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Abstract

DNA methylation (DNAm) is known to play a pivotal role in childhood health and development, but a comprehensive
characterization of genome-wide DNAm trajectories across this age period is currently lacking. We have therefore
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performed a series of epigenome-wide association studies in 5019 blood samples collected at multiple time-points from
birth to late adolescence from 2348 participants of two large independent cohorts. DNAm profiles of autosomal CpG sites
(CpGs) were generated using the Illumina Infinium HumanMethylation450 BeadChip. Change over time was widespread,
observed at over one-half (53%) of CpGs. In most cases, DNAm was decreasing (36% of CpGs). Inter-individual variation in
linear trajectories was similarly widespread (27% of CpGs). Evidence for non-linear change and inter-individual variation in
non-linear trajectories was somewhat less common (11 and 8% of CpGs, respectively). Very little inter-individual variation in
change was explained by sex differences (0.4% of CpGs) even though sex-specific DNAm was observed at 5% of CpGs. DNAm
trajectories were distributed non-randomly across the genome. For example, CpGs with decreasing DNAm were enriched in
gene bodies and enhancers and were annotated to genes enriched in immune-developmental functions. In contrast, CpGs
with increasing DNAm were enriched in promoter regions and annotated to genes enriched in neurodevelopmental
functions. These findings depict a methylome undergoing widespread and often non-linear change throughout childhood.
They support a developmental role for DNA methylation that extends beyond birth into late adolescence and has
implications for understanding life-long health and disease. DNAm trajectories can be visualized at http://epidelta.mrcieu.
ac.uk.

Introduction
DNA methylation (DNAm), an epigenetic process whereby DNA
is modified by the addition of methyl groups, has gained
increasing attention over the past few decades, due to its pivotal
role in development. In utero, DNAm is involved in a range
of essential processes, including cell differentiation (1–3), X-
chromosome inactivation (4) and fetal growth (5). Its role extends
well beyond birth, e.g. by maintaining cell type identity and
genome stability (6–8), responding to environmental exposures
(9–11), and its involvement, among many other processes, in
immune (12) and neural development (13). Since it is influenced
by both genetic and environmental factors (14,15), DNAm has
also emerged as a key mechanism of interest for understanding
the gene-environmental interplay in normal ageing and disease
development.

Numerous studies have identified strong associations
between DNAm and age. While most have relied on cross-
sectional data (16–18), a few have utilized longitudinal measure-
ments of DNAm within individuals (19–23). Longitudinal mea-
surements allow one to distinguish intra-individual change from
inter-individual differences in change, thereby greatly improving
the power to detect change over time and to identify differences
between individuals (24). Identifying and characterizing CpGs for
which DNAm changes differently over time between individuals
(i.e. inter-individual variation in change) is a necessary step
in identifying genetic and environmental influences on the
methylome as well as their potential impact on health outcomes
(25). Moreover, longitudinal designs facilitate the study of non-
linear trajectories (26,27), which might help to identify sensitive
periods for DNAm change in development. To date, the largest
epigenome-wide longitudinal study on DNAm included 385
elderly individuals who were followed up to five times over
a maximum period of 18 years, identifying DNAm change at
1316 CpG (Cytosine-phosphate-Guanine) sites (19) and change
of inter-individual variation at 570 CpGs (20). Yet, little is known
about DNAm trajectories across early development, as existing
studies in childhood DNAm typically have been limited by small
sample sizes (21,23), short time-periods (22,28) or focused on
specific CpGs in relation to maternal smoking (29), birthweight
(30) or maternal BMI (31).

In the current study, we aim to provide a benchmark of
typical epigenome-wide age-related DNAm trajectories within
individuals, spanning the first two decades of life. This study
combines repeated measurements of DNAm in blood at nearly
half a million CpG sites across the genome from two large
population-based cohorts, the Generation R Study (Generation R)

and Avon Longitudinal Study of Parents and Children (ALSPAC),
to form one integrated dataset with four time-points of mea-
surement. In a series of three epigenome-wide mixed model
analyses, we study linear (Model 1), non-linear (Model 2) and
sex-related (Model 3) trajectories of change across development.
Furthermore, we aim to identify CpGs for which trajectories vary
between individuals (Models 1 and 2). Results are interpreted in
the context of CpG location and biological pathways. The key
findings are discussed here; full results per CpG can be freely
accessed and visualized at http://epidelta.mrcieu.ac.uk/.

