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Brauer–Manin obstruction for Erdős–Straus surfaces

Martin Bright and Daniel Loughran

Abstract

We study the failure of the integral Hasse principle and strong approximation for the Erdős–
Straus conjecture using the Brauer–Manin obstruction.
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1. Introduction

1.1. The Erdős–Straus conjecture

The Erdős–Straus conjecture states that for every n � 2 the equation

4
n

=
1
u1

+
1
u2

+
1
u3

(1.1)

always has a solution with u1, u2, u3 ∈ N. Note that there is always a solution with u1, u2, u3 ∈ Z
[14], and to prove the conjecture it suffices to consider the case where n is a prime. Moreover,
for any fixed n, it is straightforward to see that there can be only finitely many solutions,
and that they may be easily enumerated (see Lemma 3.10). We refer to Mordell’s book [19,
Chapter 30] and the more recent paper [8] for further background and history on this problem.

In this paper, we investigate what modern techniques from arithmetic geometry can say
about this conjecture and more generally the structure of the solutions to (1.1). At a first
glance, it is not clear how to use tools from modern algebraic geometry to tackle the problem,
as N is not a ring. However, this conjecture does indeed have a natural interpretation as a
question of strong approximation, stipulating that integer solutions with certain real conditions
exist. Our first main result states that there is no Brauer–Manin obstruction in this case (see
§ 1.2 for a more precise statement and background on the Brauer–Manin obstruction).

Theorem 1.1. Let n � 2. Then there is no Brauer–Manin obstruction to the existence of
natural number solutions of equation (1.1).
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Despite there being no Brauer–Manin obstruction to the conjecture, it turns out that there
is in fact an obstruction to strong approximation at the p-adic places. This obstruction has the
following completely explicit description. (In the statement, (·, ·)p denotes the Hilbert symbol.)

Theorem 1.2. Let n ∈ N be odd and u ∈ N3 a solution to (1.1). Then∏
p|n

(−u1/u3,−u2/u3)p = −1.

Despite the apparent asymmetry, the given Hilbert symbols are actually invariant under the
natural action of the symmetric group S3 on the variables ui (see Proposition 2.6). In the stated
generality, Theorem 1.2 does not seem to have been known and gives new conditions which
natural number solutions must satisfy. Theorem 1.2 allows one to recover various known results
in a more systematic and conceptual way, as special cases of a Brauer–Manin obstruction. For
example, if n is an odd prime, we have the following.

Corollary 1.3. Let n = p be an odd prime and u ∈ N3 a solution to (1.1). Then there
exists i �= j such that ui/uj ∈ Z∗

p. For such a solution, we have(−ui/uj

p

)
= −1,

where the symbol is the Legendre symbol.

Corollary 1.3 unifies various quadratic reciprocity conditions found by Yamamoto [24] for
p ≡ 1 mod 4. We are also able to recover the following result of Elsholtz and Tao
[8, Proposition 1.6].

Corollary 1.4. If n is an odd square, then there are no natural number solutions u with

n | u1, gcd(n, u2u3) = 1, or gcd(n, u1) = 1, n | u2, n | u3.

Corollary 1.4 is really a condition on natural number solutions which is not present for integer
solutions (for example, for n = 9 consider the solutions (−18, 4, 4) and (−9, 2, 18)). Similarly,
the congruence condition in Corollary 1.3 is also not present for integer solutions in general. For
example, consider p = 5 and the solution (−5, 2, 2), where the corresponding Legendre symbol
is 1. In fact, for integer solutions which are not natural number solutions, the exact opposite
of Theorem 1.2 holds.

Theorem 1.5. Let n be an odd integer and u ∈ Z3 a solution to (1.1) which is not a natural
number solution. Then ∏

p|n
(−u1/u3,−u2/u3)p = 1.

1.2. Geometric interpretation

We now explain in more detail how to interpret our results geometrically using the Brauer–
Manin obstruction. Consider the corresponding algebraic surface derived from (1.1)

Un : 4u1u2u3 = n(u1u2 + u1u3 + u2u3) ⊂ A3
Q. (1.2)

This is an affine cubic surface, and geometrically a so-called log K3 surface. Many interesting
classical Diophantine equations turn out to concern log K3 surfaces, and their integer points
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are an active area of research [5, 6, 11–13, 17]. Note that Un is singular, with the unique
singular point lying at the origin.

We let Un denote the natural model for Un given by the same equation in A3
Z. Note that

U1
∼= Un over Q for all n ∈ N, by simply rescaling the ui. The Erdős–Straus conjecture therefore

concerns existence of certain integer points on different models over Z of the same surface over
Q; in particular, this nicely highlights the fact that different models of the same surface can
give rise to very different problems in general.

