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ABSTRACT
We consider multi-solution optimization and generative models
for the generation of diverse artifacts and the discovery of novel
solutions. In cases where the domain’s factors of variation are
unknown or too complex to encode manually, generative models
can provide a learned latent space to approximate these factors.
When used as a search space, however, the range and diversity
of possible outputs are limited to the expressivity and generative
capabilities of the learned model. We compare the output diversity
of a quality diversity evolutionary search performed in two different
search spaces: 1) a predefined parameterized space and 2) the latent
space of a variational autoencoder model. We find that the search
on an explicit parametric encoding creates more diverse artifact
sets than searching the latent space. A learned model is better at
interpolating between known data points than at extrapolating
or expanding towards unseen examples. We recommend using a
generative model’s latent space primarily to measure similarity
between artifacts rather than for search and generation. Whenever
a parametric encoding is obtainable, it should be preferred over a
learned representation as it produces a higher diversity of solutions.
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1 INTRODUCTION

Parameter Search Latent Search
pure diversity: 54.1 pure diversity: 32.4

Figure 1: Searching the parameter space produces a more di-
verse set of artifacts than searching a VAE’s latent space. In
both cases, the same VAE’s latent dimensions were used as
niching dimensions of a quality diversity algorithm.

While engineering-driven design optimization looks for solutions
to technical problems, artistic practices are usually more concerned
with generating culturally valuable artifacts. However, these two
approaches are more similar than the seeming difference in focus
and objective would suggest. Architects and engineers often use the
output of a design optimization tool in the beginning of the design
process in order to survey the space of possibilities, where underly-
ing parameters can have complicated correlations [4]. Candidate
solutions are then expanded or contracted upon in an iterative de-
sign loop. Similarly, artists might set up an evolutionary system to
find initial inspiration and continue to it towards a desired outcome
through the iterative adjustment of the fitness function. In both
workflows, the diversity of the generated population is key to illus-
trating the range of possibilities. We propose that initial diversity
is the basis for the potential of later discoveries. Focusing on only
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one optimal individual too early limits the chances of encountering
unexpected candidate solutions.

Evolutionary multi-solution approaches such as quality diversity
(QD) algorithms have been developed for the purpose of divergent
search [19]. Defining QD descriptors by hand is a non-trivial task
which requires expertise and, depending on the domain, often can-
not compete with an automated solution [14]. Deep generative
models (GM) such as variational autoencoders (VAE) [18] can ex-
tract patterns from raw data, learn meaningful representations for
the data set and accurately produce more samples with similar
properties. Disentangled representation learning can furthermore
equip a model’s latent space with linearly separated factors of vari-
ation [5], revealing the underlying factors of a generative process.
The resulting feature compression model encodes descriptors to be
used with QD algorithms [7, 9, 14]. While the advantage of learning
from data lies in the recognition of complex patterns, the expres-
sivity of the resulting GM is entirely dependent on the quality and
representativeness of the data samples provided. This is especially
critical when relying on such a model to produce novel examples
and diverse sets of outputs. In fact, artists who employ generative
adversarial networks (GANs) often use a variety of strategies to
actively diverge from the intended purpose of these models and
produce outputs significantly different from the original data [1].

We compare the performance of multi-solution evolutionary
search in the parameter space of a generative system with the
search in the latent space of a VAE that was trained with examples
from the same system. An example of the resulting solution sets
(see Sec. 4.2) produced by the two search methods is depicted in
Fig. 1. While the latent space is built from a limited data set, the
parameter space represents the full range of the system’s possible
output. The purpose of this work is to understand how expressive
either of these search spaces are and, from this knowledge, to de-
rive recommendations for their usage. We choose the simple, yet
illustrative example problem of shape optimization, as previously
introduced [14], for easy interpretation and visualization. While
more complex domains might be closer to actual applications, they
would make presentation of our results less accessible. We assume
our findings generalize to those domains. Shape is an important
basic design element in art, architecture, engineering, as well as
graphic and industrial design. On the one hand, shapes can carry
semantic meaning (e.g. letters of a font) and on the other hand,
define the properties and visualize the form of a physical object
in engineering-driven design (e.g. the cross-section of a wing opti-
mized for aerodynamical flow).

Our work is relevant in two scenarios: 1) when the generative
process is manually defined but a VAE is used to compare artifacts
(i.e. distance/similarity estimation), and 2) when only data is avail-
able and the underlying patterns are unknown or too difficult to
extract manually and have to be learned by an appropriate model.
The present study makes the following contributions:

(1) In the context of the first scenario, we give informed rec-
ommendations of how to use a VAE to its full capacity in
combination with a QD algorithm. We test whether the la-
tent space is suitable both for searching for artifacts and
for evaluating artifacts’ similarity or whether the two steps
should be performed in separate spaces.

variational autoencoder latent space
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Figure 2: Left: variational autoencoder, center: sampling
from latent space, right: interpolated output.

