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Vasco UPV/EHU, 20080 San Sebastián/Donostia, Spain
3IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain

4Donostia International Physics Center (DIPC), E-20018 San Sebastián, Spain
5IBM T.J.Watson Research Center, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, New York,

New York 10598, USA August 2, 2021

1 Introduction

In twisted bilayer graphene (TBG) a moiré pattern forms that introduces a new
length scale to the material. At the ’magic’ twist angle θm ≈ 1.1◦, this causes a flat
band to form, yielding emergent properties such as correlated insulator behavior and
superconductivity [1–4]. In general, the moiré structure in TBG varies spatially, in-
fluencing the local electronic properties [5–9] and hence the outcome of macroscopic
charge transport experiments. In particular, to understand the wide variety observed
in the phase diagrams and critical temperatures, a more detailed understanding of
the local moiré variation is needed [10]. Here, we study spatial and temporal varia-
tions of the moiré pattern in TBG using aberration-corrected Low Energy Electron
Microscopy (AC-LEEM) [11, 12]. The spatial variation we find is lower than re-
ported previously. At 500 ◦C, we observe thermal fluctuations of the moiré lattice,
corresponding to collective atomic displacements of less than 70 pm on a time scale
of seconds [13], homogenizing the sample. Despite previous concerns, no untwisting
of the layers is found, even at temperatures as high as 600 ◦C [14, 15]. From these
observations, we conclude that thermal annealing can be used to decrease the local
disorder in TBG samples. Finally, we report the existence of individual edge dislo-
cations in the atomic and moiré lattice. These topological defects break translation
symmetry and are anticipated to exhibit unique local electronic properties.

In charge transport experiments, a percolative average of the microscopic properties is mea-
sured. Therefore, any local variation in twist angle and strain in TBG will influence the result of
such experiments. However, imaging such microscopic variations is non-trivial. A myriad of exper-
imental techniques has been applied to the problem [16–20], each only resolving part of the puzzle
due to practical limitations (capping layer or device substrate, surface quality or measurement
speed).

Here, we use (AC-)LEEM, which measures an image of the reflection of a micron-sized beam of
electrons at a landing energy E0 (0–100 eV, referenced to the vacuum energy) in real space, in re-
ciprocal space (diffraction), or combinations thereof. This allows us to perform large-scale, fast and
non-destructive imaging of TBG. Additionally, spectroscopic measurements, yielding information
on the material’s unoccupied bands can be done by varying E0[21, 22].
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Figure 1: Device-scale imaging of TBG. a, Local spectra used to determine the graphene layer count.
b, Stitched composite bright field overview of a sample using 4 eV, 8 eV and 17 eV as imaging energies in
red, green and blue respectively (see main text for color interpretation). Visible defects include folds in
black, tears, where the monolayer or even bare hBN shines through, bubbles (bright) and some polymer
residue in the lower and upper right (dark speckles). c, Ab-initio calculations of LEEM spectra of different
relative stackings of bilayer graphene, 37 eV indicated. d, Stitched bright field overview of the same sample
imaged at E0 = 37 eV, for optimal stacking contrast, revealing the moiré patterns. e-h, Crops of different
twist angles areas from d, inset shows Fourier transforms and the detected moiré peaks. All measurements
have been done on the same sample, featured in b.

2 Results

In Figure 1a, LEEM spectra are shown, taken on several locations of a TBG sample. These
LEEM spectra are directly related to layer count, as described in refs. [22–25]; on the one hand
via interlayer resonances in the 0–5 eV range, on the other hand via the gradual disappearance
of a minimum at 8 eV. Here, more graphene layers (having a band gap at 8 eV) are progressively
masking an hBN band underneath. This allows us to determine the local graphene layer count for
each point on our sample. To visualize that, we choose three characteristic energies, i.e. E0 = 4 eV
(red), E0 = 8 eV (green) and E0 = 17 eV (blue) (see Figure 1a), and combine stitched overviews at
these energies into a single false-color image (Figure 1b). This overview confirms that the sample
consists of large TBG areas (darker green in Figure 1b) surrounded by monolayer graphene (pink),
on an hBN flake (blue/purple) on silicon (black). Stripes of brighter green indicate areas of 2-on-2
graphene layers (lower stripe), 2-on-1 (upper stripe), and 1-on-2 (wedge on the lower right). The
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relatively homogeneous areas are themselves separated by folds, appearing as black lines. The folds
locally combine in larger dark nodes (confirmed by AFM, see Supplementary Information A). A
few folds, however, have folded over and appear as lines of higher layer count. Hence, Figure 1b
provides a remarkable overview of a larger-scale sample, with detailed local information.
Increasing E0 beyond 25 eV, stacking boundaries and AA-sites become visible [23, 26]. This is
consistent with ab-initio calculations of LEEM spectra for different relative stackings, as presented
in Figure 1c. Therefore, imaging at E0 = 37 eV (indicated in Figure 1c) yields a precise map of
the moiré lattice over the full TBG area (see Figure 1d). We find that separate areas, between
folds, exhibit different moiré periodicities and distortion [27]. This allows us to study different
moiré structures on a single sample. Figure 1e-h shows full resolution crops of areas indicated in
Figure 1d. The observed twist angles on this sample range from < 0.1◦ to 0.7◦. For smaller angles,
we observe local reconstruction towards Bernal stacking within the moiré lattice, consistent with
literature [17, 20]. The best resolution was reached on another sample with a twist angle of 1.3◦