Results
Cross-cohort comparability

Sample characteristics of 1399 Generation R participants (total
DNAm samples = 2333) and of 949 ALSPAC participants (total
DNAm samples = 2686; Fig. 1) are provided in Supplementary
Material, Table S1. After the DNAm datasets of the two cohorts
underwent joint functional normalization (see Supplementary
Material, Fig. S1 for distributions of mean DNAm levels), within-
cohort stability of DNAm at birth and 6 or 7 years (in Gener-
ation R and ALSPAC, respectively) was compared. Stability of
DNAm at individual CpG sites (437 864 autosomal sites) was
estimated in three ways: relative concordance using Spearman
correlations between time points, absolute concordance using
intra-class correlations between time points (children with data
for both time points: n Generation R = 476, n ALSPAC = 826) and
change over time using change estimates from a linear mixed
model (Model 1, see Materials and Methods) applied within
each cohort (children with data for at least one of the two
time-points: n Generation R = 1394, n ALSPAC = 944). Estimates
of all stability measures for both cohorts are depicted in Fig. 2.
Next, agreement of these stability estimates between the two
cohorts was estimated with the Spearman (ρ) or Pearson (r)
correlation (depending on normality of the data) across all CpGs,
between the datasets. The Spearman correlation of the relative
concordance was ρ = 0.62, the Pearson correlation of the abso-
lute concordance was ρ = 0.60 and the Pearson correlation of
the change estimates was r = 0.86, indicating strong agreement
between datasets. Based on these results, the two datasets were
joined to form one set with four different time-points of DNAm
(birth, age 6/7, 10 and 17 years).

Linear DNAm change from birth to early adulthood

Estimates of overall change in DNAm from birth to early
adolescence (Model 1; see Materials and Methods) indicated
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Figure 1. Longitudinal sample sizes for (a) Generation R (N total children = 1399, N total DNAm samples = 2333) and (b) ALSPAC (N total children = 949, N total DNAm

samples = 2686). Bolded numbers represent total sample size at each time-point; non-bolded number refers to overlapping samples between time-points.

Figure 2. Scatterplots of within-cohort stability of DNA methylation showing (a) Spearman correlations, (b) intra-class correlation coefficients and (c) change estimates

from birth to 6/7 years per CpG for Generation R and ALSPAC.

linear change at 51.6% of CpGs at a Bonferroni-corrected
threshold (P < 1 × 10−7) (Fig. 3a and b). Specifically, DNAm
decreased over time at 35.5% of all CpGs and increased at
16.0% (Fig. 4). The mode intercept indicated that the decreasing
CpGs were 88% methylated at birth (SD = 32%) (see Fig. 5 for the
distribution of intercept for different groups of CpGs). DNAm
levels for increasing CpGs typically started at 5% (SD = 23%).

The mode estimate of the trimodally distributed (Supple-
mentary Material, Figure S2) DNAm change was b = −9.24 × 10−4

(with corresponding mode SE = 6.85 × 10−5), indicating an overall
0.09% DNAm decrease per year at a typical CpG site. This trans-
lates into a 1.66% decrease in DNAm over the course of 18 years.
An example of a CpG site with a typical change in DNAm
is depicted in Fig. 3a. The largest observed absolute change
in DNAm was b = −3.47 × 10−2 (SE = 3.65 × 10−4, P < 9.88 × 10−324),
indicating an overall DNAm decrease of 62.5% over 18 years
(Fig. 3b). Only 22 CpGs showed an absolute change >50% over
the course of 18 years (Supplementary Material, Table S2). These
CpGs were mainly annotated to TSS200 regions, the gene body
or intergenic regions and annotated to genes associated with
global biological functions, such as protein–protein interactions
[TTC22, (32)] or transcriptional regulation [NFIX, (33)] as well as
more specific functions, such as synaptic scaffolding [SHANK2,
(34)] and muscle regulation [CSRP3, (35)]. Associated diseases
include autism spectrum disorder [SHANK2, (36)], cardiomyopa-
thy [CSRP3, (37)] and Malan syndrome, with the latter also being
characterized as an overgrowth disorder (38). With such a low
number of sites that display such a large change, it follows
that typically in (cord−/peripheral) blood tissue, DNAm levels
for CpGs do not change from a fully unmethylated to fully
methylated state, or vice versa, over the course of 18 years.