(2) For both scenarios, we give evidence for the limitations of
VAEs in their ability to represent and generate examples be-
yond the original training data and, as a result, the diversity
of their output.

2 BACKGROUND
In this section, we provide background knowledge on the two core
methods used in our generative system, VAE and QD search. We
briefly discuss related work.

2.1 Variational Autoencoders
VAEs are a likelihood-based method for generative modelling in
deep learning. They follow the standard architecture of an auto-
encoder: a compressing encoder network, mapping data samples to
latent space, and a decoder network which is trained to generate
the original samples from the corresponding latent codes (Fig. 2). A
VAE can generate new samples by interpolating between training
locations in the latent space. While common autoencoders draw
from an unrestricted range of latent code values, the latent space of
a VAE is typically modelled to be a centered isotropic multi-variate
Gaussian (N(0, I )). The VAE training objective is to optimize a lower
bound on the log-likelihood of the data. We use a beta-annealing
variant of the loss term to improve disentanglement with improved
reconstruction [5]. This variant of the evidence lower bound (ELBO)
calculates the loss function L over the predicted output x and the
ground truth x̂ as follows:

L(x , x̂) = C(x , x̂) + β · (KL(x , 0, 1) − γ ) (1)
Eq. 1 consists of a reconstruction loss term, in this case the binary
cross-entropyC between prediction and ground truth, and a regular-
ization term, which penalizes a latent distribution that is not similar
to a normal distribution with µ = 0 and σ = 1. The regularization
term is calculated using Kullback-Leibler divergence and scaled by
the parameter β . The annealing factor γ is increased from 0 to 5 dur-
ing training to focus on improving the reconstruction error in the
beginning of the training and then gradually improve the distribu-
tion in latent space. The internal latent space of a converged model
provides meaningful representations in which distances between
data points correspond to their semantic similarity. In this work,
we use a VAE’s internal representation to estimate the similarity of
artifacts.

Previous work employed autoencoders for dimensionality reduc-
tion and the encoding of behavioral descriptors in a control task. In
robotics, this approach allows robots to autonomously discover the
range of their capabilities, without prior knowledge [7]. GM have
been used to distinguish parameterized representations in shape
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Figure 3: QD searches in parameter space and maintains di-
versity by only allowing solutions to compete based on their
phenotypic similarity. Candidate artifacts are assigned to an
archive based on features that are usually manually created
a priori. Candidates are only placed inside the archive if they
improve its quality value locally.

optimization [13, 14]. They have also been employed to learn an
encoding during optimization, using them as a variational oper-
ator [9]. Other GMs like GANs have been used in latent variable
evolution [2] to generate levels for the video games Super Mario
Bros. [23] and Doom [10]. A model’s latent space is searched with
an evolutionary algorithm for instances that optimize for desired
properties such as the layout or difficulty of a level. While some au-
thors view the generated levels as novel, none have studied exactly
how novel or diverse of an output such a system can produce.

2.2 Quality Diversity Search
Optimality is not always the only goal in engineering or design.
Finding a diverse set of ways to solve a problem increases potential
innovation in the design process. Algorithms built around diversity
as well as optimality enable engineers to use algorithms much
earlier in the real world design process. Multi-solution optimization
is a field that is getting more attention due to the advent of QD
algorithms and GM. QD has been shown to produce more diverse
sets of artifacts than classical approaches like multi-criterion and
multimodal optimization [14].

Multi-criterion optimization defines diversity w.r.t. solution fit-
ness. Multimodal optimization uses parametric similarity to distin-
guish and protect novel solutions, creating a diverse set of artifacts.
In contrast, QD compares solutions on the basis of phenotypic, not
parametric or objective similarity, and combines optimality with
solution diversity [12]. QD measures similarity between artifacts
based on morphological or behavioral features that can usually
only be obtained by expressing a solution to its phenotype or even
placing the artifact in its environment, i.e. through expensive simu-
lation.

QD searches in parameter space (Fig. 3), but solutions are eval-
uated based on their expressed phenotypes. Predefined feature
metrics, which measure some aspects of behavior or morphology
are used to assign an artifact to a niche in an archive, which keeps
track of the artifacts found so far. Niching is commonly used in
evolutionary approaches to protect novel solutions from not being
selected. Examples of archive features are the proportion of time
that each leg is in contact with the ground in a hexapod robot’s
walking gait [8], the turbulence in the air flow around a shape [15],
or surface area of a shape [15]. Competition between artifacts only
takes place when they are assigned to the same niche. An artifact

filled archive new candidate local competition updated archive

size: solution fitness new closest pair

Figure 4: Updating a Voronoi archive. A new candidate arti-
fact is compared to the closest artifacts. Theworse of the two
is rejected or removed from the archive and the artifact with
higher fitness is kept or added to the archive. Here themaxi-
mum number of niches is set to six and the borders between
niches are drawn to illustrate each item’s range of influence
and how it changes after an update.

is only added if it survives local competition in the niche. New arti-
facts are created by selecting surviving candidates from the archive
and adding perturbations to their genome, e.g. through mutation
and/or crossover with other genomes.