(See Supplementary Figure 11).

2.1 Distortions & Strain

The moiré patterns shows distortions, corresponding to local variations in twist angle and (inter-
layer) strain. Near folds, for instance, the strain increases resulting in strongly elongated triangles,
for example in the lower right corner of Figure 1d [28]. Despite their relative homogeneity, the
moiré areas in Figure 1e-h also show subtle distortions. As structural variations correlate directly
with local electronic properties, we quantify them in detail [5, 6]. For this, we use adaptive geo-
metric phase analysis (GPA), extending our earlier work on STM data of moiré patterns in TBG
(see Supplementary Information) [29–33]. This method, illustrated in Figure 2a-c, yields the dis-
placement field with respect to a perfect lattice, by multiplying the original image with complex
reference waves followed by low-pass filtering to obtain the GPA phase differences, which are then
converted to the displacement field. This field fully describes the distortion of the moiré lattice
and allows us to extract key parameters such as the local twist angle θ∗(~r) (see Figure 2d), and
heterostrain magnitude ε(~r) and direction (see Figure 2e). [31, 34] The distortions of the moiré
pattern correspond directly to distortions of the atomic lattices, magnified by a factor 1/θ and
rotated by 90◦ + θ/2 [31, 35].

The extracted variation in twist angle and heterostrain for various regions of the sample, in-
cluding those in Figure 1e-h, is summarized in Figure 2f,g, respectively. The twist angle variation
within each domain is much smaller than the variation in twist angle between the separate, fold-
bounded areas. Within domains, standard deviations range from 0.005◦ to 0.015◦, i.e. significantly
smaller (by a factor 3–10) than previously reported [18, 20, 31]. The strain observed is around
a few tenths of a percent, which is considerable. In some domains, we find an average strain of
the atomic lattice of up to ε = 0.4 %. According to earlier theoretical work, such values are high
enough to locally induce a quantum phase transition [8].

The variation of ε, as for θ∗, within the domains is significantly lower than in earlier studies.
We do note that the use of GPA introduces a point spread function (PSF) that is broader than the
PSF of the instrument, resulting in a lower displacement field frequency response at small scales
and therefore a somewhat reduced variation. Nevertheless, the combined PSF of instrument and
analysis is still comparable to other techniques that do not image the unit cell directly, allowing
for a direct comparison.

We hypothesize that the difference in variations with literature stems from the relatively high
temperature at which we annealed and measured the sample, combined with the relatively long
averaging time of this measurement (≥ 16 s for all data in Figure 2). The high temperature induces
thermal fluctuations of the lattice (as demonstrated below), allowing the system to approach a lower
energy, more homogeneous, state.

2.2 Edge dislocations

So far, we have discussed structural properties varying on the moiré length scale. However, the
moiré magnification of deformations is general and extends to atomic edge dislocations (visualized
in Figure 3a). This type of topological defect stems from a missing row of atomic unit cells and is
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Figure 2: Distortion variation from Geometric Phase Analysis a, Reference phase corresponding
to one k-vector used in GPA, as extracted from the Fourier transform of the corresponding image (inset).
b, Phase difference or GPA phase, obtained by multiplying with the original image and low-pass filtering.
Overlayed is the corresponding extracted image wave. c, The displacement field extracted from the GPA
phases. d, Extracted local twist angle θ∗. e, Extracted local heterostrain. Length and color of bars
indicates the magnitude ε of the heterostrain, direction is the direction of elongation of the atomic lattice.
f,g, Distribution of θ∗ & ε extracted from different areas on the sample. Bar colors correspond to colors
in Figure 1d, with the remaining areas shown in the supplementary information.

characterized by an in-plane Burgers vector (in red) [36, 37]. The addition of a second (twisted)
atomic layer magnifies (and rotates) the defect to an edge dislocation in the moiré lattice (illustrated
in Figure 3d,e) [35]. In all cases, the defect can be characterized using GPA, pinpointing its location
and Burgers vector (Figure 3b,e) [38].