Furthermore, we observed substantial inter-individual
variation in linear DNAm changes over time at 27.4% of all

CpGs (i.e. random slope variance was greater than zero at
Bonferroni-corrected threshold P < 1 × 10−7; Fig. 3c). On average,
this variation accounted for 2.7% (SD = 1.5%) of all estimated
inter-individual variation (for intercept, age, batch and residual;
see also Supplementary Material, Table S3A) at these CpGs. At
17.3% of all CpGs, we observed both change and inter-individual
variation in change.

Nonlinear DNAm change

Model 2 (see Materials and Methods) was identical to Model
1, but permitted slope changes at ages 6 and 9 years to test
for non-linear DNAm trajectories. At 11.0% of CpGs, a non-
linear trajectory was detected. Specifically, at 4.8% of all CpGs,
DNAm increased from birth and remained stable from 6 onward
(Positive-Neutral; Fig. 3d). Second, at 3.1% of all CpGs, DNAm
decreased from birth and then remained stable at 6 years
(Negative-Neutral; Fig. 3e). The remaining 3.0% of all CpGs
followed other non-linear trajectories (e.g. Fig. 3f), with each
trajectory observed in <1.0% of all CpGs. Overall, linear and/or
non-linear changes in Models 1 or 2 were observed in 52.6% of
CpGs (Fig. 3), indicating that most non-linear patterns were also
detected as linear patterns in Model 1.

Inter-individual differences in change (i.e. random variance
in slopes) from birth onward were detected at 3.4% of all sites
(Fig. 3g), inter-individual differences in slope change at 6 years
in 0.2% (Fig. 3h) and inter-individual differences in slope change
at 9 years at 8.2% of CpGs (Fig. 3i). For CpGs at which inter-
individual differences in change from birth onwards were
detected, this variation on average accounted for 3.9% (SD = 9.3%)
of all inter-individual variation, for CpGs at which inter-
individual differences in slope change at 6 years were detected,
this variation on average accounted for 20.6% (SD = 13.2%) of all
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Figure 3. DNAm levels of selected CpG sites across childhood. Parts (a–c) show CpG sites with linear change over time (Model 1). A typical site is shown in (a), the site

with the largest observed change in (b) and with inter-individual variation in DNAm change (c). Parts (d–f) show CpG sites with non-linear change (Model 2). A Positive-

Neutral trajectory is shown in (d), a Negative-Neutral trajectory in (e) and a Positive-More Positive-Less Positive in (f). Parts (g–i) show CpG sites with inter-individual

variation in change (Model 2). A site with slope variation from birth is shown in (g), slope change variation at 6 in (h) and slope change variation at 9 in (i). Parts (j–l)
show CpG sites with sex-specific DNAm. A site with stable sex differences is shown in (Model 3) (j), sex-specific slope in (Model 3) (k) and sex-specific slope change at

6 in (Model 2) (l).

inter-individual variation and for CpGs at which differences in
slope change at 9 years were detected, this variation on average
accounted for 23.3% (SD = 17.6%) of all inter-individual variation
(for a complete overview of inter-individual variation within
all CpGs, see Supplementary Material, Table S3B). We note that
CpGs with inter-individual differences in change at 6 years often
contained a few extreme outliers. These outliers, however, were
found across cohorts and batches and were often found within
individuals across time-points, indicating that these outliers
seem to reflect true DNAm values rather than technical issues.

