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Abstract: Pulmonary arterial hypertension (PAH) is a rare, complex, and progressive disease that is
characterized by the abnormal remodeling of the pulmonary arteries that leads to right ventricular
failure and death. Although our understanding of the causes for abnormal vascular remodeling
in PAH is limited, accumulating evidence indicates that endothelial cell (EC) dysfunction is one of
the first triggers initiating this process. EC dysfunction leads to the activation of several cellular
signalling pathways in the endothelium, resulting in the uncontrolled proliferation of ECs, pulmonary
artery smooth muscle cells, and fibroblasts, and eventually leads to vascular remodelling and the
occlusion of the pulmonary blood vessels. Other factors that are related to EC dysfunction in PAH
are an increase in endothelial to mesenchymal transition, inflammation, apoptosis, and thrombus
formation. In this review, we outline the latest advances on the role of EC dysfunction in PAH and
other forms of pulmonary hypertension. We also elaborate on the molecular signals that orchestrate
EC dysfunction in PAH. Understanding the role and mechanisms of EC dysfunction will unravel the
therapeutic potential of targeting this process in PAH.

Keywords: pulmonary hypertension; endothelial dysfunction; vasoactive factors; EndoMT; inflam-
mation; TGF-β; epigenetics

1. Introduction

Pulmonary hypertension (PH) is a condition that is defined by a mean pulmonary
arterial pressure of more than 20 mmHg at rest and 30 mmHg during exercise. The range
of genetic, molecular, and humoral causes that can lead to this increase in pressure is
extensive. Therefore, PH is grouped into different classes that are based on clinical and
pathological findings as well as therapeutic interventions [1,2]. The World Health Organi-
zation (WHO) classifies PH into five groups, namely: 1. Pulmonary arterial hypertension
(PAH), 2. Pulmonary hypertension due to left heart disease (PH-LHD), 3. Pulmonary
hypertension due to lung disease (PH-LD), 4. Chronic thromboembolic pulmonary hyper-
tension (CTEPH), and 5. Pulmonary hypertension due to unclear and/or multifactorial
mechanisms [1,3,4]. PH is increasingly becoming a global health issue due to the ageing
population. Although PH-LHD and PH-LD are the most prevalent PH groups, research
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and drug development mainly focus on PAH and CTEPH, which are rarer diseases that
mainly affect younger people [5]. This review will focus mostly on PAH because of the
amount of research conducted in PAH as compared to the other four groups.

PAH is characterized by remodeling of distal pulmonary arteries, causing a progressive
increase in vascular resistance. Vascular remodeling is associated with alterations in
vasoconstriction, pulmonary artery- endothelial cells (PAECs) and -smooth muscle cells
(PASMCs) cell proliferation, inflammation, apoptosis, angiogenesis, and thrombosis, which
leads to the muscularization and occlusion of the lumen of pulmonary arteries by the
formation of vascular lesions. Some of the lesions found in PAH are plexiform lesions,
which are characterized by enhanced endothelial cell (EC) proliferation, thrombotic lesions
and neointima formation, the formation of a layer of myofibroblasts, and extracellular
matrix between the endothelium and the external elastic lamina [6,7]. One of the first
triggers for development of PAH is thought to be EC injury triggering the activation of
cellular signaling pathways that are not yet completely understood.

In normal conditions, the endothelium is in a quiescent and genetically stable state.
When activated, the endothelium secretes different growth factors and cytokines that
affect EC and SMC proliferation, apoptosis, coagulation, attract inflammatory cells, and/or
affect vasoactivity in order to restore homeostasis. Prolonged or chronic activation of
the endothelium leads to EC dysfunction, the loss of homeostatic functions, leading to
pathological changes, and it is crucial in the development of cardiovascular diseases and
so too in PAH [8,9]. Many different factors have been suggested to be triggers of EC
dysfunction in PAH, like shear stress, hypoxia, inflammation, cilia length, and genetic
factors (Figure 1) [6,10–12]. As a consequence, the endothelium switches from a quiescent
to an overactive state, where it starts to secrete vasoconstrictive factors, like endothelin-
1 (ET-1) [13] and thromboxane [14], and proliferative factors, like vascular endothelial
growth factor (VEGF), fibroblast growth factor 2 (FGF2) [15], CXCL12 [16], and reduce the
secretion of vasodilators, like nitric oxide (NO) and prostacyclin, which indicates that EC
dysfunction might play a central role in the pathogenesis of PAH. Whether EC dysfunction
is the primary cause or rather the consequence of changes in environmental factors remains
to be resolved [8,17].

The purpose of this review is to provide a state-of-the-art overview on the features
and driving forces of EC dysfunction in PAH and highlight the current progress made in
understanding this phenomenon. Finally, this review discusses several models for studying
EC dysfunction in PH and explores possible molecular targets and drugs for restoring EC
function in PH.
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Figure 1. Pulmonary artery remodeling, vascular resistance and pulmonary arterial hypertension
(PAH) development. PAH results from a progressive increase in vascular resistance caused
by pulmonary vascular remodeling. Molecular mechanisms behind the process of vascular
remodeling are still not fully elucidated but endothelial cell (EC) injury is thought to be one of
the early triggers. EC injury can be caused by shear stress, hypoxia and inflammation. Host
factors such as genetic mutations and gender but also epigenetic factors and comorbidities
are thought to play an important role in EC dysfunction. EC dysfunction leads to altered cell
signaling that induces cellular processes such as EndoMT, apoptosis, and proliferation. In
addition, changes are found in cell metabolism and in the secretion of vasoactive, coagulation
and thrombotic factors. Additionally, vascular smooth muscle cells and fibroblasts are found to
display a diseased cellular phenotype. EC dysfunction eventually promotes vasoconstriction,
thrombus formation, neointima formation, muscularization, and the development of vascular
lesions. As lumen size decreases, pulmonary vascular resistance increases and induces right
ventricle (RV) hypertrophy, with eventual RV failure.