Let π0(Un(R)) be the set of connected components of Un(R) and AQ,f the ring of finite
adeles. One says that Un satisfies strong approximation if Un(Q) has dense image in Un(AQ)• :=
π0(Un(R)) × Un(AQ,f ); equivalently, if

Un(Q) ∩W �= ∅ (1.3)

for all non-empty open subsets W ⊂ Un(AQ)•. We work with Un(AQ)• since Un(Q) ⊂ Un(AQ)
is discrete as Un is affine, hence clearly not dense. We let

Un(R)+ = {u ∈ Un(R) : u1, u2, u3 > 0}.
We will show that Un(R)+ is a connected component of Un(R), and its complement is also
a connected component. We define Un(N) := Un(Z) ∩ Un(R)+. The Erdős–Straus conjecture
is equivalent to (1.3) for W = {Un(R)+} ×

∏
p Un(Zp), hence stipulates that a special case of

strong approximation holds. One can even formulate the conjecture as a problem of strong
approximation for U1; here it is equivalent to (1.3) for U1 and Wn for all n � 2, where

Wn = {U1(R)+} ×
∏
p|n

{up ∈ U1(Qp) : vp(ui) � −vp(n) for all i} ×
∏
p�n

U1(Zp).

We now recall how one can use the Brauer group to study this problem (see [20, § 8.2] for
further background on the Brauer–Manin obstruction). Recall that there is a right continuous
pairing

BrUn × Un(AQ)• → Q/Z

given by pairing with an element of BrUn and taking the sum of local invariants. For an open
subset W ⊂ Un(AQ)•, we define WBr to be the right kernel of this pairing restricted to W .
We have Un(Q) ∩W ⊂ WBr; in particular, if WBr = ∅, then Un(Q) ∩W = ∅ and one says that
there is a Brauer–Manin obstruction to strong approximation (cf. (1.3)). We first calculate the
Brauer group.

Theorem 1.6. We have

BrUn/Br Q ∼= Z/2Z

generated by the quaternion algebra (−u1/u3,−u2/u3).

The algebra in Theorem 1.6 is transcendental, meaning that it does not become trivial
after base change to an algebraic closure of Q, so we will obtain new cases of a transcendental
Brauer–Manin obstruction on log K3 surfaces. One novel feature is that there are few examples
in the literature where Brauer groups of singular varieties have been computed, as Brauer group
computations usually use Grothendieck’s purity theorem which requires regularity (or at least
a singular locus of large codimension). We prove Theorem 1.6 by first calculating the Brauer
group of a desingularisation, then showing that every such Brauer group element comes from
the singular surface.

This latter property is a special case of a more general result about Brauer groups of singular
surfaces, which may be of independent interest and does not seem to have been noticed before.
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Recall that a normal variety Y/k is said to have only rational singularities if there exists a
desingularisation Ỹ → Y for which all the higher direct images of O

˜Y are trivial.

Theorem 1.7. Let U be a normal surface over a field k of characteristic 0 with
rational singularities and f : Ũ → U a desingularisation. Then the induced map BrU → Br Ũ
is surjective.

One could hope to use the Brauer group element from Theorem 1.6 to disprove the Erdős–
Straus conjecture by showing that (Un(R)+ ×∏

p Un(Zp))Br = ∅; our next result says that this
does not happen.

Theorem 1.8. For all n ∈ N, we have

(Un(R)+ ×
∏
p

Un(Zp))Br �= ∅, (1.4)

(Un(R)+ ×
∏
p

Un(Zp))Br �= Un(R)+ ×
∏
p

Un(Zp). (1.5)

The first equation (1.4) is a more precise version of Theorem 1.1. The second equation (1.5)
says that nonetheless there is always a Brauer–Manin obstruction to strong approximation for
natural number solutions (as manifested by Theorems 1.2 and 1.5).

Despite there being a Brauer–Manin obstruction to strong approximation, it turns out that
not every failure of strong approximation is explained by the Brauer–Manin obstruction.

Theorem 1.9. For all n ∈ N, the map

Un(Q) → Un(AQ)Br
•

does not have dense image.

We prove this by showing that Un(Z) is not Zariski dense using real considerations. The
conclusion then follows from the fact that BrUn/Br Q is finite.

Remark 1.10. In this paper, we focus on the original conjecture of Erdős–Straus concerning
equation (1.1). A more general conjecture, due to Schinzel [22], states that given m � 3, for
all n > n0(m) there exists ui ∈ N such that

m

n
=

1
u1

+
1
u2

+
1
u3

.

These surfaces are again Q-isomorphic, hence Theorem 1.6 still holds here. A minor adaptation
of our method shows the following analogue of Theorem 1.2: for all solutions with u ∈ N3, we
have ∏

p|2nm
(−u1/u3,−u2/u3)p = −1.

Moreover versions of Theorems 1.5, 1.8, and 1.9 also hold in this case.

Outline of the paper

In § 2 we study the geometry of Erdős–Straus surfaces over a field k of characteristic 0. We
calculate the desingularisation, the Picard group, and the Brauer group (Theorem 1.6). In
§ 3, we apply our knowledge of the Brauer group to prove the remaining results from the
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introduction. The appendix explains in more detail how Corollary 1.3 relates to results of
Yamamoto [24].

Notation

For a field k, we denote by μ(k) the group of roots of unity in k. For a scheme X, we denote
by BrX = H2(X,Gm) its (cohomological) Brauer group.