The QD algorithm used in this work is based on an alternative
formulation to MAP-Elites [8]. Elites is the common nomenclature
for high-performing archive members. In MAP-Elites, the archive
consists of a fixed grid of niches, which leads to an exponential
growth of niches with the number of phenotypic feature dimensions.
CVT-Elites [22] dealt with this problem by predefining fixed niches
using a Voronoi tessellation of the phenotypic space. Due to their
fixed archive, both methods tend to reduce the variance of the
solution set in the first iterations. Initial (random) samples tend
to not cover the entire phenotypic space and thus competition is
harsher, leading to the excluding of many solutions in the beginning.
To maximize the number of available training samples for the VAE,
the Voronoi-Elites (VE) [14] algorithm is thereforemore appropriate.
VE does not precalculate the niches. It accepts all new artifacts until
the maximum number of niches is surpassed. Only then the pairs
of elites that are phenotypically closest to each other are compared,
rejecting the worst-performing pair members.

The VE archive’s evolution is illustrated in Fig. 4. Selection pres-
sure is applied based on artifact similarity. In effect, VE tries to
minimize the variation of distances between artifacts in the (un-
bounded) archive. The total number of niches/artifacts is fixed,
independent of the number of archive dimensions. Tournament
selection is used to select artifacts from the archive. New artifacts
are created by mutation, drawn from a normal distribution.

3 STUDY SETUP
When a VAE is used for generation or search, the diversity of its
output is bound by the expressivity of its latent space. The objective
of our study is to analyze the generative capabilities of a VAE’s
latent space and give empirical evidence for its limitations.

This section outlines the details of our study’s subject domain,
the generation of two-dimensional shapes, lists the general config-
urations of the VAE and VE algorithm (specific settings for experi-
ments can be found in the experimental setups below) and explains
how the two methods are combined to build two versions of a
generative system which we compare in a series of experiments.
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Figure 5: Generation of shapes: from (a) 16 genes to (b) eight
control points, freely placed in two-dimensional space, to
(c) a smooth interpolated spline and (d) a final bitmap ren-
dering. Quality evaluation: (e) the boundary of the shape is
determined and (f) the shape’s symmetry is measured from
its center of mass.

3.1 Shape Generation
For our study, we focus on the generation of two-dimensional
shapes, similar to a data set which has been proposed for the eval-
uation for the quality of disentangled representations [16]. Here
we explain the setup of our shape generating system in the context
of its later use with the VE algorithm. The shapes are generated
by connecting eight control points which can be freely placed in
a two-dimensional space. Each control point is defined by two pa-
rameters, the radial (dr ) and angular deviation (dθ ) from a central
reference point (Fig. 5b). These 16 parameters serve as genomes,
encoding the properties of each individual. To form a final smooth
outline, the points are connected by locally interpolating splines [6]
(Fig. 5c). A discretization step renders this smooth shape onto a
square grid resulting in a bitmap of 64 × 64 pixels (Fig. 5d).

3.2 Fitness
As a simple objective and fitness criterion, we have chosen point
symmetry, which acts as an exemplary problem in generative appli-
cations, is easy to understand, and is computationally inexpensive.
To determine an artifact’s quality, first, the boundary of the artifact
is determined (Fig. 5e). Second, the coordinates of the boundary
pixels are normalized to a range of -1 to 1 in order to remove any in-
fluence of the shape’s scale (Fig. 5f). Third, the center of mass of the
boundary is determined to serve as the center of point symmetry.
Fourth, the distances to the center of pixels opposite of each other
w.r.t. the center of mass are compared. Finally, the symmetry error
Es , the sum of Euclidean distances of all n/2 opposing sampling
locations to the center, is calculated (Eq. 2). A maximally symmetric
shape is one for which this sum equals zero. The fitness function
fP (x) is calculated as follows:

fP (x) =
1

1 + Es (x)
Es (x) =

n/2∑
j=1

x j − x j+n/2
 (2)

3.3 VAE Configuration
Throughout this work, we use a VAE with a beta-annealing loss
term [3, 5] and its decoder as a mapping network from latent codes
to phenotype bitmaps (see Fig. 6). The model’s encoder network is
made up of four downscaling blocks, each consisting of a convo-
lution layer (8, 16, 32 and 64 filters respectively; kernel size 7 × 7;
stride 2) followed by a ReLU activation function. The set of blocks
is followed by a final fully-connected layer. The decoder network

inversely maps from the latent space to bitmaps through five trans-
posed convolution layers, which have 64, 32, 16, 8 and 1 filter re-
spectively, kernel size 7 × 7 and stride 2, except for the first layer
which has a kernel size of 14 × 14. The last layer is responsible for
outputting the correct size (64× 64 pixels). The weights of both net-
works are initialized with the Glorot initialization scheme [11]. The
regularization term scaling factor β was set to 4 and the annealing
factor γ was increased from 0 to 5 over the course of the training,
in order to focus on improving the reconstruction error first, and
improve the distribution in latent space later in the process. Each
model was optimized with the Adam optimizer [17] with a learning
rate µ = 0.001 and a batch size of 128.