2. Factors contributing to EC Dysfunction in PH

Approximately 80% of familial PAH (hPAH) and 20% of idiopathic cases of PAH
(iPAH) are associated with mutations in the bone morphogenic type 2 receptor (BMPR2),
but a penetrance of 20–30% suggests secondary stimuli, such as inflammation and throm-
bosis, as important contributors to EC dysfunction and PAH development [18–21]. More
recently, alterations in endothelial metabolic functions in the pulmonary vasculature are
emerging as important regulators of endothelial dysfunction.

2.1. Bone Morphogenic Type 2 Receptor

BMPR2 encodes for a transmembrane serine/threonine kinase receptor belonging
to the transforming growth factor-β (TGFβ) family of signaling proteins (Figure 2) [22].
BMPR2 modulates cellular growth, apoptosis, inflammation, and differentiation via the
binding of bone morphogenetic proteins (BMPs) to a heteromeric complex of a BMP type-I
receptor and BMPR2, in a time, concentration, and cell type dependent manner [23]. BMPs
are secreted cytokines that play important roles in vascular development and homeostasis.
Alterations in the functions of BMPs are associated with severe developmental disorders and
diverse human disease [23–25]. BMPR2 promotes the survival of PAECs depending on the
localization in the vascular bed, and it has an anti-proliferative effect on PASMCs [26–28].
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To date, over 380 PAH related mutations in BMPR2 are known, mostly loss of function
mutations [29,30]. The low penetrance of disease development associated with BMPR2
mutations observed in humans has also been confirmed in experimental models of PH,
where BMPR2 deletion alone does not induce PAH in the majority of the cases [31–33].
Interestingly, reduced levels of BMPR2 have also been found in PH patients without
BMPR2 mutations, which suggests the additional involvement of genetic modifiers or
environmental factors reducing BMPR2 dependent signaling [34–37].

BMPR2 is predominantly present in ECs lining the vascular lumen in the lung and
expression is reduced in ECs from PH lung. Therefore, mutated BMPR2 is postulated to play
a significant role in EC dysfunction in PAH [30,34]. Association between endothelial BMPR2
expression levels and PAH development was further supported by the observation that
mice with endothelial specific deletion of BMPR2 were prone to developing PAH [38,39].
PAECs overexpressing a kinase-inactive BMPR2 mutant show increased susceptibility to
apoptosis and conditioned medium from these PAECs stimulated proliferation of PASMCs
via increased release of TGFβ1 and fibroblast growth factor (FGF)-2 [40]. More recently,
mutations in GDF2, the gene encoding the BMP9 ligand, have been identified in PAH
patients and associated with reduced circulating levels of both BMP9 and BMP10 [41]. The
presence of these PAH-linked mutations in the endothelial BMPR2/ligand axis provide
additional genetic evidence to support a critical role for endothelial dysfunction in the
pathobiology of PAH. Moreover, BMP9 administration selectively enhanced endothelial
BMPR2 signaling in PAECs and reversed PH in both MCT and SuHx rats [42]. Based on
this knowledge, one might speculate a causal role for these mutations in EC dysfunction
and subsequent PAH development.

Figure 2. Transforming growth factor-β (TGF-β) superfamily signaling in PAH. The bone morphogenetic protein
(BMP)/TGF-β signaling pathway is an important factor in the existence of EC dysfunction in PAH. Decreased expression of
BMPR2 but more importantly various mutations in the BMPR2/BMP-ligand axis are associated with specific changes in EC
behavior such as increased proliferation and migration, but also structural changes that cause the loss of the protective EC
barrier. In addition, the TGF-β superfamily signaling also plays an important role the initiation of EndoMT by triggering
the overexpression of genes, like TWIST1, αSMA, and phospho-vimentin. Receptor-regulated Smads (R-Smads); Common
mediator Smad (Co-Smad); Inhibitory Smads (I-Smads).

Further evidence in the association between BMPR2 and EC dysfunction comes from
studies showing that BMPR2 deficiency in iPAH PAECs is associated with the loss of
DNA damage control via reduced DNA repair related genes, such as BRCA1 [43]. In
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addition, transcriptome analysis of PAECs from iPAH patients revealed a correlation
between reduced BMPR2 levels and the downregulation of β-catenin, resulting in reduced
Collagen-4 (COL4) and ephrinA1 (EFNA1) expression [44]. COL4 and EFNA1 both perform
intertwining roles in endothelium structure. Moreover, siRNA mediated silencing of
BMPR2 in PAECs resulted in increased PAEC proliferation, migration, and the disruption
of cytoskeletal architecture. One of the changes observed was an increase in Ras/Raf/ERK
signaling, and Ras inhibitors, like nintedanib [45], reversed the enhanced proliferation and
hypermotility of BMPR2 silencing in PAECs [46].

2.2. Inflammation

Mutations in BMPR2 are known to predispose patients to developing PAH, but low
penetrance and the time of disease onset suggest that a second hit required developing PAH.
Pulmonary inflammation is such a plausible second hit that puts patients with BMPR2
mutations at risk of developing PAH. Exposure of Bmpr2 mutant rats to 5-lipoxygenase,
inducer of lung inflammation, induced severe PAH pathology with an endothelial transfor-
mation that required TGF-β signaling [47]. However, the administration of only IL-6 to
rats and overexpression of IL-6 in transgenic mice also led to the occlusion of pulmonary
arteries and RV hypertrophy without a silent mutation of BMPR2 [48,49]. Accordingly,
it has also been found that pro-inflammatory cytokine TNFα in vitro downregulates the
expression of BMPR2 via NOTCH signaling in ECs [50]. Altogether, this could suggest that
sustained inflammation is an important trigger in PH development, potentially through
the induction of EC dysfunction. Pulmonary arteries of PAH patients showed the infiltra-
tion of macrophages, dendritic cells, and lymphocytes into the plexiform lesions and an
increased migration of monocytes [10,51]. Increased levels of pro-inflammatory cytokines
and chemokines, such as IL-1β, TNFα, and IL-6, which are known activators of vascular
endothelium, were found (Figure 3) [52–54]. Hence, has been found that IL-1β stimulates
endothelial ET-1 production [55].

