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Journal de Théorie des Nombres
de Bordeaux 32 (2020), 291–310

Fields of definition of rational curves of a given
degree

par David HOLMES et Nick ROME

Résumé. Kontsevich et Manin ont donné une formule pour le nombre Ne de
courbes planes rationnelles de degré e passant par 3e−1 points en position gé-
nérale dans P2. Lorsque les coordonnées de ces 3e−1 points sont des nombres
rationnels, l’ensemble de Ne courbes rationnelles correspondant a une struc-
ture naturelle de module galoisien. Nous effectuons une étude élémentaire de
cette structure et établissons un lien avec les transformations de revêtements
de la fibre générique du produit des applications d’evaluation sur l’espace de
modules de morphismes.

Nous étudions ensuite le comportement asymptotique du nombre de points
rationnels sur les hypersurfaces de petit degré, ce qui nous permet de généra-
liser nos résultats en remplaçant le plan projectif par une telle hypersurface.

Abstract. Kontsevich and Manin gave a formula for the number Ne of ra-
tional plane curves of degree e through 3e−1 points in general position in the
plane. When these 3e−1 points have coordinates in the rational numbers, the
corresponding set of Ne rational curves has a natural Galois-module structure.
We make some extremely preliminary investigations into this Galois module
structure, and relate this to the deck transformations of the generic fibre of
the product of the evaluation maps on the moduli space of maps.

We then study the asymptotics of the number of rational points on hyper-
surfaces of low degree, and use this to generalise our results by replacing the
projective plane by such a hypersurface.

1. Introduction

For a given positive integer e, we writeNe for the finite number of rational
(i.e. geometric genus 0) plane curves of degree e through 3e − 1 points
in general position in P2

C. We see immediately that N1 = N2 = 1, and
the number N3 of singular plane cubics through 8 points is easily shown
to be 12. Zeuthen [23] proved in 1873 that N4 = 620, and Ran [14] and
Vainsencher [20] showed in the early 1990s that N5 = 87, 304. Around the
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same time Kontsevich and Manin [12] proved a general recursive formula

Ne =
∑

eA+eB=e
eA>0,eB>0

NeANeBe
2
AeB

(
eB
(

3e−4
3eA−2

)
− eA

(
3e−4

3eA−1

))
,

allowing the rapid computation of any Ne. Their proof ran via the inter-
section theory on moduli spaces of stable maps, and has initiated a vast
area of research generalising this to curves of higher genera, and to more
geometrically interesting targets in place of P2.

In this paper we take a more arithmetic viewpoint, and ask over what
sub-fields of C we should expect these rational curves to be defined. The
most basic version of the question is the following: suppose the 3e−1 points
in general position all have coordinates in the rational numbers Q. Should
we then expect any or all of the Ne rational curves to be defined over Q
(i.e. such that their defining equations can be chosen to have rational coef-
ficients, or equivalently to arise by base-change from some curves over Q)?
The answer is trivially “yes” if e = 1 or 2 (since N1 = N2 = 1), but we will
see later that the answer is “no” for all higher e:
Theorem 1.1. Let e > 2. Then the set of (3e − 1)-tuples of points in
P2(Q) where at least one of the Ne rational curves is defined over Q forms
a thin set.

The notion of a thin set is due to Serre; in Section 2 we will recall the
definition and prove a stronger version of the above theorem. The idea of a
thin set is that it should contain “few” points; indeed, from the above we
easily deduce in Section 2.1:
Corollary 1.2. Ordering all (3e − 1)-tuples of points in P2(Q) by height,
the proportion of tuples where at least one of the Ne curves is defined over
Q is 0%.

Analogous questions can be asked about rational curves on hypersur-
faces X in PN whose degree is low relative to their dimension. A lot is
known about the irreducibility and dimension of the relevant moduli spaces,
for generic X by work of Harris–Roth–Starr [11], Beheshti–Kumar [1] and
Riedl–Yang [15], and for any X by work of Browning-Vishe [5] and
Browning–Sawin [4]. This allows us to prove analogously that very few
n-tuples of points in X are such that at least one element of the finite set
of rational curves through them of suitable degree is defined over Q.
Theorem 1.3. Let X ⊆ PN be a smooth hypersurface of degree d such
that (d− 1)2d<N . Fix integers e > 0 and n ≥ 0 such that the expression
(N + 1− d)e+ (N − 4) + n = n(N − 1) holds. Then there exists a thin set
A ⊆ Xn(k) such that for all P ∈ Xn(k)\A, the corresponding set of rational
curves of degree e in X through the points in P contains no curve defined
over Q.
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Note that, unlike in the case of target P2, it is not always the case that
we can fix the other variables and then find a value of n which works. This
is because we have to arrange that a certain product of evaluation maps is
finite so that these sets of rational curves are finite, and this is not always
possible for arbitrary choices of N , d and e.

Since weak approximation is known to hold for such hypersurfaces [19],
it follows from [17, Theorem 3.5.7] that the set of rational points is not
thin. This means that, by the previous theorem, there must exist points
P ∈ Xn(k) for which none of the curves through P are defined over Q.
In Section 5 we give a more refined quantitative estimate for the number
of points which lie in any given thin set. Combining this with the above
theorem yields:

Corollary 1.4. Under the above hypotheses, and assuming that X(Q) is
non-empty, the proportion of n-tuples of points in X(Q) for which at least
one of the rational curves is defined over Q is 0%.

