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ABSTRACT Ripeness classification is one of the most challenging tasks in the postharvest management
of mulberry fruit. The risks of microbial contamination and human error in manual sorting are significant;
it may result in quality degradation and wasting of processed products. Due to advanced developments in
computer vision and machine learning, automated sorting became possible. This study presents the results of
developing and testing a computer vision-based application using convolutional neural networks (CNNs) for
the classification of mulberry fruit ripening stages. To reduce the training cost and improve the accuracy of
classification, transfer learning was used to fine-tune the CNN models. The CNN models in the test include
DenseNet, Inception-v3, ResNet-18, ResNet-50, and AlexNet. Transfer learning was used to fine-tune the
models and improve the accuracy of classification. The AlexNet and ResNet-18 networks exhibited the
best performance with 98.32% and 98.65% overall accuracy for classifying the ripeness of white and black
mulberries, respectively. Moreover, the performance of the models did not change when the data sets of both
genotypes were mixed. The ResNet-18 was able to classify both genotype and ripeness from 600 fruit images
in 2.36 min with an overall accuracy of 98.03%, which was superior to other architectures. It indicates that
the model could be used for precise classification of the ripening stages of mulberries and other horticultural
products, as a part of an automated sorting system.

INDEX TERMS Convolutional neural network, computer vision, online detection, ripening classification,
transfer learning.

I. INTRODUCTION
Mulberry (Morus spp., Moraceae family) is one of the
fruit species, widely distributed from temperate to sub-
tropical zones of the northern hemisphere to the tropi-
cal zones of the southern hemisphere [1], [2]. Among the
24 known Morus cultivars, white mulberry (Morus alba L.),
black mulberry (Morus nigra L.), and red mulberry
(Morus rubra L.) are the most cultivated species in the
world [3]–[5]. They are an excellent source of many nutri-
tive compounds such as vitamins, minerals, polysaccha-
rides, fatty acids, and amino acids [3], [6], as well as
phenolic compounds including carotenoids, anthocyanins,
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flavonoids, and phenolic acids [7], [8] with the health-
promoting and pharmacological effects, such as anti-cancer,
anti-cholesterol, anti-inflammation, anti-diabetic, anti-aging,
antioxidant, anti-obesity and neuroprotection [9], [10].
In addition to high nutritional value and bioactivity, the low
acidity and very sweet taste of white mulberry and the slightly
acidic flavor and attractive dark color of black mulberry
led to a rapid increase in their production and consump-
tion [11], [12]. The fully ripened fruits are usually con-
sumed either fresh or used as ingredients in marmalade, tea,
vinegar, wine, juice, jam, ice cream, jelly, syrup, food col-
orant, natural dyes, dried fruits, and other food and cosmetic
products [4], [5], [13].

Fruit ripening is accompanied by the color change because
of the pigment concentration in the fruit skin [4], [6].
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FIGURE 1. Distribution of white (a) and black (b) mulberries with different ripening levels on a branch (Adapted from
https://www.trees.com/mulberry-trees).

During growth period (∼ 25 to 30 d), mulberry skin color
changes from green (unripe) to white, red, purple-black (fully
ripe) [14]. Mulberry is a non-climacteric product, therefore,
its harvest in the suitable ripening stage is highly significant
from a nutritional and economic perspective [11].

Mulberry harvest operation is usually carried out by
spreading a sheet under a tree and shaking the branches
mechanically or manually [15], [16]. Due to alternate ripen-
ing patterns (Fig. 1), harvest includes a mixture of fruits
at various ripening levels [14], [17]. This inconsistency of
the product negatively affects its commercial value and mar-
ketability [18]. On the other hand, fresh mulberry is available
only in the short term and it is hardly commercialized. Fresh,
fully ripened fruits decay fast after harvesting due to the
soft structure, high moisture content, respiration, growth, and
proliferation of microorganisms on the surface [2], [3], [10].
Although their shelf-life can be extended by up to six weeks
at cold storage, they cannot be preserved for a long time at
ambient temperature [19]. Therefore, further processing is
required to extend the availability and utilization of health
benefits. Unfortunately, fruits with a low ripening index are
discarded and wasted during quality control [11], [14]. As a
result, the classification of fruits from a ripening stage per-
spective is essential for initial sorting. At this stage, unripen
or unmarketable fruits could be separated from the batch for
the next processing, while the best quality fresh fruits are
delivered to consumers [1], [18].