Figure 3. Endothelial dysfunction in PAH. PAH is characterized by endothelial dysfunction that
causes an imbalance in the production of several endothelial-specific factors. The endothelium
presents a pro-inflammatory phenotype with an increased expression of cytokines, a pro-thrombotic
surface due to changes in the expression of clotting factors (e.g., TF) and increased expression of pro-
thrombotic factors, and an imbalanced production of vasoactive factors that promote vasoconstriction.
Upon endothelial cell injury, pulmonary artery- endothelial cells (PAECs) become dysfunctional and
alter their secretion of cytokines and other factors that regulate coagulation, thrombosis, and vascular
tone. A failure of PAECs in maintaining vessel homeostasis promotes vasoconstriction, thrombosis
and inflammation that initiate PAH disease progression.
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2.3. Thrombosis in PAH

The presence of thrombotic lesions in the pulmonary vasculature is a common patho-
logical finding in PAH [56]. However, the role of thrombosis in PAH remains controversial.
Few studies demonstrated that coagulation factors, such as proteases, tissue factor (TF),
factor Xa, and thrombin, activate the coagulation cascade, which leads to the formation of
fibrin clots that obstruct/narrow the lumen, could promote EC dysfunction, and can even-
tually contribute to vascular remodeling in PAH (Figure 3) [57]. In contrast, some studies
support the hypothesis that thrombosis is an epiphenomenon of vascular remodeling in
PAH [58]. Thus, it is still unknown whether thrombosis contributes to the pathogenesis of
PAH or acts as a bystander.

Although altered platelet activation has been reported in PAH patients, their exact
role in PAH remains controversial. Only platelets and ECs express and release von Wille-
brand Factor (vWF) upon activation, which facilitates the interaction between each other.
Circulating vWF levels are significantly increased in PAH patients, which suggests the
potential involvement of platelets in EC dysfunction in PAH [59]. CD40L, a proinflamma-
tory mediator, is expressed on the surface of activated platelets. Upon activation, CD40L
is cleaved into its soluble form (sCD40L), which is known to be greatly increased in PAH
patients [60]. sCD40L interacts with its receptor CD40, expressed on ECs, and may lead
to EC dysfunction and eventually contributes to vascular remodeling in PAH. Altogether
implicating the role of platelets in EC dysfunction and thrombosis in PAH. Although there
is considerable evidence to suggest that platelets contribute to the EC dysfunction and the
pathogenesis of PAH, the molecular mechanisms have yet to be delineated.

2.4. Coagulation in PAH

Under physiological conditions, transmembrane glycoprotein TF is expressed at
low levels in the pulmonary vessel wall, but its expression is significantly increased in
pulmonary vascular lesions of PAH patients [61–63]. Increased TF/thrombin signaling
contributes to vascular remodeling and the formation of plexiform lesions in PAH by
inducing the proliferation and migration of SMCs and mediating the migration and an-
giogenesis of ECs. Furthermore, ECs from PAH patients release enhanced TF-expressing
microparticles, further implicating TF as a crucial mediator in the vascular remodeling in
PAH [64]. PAH patients exhibit a hypercoagulable state, consistent with the increased TF
expression [65]. PAH patients have higher levels of fibrinopeptide-A (FPA), plasminogen
activator inhibitor-1 (PAI), and thrombin, and lower levels of thrombomodulin [66]. Al-
though all of the factors involved in coagulation cascade are increased in PAH, the relative
contribution of EC dysfunction to their increase remains to be elucidated.

2.5. EC Metabolism

ECs in PAH have a metabolic phenotype that is similar to that seen in cancer. ECs
in PAH have a metabolic phenotype similar to that seen in cancer, namely a metabolic
reprogramming towards increased glycolytic metabolism which renders ECs with a pro-
survival advantage and higher proliferation [67,68]. This metabolic shift is thought to be
driven through the upregulation of glycolytic enzymes PFKFB3, hexokinase, and lactate
dehydrogenase, and mitochondrial enzyme pyruvate dehydrogenase kinase (PDK) [67,
69]. Therefore, the concept of targeting EC metabolism to treat PAH is emerging and
raised great scientific interest. Based on a recent study in rodents, one such potential
target could be PFKFB3. The blockage of endothelial PFKFB3 has shown to attenuate
PH development in rats that were treated with SuHx [70]. Moreover, dichloroacetate
(DCA), which is an inhibitor of the mitochondrial enzyme PDK, has been found to improve
patient hemodynamics and functional capacity in genetically susceptible PAH patients [71].
Despite promising results and being based on metabolomic heterogeneity of PAH [72],
comprehensive metabolic characterization of ECs still needs further investigation to further
expand our understanding of the complex pathobiology of PAH.
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2.6. Shear Stress

Abundant evidence demonstrates that shear stress is altered in the pulmonary vascu-
lature in PAH. PAH is strongly associated with increased main pulmonary artery diameter
and reduced main pulmonary artery flow rate, which suggests that the shear stress is lower
globally and, thus, leads to a reduction in NO release from the endothelium [73]. Several
studies found 2–3-fold lower shear stress in PAH patients when compared to control sub-
jects, and such a reduction has a correlation with a reduction in NO bioavailability in PAH
patients. This implies that the pruning of the distal pulmonary vasculature in PAH may
be a way for the lung to preserve microvascular perfusion by increasing microvascular
resistance and elevating shear stress [74]. However, like congenital heart disease, the
microvasculature in PAH may also experience high shear stress or high oscillations in flow,
sue to increased stiffness in the pulmonary arteries [75]. Despite the lower shear stress in
the main pulmonary arteries, the pulsatility may elevate in the microvasculature and the
stiffness of the arteries increases, which explains the coupling of microvascular dysfunction
with macrovascular dysfunction.