In our sample, we find a few such defects in the moiré lattice (see SI). In Figure 3f,g we
show an edge dislocation in a topographically flat region with θ = 0.63◦ (see SI). Contrary to
TEM observations on single-layer graphene [38], we do not observe creation or annihilation of
edge dislocation pairs in the microscope, even at elevated measurement temperatures (500 ◦C)
and under low-energy electron irradiation. Furthermore, the mobility of the defects is low. One
edge dislocation did move, over several moiré cells between measurements, after which it remained
at the same position even after a month at room temperature and reheating (see supplementary
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Figure 3: Edge dislocations in moiré systems a, Schematic of an edge dislocation in a single layer
graphene (centered in the field-of-view), with the corresponding Burgers vector indicated in red. b, GPA
phases of a. c, Top layer without dislocation, rotated 4.5◦ with respect to the layer in a. d, Schematic of
an edge dislocation of a single layer graphene in a twisted bilayer system. The green square in the center
corresponds to the combination of a and c. The Burgers vector of the moiré lattice defect is indicated
in red. e, GPA phases of d, exhibiting a singularity in the center. The used moiré reference vectors are
indicated. f, LEEM image of an edge dislocation in a TBG moiré lattice with a twist angle θ ≈ 0.63◦. The
corresponding moiré Burgers vector is indicated in red. g, GPA phases corresponding to f.

information). This stability suggests that the moiré lattice itself plays a role in stabilizing these
defects, via a minimum of the local stacking fault energy within the moiré unit cell.

These topological dislocations break translational symmetry, which may lead to singular elec-
tronic properties on the local scale [39–41]. Specifically, a phase difference will appear between
electron paths encircling the defect clockwise and counterclockwise.

2.3 High temperature dynamics of the moiré lattice

All measurements presented so far were performed at 500 ◦C, to minimize hydrocarbon contamina-
tion under the electron beam. In literature, there is concern about the graphene layers untwisting
at such temperatures, due to energy differences between different rotations [14, 15]. We, however,
see no sign of that. The twist angles within the domains are stable from 100 ◦C up to 600 ◦C for all
samples studied. However, we did observe a more subtle thermal influence on the moiré pattern.
At a temperature of 500 ◦C, the position of the stacking domain boundaries fluctuates slightly as
a function of time (see Figure 4a-c). Taking the difference of later images (Figure 4b-c) with the
first image (Figure 4a), we clearly see the domain boundaries shifting (Figure 4d,e). Moreover, we
can quantify these fluctuations via the difference in displacement field with respect to the image
at t = 0 s using GPA (Figure 4f,g). Interestingly, these involve the collective movement of millions
of atoms, but only over very small distances.

We stress that a translation of the domain boundary by 4 nm, as observed, corresponds to a
shift of less than half the width of the domain boundary itself [17, 42]. As the relative shift of
the layers over the full domain boundary is a single carbon bond length, the corresponding atomic
translations are less than half of that, i.e. less than 70 pm. Hence, the ‘moiré magnification’ makes
it possible to detect these sub-Angstrom changes in TBG in real time using LEEM. Our data
suggest that domain boundary displacement follows a random pattern of forward and backward
steps. This indicates a possible source for the twist angle disorder observed in low(er) temperature
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experiments [10, 18, 20, 31]: frozen-in thermal fluctuations of the moiré lattice. The thermal
fluctuations found, corresponding to ±0.005◦ for twist angle and ±0.02% for strain, are smaller
than the extracted static deformations, though not negligible. Note that these values are damped
by the intrinsic broadening of GPA and the time integration. Future experiments will focus on
deducing the detailed statistics of the domain boundary dynamics versus temperature. Following
these local collective excitations in time, will yield quantitative information on the energy landscape
of these atomic lattice deformations within the moiré lattice. This will be important to answer the
question if moiré lattices can be relaxed and homogenized using controlled annealing. If so, this
would yield higher-quality magic-angle TBG devices in which charge transport is not limited by
percolative effects and higher critical temperatures are reached.

