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Abstract
Purpose Uncertainty analyses in life cycle assessment (LCA) literature have focused primarily on the life cycle inventory (LCI)
phase, but LCA experts generally agree that the life cycle impact assessment (LCIA) phase is likely to contribute evenmore to the
overall uncertainty of an LCA result. The magnitude of perceived uncertainties in characterization relative to that in LCI,
however, has not been examined in the literature. Here, we use the pedigree approach to gauge the perceived uncertainty in
the characterization phase relative to the LCI phase. In addition, we evaluate the level of approval on the pedigree approach as a
means to characterize uncertainty in LCA.
Methods Applying the Numeral Unit Spread Assessment Pedigree (NUSAP) approach to environmental risk assessment liter-
ature, we extracted the criteria for evaluating the uncertainty in the characterization phase. We used expert elicitation to identify a
pool of experts and conducted a survey, to which 47 LCA practitioners from 12 countries responded. In order to reduce personal
biases in perceived geometric standard deviation (GSD) values, we used two reference questions onweight and life expectancy at
birth for calibration.
Results Nearly half (49%) of respondents expressed their approval to the pedigree matrix approach as a means of characterizing
uncertainties in LCA, and responses were highly sensitive to the respondent’s familiarity with the pedigree matrix. For instance,
respondents who are highly familiar with the pedigree matrix were more polarized, with 15% and 19% of them expressing either
strong approval or strong disapproval, respectively. Respondents less familiar with the pedigree approach were generally more
favorable to its use. Compared with LCI, variability in characterization factors was influenced more strongly by geographical
correlation and reliability of the underlying model, which showed 11 to 16% larger average GSDs when compared with the
comparable criteria for LCI. Conversely, temporal correlation criterion was a less significant factor in characterization than in
LCI.
Conclusions and discussion Overall, survey respondents viewed LCIA characterization as only marginally more uncertain than
LCI, but with a wider variability in responses on characterization than LCI. This finding indicates the need for additional research
to develop more thorough methods for characterizing uncertainties in life cycle impact assessment that are compatible with the
uncertainty measures in LCI.

Keywords Uncertainty analysis . Impact assessment . Characterization factor . Life cycle assessment . Pedigree approach

1 Introduction

Life cycle assessment (LCA) is a decision-support tool that
quantifies the environmental impacts of products throughout
their life cycles (International Standard Organization 1997).
Life cycle assessment often involves the use of uncertain data
and models, measurement errors in input data, unrepresentative
data, choices of system boundaries, underlying assumptions,
and model incompleteness all of which contribute to uncertain-
ty in the result (Lloyd and Ries 2007; Clavreul et al. 2012,
2013). Understanding the magnitude of uncertainty is essential
in using LCA results for decision-making (Geisler et al. 2005;
Sugiyama et al. 2005; Finnveden et al. 2009).
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A growing number of LCA studies address uncertainty
issues (Cooper et al. 2012; Sills et al. 2012; Groen et al.
2014). But the majority of the uncertainty analyses in LCA
focus on life cycle inventory (LCI) (Heijungs 1996; Maurice
et al. 2000; Björklund 2002; Sonnemann et al. 2003;
Gavankar et al. 2015; Scherer and Pfister 2016; von
Pfingsten et al. 2017). One of the most widely used LCI da-
tabase, ecoinvent, includes uncertainty values, e.g., the geo-
metric standard deviation for a lognormal distribution, for
62.7% of its unit process data in ver. 3.4. (Wernet et al.
2016; Qin and Suh 2017). The professional LCA software
tools including SimaPro and OpenLCA also provide uncer-
tainty analysis functionality using Monte Carlo simulations,
again mostly focusing on LCI (SimaPro 2016; OpenLCA
2018).

Both the LCI and life cycle impact assessment (LCIA)
phases of LCA are data- and calculation-intensive, involv-
ing many model and data assumptions that can introduce
errors (Huijbregts 1998a; Heijungs and Huijbregts 2004;
Lloyd and Ries 2007; Reap et al. 2008; Gavankar et al.
2015). Few studies consider uncertainty from the charac-
terization phase, and quantitative uncertainty assessments
on characterization mostly focus on climate change impact
category (Cellura et al. 2011; Hauschild et al. 2013). For
example, Huijbregts (1998b) addressed the contribution of
characterization factors to uncertainties in the global
warming and acidification results of roof gutters.
Huijbregts et al. (2003) further extended uncertainty anal-
ysis to parameter, scenario, and model uncertainties in a
case study of two insulation models. Roy et al. evaluated
parameter uncertainties in the characterization factor for
terrestrial acidification (Roy et al. 2014). Later, a full
uncertainty assessment of biofuels confirmed that both
characterization factors and inventory uncertainties are es-
sential incarbon and water scarcity footprints (Pfister and
Scherer 2015). A study on characterization factors for
ecotoxicity concluded that both parameter uncertainty
and spatial variation should be accounted for in fate
and exposure factors (Nijhof et al. 2016).