Interestingly, decreasing the pulmonary flow via banding prevented the development
of plexiform lesions in a rat model of PAH, which suggests a causative role for increased
force transmission in the initiation and development of PAH [76,77]. However, pulmonary
artery banding in rats induced right ventricle dysfunction [78]. Furthermore, PAH patients
treated with vasodilators have shown increased survival, suggesting that dampening
microvascular shear stress or pulsatile flow may improve PAH.

Using microvascular ECs derived from PAH patients, Szulcek et al. demonstrated that
PAH ECs show a delayed shear adaptation and, thus, promoted shear induced endothelial
dysfunction and abnormal vascular remodeling [79]. In another study, pulmonary artery
ECs were subjected to high pulsatile flow, but the same mean shear stress displayed
exacerbated inflammation and increased cell elongation, which could all be normalized
by stabilization of microtubules [80]. Future research should focus on decoupling the
microvascular shear stress, pulsatile flow, oscillation index, and right ventricular function
using in vitro and in vivo models to better understand the contribution of shear stress to
the EC dysfunction and development of PAH.

3. Features of EC Dysfunction

PAH is characterized by a dysfunctional endothelium, of which the balance between
vasodilation and vasoconstriction, but also the growth factor production and cell survival
are altered (Figure 3). In addition, ECs undergo endothelial to mesenchymal transition
(EndoMT), which, all together, causes perturbations in pulmonary vascular homeostasis
that promote vascular remodeling (Figure 4).

3.1. Perturbations in Vasoactivity

Reduced vasorelaxation in PAH mainly contributes to the altered expression of the
vasodilators NO and prostacyclin. NO is a fast-reacting endogenous free radical that is pro-
duced by endothelial NO Synthase (eNOS). NO is essential for vasorelaxation via PASMCs,
but it also has antithrombotic effects and controls EC differentiation and growth [81–83].
NO has long been implicated in the pathogenesis of PAH, and the lungs of PAH patients
have reduced NO expression [84] (Figure 3). Whole exome sequencing has identified that
mutations in Caveolin-1 are associated with PAH. Caveolin-1 is highly expressed in ECs
and, interestingly, the C-terminus of caveolin-1 directly interacts with eNOS, which may
result in the disruption in NO levels, ultimately triggering PAH [85]. However, other
studies reported contradictory results and some PH patients even show an increase in
eNOS expression [84]. Furthermore, eNOS-/- mice show reduced vascular remodeling
after chronic hypoxia that is caused by reduced vascular proliferation [86], pointing out the
complexity of its role in PAH. Prostacyclin, also produced by EC with additional antithrom-
botic and antiproliferative properties [8,87–89], is synthesized from arachidonic acid, by
prostacyclin synthase, and cyclo-oxygenase (COX) [90]. Decreased prostacyclin levels are
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measured in various patients with different forms of PAH, like iPAH and HIV-associated
PAH [8,91], explaining, in part, the increase in pulmonary vasoconstriction, SMC prolif-
eration, and coagulation occurring in these patients. Interestingly, in experimental PH
models, mice overexpressing prostacyclin synthase are protected from developing chronic
hypoxia-induced PAH [92].

Figure 4. Endothelial to mesenchymal transition (EndoMT) in PAH. EndoMT in PAH is thought to
be an important process contributing to vascular remodeling. Activation by transcriptional factors,
hypoxia, haemodynamic forces, inflammation, and TGF-β/BMP pathway signaling pulmonary en-
dothelial cells (PAECs) undergo cellular transition to a mesenchymal phenotype, in which PAECs lose
endothelial markers and gain mesenchymal markers, such as αSMA and TWIST. These mesenchymal-
like cells present an invasive character and hence contribute to vascular remodeling in PAH.

ET-1, on the other hand, is a potent vasoconstrictor, which is mainly synthesized in EC
and the lungs show the highest level of ET-1 in the entire body [93]. ET-1 exhibits its effects
by binding to the ETA and ETB receptors, which activate signalling pathways in vSMCs
regulating proliferation, vasorelaxation and vasoconstriction [89,93]. ETA is predominantly
expressed on vSMCs and is involved in vasoconstriction and proliferation of these cells,
while ETB is expressed on vSMCs and PAECs, and is involved in stimulating the release of
vasodilators, like NO and prostacyclin, and the inhibition of apoptosis [55,89,93–95]. The
expression of ET-1 and its receptors is increased in lungs of PAH patients and experimental
PH models (Figure 3) [96–99]. Furthermore, a correlation exists between the expression
of ET-1 and an increase in pulmonary resistance in PAH [98]. The increased synthesis
of endothelial ET-1, accompanied with an increase in expression of ETA on PASMCs,
likely contributes to the increased vasoconstriction and vascular remodelling observed in
PAH [88,99,100]. Another vasoconstrictor, thromboxane A2, which is produced by ECs and
platelets, but is also an inducer of platelet aggregation and a vSMCs mitogen, is increased
in PAH [8,14], creating an imbalance that might contribute to excessive platelet aggregation
and vascular remodeling observed in PAH [14] (Figure 3).