2. Geometry of Erdős–Straus surfaces

In this section, we study the geometry of the surfaces Un from (1.2). We work over a field
k of characteristic 0 with algebraic closure k̄. The primary aim of this section is to prove
Theorem 1.6. We also prove a result of independent interest on Brauer groups of rational
surface singularities (Theorem 1.7).

2.1. The Cayley cubic and its lines

We let

Sn : 4x1x2x3 = n(x0x1x2 + x0x1x3 + x0x2x3)

be the closure of Un in P3
k, with Un being the affine patch x0 �= 0 with variables u1, u2, u3.

For n = −4, this projective surface is known as Cayley’s (nodal) cubic surface; every Sn is
isomorphic over k to the Cayley cubic surface. The surface Sn has four singularities, each of
type A1, given by setting all but one coordinate equal to 0; we let P = (1 : 0 : 0 : 0) be the
singularity in Un. The Cayley cubic has nine lines over k̄. This induces six lines on Un, of which
we are interested in the following three lines

Li,j : ui = uj = 0, i �= j ∈ {1, 2, 3}.

2.2. Desingularisation

Let Ũn be the desingularisation of Un given by blowing up P once, with exceptional curve
E ⊂ Ũn. By abuse of notation, we denote by Li,j the strict transform of the relevant lines in
Ũn. We have the equation

Ũn : 4u1y2y3 = n(y1y2 + y1y3 + y2y3), yiuj = yjui, i, j ∈ {1, 2, 3} ⊂ A3 × P2,

where u1, u2, u3 are coordinates on A3, and y1, y2, y3 are homogeneous coordinates on P2. With
respect to this equation, the curves of interest to us are

E : u1 = u2 = u3 = 0, Li,j : yi = yj = 0, i �= j ∈ {1, 2, 3}.
One checks that

ui

uj
=

yi
yj

, div
y1

y3
= L1,2 − L2,3, div

y2

y3
= L1,2 − L1,3. (2.1)

2.3. Parametrisation

Any cubic surface with a rational singularity is rational, with a birational parametrisation
given by projecting away for the singular point. Applying this to the singularity P , we obtain
the birational map to P2. On the desingularisation, this becomes the birational morphism

Ũn → P2, (u1, u2, u3; y1 : y2 : y3) 
→ (y1 : y2 : y3). (2.2)

We let

Vn := Ũn \ {y1y2y3 = 0}. (2.3)
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Note that the boundary is the disjoint union of the lines Li,j

Ũn \ Vn = L1,2 � L2,3 � L3,1. (2.4)

The following important observation will be used numerous times.

Lemma 2.1. We have Vn
∼= G2

m and H0(Vn,k̄,Gm) ∼= k̄∗
⊕

Z2, with the Z2 factor generated
by y1/y3 and y2/y3.

Proof. That Vn
∼= G2

m follows from the fact that the map (2.2) becomes an isomorphism
onto its image when restricted to Vn. The second part follows from the fact that the invertible
regular functions on G2

m are generated by characters and non-zero constants. �

Lemma 2.2. H0(Ũn,k̄,Gm) = k̄∗.

Proof. By Lemma 2.1, any invertible regular function must be a non-trivial product of
powers of y1/y3 and y2/y3, modulo constants. However, such a function cannot be invertible
on Ũn since its divisor is always non-trivial by (2.1). �

2.4. Picard group

Lemma 2.3. We have Pic Ũn = Pic Ũn,k̄
∼= Z generated by L1,2.

Proof. By Lemma 2.1 and (2.1), we have the exact sequence

0 → 〈y1/y3, y2/y3〉 → 〈L1,2, L2,3, L3,1〉 → Pic Ũn,k̄ → PicVn,k̄ → 0,

where the second map associates to a rational function its divisor and the third map associates
to a divisor its class. But PicVn,k̄ = 0 by Lemma 2.1. The result now follows from (2.1). �

2.5. Brauer group

2.5.1. Brauer group of Ũn. We denote by Br1 X = ker(BrX → BrXk̄) the algebraic
Brauer group of a variety X/k.

Lemma 2.4. Br1 Ũn = Br k.

Proof. Lemma 2.2 and the Hochschild–Serre spectral sequence give an injection
Br1 Ũn/Br k ↪→ H1(k,Pic Ũn,k̄). But Pic Ũn,k̄ = Z with trivial Galois action by Lemma 2.3,
hence this Galois cohomology group is trivial. �

We now find the Galois action on the Brauer group. We denote by Q/Z(−1) :=
Hom(μ(k̄),Q/Z), and refer to [9, § 2.5] for background on cyclic algebras.

Proposition 2.5. The natural map Br Ũn,k̄ → BrVn,k̄, induced by the inclusion Vn ⊂ Ũn,

is an isomorphism. In particular, Br Ũn,k̄
∼= Q/Z(−1) as a Galois module, and its elements are

represented by the cyclic algebras

(u1/u3, u2/u3)ζ , ζ ∈ μ(k̄).