3.4 VE Configuration
We configure VE to start with an initial set of samples, generated
from a Sobol sequence [21] in parameter space. Sobol sequences are
quasi-random and space-filling. They decrease the variance in the
experiments but ensure that the sampling is similar to a uniform
random distribution and easily reproduced. In all experiments, VE
runs for 1,024 generations, producing 32 children per generation.
Children are produced by adding a small mutation vector, drawn
from a normal distribution centered around zero with σ = 0.1, to
selected parent individuals. The selection is drawn at random from
the archive. The number of artifacts in the archive remains constant,
identical to the initial population size, over the entire experiment.

3.5 Combining a VAE with VE into a
Generative System

The VAE is combined with VE to form the AutoVE [14] genera-
tive system with the objective to produce point-symmetric two-
dimensional shapes. The difference to the original formulation is
the use of a VAE instead of a classical autoencoder, as a VAE creates
a more even occupancy of training samples in latent space as well
as allowing interpolating new examples and disentangling latent di-
mensions. The full generative process is illustrated in Fig. 7 and can
be separated into two phases: 1) initialization and 2) an evolutionary
optimization loop. At initialization time, a set of random genomes
is drawn and translated into bitmaps, their phenotypic counterpart.
The VAE is trained to convergence on this set of bitmap data. The
learned latent space is then used in the following evolutionary
process and the model’s encoder and decoder networks serve as
mapping functions between the phenotypic bitmap representations
and the model’s latent representations and vice versa.

In the evolutionary optimization loop, the VE algorithm iter-
atively updates the archive and tries to increase the diversity as
well as the quality of the archive through local competition. To
compare two candidates to each other, it relies on the VAE’s low-
dimensional latent representations, which preserve semantically
meaningful distances. We perform this optimization process in two
different search spaces for the central comparison of our study: 1)
parameter space (the explicit genome encoding) and 2) the VAE’s
latent space (the learned representation). In this way, we can eval-
uate the expressivity of a VAE’s latent space and its capability to
generate a diverse set of artifacts in comparison to the full space of
possibilities which is reflected by the 16 predefined genetic param-
eters. The performance of the two approaches is measured in terms
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Figure 7: AutoVE combines a VAE and VE into a generative
system in two phases. First, initialization: (1) a random set of
genomes is generated and (2) converted into shape bitmaps
which are used to (3) train a VAE. Second, optimization loop:
(4) VE iteratively updates the archive of candidates. We com-
pare two setups of this loop: the VE performs search either
in parameter space or in the VAE’s latent space.

of diversity of the produced set (more on our diversity metric in the
following Section 3.6). This setup allows us to study the limitations
of the latent space of a VAE and compare it to the baseline diversity
of searching for candidate solutions over the possible parameters.

3.6 Diversity Metric
In the QD community, metrics that measure the diversity of a
solution set are usually domain-dependent or require to take one of
the QD algorithms as a baseline [14]. Archive-dependent metrics
do not generalize well and introduce biases. We therefore only use
distance-based diversitymetrics that are calculated on the expressed
shapes directly. Pure diversity (PD) measures diversity within a
set of artifacts. We use the L0.1-norm, which is suitable for high-
dimensional cases [24], to find the minimum dissimilarity between
an individual item and the items in a set X (Eq. 3). The PD value of
a set X is calculated recursively and is equal to the maximum of the
sum of its value on all but one of the members and the minimum
distance of that member to the set (Eq. 4).

d(s,X ) = min
si ∈X

(L0.1(s, si )) (3)

PD(X ) = max
si ∈X

(PD(X − si ) + d(si ,X − si )) (4)

PD was first proposed in the context of many-objective optimiza-
tion [24] and has been applied to high-dimensional phenotypes [14].
PD can deal with a high number of dimensions and is consistent
with some other widely used diversity metrics. By calculating PD

size

ro
ta

tio
n

a. factors b. recombination c. interpolation d. extrapolation e. expansion

f. base shapes

Figure 8: (a) generative factors used to create data sets in
this work; (b–e) four tasks on which we compare the perfor-
mance of latent space search with parameter search, the red
rectangles indicate artifacts that either have been left out of
a data set (b, c, d) or are not available (e); (f) all base shapes
used in this work.

on a set of bitmaps, we can measure diversity directly, independent
of the representation in parameter space or the VAE’s latent space.