Informally, this means that “almost all” of the sets of rational curves do
not contain any curve defined over Q. In fact, Theorem 5.1 is stronger than
this, proving a power saving in the count for rational points in a thin set.
The key tool in the proof is a sieve result for points on hypersurfaces which
may be thought of as a form of effective strong approximation, and which
the authors believe will also be of independent interest.

The questions we ask in this paper seem natural from an arithmetic
perspective, but do they have interesting geometric content? As we will see
in the proof of Proposition 2.2, what we are really studying is the group of
deck transformations of the generic fibre of the product of the evaluation
maps on the moduli space of maps to P2 of given degree. Kontsevich and
Manin established that this cover is of degree Ne, but this leaves open the
question of the structure of the group of deck transformations.

1.1. Splitting fields. Given a set P of 3e − 1 Q-points of P2 in general
position, write CP for the set of Ne (complex) rational plane curves of
degree e through P . We write LP ⊆ C for the splitting field of the Galois
module CP , i.e. the smallest sub-field of C such that every curve in CP arises
by base-change from some plane curve over LP . Naively, we can think of
LP as the field generated by the coefficients of defining equations for the
curves, after scaling these equations to have at least one coefficient in Q.

The field extension LP /Q is necessarily finite and Galois (in other words,
the fixed field of the automorphism group of LP over Q is Q itself). We
can ask about the degree of LP over Q or (for a finer invariant) its Galois
group Gal(LP /Q). (Harris was the first to study the Galois groups arising in
problems from enumerative geometry, see [10] for 4 nice examples of similar
problems.) At one extreme we could have LP = Q, in other words all CP
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are defined over Q. At the other extreme it could have LP of degree Ne!
and Galois group the symmetric group SNe on Ne objects. We conjecture
that the latter occurs “almost always”. More precisely, we propose:

Conjecture 1.5. For all P outside a thin subset of (P2)3e−1(Q), we have
Gal(LP /Q) = SNe.

See Section 2 for the definition of a thin set. The conjecture is trivially
true for e = 1 and 2, and we prove it in Section 3 for e = 3.

1.2. Further questions. There are a number of possible variations and
extensions on the questions proposed in this note. One can ask whether the
0-dimensional schemes Cp satisfy the Hasse Principle, or whether there is
a Brauer–Manin obstruction.

It also seems to be interesting to understand what happens in positive
characteristic, but to the authors’ knowledge even the number of ratio-
nal curves has not been determined over Fp (it is clear that the number
coincides with that over C for “large enough” p, but making this “large
enough” explicit, and understanding what happens for small p, seems to
remain open).

It may well be possible to extend the computations in Section 3 to e = 4
or maybe even e = 5, though the authors do not have the courage to
attempt it. It is clear that other techniques will be needed in the general
case.

1.3. Atttribution. Sections 1–4 (excluding 2.1) are due to the first-named
author. Sections 5 and 2.1 are due to the second-named author.

1.4. Acknowledgements. Both authors are grateful to Tim Browning
for putting them in contact with one another, and for helpful comments.
We also would like to thank the referee for their careful reading of the
paper, which lead to a number of corrections and improvements.

1.5. Notation. We shall write Znprim to denote the set of primitive vectors
in Zn. A sum with subscript “dyadic” will refer to a sum whose variables
run over powers of 2. As is standard, we will write f(x) � g(x) to mean
that there exists some constant c > 0 such that for all sufficiently large x,
we have |f(x)| ≤ c|g(x)|, and f(x) � g(x) to mean f(x)� g(x)� f(x).

2. Most sets of Ne curves contain no curve defined over the
ground field

Let k be a field of characteristic zero, and X/k a reduced separated
scheme of finite type (a variety). For X an irreducible variety, a subset
A ⊆ X(k) is called thin if there exists a map of varieties π : Y → X,
not admitting a rational section, and such that A ⊆ π(Y (k)). The field
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k is Hilbertian if P1(k) is not thin (as a subset of itself). The field Q is
Hilbertian, as is any finitely generated extension; C is not.

Remark 2.1. If there exists a closed subset Z ⊂ X with Z 6= X and
A ⊂ Z(k) then we refer to A as a thin set of type I. If there is some
irreducible variety Y with dim(X) = dim(Y ) and a generically surjective
morphism π : Y → X of degree ≥ 2 with A ⊂ π(Y (k)) then A is referred
to as a thin set of type II. Any thin subset A ⊂ X(k) may be written as a
finite union of thin sets of type I and type II.

Let k ⊆ C be a Hilbertian field, and fix a positive integer e. Suppose
we are given P ∈ (P2)3e−1(k); we can think of this as a (3e − 1)-tuple of
k-points in P2, and we write CP for the set of rational curves of degree e
through P defined over k̄; in general this set may be infinite. We say P is
transitive if

• the set CP has Ne elements (this holds if P is in “general position”),
and
• the Galois group Gal(k̄/k) acts transitively on the set CP (equiva-
lently, the Galois group of the splitting field LP of CP is a transitive
subgroup of the symmetric group on Ne elements).

Note that P being transitive implies in particular that none of the curves
in CP is defined over k, for e > 2.

Proposition 2.2. The set of P ∈ (P2)3e−1(k) which are not transitive form
a thin set.