One major challenge is that characterization models do not
typically provide uncertainty information for input parameters
(Hung and Ma 2009; Noshadravan et al. 2013; Henriksson
et al. 2015; Gregory et al. 2016). As a result, the influence
of uncertainty in characterization models on the overall uncer-
tainty of an LCA result is largely unknown (Hung and Ma
2009). But it is possible for characterization uncertainty to
dominate the overall uncertainty of an LCA study.
Characterization factors are calculated from simplified models
of complex interacting physical and chemical systems that
often require the linearization of non-linear relationships
(Cucurachi et al. 2017). As a result, characterization
models may carry larger uncertainties than LCI (Lloyd
and Ries 2007).

Literature suggests that LCA practitioners tend to perceive
larger uncertainty with the LCIA phase than the LCI phase
(Owens 1997; Huijbregts 1998b; Clavreul et al. 2012). But to
date, no study has attempted to quantify perceived uncer-
tainties between LCI and characterization. Here, we use the
expert elicitation procedure to gather perceptions about the
uncertainty of LCI and characterization. We also created a
pedigree matrix, which has been used for LCI data quality
evaluation, for the characterization phase of LCIA. Next, we
present the survey design and respondent demographics in the
“Methods” section, results and pedigree matrix in the
“Results” section, and discussion and conclusions in the
“Discussion and conclusions” section.

2 Methods

This study combines the pedigree approach and expert elici-
tation approach using a survey.

2.1 Pedigree matrix

Uncertainty characterization in LCA using Monte Carlo sim-
ulations or global sensitivity analysis requires information
about ranges or distributions of the underlying parameters.
Experimental (empirical) measurements offer the best source
for such ranges and distributions, but are unfortunately often
unavailable. Absent such data, the pedigree method has often
been used in LCA to translate qualitative characteristics of
underlying parameters into quantitative variability metrics
(Frischknecht and Rebitzer 2005).

The pedigree approach—originally inspired by the
Numeral Unit Spread Assessment Pedigree (NUSAP)
system—was proposed by Funtowicz and Ravetz (1990).
The pedigree approach is essentially a method to estimate
the quantitative uncertainties based on qualitative characteris-
tics of a data set (Weidema and Wesnaes 1996; Weidema
1998). The study by Van den Berg et al. (1999) is an early
example of a pedigree matrix which uses 15 criteria for char-
acterizing uncertainty. The pedigree method has since come
into widespread use. In the USA, the Environmental
Protection Agency offers a guide on the development, man-
agement, and use of data quality information in LCA using a
pedigree matrix (Edelen and Ingwersen 2018). The ecoinvent
database has adopted the pedigreemethod since its version 2.0
(Althaus et al. 2007; Weidema et al. 2013). The ecoinvent
database uses the this method to adjust default uncertainty
values, which are either measured or estimated based on five
qualitative uncertainty characteristics of the data: reliability,
completeness, temporal correlation, geographical correlation,
and technological correlation (Muller et al. 2014). The
resulting uncertainty value is expressed as geometric standard
deviation (GSD) of a lognormal distribution. GSD is a

1847Int J Life Cycle Assess  (2020) 25:1846–1858



measure of the spread of lognormally distributed data points.
For example, a GSD of 1.8 translates to one order of magni-
tude difference between the lower bound and the upper bound
of a data set within the 95% confidence range.