At last, the expression of the growth factor vascular endothelial growth factor (VEGF)
and its receptor VEGF receptor 2 (VEGFR2) are found to be increased in ECs from plexiform
lesions from iPAH patients. Additionally, the plasma levels of VEGF are found to be ele-
vated in PH patients [101,102]. The relation between PAH and increased VEGF expression
is still poorly understood. It is suggested that VEGF levels in PAECs are elevated in early
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stages of PAH as a protective response, while, during disease progression, VEGF keeps
promoting the growth of PAECs, causing the formation of plexiform lesions [8].

3.2. Endothelial to Mesenchymal Transition

EndoMT is a phenomenon where ECs acquire a mesenchymal-like phenotype that is
accompanied with a loss of endothelial markers and increase of mesenchymal markers. In
addition, ECs lose cell-cell contact, change their morphology, and adopt a highly migratory
and invasive phenotype, thereby losing features of a healthy endothelium (Figure 4) [103,104].
In the lungs of human PAH patients and monocrotaline (MCT) and Sugen/hypoxia (SuHx)
experimental PH rat models, EndoMT was observed, whereby cells express high levels
of α-SMA and activated phospho-vimentin and VE-cadherin, indicating their endothelial
origin [105–107]. Moreover, TWIST1, which is a key transcription factor in inducing EndoMT,
is highly expressed in human PAH lungs as compared to healthy lungs [106] (Figure 4).

TGFβ treatment of PAECs induces the expression of the EndoMT transcription fac-
tors TWIST1 and SNAIL1 [103,108] and the mesenchymal markers α-SMA and phospho-
vimentin [109] (Figure 4). TWIST1 increases the expression of TGFβ, leading to enhanced
TGFβ signaling [110]. In addition, reduced BMPR2 signaling promotes EndoMT via the
upregulation of the High Mobility Group AT-hook 1 and its target gene SLUG, independent
of TGFβ signaling [111]. More interestingly, BMP-7, a protein previously described as
having anti-inflammatory and anti-tumor effects in several diseases, was attenuated by
hypoxia-induced EndoMT in PAECs both in vivo and in vitro by inhibiting the m-TORC1
signaling pathway [112]. BMPR2 loss favors EndoMT, allowing for cells of myo-fibroblastic
character to create a vicious feed-forward process, leading to hyperactivated TGFβ sig-
naling [113]. In summary, alterations in TGFβ/BMP signaling are linked to the process of
EndoMT that was observed in PAH [114].

Hypoxia is also an inducer of EndoMT through hypoxia-inducible transcription factor-
1α (HIF-1α) and HIF-2α, and both transcription factors are increased in PAH [115,116]
(Figure 4). PAH ECs display an increased expression of HIF-2α, leading to SNAIL upreg-
ulation [107]. In addition, HIF-1α knockdown alone effectively blocks hypoxia-induced
EndoMT, but also the knockdown of its downstream target gene TWIST1 showed the
effective blockage of hypoxia-induced EndoMT in microvascular ECs (MVECs); however,
it was less pronounced [117]. Nonetheless, it is important to realize that microvascular
endothelium may differ from arterial endothelial function. Finally, in addition to tran-
scription factors, microRNAs, such as miR-181b, have been shown to be implicated in
EndoMT in PAH. The overexpression of miR-181b in rat pulmonary arterial ECs (rPAECs)
attenuated inflammation-induced EndoMT by inhibiting the expression of TGF-βR1 and
circulating proteoglycan endocan [118].

3.3. Apoptosis

EC apoptosis may also play a role in PH development via vascular dropout and
selection pressure on ECs, contributing to the apoptosis-resistant phenotype of ECs in
vascular lesions [119]. Several attempts were made in order to elucidate the molecular
pathways that are involved in the regulation of PAEC apoptosis. The hypothesis is that
disturbed responses to VEGF signaling, in combination with hypoxia, cause an initial
increase in apoptosis in PAECs, leading to the emergence of aggressive apoptosis resistant
and hyperproliferative ECs that cause the formation of intimal lesions [120–122]. A possible
explanation for the initial increase in apoptosis of PAECs is that the loss of BMPR2 signal-
ing promotes mitochondrial dysfunction and subsequent PAEC apoptosis [123]. White
et al., interestingly, proposes a model in which the pro-apoptotic factor programmed cell
death-4 (PDCD4) activates the cleavage of caspase-3, inducing PAEC apoptosis. Inter-
estingly, they show that reducing PDCD4 levels in vivo by overexpressing miRNA-21
prevents PH development in SuHx rats [124]. Besides an initial increase in apoptosis, PAH
is also characterized by PAECs that are hyperproliferative and apoptosis resistant [122].
PAECs from iPAH patients showed an increased expression of pro-survival factors IL-15,



Biomedicines 2021, 9, 57 10 of 23

BCL-2, and Mcl-1, together with persistent activation of the pro-survival STAT3 signaling
pathway [122]. Furthermore, Notch1 was elevated in lungs from iPAH patients and from
SuHx rats. Notch1 contributes to PAH pathogenesis by increasing EC proliferation and
inhibiting apoptosis via p21 downregulation and regulating BCL-2 and survivin expres-
sion. Furthermore, HIF1α expression promotes Notch signaling human PAECs [125]. In
contrast, Miyagawa et al., demonstrated that contact-mediated communication between
SMC and EC activates EC derived Notch1 and alters the cells epigenome in order to regu-
late Notch1-dependent genes that maintain endothelial integrity and prevent pulmonary
vascular remodeling in a murine model of hypoxia-induced pulmonary hypertension [126].
Therefore, the role of Notch1 is complex and controversial in PAH and warrants more
research to delineate the molecular mechanisms.