Proof. The explicit description of BrVn,k̄ follows from Lemma 2.1 and the fact that
Br G2

m,k̄
∼= Q/Z(−1), given by the stated cyclic algebras (see [4, § 8.1] — note that for
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σ ∈ Gal(k̄/k) we have σ(αζ) = ασ(ζ), but for ζ an nth root of unity and a ∈ (Z/nZ)∗ we
have aαζ = αζa−1 ).

So let b = (u1/u3, u2/u3)ζ . It suffices to show that b is unramified along the boundary (2.4).
The Li,j are regular and disjoint, hence Grothendieck’s purity theorem [10, Corollary 6.2]
yields the exact sequence

0 → Br Ũn,k̄ → BrVn,k̄ →
⊕
i�=j

H1(Li,j,k̄,Q/Z),

where the last map is the residues along the Li,j,k̄. (Note that the hypothesis that the boundary
divisor be regular is missing from Grothendieck’s statement, but it holds in our case.) However,
Li,j,k̄

∼= A1
k̄

is simply connected, so the corresponding residues are trivial. The result follows. �

We next show that every Galois-invariant element of Br Ũn,k̄ in fact descends to the ground
field k. To do this, we make use of the relation

−ui

uj
=

1
1 + uj/uk − 4uj/n

, {i, j, k} = {1, 2, 3}, (2.5)

derived from (1.1). (This relation will also appear in other parts of the paper).

Proposition 2.6. The natural map Br Ũn → (Br Ũn,k̄)Gal(k̄/k) is surjective. A complete set

of representatives for the elements of Br Ũn/Br k is given by the cyclic algebras

αζ = (−u1/u3,−u2/u3)ζ , ζ ∈ μ(k).

These algebras have the following equivalent representations:

αζ = (−ui/uk,−uj/uk)ζ = (−yi/yk,−yj/yk)ζ , {i, j, k} = {1, 2, 3}.

Proof. By Proposition 2.5, we have (Br Ũn,k̄)Gal(k̄/k) ∼= (Q/Z(−1))Gal(k̄/k), and this is (non-
canonically) isomorphic to μ(k) [6, Lemma 2.4]. By Proposition 2.5, the cyclic algebras αζ

therefore give a complete set of representatives for the Galois-invariant elements. It thus suffices
to show that these descend to k.

The different representations are easily checked to hold in the Brauer group of the function
field of Un, using (2.1) and the relation (a, b)ζ = (−b/a, 1/a)ζ . To show that αζ is unramified
along the Li,j , we use (2.1). By symmetry, it suffices to show that αζ is unramified along L2,3.
However, by (2.1) and standard formulae for residues [9, Proposition 7.5.1, Exercise 7.1.5], the
residue of αζ along L2,3 is

−u2/u3 ∈ k(L2,3)∗/(k(L2,3)∗)m,

where m is the order of ζ. But using the relation (2.5), we have

−u2

u3
=

1
1 + u3/u1 − 4u3/n

,

so that the residue is in fact equal to 1 along L2,3 as u3 = 0 here. This shows that αζ ∈ Br Ũn,
as required. �

Note that Proposition 2.6 shows that Br Ũn/Br k is finite if k is a number field; something
which is not a priori obvious.

Corollary 2.7. If k = Q, then Br Ũn/Br Q is isomorphic to Z/2Z generated by the class
of the quaternion algebra

α := α−1 = (−u1/u3,−u2/u3).
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Remark 2.8. Note that the ‘obvious’ Galois-invariant element (u1/u3, u2/u3) does not
descend to Q. Despite being unramified over Q̄, it ramifies over the lines Li,j with constant
(non-trivial) residue. We have multiplied this element by some ramified algebraic Brauer group
elements to kill these constant residues.

2.5.2. Brauer group of Un. We calculated the Brauer group of the desingularisation Ũn

using Grothendieck’s purity theorem. This method uses that Ũn is smooth and does not apply
directly to Un. To calculate BrUn we shall use Theorem 1.7, which we now prove.

Proof of Theorem 1.7. We compute the higher direct images Rqf∗Gm with respect to the
étale topology and use the Leray spectral sequence for the morphism f and the sheaf Gm; the
necessary material can be found in [16, § III, § IV].

Let P1, . . . , Pr be the closed points at which U is singular, with residue fields kj = κ(Pj),
and let Ej be the exceptional divisor above Pj . Let P̄j be a geometric point above Pj , and let
Ēj the fibre above P̄j . By [1, Proposition 1], Ēj is a tree of P1s. By [16, Proposition 11.1],
Pic Ēj is isomorphic to Zdj , where dj is the number of irreducible components of Ēj , with the
absolute Galois group of kj permuting the factors as it permutes the irreducible components.

Let Osh
U,Pj

be a strict Henselisation of the local ring of U at Pj . The standard calculation of the

stalks of higher direct images shows that (R1f∗Gm)P̄j
is isomorphic to Pic(Ũ ×U SpecOsh

U,Pj
).