The pedigree method enables quantitative uncertainty anal-
ysis absent measured variability information, and can be used
to assess not only parameter uncertainties but also non-
parametric uncertainties associated with the technical, meth-
odological, and epistemic dimensions of a data set (Van Der
Sluijs et al. 2005). Despite these strengths, at its core, the
pedigree approach relies on the subjective judgments of ex-
perts, which raises questions about its usefulness and validity.
Ciroth et al. (2013) compared empirical observations and the
uncertainty characteristics derived using the pedigree ap-
proach of the ecoinvent database and found that it tended to
underestimate underlying uncertainties (Ciroth et al. 2013).
Yang et al. (2018) examined LCA results of major crops in
the USA based on high-resolution spatial data and concluded
that the uncertainty values of agricultural inputs based on the
ecoinvent pedigree method lead to a large underestimation.

If nothing else, the pedigree method helps gauge perceived
level of uncertainties in a data set when quantitative measure-
ments are lacking. In this study, we employed the pedigree
approach with various modifications to compare perceived
uncertainties in characterization relative to those in LCI. We
sent two sets of survey questions, one for characterization and
another for LCA, to each expert. For LCI, we modified the
pedigree matrix used in the ecoinvent database. For character-
ization, we created a new pedigree matrix based on NUSAP
and environmental risk assessment literature (Funtowicz and
Ravetz 1990; Jaworska and Bridges 2001; Van Der Sluijs
et al. 2005; Ragas et al. 2009).

2.2 Expert elicitation

Expert elicitation is the use of expert judgment on a subject
which has insufficient data because of physical constraints or
a lack of knowledge (de Franca Doria et al. 2009; Knol et al.
2010; McBride and Burgman 2012; Morgan 2014). Expert
elicitation has been used since the late 1960s, and was first
used in the Delphi method to collect expert judgment on prob-
ability estimation (Brown et al. 1969; Amara and Lipinski
1971; Rowe and Wright 1999). The use of the knowledge
and wisdom of experts can inform policies when scientific
evidence is lacking and help address uncertainties when there
is insufficient information. Elicitation of expert judgment also
has been used in various science-policy contexts such as the
Intergovernmental Panel for Climate Change (IPCC) (Rypdal
and Winiwarter 2001), European Environmental Agency
(Meozzi and Iannucci 2006), and the US Environmental
Protection Agency (2005).

The key steps of conducting expert elicitation are summa-
rized in Fig. 1 (Ayyub 2000; Knol et al. 2010). Under the

expert elicitation process, experts receive a short description
of the purpose of the expert elicitation and the conditions of
their participation, as well as an explanation of the perfor-
mance measures, uncertainties related to the studied problem,
and key literature substantiating the problem (Cooke and
Goossens 1990; Frey 1998). This information elicits the for-
mation of responses to the questions. The purpose of the ex-
pert elicitation described here was to create a pedigree matrix
for characterization factors. We provided background infor-
mation of the pedigree matrix and graphic visualization of
distributions with different GSDs so that the experts can better
conceptualize the relationship between GSDs and correspond-
ing shapes of the distribution.

The selection process involves identifying what expertise is
relevant to the elicitation and selecting a sample of experts
who can best satisfy the requirements of that expertise under
time and resources constraints (Czembor and Vesk 2009;
McBride and Burgman 2012). The quality of expert elicitation
depends on the experts’ knowledge, experience, and practice
(Hickey and Davis 2003; Slottje et al. 2008; Martin et al.
2012). It is important to include a diverse range of experts
because a large sample of experts can not only represent the
whole community but also reduce the influence of individual
mistakes and biases (Clemen and Winkler 1985; Armstrong
2008). We selected experts based on publication records from
the Web of Science in the field of LCA and uncertainty anal-
ysis. We used the search keywords, “Life Cycle Assessment”
and “uncertainty” (or “LCA” and “uncertainty”) in the titles of
peer-reviewed journal articles published over the last 20 years.
We invited all the co-authors of the publications found using
the search keywords to our survey.

After the collection of expert judgments, verification and
calibration of the expert responses were performed. This step
is essential in the analysis of the expert opinions because it can
not only check for errors and consistencies in the responses
but also compares the responses to other responses in the
elicitation participation and other available information

Fig. 1 Flow chart of expert elicitation procedures
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(Cooke 1991). The sources of bias and error include careless-
ness, misinterpretation, and overconfidence (Moore and
Healy 2008). Calibration can be used to control overconfi-
dence and inconsistency (Murphy and Daan 1984). Some
methods involved in the calibration process are probability
theory, aggregation method, and analysis of bias (Clemen
and Winkler 1985). The purpose of the calibration is to “level
the playing field”, reducing the influence of bias and overcon-
fidence and making the experts’ responses consistent and
close to expected true value (Winkler and Murphy 1968;
Alpert and Raiffa 1982; Ferrell 1994). In our study, we used
weight and life expectancy at birth to calibrate experts’ ability
to relate perceived distribution to a GSD value (see the
“Calibration” section).