4 EXPERIMENTS
It is commonly assumed that GM, such as a VAE, have good in-
terpolative and reasonable extrapolative capabilities, which makes
their latent space a potentially appealing search space. But how
well a search in this space performs in terms of generating a diverse
output, to our knowledge, has not yet been adequately investigated.
In the setup of our generative system1 the latent space of a VAE
is used to search for and generate two-dimensional shapes in the
form of square bitmaps. We compare the output diversity of this
process to the baseline diversity of a search performed on the ex-
plicit genome encoding (parameter space). We aim to gain insight
into two questions: 1) how accurately can a VAE represent a variety
of shapes, that is to say how useful are its latent representations,
and 2) how well can a VAE generate unknown shapes?

All data sets in our first experiment consist of samples which
have been produced by varying two generating factors: scale and
rotation (Fig. 8). We present here a series of corresponding tasks
that we evaluate in two experiments:

a) With a complete set of samples as a baseline data set we eval-
uate the standard reconstruction error of the model in order
to determine the general quality of latent representations.

b) In the recombination task, we leave out a subset of artifacts in
the center of the ranges of values of both generating factors,
leaving sufficient examples at either end of the ranges.

c) In the interpolation task, the left-out subset of artifacts covers
the complete range of one of the two generating factors,

1The code to reproduce the experiments can be found at https://github.com/
alexander-hagg/ExpressivityGECCO2021.
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while for the other some examples remain at both ends of
its range of values.

d) The extrapolation task consists in omitted samples at one
end of values of one factor of variation, which affects the
complete range of the other factor.

e) The expansion tasks focuses on generating artifacts beyond
the two given generating factors from the complete data set.

The VAE is expected to perform reasonably well in recombining
(b), interpolating between (c) and extrapolating beyond the available
variations (d) to reproduce the samples missing from the training
data. In the expansion task (e), we expect the VAE’s latent space
to only produce artifacts of poor quality outside of the generating
factors present in the training data.

4.1 Recombination, Interpolation and
Extrapolation

We train one baseline VAE on the complete set of variations of a
base shape (Fig. 8a,f) (256 shapes, scaled by factors of 0.1 to 1.0 and
rotated by 0 to π

2 in 16 steps each) and three additional models,
each one on the data set of one special task (b–d) with held-out
samples. The VAEs are trained for 3,000 epochs, after which we
choose the models with the lowest validation error (calculated on
10% of the input data).

To determine whether the VAE can correctly reproduce, and
thus properly represent, the given shape, we measure the models’
reconstruction errors. For the baseline model this is done over the
complete data set. For the taskmodels (b–d) the reconstruction error
is calculated only on the held-out examples. We define the recon-
struction error as the Hamming distance between an input bitmap
and a generated bitmap, normalized by the total number of pixels.
The Hamming distance is useful to measure differences between
bitmaps, due to their high dimensionality. A high reconstruction
error would indicate that the model cannot properly generate the
shapes and that its latent space does not provide an adequate search
space for VE. Generating shapes to which there are no correspond-
ing training examples, the reconstruction errors of unseen shapes
that can be created with recombination and interpolation (b and c)
are expected to be lower than for extrapolation (d).

To determine the resolution of the models, we measure the dis-
tances in the latent space between the training examples for the
baseline model and between the training and the unseen examples
for the task models (b–d). If the latter are of a similar order of mag-
nitude as the first, the models are able to distinguish unseen shapes
from the training examples and from each other. This would indi-
cate that the model’s resolution is high enough to provide features
of sufficient quality to perform a VE search.

This experiment was performed separately on each of the five
base shapes (Fig. 8f) and for three different sizes of the VAE’s latent
space (4, 8, and 16 dimensions), as we assumed that the model would
not able to perfectly learn the two generating factors. The results
are reported as averages over the resulting 15 total runs.

Results. Fig. 10 shows the reconstruction, KL and total β-loss
on the validation data, during training of the models. The training
does not need much more than 1,000 epochs to converge.

Fig. 11 (left) shows the reconstruction errors for the training,
recombination, interpolation and extrapolation sets. The error the
models produce on the training samples is lower than when re-
producing the recombination and interpolation sets. As expected,
the error on the extrapolated shapes is highest. All significant dif-
ferences (two-sample t-test, p < 0.01) between the reconstruction
error on the whole data set and a hold-out set are marked with an
asterisk. The latent distances between the shapes in the four sets
are shown in Fig. 11 (right). The distance distributions are similar.

Four exemplary latent spaces are shown in Fig. 9 from models
with a latent space dimensionality of 8, which has been projected
to two dimensions with the dimensionality reduction method t-
distributed stochastic neighbourhood embedding (t-SNE) [20]. The
first latent space (a) corresponds to the baseline model, trained on
the complete training set. The other visualizations (b, c, and d) show
the three tasks in which some shapes have been omitted.

4.2 Expansion
The last task, expansion (e), cannot be treated as per the previous
experiment, because we cannot easily define an a priori ground
truth shape set “outside of latent space”. Instead, we compare the
two search spaces (parameter: PS, and latent: LS) using the frame-
work proposed in Fig. 7. We measure which one of the two search
spaces produces the most diverse set of artifacts using the PDmetric
explained above. The experiment is split up into two configurations.