The natural map Pic(Ũ ×U SpecOsh
U,Pj

) → Pic Ēj is injective by [16, Theorem 12.1] and
surjective by [16, Lemma 14.3], so is an isomorphism. We deduce that (R1f∗Gm)P̄j

and Pic Ēj

are isomorphic as Galois modules over kj . Let ij : Pj → U be the inclusion. Given that R1f∗Gm

is supported at the points Pj , we have computed

R1f∗Gm
∼=

∏
j

(ij)∗ Pic Ēj . (2.6)

It follows that

H1(U,R1f∗Gm) =
∏
j

H1(kj ,Pic Ēj) = 0, (2.7)

since Pic Ēj is an induced module.
We now show that the stalks (R2f∗Gm)P̄j

are torsion-free. The Kummer sequence on Ũ
gives, for any m � 1, an exact sequence

R1f∗Gm
×m−−→ R1f∗Gm → R2f∗μm → R2f∗Gm

×m−−→ R2f∗Gm.

Proper base change [18, Corollary VI.2.7] shows

(R2f∗μm)P̄j
∼= H2(Ēj ,μm) ∼= Pic Ēj/mPic Ēj ,

where the last isomorphism follows from the Kummer sequence of Ēj , as Br Ēj = 0 by
[10, Corollary 1.2]. Therefore, (R1f∗Gm)P̄j

surjects onto (R2f∗μm)P̄j
by (2.6), showing that

(R2f∗Gm)P̄ has no non-trivial m-torsion.
Using (2.6) and (2.7), the Leray spectral sequence for the morphism f and the sheaf Gm

now gives an exact sequence

PicU → Pic Ũ →
∏
j

H0(kj ,Pic Ēj) → BrU → Br Ũ → H0(U,R2f∗Gm). (2.8)

Since Ũ is regular, Br Ũ is a subgroup of Br k(Ũ) and is therefore torsion. Thus the rightmost
arrow is zero. This proves that BrU → Br Ũ is surjective. �

In the case of Erdős–Straus surfaces, we obtain the following stronger result.
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Corollary 2.9. The natural map BrUn → Br Ũn is an isomorphism.

Proof. By Theorem 1.7, it suffices to show that the stated map is injective. The exact
sequence (2.8) here reads

PicUn → Pic Ũn → PicE → BrUn → Br Ũn → 0.

But Pic Ũn → PicE is surjective as the strict transform of L1,2 has intersection number 1 with
the exceptional divisor E. This completes the proof. �

Corollaries 2.7 and 2.9 in particular prove Theorem 1.6.

Remark 2.10. The map in Theorem 1.7 need not be an isomorphism in general. If X is
the Cayley cubic surface in P3

C, then BrX ∼= Z/2Z [2, Table 2], but the Brauer group of the
desingularisation is clearly trivial.

Remark 2.11. We have calculated BrUn for completeness; however, we could just have
chosen to work on the desingularisation instead. Namely, consider the Brauer group element
α ∈ Br Ũn. Restricting α to the exceptional divisor E ∼= P1

Q, we find that α is constant along
E as Br P1

Q = Br Q (in fact our choice of α is even trivial along E). Therefore, we could have
chosen to instead define

Un(AQ)Br := Im(Ũn(AQ)Br → Un(AQ)).

as pairing with α is independent of the choice of lift of adelic point from Un to Ũn. This is
essentially the approach advocated in [7, § 8] for dealing with the Brauer–Manin obstruction
on singular varieties. (Note that in our case the smooth points are dense in Un(Qv) for all v,
so Un(Qv) = Un(Qv)cent in the notation of loc. cit.)

3. Brauer–Manin obstruction

We now study the integral Brauer–Manin obstruction in our case over Q. Let n ∈ N.

3.1. Local invariants

We begin by calculating the local invariants of the element α = (−u1/u3,−u2/u3), which we
view as an element of BrUn. We take the convention that the local invariants lie in μ2, rather
than Z/2Z. Thus, for a place v of Q the local invariant map is given by the Hilbert symbol

invv α : Un(Qv) → {±1}, (u1, u2, u3) 
→ (−u1/u3,−u2/u3)v. (3.1)

The stated expression is only well defined if u1u2u3 �= 0; for other points, one can reduce to the
above case as the local invariant is continuous [20, Proposition 8.2.9]. Indeed, it follows from
the implicit function theorem that the Qv-points of any dense Zariski-open subset are dense in
the smooth points of Un(Qv); and, as noted in Remark 2.11, the smooth points are dense in
Un(Qv).

3.2. Real points

Lemma 3.1. Let

Un(R)+ = {u ∈ Un(R) : ui > 0 for all i}, Un(R)− = Un(R) \ Un(R)+.

Then the Un(R)+ and Un(R)− are both connected and

Un(R) = Un(R)+ � Un(R)−, inv∞ α(Un(R)+) = −1, inv∞ α(Un(R)−) = 1.
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Proof. We first show that Un(R) has two connected components. Consider

Un(R) → R2, u 
→ (u1, u2). (3.2)

This map is not surjective; indeed, we rearrange equation (2.5) to obtain

u3 =
−u1u2

u1 + u2 − 4u1u2/n
.