Proof. We may and do assume that e > 2, otherwise the result is ob-
vious. The result is immediate from a lemma of Serre, after the stan-
dard reformulation of the counting problem into a moduli problem. We
write M0,3e−1(P2, e) for the moduli space whose T -points are tuples
(C/T, x1, . . . , x3e−1, ϕ) with C/T a smooth curve of genus 0, the xi ∈ C(T )
disjoint sections, and ϕ : C → P2 is fibrewise generically immersive and
satisfies ϕ∗OP2(1) ∼= OP1(e). It is easy to check that M0,3e−1(P2, e) is an
irreducible variety.

This spaceM0,3e−1(P2, e) comes with evaluation maps evi to P2 for 1 ≤
i ≤ 3e − 1, sending (C/T, x1, . . . , x3e−1, ϕ) to ϕ ◦ xi. Together these evi
induce a map

ev : M0,3e−1(P2, e)→ (P2)3e−1,

generically finite of degree Ne, and CP = ev−1(P ).
Denote by η the generic point of (P2)3e−1, then the fibre ev−1η is irre-

ducible sinceM0,3e−1(P2, e) is. Then by [17, Proposition 3.3.5] there exists
a thin set A ⊆ (P2)3e−1(k) such that for all P outside A, the fibre ev−1P
has the expected number Ne of k̄-points and is irreducible, so the Galois
action is transitive. �



296 David Holmes, Nick Rome

In fact, the same proof shows more: we can choose the thin set A such
that for every P outside A, the Galois group of LP is naturally isomorphic
to that of the generic fibre ev−1η/η. So to prove Conjecture 1.5 it would
be equivalent to show that the Galois group of the generic fibre ev−1η were
the full symmetric group SNe .

2.1. Asymptotics. In this subsection we take k = Q. There are a number
of senses in which thin sets contain “few” points. One of them is by counting
the number of points up to a given size. For a positive integer B we define
M(B) to be the number of points in (P2)3e−1(Q) with height bounded by
B. We choose to use here an anticanonical height on (P2)3e−1. If x = (x0 :
x1 : x2) ∈ P2 and x = (x0, x1, x2) ∈ Z3

prim, then the height of x associated
to the anticanonical bundle O(3) is given by

H(x) = ‖x‖3∞,

where ‖x‖∞ = maxi |xi|. The height on (P2)3e−1 is then inherited from this
since the anticanonical bundle on the product is O(3, 3, . . . , 3) and hence
an anticanonical height on (P2)3e−1 is given by a product of the heights on
each copy of P2. If x ∈ (P2)3e−1(Q) there is a representative of x of the
form (x(1), . . . ,x(3e−1)) ∈ (Z3

prim)3e−1, the height of x is given by

H(x) =
3e−1∏
j=1
‖x(j)‖3∞.

By the compatibility of Manin’s conjecture with taking products (initially
observed in [8, Section 1]), we have M(B) � B(logB)3e−2.

We define N(B) to be the number of points P of height at most B which
are not transitive.

Lemma 2.3. There exists γ ∈ [0, 1) such that

N(B) = O
(
B(logB)3e−3+γ

)
.

Proof. Let A ⊂ (P2)3e−1(Q) be any non-empty thin set. We will prove that
the number of points of height at most B which lie in A can be bounded
above by O

(
B(logB)3e−3+γ), from which (along with Proposition 2.2) the

result follows. Note that it suffices to just consider the case when A is a
thin set of type I or of type II.

We count points in (P2)3e−1(Q) by passing to the affine cone (Z3
prim)3e−1.

The affine cone of A is

A′ =
{
x ∈ (Z3

prim)3e−1 : (x(1) : . . . : x(3e−1)) ∈ A
}
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and we denote by Āp the reduction of A′ modulo a prime p. We will upper
bound the number of elements in A′ of bounded height (and thus those
in A) by the cardinality

S(B) := #

x ∈ (Z3
prim)3e−1 :

3e−1∏
j=1
‖x(j)‖∞ ≤ B1/3 and xmod p ∈ Āp

 .
To attack this we first break into dyadic intervals

S(B) ≤
∑

B1···B3e−1≤B1/3

dyadic

H(B1, . . . , B3e−1),

where H(B1, . . . , B3e−1) is defined to be

#
{
x ∈ (Z3

prim)3e−1 : Bj/2 < ‖x(j)‖∞ ≤ Bj ∀ j, and xmod p ∈ Āp
}
.

The inner cardinality can be estimated using the multi-dimensional large
sieve in lopsided boxes (see e.g. [13, Theorem 4.1]). This gives

S(B)�
∑

B1···B3e−1≤B1/3

dyadic

3e−1∏
j=1

(
Bj +Q2

)3
 /G(Q),

where

G(Q) :=
∑
q≤Q

µ2(q)
∏
p|q

ωp
1− ωp

,

ωp := 1− #Āp
#(F3

p \ {0})3e−1 .

If A is a thin set of type II, then by [17, Theorem 3.6.2], there exists
c ∈ (0, 1) and a finite Galois extension k/Q such that for all sufficiently
large primes p which split completely in k, we have

#Āp ≤ cp3(3e−1) +O(p3(3e−1)−1/2).