The popularity of mulberry fruits among consumers and
processing companies increases due to their recently dis-
covered nutritional and nutraceutical value [7], [20]. Since
the nutritional and functional compounds decrease and/or
increase during ripening, a proper classification approach
would extend the range of applications of mulberries in food
and pharmaceutical industries [4], [14], [21]. Due to the
good performance of deep learning models in classifying

agricultural products, in this paper we consider using the deep
neural networks to classify the mulberry fruit according to
their ripeness.

A. PROBLEM STATEMENT
Unfortunately, the mulberry industry has significant prob-
lems with mulberry classification. Usually, identification
of the ripening degree of mulberry fruits is done by
trained personnel through visual inspection of fruit color.
This process is exhausting, time-consuming, subjective, and
costly [22], [23]. Alternatively, identification of ripening
stages can be done by chemical or physicochemical meth-
ods [24]. Although these methods have better accuracy,
they are time-consuming, costly, destructive, and sometimes
require complex analytical equipment. They allow quantify-
ing total flavonoids, anthocyanins, and total soluble solids
(TSS), but are limited to a certain amount of samples, which
is not suitable for automatic sorting systems [25], [26].

Therefore, the need for an automated non-destructive
sorting system to increase fruit utilization and supply
high-quality mulberry products to consumers is indispens-
able. Recently, smart analytical tools such as spectroscopy
and spectral imaging, electronic noses, computer vision have
been utilized to evaluate ripening levels of fruits [27], [28].
Some of them use machine learning and pattern recognition
techniques [26], [29], [30]. Table 1 summarizes the relevant
research for various horticultural products using the tradi-
tional machine learning algorithms and handcrafted features.
Despite the progress in the classification, these applications
are limited because of the following reasons:

1) The complexity of these methods due to the manual
choice of features [31].

2) Inability to differentiate the subtle differences between
subordinate classes [24].
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TABLE 1. Comparative analysis of classical machine vision techniques applied for ripening stage classification.

B. NOVELTY
Despite recent advancements in computer vision, only one
research has been conducted to classify the ripening stages of
mulberries [17]. In this work, traditional handcrafted features
and two traditional machine learning classifiers, i.e., ANN
and SVM, have been used. The good performance of deep
learning networks in many studies in the classification of
agricultural products prompted us to examine these models
to classify the mulberry fruit according to their ripeness.
Our study is the first-time attempt to solve the challenge
of accurate detection of mulberries ripening stage by using
deep learning. This approach is more accurate, enabling the
classification of 4 ripening stages, which is more challenging
compared to the previous research (3 ripening stages). It was
demonstrated that deep learning can automatically extract
features without human intervention and accurately classify
the ripening stage of mulberries. Another novelty of this
paper is the calculation of the time required to complete the
classification process, which plays a key role in the design of
smart mulberries sorting system. This is in contrast to [17],
which did not examine the classification time.

C. RELATED WORK
So far, the application of deep learning models in
precision agriculture have shown advantages for automatic
feature extraction and learning, transfer learning, quick adap-
tation to a new problem, dealing with heterogeneous big
data, and obtaining higher accuracy and excellent perfor-
mance [31], [32]. Convolutional neural networks (CNN) and
their derivatives have shown to be among the most successful
techniques in image classification and recognition [24], [33].

Recently, several studies have applied CNNs for ripeness
classification by analyzing RGB images of fruits. For
example, Zhang et al. [24] designed a CNN structure for
fine-grained classification of banana maturity. The proposed
CNN achieved a 95.6% classification accuracy, which was
higher than conventional strategies such as Gabor + SVM,
Wavelet + SVM, Wavelet + Gabor + SVM, and combined
features+ SVM approaches. Another CNNmodel was devel-
oped to classify five stages of tomato maturity based on skin
color, i.e., green, light pink, pink, light red, and red [34].
The model was able to detect 100 images in less than 0.01 s
with 91.9% accuracy. Halstead et al. [35] developed a robotic
vision system for classifying the sweet pepper ripeness into
three classes (unripe, partially ripe, and ripe) based on the
parallel Faster R-CNN technique. The framework yielded a
classification accuracy of 82.1%. Ge et al. [33] employed
the Mask Region-CNN model to detect and classify differ-
ent ripening levels (raw, pink, and ripe) of strawberries in
farm conditions. Mohtar et al. [36] adopted an Inception-v3
model to classify six stages of ripening of mangosteen fruit
with a classification accuracy of 91.9%. Liu et al. [37]
proposed a modified densely-connected convolutional net-
work (DenseNet), aiming to detect the maturity of tomatoes
in complicated images. The detection rate of the improved
DenseNet network was superior compared to the residual
network (ResNet), DenseNet, and single-shot detector (SSD)
frameworks. Huang et al. [38] developed a fuzzy Mask
R-CNN model to classify the ripeness levels of cherry toma-
toes into 4 categories. Their model was able to achieve
an accuracy of 98%. In another study, Ramos et al. [39]
attempted to classify the ripening stage of two grape cultivars.
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In their work, they employed two CNN architectures con-
taining 10 convolutional layers and VGG-19. The authors
reported that changing the number of ripening classes from
three to eight would improve the classification accuracy from
65.30 to 93.41%. To detect different maturity levels of date
fruit, Faisal et al. [40] used three pre-trained architectures:
VGG-19, Inception-v3, andNASNet. They achieved a correct
classification rate greater than 0.99.

