/4, 5π/12} augmented by a torsional spring
on fold 4, in each of its three stable states labeled α − γ . Plates
are colored by the convention set in Fig. 1. (d) Physical samples
(top row) and numerical model (bottom row) for a 4-vertex αi =
121/120 {π/3, π/2, 3π/4, 5π/12} augmented by a torsional spring
on fold 2, in each of its three stable states labeled δ − ζ . [(e), (f)]
By 3D printing vertices and adding springs, we are able to verify the
effectiveness of these strategies. Panel (e) compares the theoretical
(dashed lines) and experimentally measured (green and red lines)
curves for the negative-surplus vertex. Panel (f) shows corresponding
curves for a positive-surplus vertex. Both panels also indicate the
minima α − ζ .

can “pop through” the flat state [3]. This leads to a simple
rule for creating robust tristable vertices: (1) for ε < 0, place
a single spring on a nonunique fold; (2) for ε > 0, place a
single spring on a unique fold.

For a physical realization, we 3D print non-
Euclidean vertices with sector angles αi = [1 +
ε/(2π )]{π/3, π/2, 3π/4, 5π/12} out of ABS plastic,
which allows for a small amount of elastic deformation
(for fabrication details, see the Supplemental Material [42]).
With an appropriate value of angular surplus (ε ≈ ±0.0083),
these vertices exhibit robust pop-through behavior. When
additionally paired with a torsional spring—which can be
mounted on the vertex in 3D printed holes—one of the two

branches can be made bistable, whereas the other branch
is monostable with a frustrated minimum—validating the
strategy for tristable vertices [Figs. 4(c) and 4(d)]. For both
ε > 0 and ε < 0, we have measured the elastic energies
along both branches and find that it compares well to the
theoretical prediction based on the geometric design and
torsional stiffness of our spring [Figs. 4(e) and 4(f)]. Hence,
while the switching between branches relies on nonrigid
deformations, the energetics along each branch are well
described by a model based exactly on rigid origami. We
therefore show that for non-Euclidean vertices with finite
hinge and plate elasticity—the situation most relevant to
many applications—independently tuning the energy barrier
between branches and the energy landscape on the branches
results in a strategy for multistable origami.

Conclusion and discussion.— Euclidean 4-vertices sit at a
critical plane in parameter space and undergo a bifurcation
when they are made non-Euclidean by shrinking or extending
their sector angles. The associated branch splitting lifts the
degeneracy in the folding motions, leads to new mountain
valley patterns, and yields nonmonotonic folding curves. Non-
Euclidean 4-vertices do not suffer from distractor branches,
and we have shown how to use this to design a nonlinear
mechanism. Nonrigid, non-Euclidean 4-vertices can exhibit
a pop through between branches, offering a simple pathway
to tristable structures. While we have focused on single and
dual non-Euclidean 4-vertices, we point out that a recent de-
sign methodology, initially developed for flat 4-vertices, can
readily be adapted to design a wide variety of periodic and
spatially textured crease patterns that combine non-Euclidean
4-vertices with positive and negative angular surplus [14]. One
interesting question for the future is how the nonmonotonic
folding motions of individual 4-vertices affects those of larger
folding patterns. A second question is how to extend our
results to higher n vertices, and in particular whether we can
use higher n vertices to design more complex mechanisms
[49].
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