3 Conclusion

Our quantitative LEEM study on TBG reveals a wide variety in twist angles and strain levels in a
single sample. We show that spontaneous changes in global twist angle do not occur, even during
high-temperature annealing, but that local collective fluctuations do take place. This suggests that
high-temperature annealing causes relaxation of the local moiré lattice, reducing lattice disorder.
Vice versa, this points to frozen-in thermal fluctuations as a possible source of the (significant)
short-range twist angle disorder observed previously. Furthermore, this potentially offers insight
into energetic aspects of the atomic lattice deformation within the moiré lattice.

We also report the observation of stable topological defects, i.e. edge dislocations, in the moiré
lattice of two Van der Waals layers. Combining our methods with other techniques that can access

6



the electronic structure, such as STS, nanoARPES, and even in-situ potentiometry [43], will allow
for a systematic study of the electronic properties around these defects. Finally, the methods we
describe here extend beyond TBG, to any type of twisted system. Therefore, our work introduces a
new way of studying deformations of moiré patterns and of connecting these to the (local) electronic
properties of this exciting class of materials.

4 Methods

4.1 Sample fabrication

The twisted bilayer graphene sample was fabricated using the standard tear-and-stack method
[1, 44]. The monolayer graphene was first exfoliated with scotch tape on to a SiO2/Si substrate.
A polycarbonate (PC)/polydimethylsiloxane (PDMS) stamp was used for the transfer process,
where the PC covered only half of the PDMS surface. After the first half of the graphene flake was
successfully torn and picked up, it was rotated by 1.0◦. The flake was then overlapped with the
bottom half and used to pick it up. The stack was then stamped on a moderately thick (∼140nm)
hBN flake, priorly exfoliated with PDMS on to a silicon substrate, along with the PC layer. Part
of the graphene flake is deliberately put in contact with the Silicon surface for electrical contact
purposes, i.e. to absorb the beam current. The whole substrate is then left in chloroform for
3 hours to dissolve the PC. All flakes were exfoliated from crystals, commercially bought from
HQ Graphene and the fabrication process was performed using the Manual 2D Heterostructure
Transfer System sold by the same company.

4.2 LEEM

All LEEM measurements where performed in the ESCHER LEEM, based on the SPECS P90 [11,
12, 45]. Samples were loaded into the ultrahigh-vacuum (base pressure better than 1.0×10−9mbar)
LEEM main chamber and slowly heated to 500◦C (as measured by pyrometer and confirmed by
IR-camera) and left to anneal overnight to get rid of any (polymer) residue. All measurements
were conducted at elevated temperatures, 450◦C – 500◦C, unless specified otherwise. The sample
was located on the substrate using photo-emission electron microscopy (PEEM) with an unfiltered
mercury short-arc lamp, by comparing to optical microscopy images taken beforehand. Spectra
were taken in high-dynamic-range mode and drift corrected and all images were corrected for
detector artefacts, as described in ref. [46]. When needed to obtain a sufficient signal-to-noise
ratio, multiple 250 ms exposures were accumulated for each image, e.g. 8 exposures (2 seconds)
per landing energy in the spectra in Figure 1b and 16 exposures (4 seconds) at each location for
the overview at 37 eV in Figure 1c,e.

4.2.1 Time series

To measure the dynamics as presented in Figure 4, a time series of accumulated 4× 250 ms = 1 s
exposure images was taken back-to-back. After regular detector correction and drift correction,
each image was divided by a Gaussian smoothed version of itself (σ = 50 pixels) to get rid of spatial
and temporal fluctuations in electron illumination intensity. To further reduce noise, a Gaussian
filter with a width of σ = 1 image ∼ 1 s, was applied in the time direction before applying GPA.

4.3 Stitching

To enable high resolution, large field-of-view LEEM imaging, the LEEM sample stage [47] was
scanned in a rectangular pattern over the sample, taking an image at each position, leaving sufficient
overlap (2µm steps at a 4.7µm field-of-view). To obtain meaningful deformation information
from this, care needs to be taken to use a stitching algorithm that does not introduce additional
deformation, i.e. as faithfully reproducing reality as the constituting images.

To achieve this, a custom stitching algorithm tailored towards such LEEM data, was developed,
as described in the Supplementary information and in the implementation [48].
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In addition, for the composite bright field in Figure 1a, minor rotation and magnifications dif-
ferences due to objective lens focus differences were compensated for. This was done by registering
the stitches for different energies using a log-polar transformation based method to obtain relative
rotations and magnification. Subsequently, areas where a color channel was missing, were imputed
using a k-nearest neighbor lookup in a regularly sliced subset of the area with all color channels
present.