So the image misses every point on the hyperbola u1 + u2 − 4u1u2/n = 0, except the origin
which is the image of the line L1,2. The hyperbola splits the plane into three components,
but one branch passes through the origin and hence the image of (3.2) has two components.
The fibres of (3.2) are connected, being a single point or R over the origin. Hence, Un(R) has
two connected components. These are easily checked to be the two components stated in the
lemma. The local invariants are then calculated by standard formulae for Hilbert symbols. �

3.3. p-adic points

3.3.1. Preliminaries.

Lemma 3.2. Let p be an odd prime with vp(n) � 1 and u ∈ Un(Zp) with u1u2u3 �= 0. Then
there exists i �= j such that ui/uj ∈ Z∗

p.

Proof. Write ui = aip
bi and n = n′pb where p � n′ai. Equation (1.2) becomes

4a1a2a3p
b1+b2+b3 = n′(a1a2p

b1+b2+b + a1a3p
b1+b3+b + a2a3p

b2+b3+b).

Without loss of generality 0 � b1 � b2 � b3. If b2 = 0, then the result is clear. So assume for a
contradiction that 1 � b2 < b3. But as b � 1, we then have

min{b1 + b2 + b3, b1 + b3 + b, b2 + b3 + b} > b1 + b2 + b.

Thus p | a1a2, which contradicts the fact that the ai are units, as required. �

Remark 3.3. Note that Lemma 3.2 fails in general if n has a prime divisor with valuation
at least 2. For example, for n = 9 we have the solution (4, 6, 36).

Lemma 3.4. Let p be an odd prime and let u ∈ Un(Zp) be such that u2/u3 ∈ Z∗
p. Then

invp α(u) =
(−u2/u3

p

)vp(u1u3)

.

Proof. As u2/u3 ∈ Z∗
p, this follows immediately from (3.1) and standard formulae for Hilbert

symbols [21, Theorem III.1]. �

3.3.2. Good primes.

Lemma 3.5. For all p � 2n, we have invp α(Un(Zp)) = 1.

Proof. By continuity, we may assume that u1u2u3 �= 0. (The continuity argument above was
stated for Qp-points, but the Zp-points form an open set in the Qp-points so the argument also
holds for Zp-points.) Up to permuting coordinates, Lemma 3.2 gives u2/u3 ∈ Z∗

p. If vp(u1) =
vp(u3), then the invariant is 1 by Lemma 3.4. So assume vp(u1) �= vp(u3), so that p | u1u2u3.
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But from equation (1.2), it is clear that p cannot divide only one of the ui since p � 2n. As
u2/u3 ∈ Z∗

p, we find that p | u3. From (2.5), we have

−u2

u3
=

1
1 + u3/u1 − 4u3/n

.

As p | u3, vp(u1) �= vp(u3), and the left-hand side is a p-adic unit, we must have vp(u3/u1) > 0.
Thus −u2/u3 ≡ 1 mod p, and so the local invariant is again trivial by Lemma 3.4. �

3.3.3. Bad odd primes.

Lemma 3.6. Let p | n be an odd prime. Then the map

invp α : Un(Zp) → {±1}
is surjective.

Proof. We first consider the case where p‖n. Write n = pn′ where p � n′ and substitute
u1 = pa1. Equation (1.2) becomes

4a1u2u3 = n′(a1u2p + a1u3p + u2u3).

Modulo p this is

(4a1 − n′)u2u3 ≡ 0 mod p. (3.3)

As p is odd, there exists a solution with 4a1 ≡ n′ mod p and u2, u3 arbitrary modulo p.
Geometrically, equation (3.3) defines the union of three planes which is non-singular away
from the common points of intersection. Providing that u2u3 �≡ 0 mod p, we may therefore use
Hensel’s lemma to lift to a p-adic solution. Thus, we have shown that we may choose p-adic
solutions such that p‖u1, p � u2u3 and both possibilities(−u2/u3

p

)
= 1,

(−u2/u3

p

)
= −1

may be realised. The result in this case therefore follows from Lemma 3.4.
We now consider the general case. Let n = pbn′ where p � n and b > 1. We take a p-adic

solution u ∈ Upn′(Zp) as constructed in the previous case, and consider the solution pb−1u ∈
Un(Zp). The quotients u1/u3, u2/u3 are unchanged, hence the result follows from the previous
case and (3.1). �

3.3.4. The prime 2.

Lemma 3.7. Suppose that n is even. Then the map

Un(Z2) → {±1}, u 
→ inv2 α(u)

is surjective.

Proof. It suffices to prove the result for n = 2, since then we can just obtain the result for
all even n by rescaling, as in the proof of Lemma 3.6. Here our equation is

2u1u2u3 = u1u2 + u2u3 + u3u1.

There is the natural number solution (1,2,2) which is easily seen to have local invariant −1.
Next, one verifies that the solution

(u1, u2, u3) ≡ (−1, 2, 2) mod 8

lifts by Hensel’s lemma to a Z2-point with local invariant 1. �
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Surprisingly, for odd n the local invariant is always trivial at 2.

Lemma 3.8. Suppose that n is odd. Then inv2 α(Un(Z2)) = 1.