D. MAIN CONTRIBUTIONS AND PAPER STRUCTURE
Our study fills the gap in the knowledge, makes the following
significant contributions:

1) To best of our knowledge and literature survey, this
research is the first attempt to determine the ripening
stages of mulberries using CNN-based deep learning
architecture.

2) The performance of different CNN architectures includ-
ing DenseNet, Inception-v3, ResNet-18, ResNet-50,
and AlexNet has been evaluated for this classification
problem.

3) To minimize the number of training images and reduce
the training time, CNNmodels have been fine-tuned and
optimized on our target data sets.

The remainder of this paper is structured as follows:
In Section II, the materials and methods used in the study
including the computer vision system and detection models,
are presented and explained. In Section III, the results of the
testing of proposed frameworks are reported. In Section IV,
the main results are discussed. In Section V, the design
of a computer vision-based sorting system for automatic
detection of mulberry ripening stages is proposed. Finally,
in Section VI, conclusions and suggestions for further studies
are presented.

II. MATERIALS AND METHODS
A. DATA SET COMPOSITION
Fruits of two mulberry genotypes, i.e., black and white
mulberry, grown under the same environmental conditions
were collected at four successive ripening stages, i.e., unripe,
semi-ripe, ripe, and overripe (Fig. 2). These samples were
hand-harvested by an expert in the morning from a com-
mercial orchard located in Shahriar (35◦ 36’ 43’’ N; 51◦

07’ 27’’ E), Tehran Province, Iran, in the period
May-June 2020. Fruits packed in plastic punnets were imme-
diately transported to the experimental laboratory under
refrigeration at ∼5 ◦C. Only healthy fruits without disease
and mechanical damages were selected. In total, 1000 sam-
ples of mulberry (250 samples per ripening stage) were used
for imaging under controlled conditions at 20 ± 1 ◦C and
60 ± 5% RH. The TSS value of the juice produced from the
fruits at each ripening stage was measured using a hand-held
refractometer (Master-53PT, Atago, Japan,±0.2% accuracy).
The measurements were performed ten times for each class.
The TSS values of mulberry fruits at different ripening stages
are presented in Table 2.

FIGURE 2. Different ripening stages of black and white mulberries:
(1) unripe, (2) semi-ripe, (3) ripe, and (4) overripe.

TABLE 2. Changes in total soluble solids (TSS; ◦Brix) of mulberry fruits
during different stages of ripening.

B. ACQUISITION OF IMAGES AND PREPROCESSING
Image acquisition was carried out by a digital camera (Nikon
D3200 24.2MPCMOS, Japan) placed at 25 cm from the sam-
ples in a 30L cm× 30W cm× 40H cm illumination chamber,
equipped with an 18W circular fluorescent lamp with a color
temperature of 6500 K. Each picture was acquired with the
blue background of the chamber; no zoom nor flash were
used. Images were stored in RGB format with a resolution
of 300 dpi and an image size of 4320 × 3240. Image seg-
mentation was accomplished by the modified unsupervised
segmentation algorithm introduced by Aganj et al. [41]. This
procedure includes converting RGB images into other color
spaces including CIE Lab, HSV, and YCbCr [32]. Within
these color spaces, the strongest contrast between the mul-
berries and background was obtained in YCbCr color space.

C. CNN MODELS
A typical structure of a deep CNN is composed of input and
output layers, as well as multiple hidden layers.