2.3 Survey design and expert selection

We sent the survey information to 197 potential respondents
with varying experience levels in LCA. The survey invitation
was personalizedwith recipient’s name, and one reminder was
sent 2 months after the first invitation. The web-based survey
contained 12 questions and was coded in HTML format. The
average completion time was about 16 min. The full question-
naire and survey data can be found in the Supplementary
information. Given the nature of the survey that involves hu-
man subjects, the survey was reviewed and approved by the
Institutional Review Board at the University of California,
Santa Barbara. The structure and the content of the survey
are elaborated below.

2.3.1 Background questions

We asked the respondents about their affiliation types, the
continents that they reside on, and their level of experience
in LCA. Based on their responses, we assigned them into two
groups as follows: group 1 (respondents with 6 or more years
of experience in LCA and who are familiar with the pedigree
approach), and group 2 (respondents with fewer than 6 years
of experience or who are not familiar with the pedigree meth-
od (see Fig. S1 in SI)). We asked about their degree of ap-
proval regarding the use of the pedigree approach in estimat-
ing uncertainties.

2.3.2 Pedigree matrix for LCI

In the survey, we asked experts to provide their opinions about
the importance of each criterion to be included in the pedigree
matrix for LCI (Table 1). For this pedigreematrix, we used the
criteria that were provided in the previous versions of the
pedigree matrix of data quality, including geographical corre-
lation, temporal correlation, technological correlation, com-
pleteness, reliability, and sample size (Weidema 1998;
Wernet et al. 2016). Because the current pedigree matrix that

ecoinvent uses for data quality evaluation has five criteria, we
used a Likert scale to allow respondents to indicate their per-
ceived importance of including each criteria in the pedigree
matrix, and then used the results to narrow criteria down to the
top five. The Likert scale used the following five levels:
strongly disagree, disagree, neutral, agree, and strongly agree.

We asked the respondents to provide their perceived GSDs
for all six criteria in the pedigree matrix used for evaluating
LCI data quality. We provided descriptions of criteria in the
original pedigree matrix used for LCI data quality evaluation
for each uncertainty level for each criterion, but did not show
the actual GSDs (Weidema 1998;Wernet et al. 2016). Instead,
respondents input their perceived GSD scores under each
criteria description. To help respondents to better link GSDs
with their conceptual thinking regarding uncertainty, we pro-
vided frequency density plots of lognormal distributions for
different GSDs.

2.3.3 Pedigree matrix for characterization factors

We developed the pedigree matrix for characterization factors
and let the respondents indicate the importance of each crite-
rion to be included in the matrix. Similar to the pedigree ques-
tions for LCI, we used a Likert scale to gather their opinions
on the importance of each criterion to be included in
the pedigree matrix for characterization factors. The six
proposed criteria were level of consensus, model com-
pleteness, temporal specification, geographical specifica-
tion, reliability of underlying science, and input data
characteristics. For consistency with the pedigree matrix
used in LCI, we let respondents indicate the importance
of each criterion and then selected the top five for in-
clusion in the final version of the pedigree matrix for
characterization factors. We also asked experts their per-
ceived GSDs for all criteria.

The criteria for the LCI and characterization models are
reproduced in Table 1 along with descriptions.

At the end of the survey, we also collected suggestions and
concerns regarding the use of the pedigree matrix in LCA
uncertainty estimation. More than half (53%) of the respon-
dents submitted their suggestions as well as their concerns in
the survey. The concerns and recommendations are summa-
rized in the “Discussion and conclusions” section.

2.4 Survey analysis

A total of 47 experts from various countries and levels of
experience responded to the survey. Among the 47 responses
we received, 23 were in group 1 with at least 6 years of expe-
rience in LCA and familiarity with the pedigree approach. The
remaining 24 respondents were assigned to group 2. To find
whether the pedigree scores were different between the two
groups, we used non-paired t test to determine the statistical
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significance of the difference between the means of the two
groups.