4.4 Image analysis

To quantify the large deviations in lattice shape due to the moiré magnification of small lattice
distortions, we extended the GPA algorithm to use an adaptive grid of reference wave vectors,
based on related to earlier work in laser fringe analysis [32].

The spatial lock-in signal is calculated for a grid of wave vectors around a base reference vector,
converting the GPA phase to reference the base reference vector every time. For each pixel, the
spatial lock-in signal with the highest amplitude is selected as the final signal. To avoid the
problem of globally consistent phase unwrapping, the gradient of each GPA phase was directly
converted to the displacement gradient tensor. More details of the used algorithm are given in the
Supplementary information.

All image analysis code was written in Python, using Numpy [49], Scipy [50], scikit-image [51]
and Dask [52]. The core algorithms will be made available as an open source Python package [33].
Throughout the development of the algorithms and writing of the paper, matplotlib [53, 54] was
extensively used for plotting and figure creation.

4.5 Reflectivity calculations

The theoretical reflectivity spectra are obtained with the ab-initio Bloch-wave-based scattering
method described in ref. [55]. Details of the application of this method to stand-alone two-
dimensional films of finite thickness can be found in ref. [56]. The underlying all-electron Kohn-
Sham potential was obtained with a full-potential linear augmented plane-wave method within the
local density approximation, as explained in ref. [57]. Inelastic scattering is taken into account
by an absorbing imaginary potential −iVi, which is taken to be spatially constant (Vi = 0.5 eV)
over a finite slab (where the electron density is non-negligible) and to be zero in the two semi-
infinite vacuum half spaces. In addition, a Gaussian broadening of 1 eV is applied to account for
experimental losses.
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[51] Stéfan van der Walt et al. “scikit-image: image processing in Python”. In: PeerJ 2 (June
2014), e453. doi: 10.7717/peerj.453. url: https://doi.org/10.7717/peerj.453.

[52] Dask Development Team. Dask: Library for dynamic task scheduling. 2016. url: https:

//dask.org.

[53] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science & Engi-
neering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[54] Thomas A Caswell et al. matplotlib/matplotlib: REL: v3.3.2. 2020. doi: 10.5281/ZENODO.
4030140. url: https://zenodo.org/record/4030140.

[55] E. E. Krasovskii. “Augmented-plane-wave approach to scattering of Bloch electrons by an
interface”. In: Physical Review B 70 (2004), p. 245322. doi: 10.1103/PhysRevB.70.245322.

[56] Eugene Krasovskii. “Ab Initio Theory of Photoemission from Graphene”. In: Nanomaterials
11.5 (2021). doi: 10.3390/nano11051212. url: https://www.mdpi.com/2079-4991/11/5/
1212.

[57] E. E. Krasovskii, F. Starrost, and W. Schattke. “Augmented Fourier components method for
constructing the crystal potential in self-consistent band-structure calculations”. In: Physical
Review B 59 (1999), p. 10504. doi: 10.1103/PhysRevB.59.10504.

[58] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba”. In: Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC - LLVM ’15. ACM Press, 2015. doi:
10.1145/2833157.2833162. url: https://doi.org/10.1145/2833157.2833162.

12

https://doi.org/10.1063/1.4813739
https://doi.org/10.1063/1.4813739
https://doi.org/10.1063/1.4813739
https://doi.org/10.5281/ZENODO.3539538
https://doi.org/10.5281/ZENODO.3539538
https://zenodo.org/record/3539538
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://dask.org
https://dask.org
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/ZENODO.4030140
https://doi.org/10.5281/ZENODO.4030140
https://zenodo.org/record/4030140
https://doi.org/10.1103/PhysRevB.70.245322
https://doi.org/10.3390/nano11051212
https://www.mdpi.com/2079-4991/11/5/1212
https://www.mdpi.com/2079-4991/11/5/1212
https://doi.org/10.1103/PhysRevB.59.10504
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162


Supplementary information

A AFM comparison

a

c

b

Supplementary Figure 5: a, Atomic Force Microscopy overview of sample area. Locations of line profiles
and detailed topographies in Figure 6 are indicated. b,c, Line cuts along the cuts indicated in a.

Supplementary Figure 6: a, Atomic Force Microscopy of the dislocation area in Figure 12a. Area is
indicated in red in Figure 5a. b, Atomic Force Microscopy of the dislocation area in Figure 12b. Area is
indicated in yellow in Figure 5a.

To further characterize the surface properties of the sample, an AFM (JPK, NanoWizard 3)
measurement was performed in AC tapping mode following the LEEM measurements. Predomi-
nantly, the results show a very flat and clean graphene surface between folds, indicating annealing
at 500 ◦C in UHV had successfully removed the polymer residue left on the surface.