The hidden layers of a CNN are generally made up of
convolutional, pooling, activation, and fully connected layers
and in some cases a Softmax layer [42], [43]. The CNNs
have as a common characteristic that they can extract the
features automatically from data and visualize the extracted
features. For example, Fig. 3 shows visualization features
of the first, intermediate, and last convolutional layers of
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FIGURE 3. An example of visualization results of the ResNet-18 model. The figure shows the output features of the first, intermediate, and last
convolutional layers at the top as well as feature maps of these features at the bottom.

the ResNet-18 model, as well as the activation of these
features. The first convolutional layers mainly extract the
primary features like colors and edges. The filters in the
intermediate layers mostly contain texture information which
is made of a combination of edges and colors. With the deep-
ening of layers, their outputs become increasingly abstruse
and less visually interpretable. Along with ResNet-18, four
other well-known CNNs, such as AlexNet, Inception-v3,
ResNet-50, and DenseNet, have been studied. These net-
works have been successfully used for a range of different
image recognition tasks, such as leaf disease classification
(ResNet by Deeba and Amutha [44] and Inception-v3 by
Qiang et al. [45]), remote sensing (AlexNet, ResNet-34,
ResNet-50, ResNet-101 ResNet-152, VGG-16, VGG-19 and
DenseNet-121 byRohith andKumar [46]) and freshwater fish
detection (DenseNet by Wang et al. [47]). Further, a short
explanation of each CNN included in our study is provided

hereafter. The workflow of our research with respect to test-
ing of CNNs for the new task of classification of mulberry
ripeness is illustrated in Fig. 4.

1) ALEXNET
AlexNet was introduced by Alex Krizhevsky [48] to compete
in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC2012). The original design utilized two graphics
processing units (GPUs) to speed up the training, but in this
study, the single GPU processing version is used as it is
more efficient with the newer GPUs. The AlexNet includes
five convolutional and three fully-connected layers to process
227 × 227 pixels’ images. In the first two fully connected
layers, the Dropout regularization technique was applied to
reduce the overfitting. Rectified Linear Units (ReLU) was
utilized for all the hidden layers and Softmax for the output
layer as the activation functions.
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FIGURE 4. Schematic presentation of the workflow for classification of mulberry fruits.

2) RESNET
He et al. [49] introduced this CNN architecture to push
the depth of convolutional networks to its limits. Due to
a network-in-network (NIN) architecture, ResNet is theo-
retically capable of having an infinite depth without losing
accuracy. In practice, it can have up to 152 layers by stacking
‘‘residual blocks’’ throughout the network. The NIN net-
works use blocks that have few convolutional layers but more
complex structures (known as micro neural networks). These
blocks help the whole network to extract better features by
focusing on a smaller receptive field, instead of the usual
convolutional networks, which scan the input image using
linear filters [50]. ResNet has many stacked residual blocks,
including a set of convolution and pooling layers. Although
it has a similar architecture to AlexNet, it is about 20 times
deeper due to the overcoming of the so-called degradation
problem. ResNet has several implementations with different
depths. In this study, ResNet-18 and ResNet-50 have been
used.

3) INCEPTION-V3
In 2015, Google introduced a network called GoogLeNet,
also known as inception-v1 [51] in order to achieve the perfor-
mance of a deep network with a light-weight structure [52].
Inception-v1 has different kernel sizes (1 × 1, 3 × 3, 5 × 5)
to extract feature maps in different scales, and by stacking
them, the model can extract more features in total. This also
reduces the parameters and accordingly reduces the computa-
tion [45]. Inception-v3 breaks down a large-scale convolution
kernel into smaller convolution kernels (for instance breaks
3 × 3 kernels into two (1 × 3, 3 × 1) kernels). In this man-
ner it contributes to further reduce network parameters and
results it faster to runwithout sacrificing overall performance.
At the same time this enables to extend the depth of the
network [52].

4) DENSENET
In 2017, the idea of densely connected CNNs was pro-
posed by Huang et al. [53]. This architecture is introduced
to solve a notorious problem regarding very deep networks
known as the ‘‘vanishing-gradient’’. The layers in DenseNet
are connected to every other layer feed-forwardly and the
feature-maps of each layer are used as inputs into all sub-
sequent layers. This means that for a given network with n
layers, there are 2n(n + 1) direct connections between each
layer and its subsequent layers, to compare with traditional
CNNs with n layers which have n connections. In addition to
mitigating the vanishing-gradient problem and reducing the
number of parameters, DenseNet strengthens feature propa-
gation and encourages feature reuse.

D. FINE-TUNING THE MODELS
A transfer learning approach was utilized to benefit from the
pre-trained network by adjusting its parameters to our data
set; this procedure is also known as fine-tuning. Fine-tuning
is faster than training from scratch as a pre-trained network
already has established weights. These weights are the result
of learning over a data set (usually ImageNet) and help the
network to train the features faster [42]. In order to realize
this, the convolutional layers were frozen and the dense layer
after those layers was trained. Furthermore, the last fully
connected layer of networks wasmodified to have four output
classes according to four levels of ripeness for either black or
white mulberry respectively. If both data sets were combined,
the last connected layer was modified to eight outputs for the
genotype and ripeness detection.