4. Epigenetics

In recent years, epigenetics has become a growing field of interest in PAH research.
Currently, the main focus of study for targeting PAH is the following three mechanisms
of epigenetic regulation: DNA methylation, histone modifications, and RNA interference
(Figure 5) [17].

Figure 5. Epigenetics in PAH. In addition to genetic variations and other risk factors, such as gender,
comorbidities, and environmental factors, epigenetic variations in PAH gain interest. Differences
in DNA methylation profiles, increased histone acetylation and dysregulated miRNA expression
in PAH patients point out a growing field in PAH research that provides better understanding of
disease pathology.

DNA methylation profiling of PAECs from iPAH and hPAH patients revealed dif-
ferences in the expression of several genes that are involved in inflammatory processes,
remodeling, and lipid metabolism when compared to the controls [127]. Among those
genes, ABCA1 was found to be most differently methylated/downregulated in the discrim-
ination between PAH and controls. ABCA1 belongs to the family of ATP binding cassette
(ABC) transporters that are important for pulmonary homeostasis [127]. Furthermore,
ABCA1 is linked to PAH pathophysiology in a MCT animal model of PAH, where the
activation of ABCA1 improved RV hypertrophy and pulmonary haemodynamics [17,127].

Increased histone acetylation through histone-deacetylases (HDAC) is associated with
vascular remodeling found in PAH [128,129]. In humans, HDAC enzymes are divided
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into four classes: class-1 HDACs (HDAC-1, -2, -3, and -8), class-2a HDACs (HDAC-4, -5,
-7, and -9), class-2b HDACs (HDAC-6 and -10), class-3 HDACs (Sir2-like proteins), and
class-4 HDACs (HDAC-11) [130]. HDAC-1 and -5 show increased expression in both
lungs of iPAH patients and chronic hypoxic rats whereas HDAC-4 was only increased in
human iPAH lungs [129]. More recently, HDAC-6 has been linked to PAH pathogenesis,
possibly through the upregulation of HSP90 [131]. HDAC-6 was overexpressed in PAECs
and PASMCs of PAH patients and PH experimental models [132]. In the SuHx and MCT
rat model pharmacological HDAC-6 inhibition improved PH [132]. Several other studies
showed that class-1 HDAC inhibitors attenuate PAH by suppressing arterial remodeling
in a chronic hypoxia model and by reducing inflammation in PH-fibroblasts [129,133,134].
In PAECs, class-2a HDAC inhibitors restore the levels of myocyte-enhancer-factor-2 and
attenuate PAH in both the MCT and SuHx PAH rat models [135].

The epigenetic regulator bromodomain-containing-protein-4 (BRD4) is linked to the
pathogenesis of PAH [136]. BRD4 is a member of the Bromodomain and Extra-Terminal
(BET) motif family, which binds histones to influence gene expression [137]. BRD4 is
overexpressed in the lungs of PAH patients in a miR-204 dependent manner. It inhibits
apoptosis by sending cell survival signals [136,138], and stimulates the proliferation of
PAEC and PASMC proliferation at these sites [17,138]. The selective inhibition of BRD4
with RVX-208 restored EC function, reversed PAH in the MCT and SuHx rat models, and
supported the RV function in pulmonary artery banding model of PAH [136].

5. EC Dysfunction in Other PH Groups

Patients with PAH, which are classified as group 1, are just a proportion of the
five broad groups of patients suffering from PH. The remaining groups, group 2 (PH
due to left-sided heart disease), group 3 (PH due to lung disease), group 4 (PH due to
chronic thromboembolic disease), and group 5 (PH due to unclear and/or multifactorial
mechanisms), also present signs of EC dysfunction.

5.1. Group 2 PH

Group 2 PH is due to a complication of left heart disease and it is most common
in patients with heart failure (HF). Therefore, research in group 2 PH mostly focuses on
left ventricular dysfunction and not so much the lung vasculature. However, features of
EC dysfunction are also observed in PH-LHD [139]. An experimental model of chronic
HF showed reduced NO activity and responsiveness to NO in pulmonary arteries [140].
Moreover, ET-1 is elevated in certain PH-LHD phenotypes and ET-1 activity is increased
in plasma of patients with chronic HF. Blocking the ETA receptor caused pulmonary
vasodilation in these patients [141,142]. Furthermore, polymorphisms that are found
in eNOS also contribute to PH development in patients with LHD [143]. Despite the
presence of similar perturbations in vasoactivity between PAH and PH-LHD, treating
PH-LHD patients with drugs used to treat PAH patients was not beneficial and even
harmful [139,144].

5.2. Group 3 PH

Chronic obstructive lung disease (COPD) associated PH is the best described form of
PH in group 3. The main trigger of COPD is considered to be cigarette smoke, which causes
chronic inflammation in the lung that subsequently triggers EC dysfunction and leads to
PH [145]. Cigarette smoke decreases eNOS and prostacyclin expression in PAECs [146,147].
COPD patients can show the overexpression of VEGF and ET-1 in pulmonary arteries [148,149].
A role for HIF1α and EndoMT has also been suggested in COPD [150,151]. Although there are
similarities in EC dysfunction, the drugs used to treat PAH are currently not recommended
for group 3 PH, due to a lack of evidence how these drugs may influence PH progression in
combination with the underlying lung diseases [152].
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5.3. Group 4 PH