Proof. By continuity it is enough to prove

(−u1/u3,−u2/u3)2 = 1

when u1u2u3 �= 0. Write u = (2s1r1, 2s2r2, 2s3r3) with s1, s2, s3 � 0 and r1, r2, r3 ∈ Z×
2 . With-

out loss of generality, we may assume that s1 � s2 � s3. Looking at valuations in the
equation

n(2s1+s2r1r2 + 2s1+s3r1r3 + 2s2+s3r2r3) = 2s1+s2+s3+2r1r2r3

shows that s1 = s2. Taking out a factor of 2s1+s3 gives

n(2s1−s3r1r2 + r1r3 + r2r3) = 2s1+2r1r2r3.

Looking modulo 2 shows s1 − s3 � 1. We therefore have

2s1−s3r1r2 + (r1 + r2)r3 ≡ 0 mod 8. (3.4)

Using the formula of [21, Theorem III.1], the Hilbert symbol above is given by

(−1)ε(−r1/r3)ε(−r2/r3)+(s1−s3)(ω(−r2/r3)+ω(−r1/r3)),

where ε(x) = (x− 1)/2 and ω(x) = (x2 − 1)/8. Note that ω is an even function. We define

f(u) = ε(−r1/r3)ε(−r2/r3) =

{
1 mod 2 if r1 ≡ r2 ≡ r3 mod 4
0 mod 2 otherwise

g(u) = (s1 − s3)(ω(−r2/r3) + ω(−r1/r3)) ≡ (s1 − s3)(ω(r1) + ω(r2)) mod 2.

If s1 − s3 � 3, then (3.4) gives r1 + r2 ≡ 0 mod 8, and so f(u) = g(u) = 0. If s1 − s3 = 2,
then (3.4) gives r1 + r2 ≡ 0 mod 4, and so f(u) = 0; and g(u) = 0 because s1 − s3 is even.

The remaining case is s1 − s3 = 1. In this case, (3.4) gives r1 ≡ r2 mod 4, which implies

(r1 + r2)r3 ≡ −2r1r2 ≡ 6 mod 8

and therefore

r3 ≡
{

1 mod 4 if r1 + r2 ≡ 6 mod 8;
3 mod 4 if r1 + r2 ≡ 2 mod 8.

Now looking at the possible values for {r1, r2} mod 8 gives the following.

r1 mod 8 r2 mod 8 r3 mod 4 f(u) g(u)

1 1 3 0 0
1 5 1 1 1
5 5 3 0 0
3 3 1 0 0
3 7 3 1 1
7 7 1 0 0

Thus, in all cases, f(u) + g(u) = 0, completing the proof. �

Proof of Theorem 1.2. Hilbert’s reciprocity law [21, Theorem III.3] gives∏
p�∞

(−u1/u3,−u2/u3)p = 1.
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For a natural number solution the local invariant at ∞ is −1 by Lemma 3.1. Moreover, the
local invariant at p � n is 1 by Lemmas 3.5 and 3.8. �

Proof of Theorem 1.5. Similar to the proof of Theorem 1.2, but if one of the ui is negative,
then the local invariant at ∞ is 1, by Lemma 3.1. �

Proof of Corollary 1.3. The first part of the statement follows from Lemma 3.2. For the
second part, without loss of generality we assume that u2/u3 ∈ Z∗

p. Then by Theorem 1.2 and
Lemma 3.4, we deduce that (−u2/u3

p

)vp(u1u3)

= −1,

whence the Legendre symbol must be −1, as required. �

Proof of Corollary 1.4. By Theorem 1.2, to prove Corollary 1.4 it suffices to show the
following purely local statement (applied to each p | n).

Lemma 3.9. Let p be an odd prime and n = p2mn′, where n′ ∈ Z∗
p and m � 0. Let u ∈

Un(Zp) be such that

p2m | u1, p � u2u3, or p � u1, p2m | u2, p2m | u3.

Then (−u1/u3,−u2/u3)p = 1.

Proof. We first consider type 1 solutions. Here the Hilbert symbol is(−u2/u3

p

)vp(u1)

.

However it follows easily from equation (1.2) that p � (u1/n), so that vp(u1) is even and the
result follows.

Now consider type 2 solutions. Equation (1.2) implies that vp(u2) = vp(u3), so the Hilbert
symbol is (−u2/u3

p

)vp(u3)

.

If p � (u3/n), then vp(u3) is even by assumption, and the result follows. Otherwise, suppose
p | (u3/n). From (2.5), we have

−u2

u3
=

1
1 + u3/u1 − 4u3/n

≡ 1 mod p

since u3/u1 ≡ 4u3/n ≡ 0 mod p. The result follows. �

�

Proof of Theorem 1.8. First note that as Un(Z) �= ∅ and n > 0, we have

Un(R)+ ×
∏
p

Un(Zp) �= ∅. (3.5)

It follows from Lemmas 3.6 and 3.7 that there is some prime p | n for which the local invariant
is surjective on Un(Zp). Therefore, there are elements of (3.5) whose product of local invariants
is −1 and 1, respectively. �
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Proof of Theorem 1.9. The set of real points Un(R) is non-compact. Still, it follows easily
from equation (1.1) that

min
u∈Un(R)

|ui| � 3n/4. (3.6)

These real conditions impose strong arithmetic conditions. (In the terminology of [13, § 2],
our surface is ‘not weakly obstructed’ but is ‘strongly obstructed’ at infinity.) This observation
gives the following.