In the first configuration (R), both of the compared search ap-
proaches start from the same random initial set of genomes, which
is common in many optimization problems. We increased the size of
the set to 512, as this experiment poses a more difficult optimization
problem. The genomes are translated into bitmaps, which serve as
the training data for a VAE model. VE is then performed in both
search spaces to fill two separate archives of 512 shapes each. The
resulting shape sets are compared w.r.t. their diversity and average
fitness, which are often in conflict with each other. As the transla-
tion from genome to bitmap always produces a contiguous shape,
it is reasonable to expect that a VAE would learn to produce shapes,
and not only random noise, even when starting with a randomly
generated set of examples.

Often a generative system does not start from a random set of
data, but rather a set of examples that has been observed in the
real world. A second configuration, continuation (C), is defined to
reflect this. We ask whether the diversity improves when training a
VAE with a set of high-quality generated artifacts from a previous
VE search. We use the archive of shapes produced by PS from the
random initial set (R) as training data for a new VAE model. Both
PS and LS are then performed again with this improved model.

It is expected that LS will interpolate between training samples,
but not be able to expand beyond the generative factors in the
data, except through modeling errors. Since PS is performed in the
encoding’s parameter space, this search approach should be able to
produce a higher artifact diversity in both configurations R and C.

The number of latent dimensions of the VAE has been set to
8, 16 and 32 to analyze the influence of the degrees of freedom
in latent space, when it is lower than, equal to, or higher than
the number of parameters of the genome representation. A higher
number of degrees of freedom gives an advantage to the latent
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reconstructed, training set reconstructed, not in training setground truth shapes

a. all shapes b. recombination c. interpolation d. extrapolation

Figure 9: Examples of samples and latent spaces produced by the VAE with a latent dimensionality of eight (projected to two
dimensions by t-SNE). Shapes in yellow represent samples that were present in the data set, while blue ones were not and have
been generated by the model. Black outlines show the ground truth shapes, the difference between the outlines and shapes
accounts for errors in reconstruction.
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Figure 10: VAE validation losses during training.
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Figure 11: Reconstruction errors and latent distances for
tasks a-d.

model, a lower number would give it a disadvantage. When using
16 latent dimensions, VE deals with the same dimensionality in PS
and LS. The number of filters in the VAE is quadrupled to give the
model a better chance at learning the larger number of variations.

This experiment has been repeated 10 times per configuration:
1) random initial set R in PS, 2) continuation C in PS, 3) R in LS
and 4) C in LS.

Results. Fig. 12 compares the PD and total fitness of the gener-
ated artifact sets. The diversity of PS is significantly higher than LS.
In turn, LS produces artifacts with higher levels of fitness. Although
the difference between PS and LS gets smaller when continuing
search from an updated model (configuration C), it is still signifi-
cant. Again, all significant differences (two-sample t-test, p < 0.01)
between random initialization and continuation in all configura-
tions are marked with an asterisk. Fig. 13 shows the expansion
away from the latent surface achieved by PS, analogous to our
previous hypothesis (Fig. 8e). For this visualization, the PS and LS
artifacts’ position in the 16-dimensional latent space is reduced
to two dimensions using t-SNE. The reconstruction error of the

0

50

380

460

pure diversity

total fitness

16 dim.8 dim. 32 dim.
p < 0.01

* *

PS LS

* * * *

* * * * * *

16 dim.8 dim. 32 dim.

*

R C R C R C

R C R C R C

Figure 12: Diversity (top) and total sumof fitness (bottom) of
artifact sets of both parameter (PS, green) as well as latent
search (LS, blue). VAEs were trained with 8, 16 and 32 latent
dimensions respectively. Both the random initialization (R)
and continuation (C) configurations of the experiments are
shown (in every box the two left-hand bars correspond to
R and the two right-hand to C). Significant differences (two-
sample t-test, p < 0.01) are marked with an asterisk.

model’s prediction of the PS artifacts is used as a distance measure
to the latent surface. An example of the resulting shape sets of PS
and LS is shown in Fig. 1 to illustrate the effective difference in
pure diversity.

5 DISCUSSION
VAEs are able to produce previously unseen examples through re-
combination and interpolation as expected (Section 4.1). The more
difficult task, extrapolation beyond the extremes of the generative
factors, results in a higher reconstruction error (Fig. 11). The dis-
tributions of latent distances between all four data set variants are
similar. This suggests that, even when VAEs are not able to repro-
duce the extrapolated shapes, they can still distinguish them from
the training data and from each other. That is to say, the position
of examples in the latent space reflects their semantic relationship,
as visualized in Fig. 9. Shapes are not properly reconstructed in the
extrapolation task, but they are still positioned in a well-structured
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latent space
reconstruction error

10008006004002000

PS
LS

Figure 13: Expansion in a 16-dimensional latent model (pro-
jected to two dimensions with t-SNE). We interpret the re-
construction error of a shape as its distance from the latent
surface. Samples from parameter search (PS, green) tend to
extrapolate away from the latent distribution (LS, blue).

relation to others. The presented evidence leads to the hypothesis
that expansion away from the latent surface is more difficult when
searching the latent space directly.