To evaluate the importance of the criterion to be included in
the pedigree matrix, we calculated the average scores from the
Likert scales for the criteria. We mapped the Likert scales to a
linear range such that 1 meant strongly disagree and 5 meant
strongly agree. In our version of the pedigree matrices, we
only selected the top five criteria based on the respondents’
selections and included the criteria and the GSDs for the se-
lected criteria into the pedigree matrix for LCI and character-
ization factors.

2.4.1 Calibration

We also used calibrated responses in order to minimize per-
sonal biases in relating a perceived distribution to correspond-
ing GSD value. First, we provided the GSD value of the height
of American adult males, which was 1.04 (Fryar et al. 2012).
We then let the respondents provide their “best estimate” of
the distributions for (1) the weights of American adult males
and (2) the life expectancies at birth of the global population,
which were 1.07 and 1.1, respectively (Fryar et al. 2012; CIA
2018). We assumed a linear relationship between actual GSD
and the GSD in the response as shown in Eq. 1:

dGSD ¼ a� GSDsurvey þ b ð1Þ

where a and b are the slope and y-intercepts used to calibrate
responses, and the GSD terms are described above. In addi-
tion, we explained—and assumed that the survey respondents
understood—that GSD = 1 when there is no uncertainty,
which provides the second equation to derive both a and b

as shown below. As an example of the calibration process,
recall that the actual GSD for the distribution of the weights
of American males is 1.07. If a respondent estimated it to be
1.1, then we calibrated the respondent’s GSD estimates by
solving the following system of equations:

1 ¼ a� 1þ b
1:07 ¼ a� 1:1þ b;

�

ð2Þ

which results in:

Table 1 Pedigree matrix criteria for LCI and characterization factors

Criteria for LCI Purpose Criteria for characterization
factors

Purpose

Completeness Measure of the representativeness of the
data based on statistics

Model completeness Measure of the coverage of the
characterization
factors for the elementary flows in life
cycle inventory

Reliability Indicator of whether the data is based on
measurement or assumptions

Reliability of underlying
science

Indicator of the reliability of the underlying
science of the method

Temporal correlation Addresses the temporal difference
between
the data and the process under study

Temporal specification Addresses the level of temporal dynamics
in characterization modeling

Geographical correlation Measure of the difference in the
geographical dimension between the
data and the process under study

Geographical specification Measure of the regional resolution of
characterization models

Technological
correlation

Measure of the technological difference
between the data and the process
under study

Level of consensus Indicator of the level of consensus in
characterization methods

Sample size Measure of the sample size of the data Input data characteristics Indicator of the level of empirical support
to the parameters used in characterization
modeling

Fig. 2 Survey results for the question of the use of the pedigree approach
for uncertainty quantification in LCA data

1850 Int J Life Cycle Assess  (2020) 25:1846–1858



dGSD ¼ 0:7GSDsurvey þ 0:3

We calculated the expected GSD from both weight and life
expectancy at birth for each respondent and used the average
of a and b as the coefficients for the expected GSD equation to
calibrate all GSDs.

3 Results

We analyzed the survey data and created the pedigree matrix
based on the top five selected criteria in the matrix and GSDs
for each uncertainty level for each criterion for both LCI and
the characterization factors. The GSDs calibrated by weight
and life expectancy at birth for the pedigree matrices of LCI
and characterization factors are shown in Tables 3 and 4.
Uncalibrated GSDs are in Tables S1 and S2. For the sake of
comparison, calibrated GSDs by the second version of
ecoinvent pedigree scores which removes the indicator “sam-
ple size” for characterization factors also are given in
Tables S1 and S2 in the Supplementary information.

3.1 Survey demographics

Most (72%) respondents reported that they had been working
in the LCA field for at least 6 years: 36% had worked more
than 10 years and 26% had worked in the field for 1 to 6 years.
The majority of the respondents worked in the academia
(72%). Of the remaining respondents, 13% worked in a cor-
poration, 9% worked at consulting firms, and 6% worked at
governmental organizations/research centers. Most respon-
dents were in North America (49%) and Europe (34%), with
13% and 4% from Asia and South America, respectively.
Additional details can be found in the Supplementary infor-
mation (Figs. S2–S5).