We denote the set of such sufficiently large, completely splitting primes
by P and let δ be the natural density of such primes (which is strictly
greater than 0 by Chebotarev’s density theorem). Therefore there exists
η < (1− c)/c such that for all primes p ∈ P, we have ωp

1−ωp ≥ η. Thus

G(Q)�
∑
q≤Q

p|q⇒p∈P

µ2(q)ηω(q).

This sum is estimated using Wirsing’s theorem [22, Satz 1.1]. The Cheb-
otarev density theorem, along with an application of partial summation,
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tells us that ∑
p≤Q
p∈P

η log p
p
∼ ηδ logQ.

Therefore by [22, Satz 1.1] we have∑
q≤Q

p|q⇒p∈P

µ2(q)ηω(q) ∼ Q

logQ
∏
p≤Q
p∈P

(
1 + η

p

)
.

By taking the logarithm of the above product, we have

log

∏
p≤Q
p∈P

(
1 + η

p

) =
∑
p≤Q
p∈P

log
(

1 + η

p

)
� δη log logQ,

where the inequality is again a straightforward consequence of the Cheb-
otarev density theorem. Hence, we conclude that

G(Q)� Q(logQ)δη−1.

When A is a thin set of type I, the Lang–Weil estimate (e.g. [17, Theo-
rem 3.6.1]) tells us that

#Āp � p3(3e−1)−1,

from which the bound G(Q)�ε Q
2−ε can be deduced in a similar manner.

Let γ = 1− δη, then setting Q = minj{B1/2
j } we get

S(B)� (logB)γ
∑

B1···B3e−1≤B1/3

dyadic

(B1 · · ·B3e−1)3 min
j
{B−1/2

j }

� (logB)γ
∑

B1≤B2≤···≤B3e−1
B1···B3e−1≤B1/3

dyadic

(B1 · · ·B3e−1)3B
−1/2
1

� B(logB)γ
∑

B1≤B2≤···≤B3e−2
B1···B3e−2≤B1/3

dyadic

B
−1/2
1

� B(logB)3e−3+γ ∑
B1≤B1/3

B1=2j for some j

B
−1/2
1 .

This final sum is convergent and so we deduce the claimed bound. �

In other words, the ratio N(B)/M(B) tends to zero at least as fast as
(logB)γ−1 as B →∞.
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3. Splitting fields for e = 3

We know that N3 = 12, and by Conjecture 1.5 we should expect that
the Galois group is S12 for all P outside some thin set; here we verify
that. By the same argument as in the proof of Proposition 2.2 it is enough
to verify that the Galois group of the splitting field of the generic fibre
Lη = ev−1η is S12. If P is any point in (P2)8 with #CP = 12 (so ev is étale
in a neighbourhood of P ) then we have a natural injection from the Galois
group of LP to the Galois group of Lη. Hence it suffices to find a single
such P for which we can show that the Galois group of LP is S12.

For readability we will describe our example in affine coordinates, on
one of the standard charts of P2. A little random experimentation brought
us to the 8 points (1, 0), (−3, 1), (3,−3), (−3, 3), (2,−1), (−3, 1), (2, 4), (1, 3)
(in the first affine patch). The 2-dimensional space of cubics through these
eight points is spanned by the cubics
x3 + 5/74y3 + 28/37x2− 10/37xy− 50/37y2− 173/37x+ 275/74y+ 108/37
and
x2y−75/74y3 +61/37x2 +39/37xy+10/37y2 +227/37x+463/74y−288/37.
We used SAGE to re-write the generic element of the linear span of these
two cubics into Weierstrass form, and to compute the discriminant of the
resulting cubic, given by

∆ = −24953575063474272765882500
6582952005840035281 t12 + 134142884940172812137734125

6582952005840035281 t11

+ 1421147382955123926407537625
26331808023360141124 t10 − 7215115079178977822483091875

26331808023360141124 t9

+ 17943310292096345174858538375
105327232093440564496 t8 + 16439749600766827372335403125

52663616046720282248 t7

− 3707387509942909790535756625
13165904011680070562 t6 − 1591463047251983769286633125

26331808023360141124 t5

− 400455774447542072616372750
6582952005840035281 t4 − 1770912522449250247984242375

52663616046720282248 t3

− 41930948369778731917638750
6582952005840035281 t2 − 12906646230435281098756875

26331808023360141124 t

− 866622835858183959391875
105327232093440564496 .

A curve of degree 3 is rational if and only if it is not smooth, and the
vanishing of the discriminant detects exactly when this non-smoothness
occurs. In other words, the scheme of zeros of ∆ is isomorphic to the scheme
CP = ev−1P , so the splitting field LP is given by the splitting field of ∆.
We computed the Galois group of the latter in MAGMA, and found it to be
S12 as required.

Remark 3.1. On can alternatively argue using Del Pezzo surfaces (cf. [21,
Section 7.3]), though in the end this simply re-phrases the computer search.
The blow up of P2 in 8 points in general position is a del Pezzo surface X
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of degree 1, and the strict transforms of the 12 singular cubics give the 12
singular elements of the anticanonical linear system on X. Blowing up the
9th point through which they all pass yields an elliptic surface, and (the
strict transforms of) these 12 curves are the singular fibres of the elliptic
fibration. Explicitly, the surface X has the equation:

y2 = x3 + f2(z, w)x2 + f4(z, w)x+ f6(z, w)
where fi has degree i. The 12 points over which the fibres are non-smooth
are the zero locus of the discriminant of this elliptic pencil, which is a
polynomial D(z, w) of degree 12 in z, w. One can then perform a computer
search for polynomials fi for which D(z, w) has Galois group S12.