CTEPH develops as a result of a pulmonary embolism (PE) that does not resolve [153].
These organized pulmonary thrombi in the lungs are associated with distal vascular re-
modeling of non-occluded vessels similar to the remodeling observed in PAH lungs [153].
Whether patients develop CTEPH due to primary EC dysfunction or as a consequence of
PE remains to be resolved. Nevertheless, evidence supports that features of EC dysfunction,
which are similar to those observed in PAH, are present in these patients and could play a
causal role in CTEPH development. Activated platelets with a hyper-responsiveness to
thrombin are likely to contribute to the CTEPH pathogenesis and progression via enhancing
inflammatory responses of pulmonary ECs [154]. EC dysfunction-associated vascular re-
modeling has been suggested as a common mechanism between CTEPH and PAH [153,155].
Primary cell cultures that were isolated from endarterectomized tissue co-expressed both
EC and SMC markers, suggesting a role for EndoMT in intimal remodeling/lesion devel-
opment in CTEPH [156]. The existence of endothelial dysfunction in CTEPH pathogenesis
is further supported by the fact that conditioned medium from CTEPH-derived PAECs,
containing high levels of growth factors and inflammatory cytokines, increased PASMC
proliferation and monocyte migration [157]. In addition, PAECs from CTEPH patients
show an increased proliferation, altered angiogenic potential and metabolism, and apop-
tosis resistance [158–162]. Increased levels of soluble intracellular adhesion molecule-1
(ICAM1) in PAECs from CTEPH patients and in endarterectomy may contribute to EC
proliferation and apoptosis resistance through its effect on cell survival pathways [161].
Additionally, FoxO1, in a PI3K/Akt dependent manner, is a possible contributor to the
loss of balance between cell survival and death and it was downregulated after PE in a rat
model of CTEPH [163]. A recent study reported that decreased levels of ADAMTS13 and
increased levels of vWF levels were observed in plasma of CTEPH patients, suggesting the
role of the ADAMTS13–vWF axis in CTEPH pathobiology. However, it remains unknown
as to whether this axis plays a role in EC dysfunction in CTEPH [164]. Finally, PAECs
isolated from CTEPH patients showed a significant rise in basal calcium levels, which
is an important regulatory molecule for EC function [165]. This imbalance in calcium
homeostasis is caused by angiostatic factors, such as PF4, IP-10, and collagen type 1, which
are formed in the microenvironment that is created by the unresolved clot and eventually
leads to EC dysfunction [165]. So far, a soluble guanylate cyclase stimulator (Riociguat) is
the only PAH based therapy that has been approved in patients with CTEPH that are not
eligible for surgery [166].

6. Current and Future Perspectives

Although much progress has been made to understand EC dysfunction in PAH, to
date there is still no definitive cure and patients only have a median survival rate of
2.8 years [167]. Current therapies for PAH, which consist of calcium channel blockers, ET-1
receptor antagonists, phosphodiesterase type 5 inhibitors, prostacyclin-derivatives, and,
more recently, also Riociguat, focus on restoring the imbalanced endothelial vasoactive
factor production to promote SMC relaxation, but with limited or no effect on other features
of EC dysfunction and subsequent progressive pulmonary vascular remodeling [168–170].
Therefore, research on EC dysfunction and its stimuli to target structural changes that
narrow lumen size in PAH is vital to find a cure.

A first step towards reversing vascular remodeling in PAH is the use of apoptosis-
inducing drugs, such as anthracyclines and proteasome inhibitors. They are already used in
combination with cardio-protectants, such as p53 inhibitors, to reduce pulmonary pressure
and restore blood flow in the experimental models of PAH [171,172]. The combinatorial
use is essential in circumventing the lack of cell-type/organ specificity of cell-killing drugs.
Cancer patients, but also experimental PAH animals treated with only cell-killing drugs,
show signs of cardiotoxicity that should be prevented in PAH patients that already suffer
from reduced right heart function [171,173–175].
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Another way to target progressive pulmonary vascular remodeling focuses on restor-
ing signaling pathways and EC function, e.g., using selective TGF-β ligand traps [176] or
TGF-β synthesis inhibitors, like kallistatin, which are known to improve hemodynamics,
remodeling, and survival in experimental PH models, and to inhibit EndoMT in HUVECs,
stimulate eNOS expression, and prevent TGF-β induced miRNA-21 synthesis, respec-
tively [176,177]. However, blocking inflammation to restore normal EC function in PAH
was not successful. One explanation might be the complexity of the immune system and,
by inhibiting the bad side, one also suppresses beneficial inflammatory pathways [178,179].