Inter-individual differences in slope (change) at each time-point
were detected more often at CpGs with an increasing rather than
decreasing overall DNAm change in Model 1 (P ≤ 2.37 × 10−144).
At last, both Positive-Neutral and Negative-Neutral changes
coincided more often with inter-individual variation from birth
(P < 9.88 × 10−324). Any inter-individual differences in change,
detected by Models 1 or 2, were observed at 27.9% of CpGs. In
total, Models 1 and 2 detected age-related change whether linear,
non-linear or inter-individual differences in change at 62.8% of
all CpG sites (Fig. 3).
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Figure 4. Overview of results from the three models. Model 1 (M1) was applied for overall change in DNA methylation and inter-individual variation in linear change;

Model 2 (M2) for non-linear change in DNA methylation and inter-individual variation in non-linear change; and Model 3 (M3) for stable sex differences in DNA

methylation and sex differences in change of DNA methylation (sex by time interaction). Percentages represent percentage of autosomal CpGs below Bonferroni-

corrected threshold (P < 1 × 10−7).

Figure 5. Density plots of intercepts for CpGs with (a) directions of change in Model 1 (n = 473 864); (b) non-linear trajectories in Model 2 (n = 52 043); (c) stable sex

differences in Model 3 (n = 22 821); (d) sex differences in DNAm change in Model 3 (n = 1768).
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Sex differences in longitudinal DNAm
and DNAm change

According to Model 3 (see Materials and Methods), sex differ-
ences in DNAm were present at 4.9% of (autosomal) CpGs (Fig. 3).
Specifically, stable longitudinal sex differences (main sex effects)
were observed at 4.8% of all (autosomal) CpGs (Fig. 3j), and sex
differences in DNAm change (sex by age interaction effects) were
found at 0.4% of all (autosomal) CpGs (Fig. 3k). At sites with stable
sex differences, DNAm levels were higher in girls at 3.6% (Fig. 3j)
and lower at 1.2% of CpG sites. DNAm at sites with higher DNAm
in girls tended to increase over time, whereas DNAm at sites with
higher DNAm in boys tended to decrease (P = 4.20 × 10−205). Most
commonly (at 0.2% of all CpGs), DNAm was higher in girls at birth
but DNAm in boys increased at a higher rate.

Both CpGs with stable sex differences and those with
sex differences in DNAm change were less likely to show
inter-individual variation in DNAm change than other sites
(20.8 versus 27.5% and 18.1 versus 27.3%; P = 5.36 × 10−111 and
P = 7.57 × 10−18). Finally, CpGs with stable sex differences or sex
differences in DNAm change detected in Model 3 were much
more likely to follow an overall Positive-Neutral trajectory of
DNAm change detected in Model 2 than other CpG sites were
(24.2% of CpGs with stable sex differences followed a Positive-
Neutral trajectory versus 3.8% of other CpGs and 53.9% of CpGs
with sex differences in DNAm change followed a Positive-
Neutral trajectory versus 4.6% of other CpGs; P < 9.88 × 10−324,
P < 9.88 × 10−324; Fig. 3l). Albeit less prominently so, CpGs with
stable sex differences or sex differences in DNAm change also
more often followed a Negative-Neutral trajectory than other
CpGs did (stable sex differences: 5.0 versus 3.0%, P = 5.43 × 10−62;
sex differences in DNAm change: 7.7 versus 3.1%, P < 7.11 × 10−28).

Follow-up analyses

Follow-up analyses were performed to understand how dif-
ferent types of age-related DNAm trajectories are distributed
across the genome (Supplementary Material, Tables S4–S6) and
in association with genetic variance (Supplementary Material,
Tables S7–S9). Additionally, to understand how different types
of DNAm change are represented in epigenetic age estimators,
we studied their enrichment in Horvath’s (39) and Hannum’s (40)
age estimators (Supplementary Material, Tables S10 and S11).
All reported enrichments have significance below a Bonferroni-
corrected threshold of P < 3.29 × 10−4, corrected for the num-
ber of chi-square tests (n = 152). We further report the enrich-
ment of Gene Ontology (GO) pathways (nominal P < 0.05) for
genes annotated to CpG sites in each trajectory (Supplemen-
tary Material, Tables S12–S14). At last, we study the enrich-
ment of age-related DNAm trajectories in reported hits of dif-
ferent epigenome-wide association studies (EWASs) (Fig. 6). All
reported EWAS enrichments are below a Bonferroni-corrected
threshold of P < 1.38 × 10−04, corrected for the number of Fishers’
exact tests (n = 363; Supplementary Material, Table S15).