4. Hypersurfaces of low degree

4.1. Formalities. We continue to work over a Hilbertian field k with alge-
braic closure k̄. The reader will note that the only properties of the variety
P2 used in the proof of Proposition 2.2 are the following:

(1) M0,3e−1(P2; e) is an irreducible variety;
(2) the product of the evaluation maps ev : M0,3e−1(P2; e) → (P2)3e−1

is generically finite.
This naturally leads us to a generalisation of Proposition 2.2. Let X/k be

an irreducible variety, fix a line bundle1 L on X, and for each non-negative
integer n define a moduli functor M0,n(X,L; e) on the category Schk of
schemes over k, sending T to the set of tuples (C/T, x1, . . . , xn, ϕ) where

• C/T is a smooth proper curve of genus 0;
• The xi ∈ C(T ) are disjoint sections;
• ϕ : C → XT is a T -morphism which is generically immersive on
each fibre, such that ϕ∗L has degree e on each fibre of C/T ,

modulo isomorphisms over X (such isomorphisms are unique when they
exist, so this is a fine moduli space). This functor is not always an irreducible
variety (for example, if L = OX and e = 0 it is likely to have infinitely
many connected components; the quintic 3-fold provides a much less trivial
example), but sometimes it is an irreducible variety, for example when X
is P2 and L = O(1).

As before we have the evaluation maps evi : M0,n(X,L; e) → X each
sending a tuple (C/T, x1, . . . , xn, ϕ) to ϕ ◦ xi, and can take their product
ev : M0,n(X,L; e)→ Xn. The set of k̄-points of the fibre of ev over a point
P = (p1, . . . , pn) ∈ Xn(k) is exactly the set of rational curves in X over
k̄, of L-degree e, and passing through all the pi. In general this set can be
infinite, but if ev is generically finite (i.e. the fibre of ev over the generic
point of Xn is finite) then, for P outside some proper Zariski closed subset
of Xn, these sets are finite and all of the same cardinality, which we shall

1More generally fix a class in étale cohomology of suitable dimension.
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denote N(X,L, n, e). In this case we say P is transitive if indeed the fibre
has the “expected” number N(X,L, n, e) of k̄-points, and moreover the
natural action of Gal(k̄/k) on the fibre is transitive. Imitating the proof
of Proposition 2.2 one immediately obtains

Proposition 4.1. Fix a variety X, a line bundle L on X, and non-negative
integers e and n. Assume that

(1) M0,n(X,L; e) is an irreducible variety;
(2) the product of the evaluation maps ev : M0,n(X,L; e) → Xn is

generically finite.
Then there exists a thin subset A ⊆ Xn(k) such that all P ∈ Xn(k) \A are
transitive.

Note that we do not exclude the possibility that the generic fibre of ev is
empty, but any map from the empty scheme is finite, and for these purposes
we consider the unique group action on the empty set to be transitive,
making the result vacuous in this case.

Connoisseurs of the empty set will consider this in poor taste. “Transi-
tive” should morally mean “has exactly one orbit”, so that the action on the
empty set should not be considered transitive. Such readers should add to
our result the assumption that the generic fibre of the map ev is non-empty;
understanding when this happens is a very interesting problem.

Suppose that M0,n(X,L; e) is an irreducible variety (in particular re-
duced); if the tangent map to ev is surjective at some point of the source, it
follows that ev is dominant (and the converse holds in characteristic zero,
by generic smoothness). Surjectivity of the tangent map can be analysed
via deformation theory; details can be found in [7, Section 4]. For example,
one can show (combining results of [18] and [6]) that, for a general cubic
3-fold the product of evaluation maps ev : M0,n(X,L; e) → Xn is domi-
nant whenever n ≤ e− 1 and e ≥ 2. Note however that in this setting the
dimensions are not equal (see below for a more detailed analysis), so that
we do not get a generically finite map.

4.2. Hypersurfaces. For an interesting application of Proposition 4.1 we
need an irreducible variety X with two properties. First, it should satisfy
the criteria of Proposition 4.1. But we should also ask that X(k) is itself not
thin, otherwise the conclusion is vacuous. Such examples are provided by
hypersurfaces in projective space of low degree (relative to their dimension).

Fix positive integers N , d and e, and let X be a smooth hypersurface of
degree d in PN ; we fix L = O(1), and drop it from the notation henceforth.
When is M0,n(X; e) an irreducible variety? Note that M0,n(X; e) can be
built fromM0,0(X; e) by repeatedly taking universal curves (and deleting
loci where sections intersect), soM0,n(X; e) is an irreducible variety if and



302 David Holmes, Nick Rome

only ifM0,0(X; e) is, and their dimensions differ by n. There are two main
cases whenM0,0(X; e) is known to be an irreducible variety:

(1) char k = 0, N > 2 and d + 2 < N , and X is generic, by work of
Reidl and Yang [15];

(2) N > 2 and (2d − 1)2d−1 < N by work of Browning and Sawin [4],
with no genericity assumptions on X, but assuming char k = 0 or
char k > d.