Modulating BMPR2 has also been proposed as a therapeutic approach to reverse
endothelial dysfunction in PAH. A recent study comparing human induced pluripotent
stem cell-derived ECs (iPSC-ECs) from unaffected BMPR2-mutation carriers with iPSC-ECs
from BMPR2-mutation carriers that present PAH identified several BMPR2 modifiers and
differentially expressed genes in unaffected iPSC-ECs. These BMPR2 modifiers exert a
protective response against PAH by improving downstream signaling, which compen-
sates against BMPR2 mutation-induced EC dysfunction and offers insights towards new
strategies for rescuing BMPR2 signaling [180]. A potential therapy for stimulating BMPR2
signaling is through pharmaceuticals [181]. Direct enhancement of endothelial BMPR2
signaling using recombinant BMP9 protein prevents and reverses the established exper-
imental PAH [42]. However, in contrast to Long et al., Tu et al. (2019) showed that the
deletion or inhibition of BMP9 protects against experimental PH via its effect on endothelial
production of ET-1, apelin, and adrenomedullin [182]. In line with this, we have recently
shown that BMP9-induced aberrant EndoMT in PAH pulmonary ECs is dependent on
exacerbated pro-inflammatory signaling mediated through IL6 [54]. These studies show
the BMP receptor family complexity as therapeutics in PAH. More recently, ACTRIIA-Fc,
an activin and growth and differentiation factor (GDF) ligand trap, prevented and reversed
existing PH in experimental PAH models. ACTRIIA-Fc inhibited SMAD2/3 activation
and restored a favorable balance of BMP signaling versus TGF-β/activin/GDF signal-
ing. ACTRIIA-Fc is currently tested in a phase-2 clinical trial for efficacy and safety in
PAH patients (NCT03496207) [183]. However, a recent study shows that TGF-β/SMAD
signaling is regulated differently in PH animal models compared to PAH patients [184].
Therefore, more research should be performed on this complex TGF-β/activin/GDF sig-
naling. Spiekerkoetter et al. uncovered a molecular mechanism, where FK506 (tacrolimus)
restores defective BMPR2 signaling in PAECs from iPAH patients and reverses severe
PAH in several rat models [181]. Based on improvements in clinical parameters and the
stabilization of cardiac function of end-stage PAH patients in a phase-2a clinical trial, a
low dose of FK506 was proposed as potentially beneficial in the treatment of end-stage
PAH [185]. These findings open-up an area, in which correcting BMPR2 mutations in
combination with other therapies might be more successful in curing PAH. A proposed
hypothesis to cure PAH describes collecting iPSCs from PAH patients, restoring the BMPR2
mutation with CRISPR/Cas9, and reinjecting those iPSCs in the patient to normalize EC
function and signaling along with administration of drugs that could restore the protective
gene expression profile of unaffected BMPR2 mutation carriers [186]. 6-Mercaptopurine
(MP), which is a well-established immunosuppressive drug, inhibits EC dysfunction and
reverses development of PH in the SuHx rat model by restoring BMP signaling through
the upregulation of nuclear receptor Nur77 [187]. A recent proof-of-concept study with
MP in a small group of PAH patients showed a significant reduction pulmonary vascular
resistance, accompanied by increased BMPR2 mRNA expression in the patients’ periph-
eral blood mononuclear cells. However, unexpected severe side-effects require further
dose optimization and/or the use of other thiopurine analogues [188]. Next to a role for
BMPR2, the loss of KCNK3 function/expression is a hallmark of PAH. A recent study
shows that the loss of KCNK3 is inducing EC dysfunction by promoting the metabolic shift
and apoptosis resistance in PAECs. Therefore, targeting KCNK3 might restore EC function;
however, the mechanisms remain unknown [189]. The transplantation of mesenchymal
cells in rats from the SuHx model improved haemodynamic parameters, but, more inter-
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estingly, reduced EndoMT (partially) through the modulation of HIF2α expression [190].
Furthermore, mesenchymal stem cells are also suggested to reduce inflammation through
the secretion of paracrine factors and attenuate vascular remodeling by lowering collagen
deposition [190–192]. However, the underlying mechanisms for this observation remain
unclear [190]. Several recent studies demonstrate the role of endothelial HIF-2a in the
pathogenesis of PAH, and therapeutic targeting of HIF-2a with small molecule inhibitors,
such as PT2567, have showed a beneficial effect in PAH in vivo [193,194]. A recent study
demonstrates that human pulmonary ECs of patients with PAH are more vulnerable to
cellular senescence, a process that is associated with EC dysfunction. Interestingly, tar-
geting senescence while using the senolytic drug ABT 263 reversed established PH in a
MCT+shunt induced PAH rat model by specifically inhibiting senescent vascular cells [77].
However, more research should be performed on the safety and efficacy of senolytics
in patients.

Finally, epigenetic modulation has received growing interest as potential therapeutic
intervention. Especially, specific HDAC inhibition shows great promise in reversing pul-
monary remodeling and pressure [129]. A problem with broad-spectrum HDAC drugs is
that they show severe side effects on the right ventricle, which can have fatal consequences
in PAH patients with RV failure [133,195,196]. Therefore, searches for more selective HDAC
inhibitors that do not show cardiotoxicity are still being done. One example is MGCD0103,
which is a HDAC inhibitor that selectively inhibits class-1 HDACs that has been tested in
a chronic hypoxia rat model. This inhibitor showed improved hemodynamics, reduced
wall thickening, while RV function was maintained [133]. Additionally, BET inhibitors,
such as RVX208, seem to be promising in the treatment of PAH through its beneficial effect
on reducing the apoptosis-resistant and pro-inflammatory phenotype in PASMCs and
MVECs isolated from PAH patients, but also on vascular remodeling and the RV in several
experimental models of PH [136]. Finally, miRNA-21 has been associated with multiple
pathogenic features, such as TGF-β signalling, EndoMT, and apoptosis, which are central
to PAH. Therefore, therapeutic modulation of miRNA-21 may be an important issue for
future research to restore pathogenic signaling.

7. Conclusions

To date, we still do not fully understand what triggers the onset and progression
of PAH. We do know that BMPR2 mutations, epigenetics, physiological conditions, and
inflammation are important triggers. EC dysfunction plays a central role in all of this,
through EC proliferation, EndoMT, and a misbalanced production of vasoactive factors,
resulting in the disorganized growth of PASMCs. Although several preclinical studies
demonstrate that EC dysfunction is a cause rather than a consequence of PAH, more
research should be performed in PAH patients in order to better understand this. For
example, non-carriers of BMPR2 mutation along with carriers of BMPR2 mutation from the
same family should be followed up for several years to understand whether EC dysfunction
or other triggers are a cause or consequence. Despite advancements that have been made in
treating this disease, very few therapies have little or no direct impact on EC dysfunction.
Therefore, successful treatments should focus on multiple aspects of EC dysfunction and
not solely on its effect on SMCs and fibroblasts in PAH. A better understanding of the
molecular mechanisms that are involved in EC dysfunction in PAH is of utmost importance
for developing successful therapies to save the lung as well as the heart, and perhaps cure
PAH in the future.
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