In profile 1, the terrace height sees a difference of 0.3 nm, demonstrating the graphene layer
count goes down by one at this location. This corresponds to the layer counts extracted from the
LEEM spectra.

Profile 2 to 4 shows 3 different kinds of defects in the bilayer graphene region. The ridge at
location 2 seems to be a neat folding of both the bilayer graphene flake (1.5 nm in height, four layers
of graphene), whereas profile 4 shows wrinkles that are up to 120 nm tall. This is also reflected by
the distinct patterns in the LEEM bright field overview image, respectively. While the wrinkles
merely appear black, the ridge resembles more like a unique layer count domain. Profile 3 shows
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two tears within the one layer of graphene, corresponding nicely to the defect region observed in
LEEM where monolayer graphene shines through.

The zoomed-in small scale measurements marked by the red and yellow box shows the topog-
raphy on top of two dislocations observed in LEEM. As shown in Figure 6, no distinctive feature
was observed at either dislocation. The topography, however, shows an exceptionally flat surface
with a height variation (peak-to-peak) of less than 1 nm.

B Supplementary notes on Adaptive GPA

Regular GPA is limited in the wave vector deviations (with respect to the reference wave vector) it
can measure, due to the limitations in spectral leakage. This is no problem when applied to atomic
lattices, as the expected deviations are very small there. However, due to the moiré magnification
of small lattice distortions, it does become a limiting factor when applying GPA to small twist
angle moiré lattices.

To overcome this limitation, we extended the GPA algorithm to use adaptive reference wave
vectors, based on the combination of two ideas and related to earlier work in laser fringe analy-
sis [32]: First, a GPA phase calculated with respect to one reference vector can always be converted
to the GPA phase with respect to another reference vector by adding a phase corresponding to the
phase difference between the reference vectors. Second, a larger lock-in amplitude corresponds to
a better fit between the reference vector and the data.

The adaptive GPA algorithm therefore works as follows: The spatial lock-in signal is calculated
for a grid of wave vectors around a base reference vector, converting the GPA phase to reference
the base reference vector every time. For each pixel, the spatial lock-in signal with the highest
amplitude is selected as the final signal.

It was realized that to deduce the deformation properties, reconstruction to a globally consistent
phase (requiring 2D phase unwrapping), as reported previously [31], is not strictly needed, making
it possible to circumvent the problems associated with 2D phase unwrapping. Instead, the gradient
of each GPA phase was calculated, requiring only local 1D phase unwrapping (i.e. assuming the
derivative of the phase in both the x and y direction will never be more than π per pixel, an
assumption in practice always met). Subsequently, these three GPA gradients are converted to
the displacement gradient tensor (in real space coordinates), estimating the transformation via
weighted least squares, using the local spatial lock-in amplitudes as weights.

As an added benefit, this entire procedure is local, i.e. not depending on pixels beyond nearest
neighbors in any way except for the initial Gaussian convolution in determining the GPA. This
reduces the effect of artefacts in the image to a minimum local area around each artefact (where
for in the 2D phase unwrapping they have a global influence on the phases).

However, when the gradient is computed based on phase values stemming from two different
GPA reference vectors, i.e. at the edge of their valid/optimal regions, artefacts appear due to their
relatively large absolute error. To prevent this, the local gradient of the phase with the highest
lock-in magnitude is stored alongside the lock-in signal itself in the GPA algorithm. This way,
the gradient is calculated based on a single reference phase, propagating only the much smaller
relative/derivative error between the two signals instead of the absolute error.

As mentioned in the main text, even adaptive GPA has its limits. In particular, too large de-
viations from the base reference vector can not be resolved correctly, causing an erroneous, lower,
extracted deviation, as is visible in the lower right of Figure 2e in the main text). As the defor-
mation becomes too large, e.g. towards the folds in the TBG, the highest lock-in amplitude will
occur at a different moiré peak or at the near-zero components of the fourier transform, causing
an incorrect value to be extracted.
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C Supplementary note on the decomposition of the dis-
placement field.