3.2 The degree of approval of the use of the pedigree
approach for uncertainty quantification in LCA data

Approximately half of respondents expressed their approval to
the use of the pedigree matrix to estimate uncertainty in LCA
data (Fig. 2). However, group 1 respondents with 6 or more
years of experience were more likely to disagree with the use
of the pedigree matrix for estimating uncertainty than group 2
respondents with fewer than 6 years of experience. As much
as 38% of the respondents in group 1 disagreed or strongly
disagreed with the use of the pedigree method for uncertainty
estimation, while only 5% of the respondents in group 2
disagreed. No respondents from group 2 strongly disagree or
strongly agree to the use of the pedigree approach in uncer-
tainty quantification, reflecting a lack of polarization in this
group.

We also received comments about the level of acceptance
for the use of the pedigree matrix in characterizing uncer-
tainties in LCA. Some respondents strongly disapproved of
the use of the pedigree method, largely on the ground of the
lack of empirical support to the approach, while others strong-
ly supported the use of the pedigree method given the lack of
information about quantitative uncertainty. One respondent
commented that “LCA practitioners do not have an accurate
intuitive sense of what is the GSD of the pedigree matrix.”
Some respondents found it difficult to provide uncertainties
even when they had sufficient experience in this field, partly
because the uncertainty characteristics would depend on the
characterization models in question. For example, one respon-
dent noted that “GWP and freshwater toxicity will express
uncertainties at different orders of magnitude.” Such re-
sponses are reasonable given that the characterization model
for ecotoxicity is regionally sensitive, but that climate change
is not. Thus, applying the same GSDs for multiple-impact
categories is not appropriate. One respondent recommended
using “the distribution coming from the characterization mod-
el directly” incorporating empirical data instead of using the
pedigree approach.

However, some respondents commented that they support
the use of the pedigree approach for the purpose of filling in
the gaps in the uncertainty information in LCIA. One respon-
dent commented that the method “would indeed be worth-
while to quantify the uncertainty of LCIA models”. Another
respondent noted that “the method could be useful in the ab-
sence of uncertainty data”.

3.3 Criteria to be included in the pedigree matrix

We asked respondents to what extent they agreed or
disagreed with including each of the six criteria in the
pedigree matrices for LCI and characterization factors.
As described in the “Survey analysis” section, we
mapped the Likert scale to numerical values from 1 to
5 representing strongly disagree to strongly agree.
Table 2 and Table 3 show the ranking and average
scores of the six criteria used in our study.

3.3.1 Criteria for LCI

Table 2 presents the rankings of pedigree matrix criteria of
LCI. For LCI, both geographical correlation and temporal
correlation were ranked as the top criteria to be includ-
ed in the pedigree matrix. These criteria were followed
by completeness, technological correlation, and reliabil-
ity. Group 1 tended to rank technological correlation
higher than completeness and reliability, whereas group
2 ranked reliability and sample size higher than techno-
logical correlation. Ultimately, we included temporal
correlation, geographical correlation, completeness,
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technological correlation, and reliability into the pedi-
gree matrix for LCI (Table 4).

3.3.2 Criteria for characterization factors

For characterization factors, both group 1 and group 2 agreed
upon with the same ranking. Temporal specification was the
most important criterion to be included in the pedigree matrix
for characterization factors, followed by geographical specifi-
cation, model completeness, reliability of underlying science,
input data characteristics, and level of consensus (Table 3).
The average score of level of consensus responded by group
1 is below 3 (neutral). We included temporal specification,
geographical specification, model completeness, reliability
of underlying science, and input data characteristics into the
pedigree matrix for characterization factors (Table 5).

3.4 Pedigree matrix obtained from the survey

The respondents were asked to provide their best estimates of
GSDs for each level of uncertainty for each criterion for LCI
and characterization factor, as well as the GSDs for weight
and life expectancy at birth where the uncertainty is known.
The purpose of the GSDs for weight and life expectancy at
birth was to calibrate a broad range of expert opinions.
Overall, respondents tended to overestimate the GSDs for
the distribution of weight and life expectancy at birth. The
average ratios of the surveyed GSD to the actual GSD for

distributions of weight and life expectancy at birth were
111% and 118%, respectively. The resulting average a and b
of Eq. (1) were 0.60 and 0.40, respectively.

3.4.1 Pedigree matrix for LCI

Table 4 shows the pedigree matrix generated by averaging the
responses after the calibration using the distributions of
weight and life expectancy at birth. Both group 1 and group
2 gave similar GSD responses to LCI uncertainties. We per-
formed a non-paired t test for the two groups and found no
significant difference between the average of the answers of
the two groups to all of the cell entries, as the p value was
much larger than 0.05, while group 1 tended to give slightly
higher GSDs (3%) than group 2.