We further examine the results of the expansion task (Section 4.2).
The ability of a VAE to find new shapes is indirectly measured by
comparing the diversity of the artifact sets created by a parameter
(PS) and a latent search (LS). The diversity of PS is significantly
higher than that of LS, as is shown in Fig. 12. This holds as the
number of latent dimensions is increased beyond the number of
degrees of freedom in the original encoding, or when the VAE is
updated after a first VE run (C). Although a trade-off between di-
versity and fitness is expected, it becomes less pronounced in the
32-dimensional model. This provides evidence for the conclusion
that PS indeed finds a more diverse set of artifacts than LS. We
therefore recommend to use a more expressive predefined para-
metric encoding, whenever it is available, rather than the extracted
feature space of a GM such as a VAE. Yet, a GM’s latent space is
still useful for its ability to distinguish shapes and its semantically
meaningful mapping to lower-dimensional space.

6 CONCLUSIONS
In this work, we have presented a systematic study on the limita-
tions of latent spaces of deep GMs as a base for divergent search
methods, specifically the VE algorithm. Our findings quantify a
VAE’s ability to generate samples through recombination, interpo-
lation and extrapolation within and expansion beyond the distri-
bution of a given data set. We compare the diversity of generated
artifacts when VE is run either in latent space or parameter space.
Our findings show that the pure diversity of artifact sets generated
by latent space search is significantly lower than that of param-
eter space search. Based on these observations we recommend
using a VAE’s latent space as an approximate measure of similarity.
Evolutionary search for the generation of diverse outputs should,
however, preferably be performed on explicitly expressed genome
parameters, whenever these are available. The expressivity of a
VAE, when used as a generator for diverse artifact sets, is limited
by the generative factors in the training data.

Our findings are limited to multimodal continuous domain opti-
mization. The presented conclusions are only meaningful to prob-
lem settings which allow for multiple solutions. Neither did we ex-
tend them to combinatorial search. The presented problem setting

is kept simple in order to remain illustrative and easy to interpret.
Most application domains are much more complex and more work
is required to confirm or refute our assumptions on generalization.

We plan to extend these first results with a systematic study of
the individual parts of our setup and their influence on expressivity.
We will look at different priors for a VAE latent distribution, the
size of the training data set, and mapping to a higher-dimensional
latent space. Another opportunity for further study is the archi-
tecture of the generative model. Comparing the performance of a
VAE to that of an autoregressive or flow-based model, a GAN or a
transformer could highlight strengths or weaknesses of individual
modelling methods, and allow for a more general understanding of
their generative capabilities.

The usefulness of a GM’s ability to interpolate, extrapolate or
expand has to be discussed in the context of its application. In one
setting, it might be ideal to perfectly reproduce a given domain
and a model might be considered as working well if it can fit a
distribution accordingly. In another context, however, and here we
do include applications with a focus on exploration of possibilities
and discovery, a systems’s ability to surprise through its unexpected
outputs can be of value and a desirable quality.

In the real world, the assumption that a GM can learn a “per-
fect” representation does not hold. Latent search spaces are not
guaranteed to cover the whole possibility space as defined by the
underlying parameters of the system that produced the training ex-
amples. The idea that a GM can fit the “true” distribution overlooks
the fact that the data might not cover the entire range of param-
eters. Furthermore, a perfect model does not produce anything
unexpected, only creating high quality artifacts with low diversity.
A broken model, on the other hand, might not produce anything
useful. The use of modeling errors to find novel artifacts is certainly
a mechanism that can allow us to find novel solutions within the
model. An important question for future work is whether we can
use early stopping when training models to create novel yet useful
artifacts: is there a correlation between training loss and diversity?

We can assume that GMs are always limited by the data we give
them, which biases models towards the most prominent features
therein. Yet, in very high-dimensional domains for which we can
collect large data sets, like image and video data, a search in latent
space already affords a vast amount of possible outcomes, which
might be sufficient for some applications.

Surprisingly, using generative models to understand diversity
and guide evolutionary computation produces more diverse sets of
artifacts than having the models generate the artifacts themselves.
With this work, we hope to have contributed some inspiration to
using generative models in novel ways.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their valuable
comments and helpful suggestions. S. Berns is funded by the EP-
SRC Centre for Doctoral Training in Intelligent Games & Games
Intelligence (IGGI) [EP/S022325/1].

REFERENCES
[1] Sebastian Berns and Simon Colton. 2020. Bridging Generative Deep Learning

and Computational Creativity. In Proceedings of ICCC.