Kerelsky et al. [34] use the following idea to extract twist angle θT , strain magnitude ε and strain
direction θs from reciprocal moiré lattice vectors Kis: These difference vectors of the constituting
atomic lattices are written in terms of a rotated and a strained lattice vector each:

Kis = kir − kis = R(θT )ki − S(θs, ε)ki

where ki are the original lattice vectors. Kerelsky et al. assume k0 to be along the x-axis, and get
around this by taking amplitudes, discarding any global rotation. Here, we do however introduce
that global rotation, by a multiplication with R(ξ):

Kis = (R(θT )− S(θs, ε))R(ξ)ki

Eihter of these expressions can, and indeed by Kerelsky et al. is, numerically fitted to the found
amplitudes or k-vectors for each triangle. However, from GPA analysis we most naturally obtain
a Jacobian transformation Jac of the moiré k-vectors with respect to some specific set of reference
vectors with predefined strain and rotations:

Kis = (J + I)Ki0 = JacKi0 = Jac (R(θT0)− S(θs0, ε0))R(ξ0)ki := JacA0R(ξ0)ki

Note that we can force ε0 = 0→ S(θs0, ε0) = I.
This simplifies to:

JacA0R(ξ0)ki = (R(θT )− S(θs, ε))R(ξ)ki

The linear transformation is uniquely described by its effect on two points in k-space, so their
matrix representations should be equal:

JacA0R(ξ0) = (R(θT )− S(θs, ε))R(ξ)

JacA0 = (R(θT )− S(θs, ε))R(ξ − ξ0)

The left hand side is a known quantity at each position, the right hand side remains to be nu-
merically fitted or extracted. This is implemented in pyGPA using scipy.optimize and numba to
just-in-time compile the fitting code [33, 58].

Alternatively, we could formulate a symmetric expression with two strains, but without allowing
for further joint rotation of the lattices:

Ki0 = (R(θT0/2)−R(−θT0/2))R(ξ0)ki := B0R(ξ0)ki

JacB0R(ξ0)ki = (S(θb, εb)R(θT /2)− S(θa, εa)R(−θT /2))R(ξ0)ki

JacB0 = (S(θb, εb)R(θT /2)− S(θa, εa)R(−θT /2))

D LEEM stitching

To achieve stitching of images without inducing any additional deformation, a custom stitching
algorithm tailored towards such LEEM data, was developed, working as follows:

To compensate sample stage inaccuracy, nearest neighbor (by sample stage coordinates) images
are compared, finding their relative positions by cross-correlation. Using an iterative procedure,
calculating cross correlations of overlapping areas at each step, the absolute positions of all images
are found. Images are then combined in a weighted fashion, with the weight sloping to zero at
the edges of each image, to smooth out any mismatch due to residual image warping. The full
stitching algorithm is implemented in Python, available as a Jupyter Notebook[48].
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Supplementary Figure 7: Illustration of the sample stage scanning for stitched overview images. Black
arrows indicate the direction of stage movement. inset, Illustration of the square overlapping regions of
neighboring images used to determine relative positions.

It is designed for use with ESCHER LEEM images. For those images, their positions are known
approximately in terms of stage coordinates, i.e. the positions as reported by the sensors in the
sample stage. It should however generalize to any set of overlapping images where relative positions
of the images are known in some coordinate system which can approximately be transformed to
coordinates in terms of pixels by an affine transformation (rotation, translation, mirroring).

The algorithm consists of the following steps:

1. Using the stage coordinates for each image, obtain a nearest neighbour graph with the nearest
n neighbors neighbouring images for each image.

2. Obtain an initial guess for the transformation matrix between stage coordinates and pixel
coordinates, by one of the following options:

1. Copying a known transformation matrix from an earlier run of a comparable dataset.

2. Manually overlaying some nearest neighbor images from the center of the dataset, either
refining the estimate, or making a new estimate for an unknown dataset

3. Calculate an initial estimate of the pixel coordinates of the images by applying the corre-
sponding transformation to the stage coordinates

4. Apply a gaussian filter with width sigma to the original dataset and apply a magnitude sobel
filter. Optionally scale down the images by an integer factor z in both directions to be able
to reduce fftsize by the same factor, without reducing the sample area compared.

5. Iterate the following steps until the calculated image positions have converged to within
sigma:

1. Obtain a nearest neighbour graph with per image the nearest n neighbors neighbouring
images from the current estimate of the pixel coordinates and calculate the difference
vectors between each pair of nearest neighbours.

2. For each pair of neighboring images:

i. Calculate the cross-correlation between areas estimated to be in the center of the
overlap of size fftsize*fftsize of the filtered data. If the estimated area is outside
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the valid area of the image defined by mask/radius, take an area as close to the
intended area but still within the valid area as possible.

ii. Find the location of the maximum in the cross-correlation. This corresponds to the
correction to the estimate of the difference vector between the corresponding image
position pair.

iii. Calculate the weight of the match by dividing the maximum in the cross-correlation
by the square root of the maximum of the auto-correlations.