Given that one of the most obvious approach to avoid over-
fitting is initializing all theweights of components in CNNs to
a pre-trained model, ImageNet pre-trained CNNs have been
used in all the experiments. It improves the generalization and
the performance of the model [54].
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TABLE 3. Specific parameters of the models in the evaluation.

E. SOFTWARE AND HARDWARE PLATFORM
All these networks are implemented in the MATLAB Deep
Learning Toolbox (MATLAB R2020b, Mathworks Inc.) and
Python 3.6. The parameters for each network are summarized
in Table 3. The training was done using a machine with
AMD Ryzen 9 3900 12cores/24thread 3.7GHz CPU, 128 GB
DDR4 RAM, and a GeForce RTX 2080Ti GPU card with
11GB memory. The machine was installed with 2 GPU’s but
for the experiments only one was used.

III. RESULTS
A. PERFORMANCE EVALUATION
The performance of the selected deep learning models for
the recognition and classification of mulberry fruits was
evaluated based on multiple indicators: training accuracy,
validation accuracy, training loss, and validation loss in each
epoch. Training accuracy is a measure of model correctness
during the training phase, whereas validation accuracy is
defined as the percentage of test data truly classified by the
trained model. The cross-entropy error was used as the loss
function. A training-validation strategy for training and test-
ing the classifier’s performance was developed. The image
data set was split into two independent groups: 70% for train-
ing and 30% for validation of the trained model. The reason
for splitting the data set into two subsets is that in small data
sets, the additional split might lead to a smaller training set
which may be exposed to overfitting [55]. To provide enough
data for training, the validation set was used to assess the per-
formance of themodels. In this regard, 5-fold cross-validation
was involved to tune model hyperparameters. As a general
rule, the higher the number of iterations, the higher the detec-
tion accuracy. However, after a certain number of epochs,
the accuracy of network recognition is not increasing and
sometimes even reducing [56]. As a result, the best detection
accuracy can be achieved by selecting an optimal number of
epochs for training the CNNmodels [57]. In our experiments,
the model accuracy and the loss function were monitored dur-
ing the training process. Each of the experiments did run for a
total of 100 epochs, where the number of epochs was defined
as the number of times the network had to cycle through

the data set. One hundred training epochs were enough since
the validation accuracy and loss function demonstrated best
results around 20 to 75 epochs. This is further discussed in
detail in later subsections. Another criterion, considered in
the model evaluation, was classification time, calculated as
the time required to classify all the validation samples by the
trained algorithm.

B. WHITE MULBERRY CLASSIFICATION RESULTS
In this section, a quantitative assessment of the deep learn-
ing models for the classification of white mulberry ripeness
from images is presented. The classification performance of
AlexNet, DenseNet, Inception-v3, and ResNet with 18 and
50 layers have been compared based on the same set of met-
rics. Figure 5a-d illustrates losses and accuracies of training
and validation of the chosen deep learning models during the
training procedure. As can be deduced from Fig. 5a and c, all
models achieved high accuracy in both the training and the
validation phase, respectively. ResNet-50achieved the maxi-
mum classification accuracy without overfitting in 60 epochs.
After the 60th epoch, the curves of training accuracy and loss
reached a plateau and no significant change was observed
in both loss function and accuracy (Fig. 5a and b). As seen
in Fig. 5c and d, significant fluctuation of validation accuracy
and loss curves started after the 83rd epoch, which is the sign
of overfitting.

The behavior of Inception-v3 was similar to ResNet-50,
converging at around epoch 60. In the case of ResNet-18,
the loss and accuracy of the training set did stabilize after
about 74 epochs, while the accuracy and loss of the val-
idation set started to converge at around the same epoch
with tiny fluctuations. The DenseNet reached its optimal
performance at epoch 34. After this point, the training and
validation accuracy and loss curves started to become con-
stant. In AlexNet, the training procedure converges while
attaining reasonable accuracy and loss after around 38 epochs
(Fig. 5a and b). Similarly, the validation accuracy and loss
curves saturated after the same epoch. It is worth noting
that the very close results for training and validation accu-
racy indicate that the overfitting did not happen during the
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FIGURE 5. The behavior of the training (a, b) and validation (c, d) accuracies and losses of the white mulberry classification models.