Lemma 3.10. The set

{u ∈ Un(Z) : u1u2u3 �= 0, ui �= −uj for all i, j ∈ {1, 2, 3}}
is finite. In particular, Un(Z) is not Zariski dense and Un(N) is finite.

Proof. Without loss of generality, we have |u1| � |u2| � |u3|. Then by (3.6), we have
|u1| � 3n/4, so there are only finitely many choices for u1. If 4/n = 1/u1, then we obtain
the solution u2 = −u3, which is being excluded. Hence, we have

4
n
− 1

u1
=

1
u2

+
1
u3

and the left-hand side is non-zero and takes only finitely many values. But then as in (3.6),
one finds that u2 and u3 take only finitely many values, as required. �

Lemma 3.11. For all but finitely many primes p, the map Un(Z) → Un(Fp) is not surjective.

Proof. Follows from Lemma 3.10 and the Lang–Weil estimates [15] �

We now complete the proof of Theorem 1.9. If the map Un(Q) → Un(AQ)Br
• had dense image

then, as BrUn/Br Q is finite (Theorem 1.6), it would follow from [6, Lemma 6.5] (applied to
Ũn) that the map Un(Z) → Un(Zp) has dense image for all finitely many primes p; however,
this clearly contradicts Lemma 3.11, and shows Theorem 1.9. �

Remark 3.12. Let X be a smooth variety over Q which contains a dense torus T with
H0(XQ̄,Gm) = Q̄∗ and PicXQ̄ torsion free. If the action of T on itself extends to X, that is, X
is a toric variety, then in [3, 23] it is shown that the Brauer–Manin obstruction is the only one
to strong approximation away from ∞. However, this result need not hold if the action of T
does not extend to the whole variety. Here Ũn contains G2

m but does not satisfy this result by
Theorem 1.9.

Appendix. Comparison with previous results

In [24] (see also [19, p. 290]), Yamamoto shows numerous quadratic reciprocity requirements
for solutions to (1.1) when n = p is prime, with various hypotheses. In this appendix, we explain
how these are all special cases of Corollary 1.3.

There are two types of solutions to (1.1) (see [19, Chapter 30] and [8, Proposition 2.11]).
Type 1 is when p exactly divides one of the ui to valuation 1, and Type 2 is when p divides
exactly two of the ui to valuation 1.

We first deal with Type 2 solutions. Let u ∈ Up(N) and suppose p � u1, p‖u2, p‖u3. Then one
can write (see [19, p. 289])

(u1, p
−1u2, p

−1u3) = (bcd, abd, acd)
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with a, b, c, d positive integers satisfying (a, b) = (b, c) = (c, a) = 1, p � bcd and

pa + b + c = 4abcd,

Yamamoto [24, Lemma 2] defines q = 4abd− 1 and then shows [24, Lemma 4] that the
Kronecker symbol (

p

q

)
= −1.

This follows from Corollary 1.3. Indeed, using 4abd ≡ b/c mod p, we have(
p

4abd− 1

)
=

(−1
p

)(
4abd− 1

p

)
=

(−b/c

p

)
=

(−u2/u3

p

)
= −1.

For Type 1 solutions, let u ∈ Up(N) with p | u1, p � u2, p � u3. Write

(p−1u1, u2, u3) = (bcd, acd, abd)

with a, b, c, d positive integers satisfying (a, b) = (b, c) = (c, d) = 1 and p � abcd (again see [19,
p. 289]). Then we have

a + bp + cp = 4abcd.

In [24, Lemma 2], Yamamoto defines q = 4abd− p , assumes p ≡ 1 mod 4 (see the proof of [24,
Lemma 4]) and shows that the Kronecker symbol(

p

4abq

)
= −1.

By Corollary 1.3, we deduce this as follows. As q ≡ 4abd ≡ a/c mod p, we have(
p

4abq

)
=

(
4abq
p

)
=

(
b/c

p

)
=

(
u3/u2

p

)
=

(−u2/u3

p

)
= −1.

Yamamoto also proves two further conditions [24, Lemmas 3 and 4] in the case p ≡ 1 mod 4
which, in either the Type 1 or Type 2 case, reduce to( p

4bc

)
= −1,

where b, c are as defined above for Type 1 or Type 2 solutions, respectively. These also follow
from Corollary 1.3, as follows:( p

4bc

)
=

(
4bc
p

)
=

(
b/c

p

)
=

(
u2/u3

p

)
=

(−u2/u3

p

)
= −1.

Acknowledgements. We thank Yang Cao, Jean-Louis Colliot-Thélène, and Christian
Elsholtz for useful comments and references. This work was undertaken at the Institut
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