Patterns of DNAm change and CpG location. CpG sites with
DNAm change associated patterns were labelled by gene
associated regions, CpG island associated regions as well as
enhancer elements. Although many exceptions exist, low levels
of DNAm in the promoter area but high levels of DNAm in
the gene body are generally associated with increased gene
transcription (41,42). CpGs annotated to TSS200 regions more
often showed an overall DNAm increase (Model 1) than other
CpGs (19.0 versus 15.6%), whereas CpGs annotated to the gene
body more often showed an overall DNAm decrease than

other sites (38.8 versus 33.7%). TSS200 CpGs showed less inter-
individual variation in overall DNAm change than other sites
(22.2 versus 28.1%), whereas gene body CpGs showed somewhat
more inter-individual variation in overall DNAm change than
other sites (28.9 versus 26.5%).

Promoter areas often coincide with CpG islands (43). Here,
63.3% of TSS200 CpGs were also annotated to CpG islands. As in
TSS200 areas, CpGs annotated to CpG islands had lower DNAm
levels [mode M1 intercept 2.4% (SD = 30.2%)], and more often
showed an overall DNAm increase than other sites (25.2 versus
12.0%). DNAm sex differences were especially present in the
shores of CpG islands compared with all other island associated
regions (stable sex differences: 7.5 versus 4.0%, sex differences
in DNAm change: 0.6 versus 0.3%).

Enhancers act on promoters to regulate gene transcription
(44). CpGs annotated to enhancer elements (2.0% of CpGs) tended
to have low DNAm levels (mode M1 intercept 5.07%; SD = 31.4%)
and then increased with age more than other CpGs (23.9 versus
15.9%). Inter-individual variation in change from birth was more
common at enhancer sites than at other sites (5.6 versus 3.3%).

Genetic associations with patterns of DNAm change. We looked
up methylation quantitative trait loci in cis (cis meQTLs) and in
trans (trans meQTLs) (45) and CpGs located on a single nucleotide
polymorphism (polymorphic CpGs) (46) to investigate possible
relationships between genetic variation and DNAm trajectories
and sex differences. CpGs with cis (30.0% of CpGs) and trans (2.1%
of CpGs) meQTLs were more likely to have increasing DNAm
than other sites (cis: 23.4 versus 12.9% at other sites; trans: 27.5
versus 15.8%) and to exhibit more inter-individual variation in
overall DNAm change (cis: 30.8 versus 25.9%; trans: 29.4 versus
27.3%). This inter-individual variation tended to appear from
birth onwards (cis: 5.4 versus 2.5%; trans: 13.3 versus 3.1%) and
not from 9 years onwards (cis: 7.7 versus 8.4%; trans: 4.7 versus
8.2%). CpG sites with meQTLs were more likely to exhibit stable
DNAm sex differences (cis: 9.0 versus 3.0%; trans: 15.2 versus
4.6%) and sex differences in DNAm change than other sites (cis:
0.7 versus 0.2%; trans: 2.0 versus 0.3%).

Polymorphic CpGs (or for Infinium I, single nucleotide poly-
morphisms at site of single base extension) (14.0% of all CpGs)
more often had decreasing (42.72 versus 34.35%) rather than
increasing DNAm (9.16 versus 17.15%) than other CpGs had.
Furthermore, there was less inter-individual variation in the
slope change at 9 years (5.86 versus 8.54%) and less stable sex
differences were found at polymorphic CpGs (3.61 versus 5.01%).

In sum, CpGs linked to meQTLs more often had increasing
DNAm and DNAm sex differences, whereas polymorphic CpGs
less often had increasing DNAm and DNAm sex differences. Both
CpGs linked to meQTLs and polymorphic CpGs less often showed
inter-individual variation in the slope change at 9 years.