685



Expressivity of Parameterized and Data-driven Representations inQuality Diversity Search GECCO ’21, July 10–14, 2021, Lille, France

[2] Philip Bontrager, Aditi Roy, Julian Togelius, Nasir Memon, and Arun Ross. 2018.
Deepmasterprints: Generating Masterprints for Dictionary Attacks via Latent
Variable Evolution. In Proceedings of BTAS.

[3] Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz,
and Samy Bengio. 2016. Generating Sentences from a Continuous Space. In
Proceedings of The 20th SIGNLL Conference on Computational Natural Language
Learning. 10–21.

[4] Erin Bradner, Francesco Iorio, and Mark Davis. 2014. Parameters Tell the De-
sign Story: Ideation and Abstraction in Design Optimization. In Proceedings of
SimAUD.

[5] Christopher P. Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guil-
laume Desjardins, and Alexander Lerchner. 2017. Understanding Disentangling
in Beta-VAE. In NIPS Workshop on Learning Disentangled Representations.

[6] Edwin Catmull and Raphael Rom. 1974. A Class of Local Interpolating Splines.
In Computer Aided Geometric Design.

[7] Antoine Cully. 2019. Autonomous Skill Discovery with Quality-Diversity and
Unsupervised Descriptors. In Proceedings of GECCO.

[8] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. 2015.
Robots that can adapt like animals. Nature 521, 7553 (2015).

[9] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. 2020. Discovering
Representations for Black-box Optimization. In Proceedings of GECCO, Vol. 11.

[10] Edoardo Giacomello, Pier Luca Lanzi, and Daniele Loiacono. 2019. Searching the
latent space of a generative adversarial network to generate Doom levels. In 2019
IEEE Conference on Games (CoG). IEEE, 1–8.

[11] Xavier Glorot and Yoshua Bengio. 2010. Understanding the Difficulty of Training
Deep Feedforward Neural Networks. In Proceedings of AIStats.

[12] Alexander Hagg. 2021. Phenotypic Niching using Quality Diversity Algorithms
(accepted). In Metaheuristics for Finding Multiple Solutions, M. Epitropakis, X. Li,
M. Preuss, and J. Fieldsend (Eds.). Springer Press.

[13] Alexander Hagg, Alexander Asteroth, and Thomas Bäck. 2020. A Deep Dive Into
Exploring the Preference Hypervolume. In Proceedings of ICCC.

[14] Alexander Hagg, Mike Preuss, Alexander Asteroth, and Thomas Bäck. 2020. An
Analysis of Phenotypic Diversity in Multi-Solution Optimization. In Proceedings
of BIOMA.

[15] Alexander Hagg, Dominik Wilde, Alexander Asteroth, and Thomas Bäck. 2020.
Designing Air Flow with Surrogate-assisted Phenotypic Niching. In International
Conference on Parallel Problem Solving from Nature. Springer, 140–153.

[16] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. 2016. Beta-
VAE: Learning Basic Visual Concepts With a Constrained Variational Framework.
In Proceedings of ICLR.

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In Proceedings of ICLR.

[18] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
Proceedings of ICLR.

[19] Joel Lehman and Kenneth O Stanley. 2011. Evolving a Diversity of Virtual
Creatures Through Novelty Search and Local Competition. In Proceedings of
GECCO.

[20] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data Using
t-SNE. Journal of Machine Learning Research 9, Nov (2008).

[21] Ilya Meerovich Sobol. 1967. On the Distribution of Points in a Cube and the
Approximate Evaluation of Integrals. Zhurnal Vychislitel’noi Matematiki i Matem-
aticheskoi Fiziki 7, 4 (1967).

[22] Vassilis Vassiliades, Konstantinos Chatzilygeroudis, and Jean-Baptiste Mouret.
2017. Using Centroidal Voronoi Tessellations to Scale Up the Multidimensional
Archive of Phenotypic Elites Algorithm. IEEE Transactions on Evolutionary
Computation 22, 4 (2017).

[23] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M. Lucas, Adam Smith, and Sebas-
tian Risi. 2018. EvolvingMario Levels in the Latent Space of a Deep Convolutional
Generative Adversarial Network. In Proceedings of GECCO.

[24] Handing Wang, Yaochu Jin, and Xin Yao. 2016. Diversity Assessment in Many-
objective Optimization. IEEE Transactions on Cybernetics 47, 6 (2016).

686


	Abstract
	1 Introduction
	2 Background
	2.1 Variational Autoencoders
	2.2 Quality Diversity Search

	3 Study Setup
	3.1 Shape Generation
	3.2 Fitness
	3.3 VAE Configuration
	3.4 VE Configuration
	3.5 Combining a VAE with VE into a Generative System
	3.6 Diversity Metric

	4 Experiments
	4.1 Recombination, Interpolation and Extrapolation
	4.2 Expansion

	5 Discussion
	6 Conclusions
	Acknowledgments
	References