In these cases it is also known thatM0,0(X; e) is of the “expected” dimen-
sion, namely (N+1−d)e+(N−4). Since the dimension of Xn is n(N−1),
the map ev : M0,n(X,L; e)→ Xn is generically finite if and only if we have
the equality

(N + 1− d)e+ (N − 4) + n = n(N − 1)
(it could perhaps happen that the map ev is not dominant, but in this case
the generic fibre of ev is empty, so the result is vacuously true as remarked
above). We deduce:

Proposition 4.2. Let N > 2, d > 0 and e > 0 and n ≥ 0 be integers such
that (N + 1−d)e+ (N − 4) +n = n(N − 1). Let X be a hypersurface in PN
of degree d, satisfying one of the assumptions (1) and (2) above. Then there
exists a thin set A ⊆ Xn(k) such that all P ∈ Xn(k) \A are transitive.

4.3. Asymptotics. We keep the notation of the above section, but restrict
now to the case k = Q. A-priori it could be that A = Xn(Q), but using
the results from the appendix we can show this is far from the case. First,
we must assume that X has at least one rational point (by Birch’s result
below, this is equivalent to assuming that X is everywhere locally soluble).

Then for a positive integer B, write M(B) for the number of rational
points on Xn of height less than B. Assuming that N > 2d(d − 1) − 1,
Birch [2, Theorem 1], combined with the compatibility of Manin’s conjec-
ture with products as noted above, shows that there exist c > 0 and δ > 0
such that

M(B) = cB(logB)n−1 +O
(
B(logB)n−1−δ

)
.

Now write N(B) for the number of P ∈ Xn(Q) which are not transitive.
Assume N > 2d(2d− 1), then by Proposition 4.2 of the preceding section,
there exists a thin subset A ⊆ Xn containing all those P which are not
transitive. Now we can apply Theorem 5.1 to see that there exists γ ∈ [0, 1)
with

N(B)� B(logB)n−2+γ

Hence the ratio
N(B)
M(B) �

B(logB)n−2+γ

cB(logB)n−1 + c′B(logB)n−1−δ � (logB)γ−1

where c′ is some positive constant. Summarising, we have
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Theorem 4.3. Let X/Q be a hypersurface with N > 2d(d− 1). Then there
exists δ′ > 0 such that

#{P ∈ Xn(Q) : H(P ) ≤ B and P not transitive}
#{P ∈ Xn(Q) : H(P ) ≤ B} � (logB)−δ′ .

Informally, this tells us that most collections of points on a hypersurface
X are transitive, thus the sets of curves through them contain no curves
defined over Q.

5. Thin Sets on Smooth Hypersurfaces of Low Degree

Let F ∈ Z[x0, . . . , xN ] be a homogeneous form of degree d. Denote by
X the projective variety defined by F and assume (for simplicity) that it
is smooth. Given n ∈ N, suppose A ⊂ Xn(Q) is a non-empty thin set.
The purpose of this section is to show that a thin set on Xn contains few
points, extending a result of Browning–Loughran [3, Theorem 1.8] on the
number of points in a thin subset of a quadric to multiple copies of a general
hypersurface (of suitably large dimension).
Theorem 5.1. If N > 2d(d−1) and H is the anticanonical height function
on Xn described below then ∃ δ, γ > 0 such that

#{x ∈ A : H(x) ≤ B} �A,X

{
B1−δ(logB)γ if n = 1,
B(logB)n−2+γ if n ≥ 2.

Remark 5.2. Let x ∈ Xn(Q) and x = (x(1), . . . ,x(n)) for x(j) ∈ ZN+1
prim .

Since the anticanonical bundle on X is O(N+1−d) (see e.g [8, Section 1]),
an anticanonical height function on Xn is given by

H(x) =
n∏
j=1
‖x(j)‖N+1−d

∞ .

The result is a consequence of a sieve estimate for points on products of
a hypersurface lying in some prescribed residue classes. In establishing this
estimate we make crucial use of a recent generalisation of Birch’s theorem
due to Schindler–Sofos [16] (cf. Lemma 5.6).

Fix m ∈ N. Let
Ωpm⊂

{
(x(1), . . . ,x(n))∈(Z/pmZ)n(N+1) : p - x(j), F (x(j)) ≡ 0 mod pm ∀ j

}
be some non-empty collection of residue classes for each prime p. Denote
their relative density by

ωp := 1− #Ωpm

#X̂n (Z/pmZ)
∈ [0, 1),

where X̂n denotes the affine cone of Xn. We will establish Theorem 5.1 us-
ing a large sieve type estimate for points of bounded height of the following
form.
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Lemma 5.3. There exist δ1, δ2 > 0 such that

#{x ∈ X(Q) : H(x) ≤ B and xmod pm ∈ Ωpm ∀ p} �
B

min{G(Bδ1), Bδ2}
,

where
G(Q) =

∑
q≤Q

µ2(q)
∏
p|q

ωp
1− ωp

.

Remark 5.4. This theorem is analogous to [3, Theorem 1.7] and all the
results derived for quadrics concerning fibrations, zero loci of Brauer group
elements and friable divisors could also be generalised to the setting of
smooth hypersurfaces of low degree in a similar fashion.

In general we will need to look at products of hypersurfaces, to deal
with the resulting height condition we break into dyadic intervals as in the
proof of Lemma 2.3. Then we need to investigate the subset N(Xn,B,Ω)
defined by

#
{
x ∈ X̂n(Q) : Bj/2 < ‖x(j)‖∞ ≤ Bj and x(j) mod pm ∈ Ωpm ∀ p, j

}
,

where (x(1), . . . ,x(n)) is a representative of x in (ZN+1
prim )n. We have the

following analogous estimate for products.