Epigenetic age estimators. ‘Epigenetic age acceleration’ is a term
coined to indicate the deviation of chronological age from age as
estimated by an ‘epigenetic clock’ and is associated with disease
risk and mortality (47). In our own sample (time-points 6/7 to
17 years), the median absolute difference (MAD) between epige-
netic age and chronological age for two often-used epigenetic
clocks, those of Horvath (39) (n = 353 CpGs) and Hannum et al.
(40) (n = 71), was rather large but similar to most other published
studies (39,40,48,49), with an MAD of 2.9 and 3.8 years, respec-
tively. A previous study found epigenetic age to be non-linearly
related to chronological age in both childhood and adulthood
(50). However, to use epigenetic age acceleration as an unbiased
predictor, one would expect a linear association between the
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Figure 6. Enrichment of age-related trajectories in EWASs.

epigenetic clock and age, and thus for the clock to contain few
CpGs that change nonlinearly over time. Additionally, to detect
age acceleration, one would expect that change in DNAm at
these CpGs would also vary between individuals. Here, we tested
the enrichment of our DNAm trajectories in the epigenetic clocks
of Horvath (n = 353 CpGs) and Hannum et al. (n = 71).

CpGs in both epigenetic clocks more often showed non-
linear DNAm patterns than other sites did (26.4% in Horvath’s
clock showed non-linear patterns; 45.1% in Hannum’s clock did).
Slope changes in DNAm were found both at the age of 6 (21%
in Horvath; 40.8% in Hannum) and 9 years (7.1% in Horvath,
8.4% in Hannum). No enrichment for inter-individual variation
in DNAm change was found within Horvath’s clock, whereas
CpGs in Hannum’s clock showed enrichment for inter-individual
variation in DNAm change from birth compared with other sites
(16.9 versus 3.4%) and from 9 years onwards (28.2 versus 8.2%).
Based on this, we conclude neither that both epigenetic clocks
did meet our expectations on the specific inclusion of linearly
changing probes, nor that CpGs in Horvath’s epigenetic clock are
enriched for inter-individual variation in DNAm change.

Functional associations. Enrichment of GO categories was tested
for genes linked to CpGs with different DNAm trajectories. In
short, genes annotated to CpGs with overall decreasing DNAm
levels were enriched in immune-developmental functions,
whereas those annotated to CpGs with increasing levels were
enriched in neurodevelopmental functions. This pattern seemed
even more pronounced at genes annotated to non-linear
Negative-Neutral and Positive-Neutral CpGs, with the former
more often associated to immune-development and the latter
to neurodevelopment. Genes linked to CpGs with stable sex
differences and sex differences in DNAm change were enriched

in pathways associated with sexual development, such as
genital development, as well as pathways associated with
neurodevelopment. Genes linked to CpGs with sex difference
in DNAm change were also enriched in functions related to
tooth and hair development.

Enrichment in EWASs. We further investigated the functional
relevance of CpG sites with age-related DNAm trajectories by
testing enrichment with published EWAS associations (Fig. 6)
(28,51–76). Unsupervised clustering of the enrichments shows
that CpG sites with inter-individual variation in change over
time have distinct enrichments and cluster differently from
those with age-associated change that is consistent among
individuals. The CpG sites of each age-associated DNAm
trajectory were enriched with published age associations in
adulthood. Multiple smoking EWAS clustered together with
enrichment patterns exhibiting strongest enrichments among
CpG sites with negative-neutral trajectories and mostly weak
enrichments among CpG sites with inter-individual variation
in change. Furthermore, despite adjusting for cell count
heterogeneity in our models, we observed enrichments of
CpG sites that differ by white blood cell (WBC) type among
sites following nearly all age-associated trajectories; however,
the increases in proportions were small. Finally, we observed
enrichments of CpG sites associated with gestational age and
prenatal smoking with sex-specific DNAm.

Discussion
In this study, we described changes in DNAm levels through
the first two decades of human life. We examined DNAm levels
per CpG by their linear association with age, their non-linear
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trajectories and inter-individual variation in change, as well as
sex differences and CpG characteristics.