training process [58]. The overall accuracy and loss of the
five models for ripening classification of white mulberry are
presented in Fig. 6a and b, respectively. Overall, all models
achieved an accuracy of more than 96%, with DenseNet
having the highest accuracy of 98.67% and the lowest loss
of 0.0497. On the other hand, the highest loss of 0.182 and
the lowest classification accuracy of 96.33% was obtained
with ResNet-50. Figure 7 shows the classification time of the
five CNN models. It follows that the DenseNet, despite hav-
ing the highest classification accuracy, required the longest

classification time compared to other models. AlexNet and
ResNet-18 needed significantly less time for classification
than others, with AlexNet faster than ResNet-18 by a very
small margin. These results for classification time can be
considered reasonable, since DenseNet contained the largest
number of layers, whereas AlexNet had the fewest number
of layers [57]. It can be concluded that among the compared
networks, AlexNet was the best because of overall accuracy
above 98%, very close to DenseNet. Although the loss was
slightly higher, it was 26 times faster than DenseNet.
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FIGURE 6. Comparison of overall accuracy (a) and loss (b) of proposed models.

FIGURE 7. Classification time of proposed models.

C. BLACK MULBERRY CLASSIFICATION RESULTS
In this section, the performance of deep learning models for
the classification of black mulberries ripening stage from
images is evaluated. The graphical representation of the train-
ing and validation accuracy and loss of the classifiers for each
experimental run is shown in Fig. 8a-d. In the case of the
ResNet-50 model, we observed that with the number of
the training epochs the algorithm gradually converged and
the best results were achieved for 71 epochs (Fig. 8a and b).
At the beginning of the training, the classification accu-
racy of the algorithm was relatively low and then gradually
improved. The high accuracy rate and low loss rate were
achieved after about 20 epochs and convergencewas achieved
in approximately 70 epochs. With increasing the number
of epochs, the training and validation losses decreased from
about 2.6 to 0.0002 and 0.4 to 0.09, respectively. As displayed
in Fig. 8a and c, the training and validation accuracy increased

from about 23% to 100% and 86% to 98% with the progres-
sion in training epochs, respectively.

In Inception-v3, the training accuracy increased with
the number of epochs and then stabilized after the
75th epoch. After this epoch, the validation accuracy
began to decline. Likewise, the training loss became stable
after 75 epochs and the validation loss began to increase
(Fig. 8b and d), implying that the model performed better
on the training data set than on the validation data set. The
training and validation losses of the model reduced from
almost 1.3 to 0.00008 and 0.6 to 0.1 at the end of the training,
respectively.

For DenseNet architecture, the training accuracy reached
saturation at 20 epochs, but the validation accuracy fluc-
tuated between 95% and 99% starting from about the
30th epoch. The training loss for DenseNet rapidly decreased
from the first to twenty epochs and then became steady, while
the validation loss values rapidly reduced from the first to
fifteen epochs and then reasonably stabilized although fluc-
tuating between 0.06 and 0.15. As illustrated in Fig. 8a and b,
the training of the AlexNet model stopped after 60 epochs
as the training accuracy and loss started to plateau. After
this epoch, the validation accuracy of the model decreased
and the loss parameter increased (Fig. 8d). A comparison
of the results in Fig. 6a and b depicts that all proposed
CNN models can efficiently classify ripening stages of black
mulberry. For all scenarios, the training loss and accuracy
were higher or approximately equal to the validation loss
and accuracy, indicating that the networks were able to
generalize well without overfitting. The ResNet-18model
showed the best performance in both accuracy and loss
function. The accuracy of ResNet-18 was 98.65%, which
is 2.6% higher than that of DenseNet. Although DenseNet
performed the best in classifying ripening levels of white
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FIGURE 8. The behavior of the training (a, b) and validation (c, d) accuracies and losses of the black mulberry classification models.

mulberry, it was the relative worst in classifying black mul-
berry. Compared with the other CNN models, the AlexNet
had the highest loss value of 0.1716, which is twice higher
than that of ResNet-18. As shown in Fig. 7, classification
time varied from 1.05 to 31.25 min with AlexNet requir-
ing the shortest classification time and DenseNet requir-
ing the longest classification time because of an extensive
number of layers [56]. Although AlexNet was the cham-
pion in the classification time, the ResNet-18 required only
8 seconds more, which is negligibly small compared to the
overall classification time. Therefore, by considering all the

aforementioned results, ResNet-18 is considered the best
option among all networks for classifying the ripening stage
of black mulberry.