Theorem 5.5. Suppose N > 2d(d−1). Then for any ε > 0 and any Q ≥ 1,
one has

N(Xn,B,Ω)�ε,X (B1 · · ·Bn)N+1−d
( 1
G(Q) + E1 + E2

)
,

where
E1 = min

j
{Bj}−

1
2Qm(2d−2n+1)+2+ε

E2 = min
j
{Bj}−

(N+1)2−d−(d−1)
4d +εQ

2−m(d+2n)+ 5md(N+1)
2d−1(d−1)

+ (N+1)m2−d−m(d−1)
2d −ε

.

Now assuming Theorem 5.5, we’ll demonstrate how to establish the main
result.

Proof of Theorem 5.1. For each p denote by Āp the reduction modulo p of
the affine cone of A (as in the proof of lemma Lemma 2.3) and by Ā the
collection of all these reductions. We start by breaking into dyadic intervals

#{x ∈ A : H(x) ≤ B} ≤
∑

B1···Bn≤B
1

N+1−d
dyadic

N(Xn,B, Ā).

It suffices to prove the estimate in Theorem 5.1 when A is either a type I
or type II thin set. This will follow from the m = 1 case of Theorem 5.5.
If A is a type I thin set then there is some proper, Zariski closed subset
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Z ⊂ Xn which describes it. By [3, Lemma 3.8] for all primes p, we have
#Z(Fp) �Z pn(N+1)−1. It follows that there exists a constant c > 0 such
that ωp ≥ 1− c

p , and thus ωp
1−ωp ≥

p
c − 1. This means

G(Q) ≥
∑
q≤Q

µ2(q)q
∏
p|q

(1
c
− 1
p

)
�ε,Z Q

2−ε.

Similarly, if A is a type II thin set then [3, Lemma 3.8] implies there is a
positive density set of primes P and a constant η > 0 such that ωp

1−ωp ≥ η,

for large enough p ∈ P. It follows, as in the proof of Lemma 2.3, that there
exists γ ∈ [0, 1) such that

G(Q)�ε,P Q(logQ)−γ .
In either case, Theorem 5.5 (with m = 1) implies that

N(Xn,B, Ā)�A,X (B1 · · ·Bn)N+1−d
(
Q−1(logQ)γ + E1 + E2

)
.

Now setting Q = minj{Bj}δ for δ > 0 sufficiently small gives the bound

#{x ∈ A : H(x) ≤ B}

�A,X (logB)γ
∑

B1···Bn≤B
1

N+1−d
dyadic

(B1 · · ·Bn)N+1−d min
j
B−δj ,

from which the result follows. �

The rest of this section is dedicated to the proof of Theorem 5.5. We count
points x ∈ Xn(Q) via their representatives x = (x(1), . . . ,x(n)) ∈ Zn(N+1)

where the x(j) are primitive vectors with F (x(j)) = 0. Passing to the affine
cone, we see that we may bound N(Xn,B,Ω) by

#
{

x∈
(
ZN+1
prim

)n
: Bj/2< ‖x(j)‖≤Bj , F (x) = 0 and x mod pm∈Ωpm ∀ p

}
.

This quantity can be bounded above using the Selberg sieve. Let

P (Q) =
∏
p<Q
ωp>0

p-disc(F )

p and Λ(x) =
∏

p|P (Q)
x mod pm∈ΩC

pm

p,

where ΩC
pm = X̂n (Z/pmZ) \ Ωpm .

Define a sequence A = (aλ) of non-negative numbers, supported on
finitely many integers λ, by

aλ =
∑

x∈(Z(N+1)
prim )n

F (x(j))=0
Λ(x)=λ

n∏
j=1

N∏
i=0

W

(
x

(j)
i

Bj

)
,
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for W some appropriate smooth, compactly supported weight function.
Then,

∑
(λ,P (Q))=1

aλ =
∑

x∈(Z(N+1)
prim )n

F (x(j))=0
(Λ(x),P (Q))=1

n∏
j=1

N∏
i=0

W

(
x

(j)
i

Bj

)

=
∑

x∈(Z(N+1)
prim )n

F (x(j))=0
x mod pm∈Ωpm∀p|P (Q)

n∏
j=1

N∏
i=0

W

(
x

(j)
i

Bj

)
.

Theorem 5.5 will follow from a suitable upper bound for the aλ sum. This
is achieved by an appeal to Selberg’s upper bound sieve as expressed in [9,
Theorem 7.1]. In order to apply this, we need an expression of the form∑

λ≡0 mod q
aλ = g(q)Y + rk(A),

for a constant Y and suitable multiplicative function g and small remainder
term rq(A). This information will be provided by the following result of
Schindler–Sofos [16, Lemma 2.1].

Lemma 5.6. Let g ∈ Z[x0, . . . , xN ] a polynomial of degree d ≥ 2. Fix
R > 0 and z ∈ ZN+1. If N > 2d(d− 1), then one has

∑
x∈ZN+1

g(x)=0

N∏
i=0

W

(
xi
R
− zi

)
−SJW

�ε R
N−d+ 1

2 + ‖g‖
5(N+1)
2d(d−1)

− 3
2 RN+1−d+ε− (N+1)2−d−(d−1)

4d ,

where

JW =
∫ ∞
−∞

∫
RN+1

e(γg(u))
N∏
i=0

W

(
ui
R

)
dudγ

S =
∏
p

σp(g).