We also compared the GSDs that respondents provided for
the LCI pedigreematrix with GSDs that the pedigreematrix of
ecoinvent uses (Fig. 3). We found that respondents generally
estimated higher GSDs for LCI than those estimated by
ecoinvent. The average ratios of non-calibrated GSDs and
calibrated GSDs to ecoinvent-based GSDs were 1.19 and
1.06, respectively, which means that the GSDs after calibra-
tion were closer to the GSDs used by ecoinvent. When com-
paring respondents’GSDs to the GSDs in Ciroth et al. (2013),
which is shown in Fig. 4, there was no clear trend.
Respondents gave lower GSDs to reliability and further tech-
nology correlation criteria and higher GSDs for completeness,
temporal correlation, and geographical correlation criteria.

Table 2 The pedigree matrix criteria selected for LCI and mean scores (1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = strongly
agree)

Rank All respondents Score Group 1 Score Group 2 Score

1 Geographical correlation 4.11 Geographical correlation 4.11 Geographical correlation 4.10

2 Temporal correlation 4.11 Temporal correlation 4.11 Temporal correlation 4.10

3 Completeness 3.91 Technological correlation 4.00 Completeness 4.05

4 Technological correlation 3.89 Completeness 3.81 Reliability 3.95

5 Reliability 3.83 Reliability 3.74 Sample size 3.90

6 Sample size 3.32 Sample size 2.89 Technological correlation 3.75

Table 3 The pedigree matrix criteria for characterization factors and mean scores (1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 =
strongly agree)

Rank All respondents Score Group 1 Score Group 2 Score

1 Temporal specification 4.05 Temporal specification 3.96 Temporal specification 4.19

2 Geographical specification 3.93 Geographical specification 3.81 Geographical specification 4.11

3 Model completeness 3.70 Model completeness 3.56 Model completeness 3.89

4 Reliability of underlying science 3.59 Reliability of underlying science 3.41 Reliability of underlying science 3.83

5 Input data characteristics 3.42 Input data characteristics 3.19 Input data characteristics 3.76

6 Level of consensus 3.09 Level of consensus 2.89 Level of consensus 3.39
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3.4.2 Pedigree matrix for characterization factors

Table 5 shows the pedigree matrix of the calibrated GSDs for
characterization factors. Non-calibrated GSD results can be
found in Supplementary Information (Table S2). Similar to
the LCI results, group 1 gave higher GSDs than group 2 on
average, and the average ratio of GSDs from group 1 to group
2 was 1.08. We also performed statistical non-paired t test
between the average of the answers of the two groups to find
whether the two groups provided significantly different
GSDs, and found their responded GSDswere not significantly
different.

3.5 Comparison of GSDs for LCI and characterization
factors

We also compared GSDs for LCI and characterization factors
provided by the respondents to find which LCA phase has
higher perceived uncertainty (Fig. 5). In general, GSDs for

characterization factors were statistically slightly larger (3%)
than those for LCIs. Respondents gave higher uncertainty
scores for geographical correlation and reliability criteria.
These differences were again statistically significant.
Respondents also gave slightly higher uncertainty scores for
the completeness criterion for characterization factors than
those for LCI. For temporal correlation, respondents gave
lower uncertainty scores for characterization factors than for
LCI. The criterion for LCI, technological correlation, and the
criterion for characterization factors, input data characteristics,
are not comparable, but the respondents provided similar
GSDs for them.

4 Discussion and conclusions

In this study, we surveyed and analyzed the perceived uncer-
tainties in characterization factors relative to those in LCI
using an expert elicitation approach. Perceived uncertainties

Table 4 The pedigree matrix for LCI from the survey results with GSDs calibrated using GSDs of distributions of weight and life expectancy at birth

Criteria Score

1 (Low uncertainty) 2 (Moderately low
uncertainty)

3 (Moderate
uncertainty)

4 (Moderately high uncertainty) 5 (High uncertainty)

1 Reliability Verified data based on
measurement

Verified data partly
based on
assumptions or
non-verified data
based on mea-
surements

Non-verified data
partly based on
assumptions

Qualified estimate (e.g., by
industrial expert)

Non-qualified estimate

1.00 1.09 1.20 1.32 1.59

2 Completeness Representative data from
a sufficient sample of
sites over an adequate
period to even out
normal fluctuations