D. CLASSIFICATION RESULTS OF COMBINING BOTH
GENOTYPES
The training and validation loss and accuracy curves of dif-
ferent models for the classification of both genotypes with the
ripening stage are shown in Fig. 9a-d and explained in detail
hereafter.
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FIGURE 9. Training (a, b) and validation (c, d) accuracy and loss curves of the CNN models for classification of both genotypes.

ResNet-50: The best performance of the ResNet-50 model
was reported around epoch 63 because of the greatest training
accuracy and the lowest training loss (Fig. 9a and b). The
training loss and accuracy saturated after 63 epochs, so the
slope of both training plots was close to zero. The accuracy
of the validation data set increased continuously up to epoch
63 but then started to decrease. In the same manner, the loss
decreased continuously up to epoch 63 but then started to
increase (Fig. 9c and d).

ResNet-18: The ResNet-18 model required a lower
number of epochs (about 33) to reach the desired

performance than the ResNet-50. Fig. 9b and d show
strong fluctuation in the training and validation losses
between the 46th and 78th epochs, indicating overfitting.
However, after the 78th epoch, there were no excessive
fluctuations, which tells that overfitting was considerably
decreased.

Inception-v3: As shown in Fig. 9b and d, both training and
validation loss of Inception-v3 decreased with the number of
epochs and tended to flatten. The accuracy of the training and
validation sets of themodel reached optimal accuracy at about
30 epochs (Fig. 9a and c).
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DenseNet: For the DenseNet model, it took around
43 epochs for the network to converge appropriately. It is vis-
ible from the trends in Fig. 9a and c, initially, the training and
validation accuracy values rose sharply. Later, the growth was
gradual and reached a plateau. Training and validation losses
dropped consistently and converged, indicating a well-fitting
model (Fig. 9b and d).

AlexNet: The training set loss in AlexNet rapidly declined
in the first ten epochs and then slightly fluctuated as the num-
ber of epochs increased (Fig. 9b). From Fig. 9d it follows that
the validation loss became relatively stable after 42 epochs.
After the 42nd epoch, the fluctuations in the accuracy of the
validation set were negligible: around 97%with 3% tolerance
(Fig. 9c). No discrepancy between the training and validation
accuracies implies that the proposed model had no evident
overfitting.

ResNet-18 performed better than the other four models in
our study, reaching an accuracy of 98.03% and loss of 0.0614,
in contrast to ResNet-50, which had the lowest accuracy
(94.83%) and the highest loss (0.1678). Fig. 6a and 6b illus-
trate the overall accuracy and loss of the proposed models for
the classification of both genotypes based on their ripening
stage. It follows that the classification capability of the pro-
posed networks is generally maintained the similar, despite
the combination of data sets and the increasing complexity of
the problem. From Fig. 7 it follows that the classification time
of all models for the mixed batch increased compared to other
scenarios. For example, DenseNet required the longest clas-
sification time (40.14 min), while AlexNet had the shortest
classification time (2.1 min). This is logical since the models
perform two simultaneous tasks of classifying the genotype
and degree of ripeness. Although AlexNet had the shortest
classification time, the time taken by ResNet-18 to complete
the classification process was only 15 sec longer. Given these
results, ResNet-18 was selected as the best model for the
classification of genotype and ripeness of mulberries.

The superiority of the ResNet-18 over other models is
related to its well-designed topology and structure. One of
the common problems among CNN models is performance
saturation specifically in deep networks [59]. The ResNet-18
overcomes this issue by implementing an identity shortcut
connection, which skips one or more layers and performs
identity mapping of the layer than the original mapping [60].
Through the residual connections, all the inputs can forward
propagate faster across the layers [49]. On the other hand,
ResNet-18 architecture has a shallow depth which reduces the
overfitting problem, parameters and overhead of computing
resources [61]. In general, ResNets are easy to optimize and
can easily obtain accuracy gains from considerably increased
depth.

IV. DISCUSSION
Manual classification of mulberry fruit ripening stages at
different points of the production chain, i.e., farmers, man-
ufacturers, distributors, and retailers, is a challenging task.
The introduction and application of novel technologies may

help in solving the problem of real-time detection and clas-
sification of fruits according to ripening level. Our research
has been a first step into developing a new intelligent sorting
system, based on computer vision and deep learning tech-
niques, to enable recognizing and classifying white and black
mulberries into four classes, i.e., unripe, semi-ripe, ripe, and
overripe. The potential of the deep learning technique to solve
this problem is substantiated by the excellent performance
of the CNN models that were evaluated. From the literature,
only one attempt is known to classify the mulberry fruit based
on the ripening stage [17]. In this study ripeness of red and
white mulberry fruit were classified into three categories,
i.e., unripe, ripe, and overripe. In addition to those three
classes, the feasibility of classifying the semi-ripe class was
also examined. For the classification task, the two tradi-
tional machine learning methods, i.e., ANN and SVM, were
applied with handcrafted features. The results of this study
are, unfortunately, difficult to compare with ours, because
of differences in materials, techniques, data sets, as well as
classification criteria.