3. Compute a new estimate of the difference vectors by adding the found corrections.
Reconvert to a new estimate of pixel coordinates by minimizing the squared error in the
system of equations for the positions, weighing by modified weights, either:

i. wmod = w − wmin for w > wmin, w = 0 else, with wmin the maximum lower bound
such that the graph of nearest neighbours with non-zero weights is still connected

ii. Only use the ‘maximum spanning tree’ of weights, i.e. minus the minimum spanning
tree of minus the weights, such that only the n best matches are used.

6. (Optional) Refine the estimate of the transformation matrix, using all estimated difference
vectors with a weight better than wminest and restart from step 3.

7. Repeat step 4. and 5. until sigma is satisfactory small. Optional repeat a final time with
the original data if the signal to noise of the original data permits.

8. Select only the images for stitching where the average of the used weights (i.e. where w >
wmin) is larger than qthresh for an appropriate value of qthresh.

9. (Optional) For those images, match the intensities by calculating the intensity ratios between
the overlap areas of size fftsize*fftsize and perform a global optimization.

10. Define a weighting mask, 1 in the center and sloping linearly to zero at the edges of the valid
region, over a width of bandwidth pixels, as illustrated in Figure 8.

11. Per block of output blocksize*blocksize, select all images that have overlap with the par-
ticular output block, multiply each by the weighting mask and shift each image appropriately.
Divide by an equivalently shifted stack of weighting masks. As such information at the center
of images gets prioritized, and transitions get smoothed.

D.1 Considerations

For square grids with a decent amount of overlap, it makes sense to put n neighbors to 5 (including
the image itself), however, for larger overlaps or datasets where an extra dimension is available
(such as landing energy), it can be appropriate to increase the number of nearest neighbors to
which each image is matched.

Parameters and intermediate results of the iteration are saved in an xarray and saved to disk
for reproducibility.

D.2 Parallelization

Using dask, the following steps are parallelized:

• step 5B , where each pair of images can be treated independently. In practice parallelization
is performed over blocks of subsequent images with their nearest neighbours. This could be
improved upon in two ways: firstly by treating each pair only once, and secondly by making
a nicer selection of blocks of images located close to each other in the nearest neighbor graph.
This would most likely require another (smarter) data structure than the nearest neighbour
indexing matrix used now.

• Step 6 is quite analogous to 5B and is parallelized similarly.
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Supplementary Figure 8: a, Weight mask used to merge images. A linear slope of the weight towards
the edges of the round microchannel plate detector is used to smoothly merge images.

• Step 11 is parallelized on a per block basis. To optimize memory usage, results are directly
streamed to a zarr array on disk.

• The minimizations are parallelized by scipy natively.

E Additional images/crops
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Supplementary Figure 9: A wider range of images found in the sample from the main text as used to
determine the histograms of twist angles and strain in Figure 2 of the main text. Insets show FFT’s with
the detected moiré peaks
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Supplementary Figure 10: Locations of the crops in Figure 9 indicated in the full overview (data is the
same as Figure 1d of the main text).
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Supplementary Figure 11: a,b, Images of 2-on-2 layer twisted graphene at E0 = 17.0 eV, with twist
angles of respectively θ ≈ 1.29◦ and θ ≈ 1.02◦ c,d, FFTs of a,b with Bragg peaks corresponding to the
moiré pattern indicated in blue. Higher order moiré peaks are also visible (indicated in cyan), corresponding
to minimum detectable wavelengths of less than 6 nm.
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F Supplementary figures dislocations

a b

Supplementary Figure 12: a, Additional edge dislocation found on the sample at a lower twist angle.
b, Larger area around edge dislocation in the main text from the main text. In both case GPA phases are
also displayed.
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Supplementary Figure 13: More dislocations in the vicinity of the dislocation shown in the main text.
d, corresponds to the dislocation in the main text. θ as extracted from the shown area here is a bit lower
as unit cell area tends to be a bit larger near the dislocation.
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Supplementary Figure 14: Movement of dislocation. a, Dislocation in its original location, indicated
by red arrow. b, Image of the same area as in a,, but imaged two days later. The dislocation has moved,
as indicated by the red arrow. The former location is indicated with a blue arrow. c-e, Rendering of the
individual atomic lattices and the resulting moiré lattice from the extracted lattice parameters, showing
the atomic lattice directions.
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G Dynamics

Full movie showing larger Field of View compared to Figure 4, in real space data, difference data
and GPA-extracted displacement field.
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