Representative data
from a smaller
number of sites
but for adequate
periods

Representative
data from an
adequate
number of sites
but from shorter
periods

Representative data but from a
smaller number of sites and
shorter periods or incomplete
data from an adequate number
of sites and periods

Representativeness
unknown or
incomplete data from a
smaller number of
sites and/or from
shorter periods

1.00 1.09 1.18 1.29 1.55

3 Temporal
correlation

Less than 3 years of
difference to year of
study

Less than 6 years
difference

Less than 10 years
difference

Less than 15 years difference Age of data unknown or
more than 15 years of
difference

1.00 1.09 1.18 1.29 1.51

4 Geographical
correlation

Data from area under
study

Average data from
larger area in
which the area
under study is
included

Data from area
with similar
production
conditions

Data from area with slightly
similar production conditions

Data from unknown area
or area with very
different production
conditions

1.00 1.09 1.16 1.28 1.57

5 Technological
correlation

Data from enterprises,
processes, and
materials under study

Data from processes
and material
under study but
from different
enterprises

Data from
processes and
materials under
study but from
different
technology

Data on related processes or
materials but same technology

Data on related processes
or materials but
different technology

1.00 1.08 1.22 1.33 1.63
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were generally higher for characterization factors than for
LCI, which was consistent with prior observations in the lit-
erature (Owens 1997; Huijbregts 1998b; Clavreul et al. 2012).
However, the overall difference in mean GSDs between LCI

and characterization across all criteria was only marginal
(3%). The variations in the level of perceived uncertainties
among responses were larger for characterization (coefficient
of variance: 24.4%) than for LCI (coefficient of variance:
22.4%).

About half (49%) of respondents were in favor of using the
pedigree method to characterize uncertainty in LCA, while
26% of the respondents disapproved the pedigree method as
an approach to characterize uncertainty. The opinions were
sharply divided among the respondents with 6 years or more
experiences in LCA, with 19% of them strongly approving the
method versus 15% strongly disapproving it. In general, the
group with more LCA experience was much more skeptical
about the use of the pedigree approach in uncertainty
characterization.

The respondents perceived that model reliability and
geographical correlation were very imporant in deter-
mining the variabilities in characterization factors. The
two criteria weren't perceived as important for LCI. The
respondents generally perceived that temporal correla-
tion was less important in characterizing uncertainty
than in LCI.

We found it challenging to apply the pedigree approach to
characterization. At the outset, our intent was to create a dif-
ferent pedigreematrix for each impact category and each char-
acterization model. But it became evident that such an ap-
proach would lead to a complex questionnaire and that the
time commitment of respondents would be exessive. As a
result, we went with a broader approach. We believe that the
wide variability in responses observed for characterization can
be explained in part by the lack of specificity in the character-
ization model in our survey, which is a major limitation.

Overall, our survey results show that there is no strong
consensus among LCA experts on whether the use of the
pedigree method for uncertainty characterization in LCA is
desirable, while there often is no clear alternative at hand.
For example, a UNEP-SETAC Life Cycle Initiative working
group recommends that regionalized characterization factors
should report uncertainty factors (Mutel et al. 2019), while it is
a challenge to develop such uncertainty factors based on mea-
surements. The lack of appropriate methods to estimate un-
derlying variability in LCA data is the main barrier to making
uncertainty analysis in LCA mainstream. Given that few dis-
agree on the importance and need of uncertainty analysis in
LCA, developing widely accepted methods to estimate under-
lying variability in LCA data is urgently needed. This need
can be met by not only continued research and development
by individual researchers but also through systematic efforts
by international organizations to identify and build consensus
on best practices.

Our survey also confirms that uncertainties in characteriza-
tion are perceived to be at least as large as those in LCI. Given
the virtually non-existent uncertainty measurements in

Fig. 4 Comparison of the average GSDs in the pedigree matrix for LCI in
the response and the GSDs in Ciroth et al. (2013)

Fig. 3 Comparison of the average GSDs in the pedigree matrix for LCI in
the response and the GSDs in the ecoinvent pedigree matrix
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characterization in today's LCA practices, our results indicate
that existing uncertainty analyses in LCA are perceived to
cover no more than half of the true uncertainties. Our results,
therefore, call for expediting the efforts to measure uncer-
tainties in characterization and other steps in LCIA.
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