Our approach is based on deep learning frameworks,
i.e., AlexNet, DenseNet, ResNet-18, ResNet-50 and
Inception-v3, which do not require manual definition of
features. The performance of the trained CNN models in
detecting the mulberry type and ripeness demonstrated high
potential with accuracies between 95 and 98%. Moreover,
the size of the sample set in our study resulted in an increase
of the level of classification reliability. Considering the fact
that ResNet-18 and AlexNet have fewer layers compared to
the other architectures, the classification accuracy achieved
with these shallow networks was surprisingly good in com-
parison with deeper networks such as DenseNet. Although
deeper models can improve the classification accuracy [62],
increasing the number of layers raises challenges of degra-
dation, computational cost, internal covariate shifts, and
vanishing gradients [42]. Low sample size in a given data set
in deep networks can lead to overfitting. In this case, shallow
networks can be a possible solution [63]. The methodologies
presented in this paper result in a significantly better clas-
sification, adding to the knowledge on ripening detection.
From an economic perspective, potentially it is an extremely
cost-effective system because it is based on images from
low-cost digital cameras without the need for sophisticated
imaging equipment, such as hyperspectral imaging, laser
backscattering imaging, multispectral imaging, fluorescence
imaging, magnetic resonance imaging, etc.

V. SCALE-UP AND INTEGRATION OF TECHNOLOGY
In Figure 10 a proposed design of an automatic mulberry
sorting machine is depicted; it consists of a mulberry feeding
unit, conveying units, imaging equipment, and sorting mech-
anism. Mulberry fruits poured in the container are directed
to the flat conveyors which are equipped with hinged small
shallow bowls. The fruits on the conveyor belt continuously
pass through the image capturing area with a camera and
illumination system mounted exactly perpendicular to the
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FIGURE 10. The conceptual design of an automatic mulberry sorting system.

center of the conveyor. Data from the camera are transferred
to a computer in real-time to determine the fruit ripening
class. The capacity of the system is increased due to multiple
classification lines. When mulberry fruit reaches the exact
location, determined by the speed of the conveyor, a signal
is sent by the Programmable Logic Controller (PLC) [64] to
open the bowl, which will deliver fruit to the second conveyor
to be discharged into a specified box.

To prevent bruising damage, mulberry fruits, classified as
overripe with the least mechanical strength are falling into
the box at the end of the first conveyor without dropping
on the second conveyor. From the product quality perspective,
the factors affecting the mechanical behavior of the fruit,
including the trajectory of falling, the material of the con-
veyor, and static and dynamic forces applied to the fruit, need
to be carefully evaluated before constructing such a system.

VI. CONCLUSION
This study presents a comparison of different CNN-based
models for the classification of two genotypes of mulberry,
namely white and black, according to their ripening stages.
Themodels that were evaluated include DenseNet, Inception-
v3, ResNet-18, ResNet-50 and AlexNet. These models have
been tested on a data set of 2000 fruit images (1000 per
genotype), where themodel was trained using 70% of the data
set. The performance analysis has been done by comparing
three performance metrics: accuracy, loss, and classification
time. The major contributions of this study are as follows:

(1) Although all CNN architectures achieved high accuracy,
the AlexNet model outperformed the other models in
the classification of white mulberries with an accuracy

of 98.32%, loss of 0.0559, and classification time of
about 1 min.

(2) The experimental results demonstrated that the ResNet-
18 model seems to be more reliable for the classification
of black mulberry ripening with the best accuracy, min-
imal loss, and short classification time (98.65%, 0.0871,
and 1.2 min, respectively).

(3) The overall performance of the ResNet-18 was the best
when the data sets of both genotypes were combined.
The model was neither overfitted nor underfitted. The
recognition of the fruit genotype and classification of
the ripening stage of 600 testing samples showed that
the overall accuracy, loss rate, and processing time were
98.03%, 0.0614, and 2.36 min, respectively.

The results of the current study could be extended to the
classification of more than four ripeness stages. This study
also provides the foundation for the design of an automated
sorting machine for mulberry fruit. Moreover, the deep learn-
ing frameworks applied in this study can serve as a template
for other types of horticultural commodities.
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