We found that about half of sites change: consistent linear
and/or non-linear DNAm change was found at 53% of sites. We
further found that over a quarter of sites, 28% were characterized
by substantial inter-individual differences in the direction of
this change. DNAm sex differences were present, but not abun-
dant: 5% of autosomal sites displayed different DNAm levels or
differences in change over time for girls and boys.

Specifically, we determined that DNAm at 52% of the mea-
sured methylome have some form of linear change from birth to
late adolescence, with DNAm decreasing at 36% and increasing
at 16% of CpGs. CpGs with decreasing DNAm tended to have high
levels of DNAm and were more often located in gene bodies.
CpGs with increasing levels of DNAm tended to have low levels
of DNAm and were more likely to be located in promoter regions
and at enhancers. The predominance of decreasing CpGs is in
agreement with literature on epigenome-wide DNAm and age in
cross-sectional research on children and adults (18,77), as well
as with longitudinal research in adults (19).

Non-linear DNAm trajectories were detected at 11% of CpGs,
mostly involving changes in DNAm from birth to age 6 years,
after which DNAm was more stable. We note that this could
be due to cord blood being used to generate DNAm profiles
at birth, whereas peripheral blood was used at later ages. A
previous study (23) including eight children showed that the
cord blood DNAm profile at birth clustered separately from
later peripheral profiles, after which DNAm changed gradu-
ally from 1 to 2.5–5 years. Such differences between DNAm
in cord and peripheral blood might be due to uncaptured dif-
ferences in WBC composition, as well as to different gene-
regulatory functioning in the intra-uterine versus extra-uterine
environment.

Sites with decreasing levels of DNAm, both with or without
slope changes around the age of 6 years, were functionally
enriched for immune-developmental pathways, and sites with
increasing levels of DNAm, both with or without slope changes,
were enriched for neurodevelopmental pathways. Since these
observations were based on blood DNAm, it remains to be stud-
ied what roles genes linked to neurodevelopmental pathways
play in in blood, or to what extent DNAm trajectories in blood
mirror those in neural tissue.

To our knowledge, we are the first to study inter-individual
differences in DNAm change. Inter-individual differences in lin-
ear DNAm trajectories were found at 27% of CpGs, indicating
change at different rates or directions for different individuals.
Such sites tended to have overall increasing rather than decreas-
ing levels of DNAm from birth to 18 years. More research would
be needed to understand why these to qualities so often co-occur
in CpGs. Inter-individual differences in non-linear DNAm trajec-
tories were most often found in the slope change at 9 years (8%
of CpG sites), indicating that most inter-individual differences
in DNAm emerge after the first decade of life. More research is
needed to understand if the direction of change in this period is
determined by stimuli during that period, or rather by preceding,
perhaps cumulative, exposures. However, it is clear that, given
the high proportion of CpG sites with inter-individual variation
in DNAm change over time that we have observed, it is impor-
tant to restrict the range of ages of children included a single
EWAS. Specific limits should be discussed given the rapidly
growing number of studies generating DNAm profiles across
childhood (78).

Stable sex differences were found at 5% of autosomal CpGs,
and sex differences in DNAm change were found at 0.4% of

all CpGs. In general, if there were stable sex differences, girls
had higher levels of DNAm (4% of all CpGs); in case of sex
differences in DNAm change, boys had an accelerated upward
change (0.2% of all CpGs). The direction of stable sex differ-
ences detected is congruent with a cross-sectional study on
newborns, in which girls had higher DNAm levels than boys
for the large majority of the 3031 significant autosomal CpGs
(69). Sex-discordant associations with age seemed to be more
prevalent from birth to age 6 years than afterwards, suggesting
that any phenotypic sex differences associated to DNAm would
be established in early childhood. Sex-associated CpGs showed
less inter-individual variation in change and tended to be asso-
ciated with meQTLs, and therefore, more likely to be genetically
influenced. Their enrichment in the shores of CpG islands, areas
at which DNAm has been associated with tissue differentiation
and tissue-specific gene expression (79), is consistent with the
critical role that these processes play in sexual differentiation.
Studies into sex differences in epigenetic regulation might want
to focus on these locations.