Here σp is the local density defined as

σp(g) := lim
`→∞

p−`N#{x mod p` : g(x) ≡ 0 mod p`}.
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Let M = qm and ΩM =
∏
pm||M Ωpm . Then for q | P (Q), we have

∑
λ≡0 mod q

aλ =
∑

x∈(Z(N+1)
prim )n

F (x(j))=0
x modM∈ΩCM

n∏
j=1

N∏
i=0

W

(
x

(j)
i

Bj

)

=
∑

a∈ΩCM

∑
y∈(Z(N+1)

prim )n

F (a(j)+My(j))=0

n∏
j=1

N∏
i=0

W

(
a

(j)
i +My

(j)
i

Bj

)

=
∑

a∈ΩCM

n∏
j=1

∑
y(j)∈(Z(N+1)

prim )n

F (a(j)+My(j))=0

N∏
i=0

W

(
a

(j)
i +My

(j)
i

Bj

)
.

Now this is in a form where we may apply Lemma 5.6, setting R = Bj
M ,

zi = a
(j)
i
Bj

and g(y(j)) = F (a(j) +My(j)). Therefore the inner sum over y(j)

can be written as

SJW,hj +O

(Bj
M

)N−d+ 1
2

+M
5d(N+1)
2d(d−1)

− 3d
2
(
Bj
M

)N+1−d+ε− (N+1)2−d−(d−1)
4d

 .
Observe that

JW,Bj =
BN+1−d
j

MN+1

∫ ∞
−∞

∫
RN+1

e(βF (u))
N∏
i=0

W (ui) dudβ =:
BN+1−d
j

MN+1 J.

The local factors σp in the singular series are given by

σp((F (a(j) + pmy(j)))

= lim
`→∞

p−`N#
{

y mod p` : F (a(j) + pmy(j)) ≡ 0 mod p`
}
.

If p - M then σp(F (a(j) + pmy(j))) = σp, where σp is the usual Hardy–
Littlewood density associated to F . If p dividesM , it cannot divide disc(F ).
Let

N(`) := #{y mod p` : F (a(j) + pmy) ≡ 0 mod p`},

it follows via Hensel’s lemma that for ` > m we have N(`) = pNN(`− 1),
and thus σp(F (a(j) + pmy)) = pm. Hence, the singular series factorises as

S =
∏
p-M

σp
∏

pm||M
pm,
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for any a(j). Therefore

S

MN+1 =
∏
p

σp
∏

pm||M

1
pmNσp

.

It follows from Hensel’s lemma (as above) that

#X̂(Z/p`Z) = pN#X̂(Z/p`−1Z)

for any ` > 1. Using this and Deligne’s bound, we conclude

S

MN+1 =
∏
p

σp
∏

pm||M

1
#X̂ (Z/pmZ)

(
1 +O(p−N/2+1/2))

= c1
∏

pm||M

1
#X̂ (Z/pmZ)

,

for some absolute constant c1. Taking the product over all j we get a main
term of size

#ΩC
Mc

n
1J

n
∏

pm||M

1
#X̂n (Z/pmZ)

(B1 · · ·Bn)N+1−d.

Therefore, there exists a constant c2 (depending at most onW and F ) such
that ∑

λ≡0 mod q
aλ = c2g(q)(B1 · · ·Bn)N+1−d +O (rq(A)) ,

where

g(q) =
∏
p|q

#ΩC
pm

#X̂n (Z/pmZ)
=
∏
p|q
ωp.

The remainder term rq(A) is given by #ΩC
M

(
B1···Bn
Mn

)N+1−d
multiplied by

(minj{Bj}
M

)− 1
2
M−d(n−1)

+M
5d(N+1)
2d(d−1)

− 3d
2 −d(n−1)

(minj{Bj}
M

)− (N+1)2−d−(d−1)
4d +ε

.

We estimate #ΩC
M using the following simple bound

#ΩC
M �

∏
pm||M

#X̂n(Z/pmZ)�MnN .
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It just remains to compute the error terms

(B1 · · ·Bn)N+1−d

minj{Bj}1/2
∑
q≤Q2

τ3(M)qm(d+ 1
2−n(N+1))#ΩC

qm

�ε
(B1 · · ·Bn)N+1−d

minj{Bj}1/2
∑
q≤Q2

qm(d+ 1
2−n)+ ε

2

�ε
(B1 · · ·Bn)N+1−d

minj{Bj}1/2
Qm(2d−2n+1)+2+ε

and

(B1 · · ·Bn)N+1−d

minj{Bj}
(N+1)2−d−(d−1)

4d −ε

×
∑
q≤Q2

τ3(M)q
m

(
5d(N+1)
2d(d−1)

− d2−n(N+1)+ (N+1)2−d−(d−1)
4d −ε

)
#ΩC

qm

�ε
(B1 · · ·Bn)N+1−d

minj{Bj}
(N+1)2−d−(d−1)

4d −ε
Q

2−m(d+2n)+ 5md(N+1)
2d−1(d−1)

+ (N+1)m2−d−m(d−1)
2d −ε

.

This finishes the proof of Theorem 5.5.
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