We also found the other DNAm trajectories to be arranged
throughout the genome in a non-random fashion. Earlier studies
(41,80) have shown that, for active genes, lower DNAm towards
the promoter area (TSS200) and higher DNAm in the gene body
relate to increased gene transcription. Here, we add the obser-
vation that promoter DNAm tends to increase and gene body
DNAm tends to decrease with age. From this finding, one might
infer that a downregulation of gene expression takes place from
birth to late adolescence. Enrichment analyses of published
EWAS associations further showed that different traits and expo-
sures exhibited distinct enrichment patterns among DNAm tra-
jectories. For example, there were clear differences between
smoking and BMI-related traits. Enrichment of sites with DNAm
sex differences in EWASs on prenatal maternal smoking is con-
sistent with studies finding that prenatal smoking affects traits,
such as birth weight (81), brain development (82,83) and atten-
tion (84) differently in boys and girls. Clustering for prenatal
maternal smoking EWASs also showed enrichment for CpGs
with consistent change among individuals, not for CpGs with
inter-individual variation in change. This may suggest a link with
the well-known effects of prenatal smoking on childhood devel-
opment since consistent DNAm change is more likely related
to development or aging programming than inter-individual
variation. This may explain why changes associated to pre-
natal smoking persist throughout life (85). Notably, this pat-
tern of change without inter-individual variation is visible in
cg05575921, the AHRR CpG site strongly and persistently asso-
ciated with prenatal smoking (86,87) (Supplementary Material,
Fig. S3; http://epidelta.mrcieu.ac.uk).

As a post hoc sensitivity analysis, we recomputed our main
results, excluding a list of cross-reactive probes (46), and
compared these to our main results. In most cases, percentages
of CpGs representing the various DNAm trajectories were
significantly different when excluding the cross-reactive probes,
but absolute percentages did not change more than 0.5%.
The trajectory that had a somewhat larger relative change
in percentage was the CpGs in which stable sex differences
were detected (4.8% in all CpGs; 4.5% excluding cross-reactive
probes), which is in line with earlier reports that autosomal
cross-reactive probes may reflect false DNAm differences
between the sexes (46,88). However, since we found that this
group of CpGs is enriched for associated genes involved in
sexual development, we conclude that the large majority of
the CpGs identified to have sex differences are not affected by
cross-reactivity.
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We found that DNAm trajectories for CpGs included in epige-
netic clocks employed to estimate age or age acceleration did not
meet our expectations. For example, we observe that over one-
quarter and nearly one-half of the CpG sites included in the Hor-
vath and Hannum clocks, respectively, follow non-linear DNAm
trajectories in childhood. Given the widespread use of clocks to
investigate biological aging, further investigation is warranted to
better understand how, and perhaps if, associations using these
clocks should be interpreted in child DNAm profiles.

We note three main limitations of our findings. First, the use
of different tissue types (cord blood and peripheral blood) could
account for some of the differences between birth and later time
points, e.g. sites that increased or decreased between birth and 6,
but did not show change after that. Although enrichment anal-
yses further showed that these sites were enriched with sites
differentially methylated between WBC types, the enrichments
represent small proportions of sites with linear or non-linear
change identified in our study. Generation of DNAm profiles of
a single tissue type or cell type collected across childhood, or
the measurement of WBC proportions instead of estimation of
proportions, would be needed to disentangle this issue further.
Second, since DNAm at 9 years was measured only in Generation
R and at 17 years only in ALSPAC, DNAm differences from 9 to
17 may be to some extent driven by batch effects or cohort differ-
ences. This may explain some of the inter-individual differences
in slope changes at 9 towards 17 years. However, the high level of
agreement in both stability and change among the correspond-
ing time points of the two cohorts is reassuring. Moreover, it is
not entirely surprising that inter-individual variation in direc-
tionality of change was higher for the largest age interval. This
interval, furthermore, encompasses the period of adolescent
development, a time in which many inter-individual phenotypic
differences arise. Finally, it should be noted that the current
study only included children of European ancestry. Consider-
able DNAm differences have been found between populations
(89–91), but research on age-associated DNAm differences is
scarce. One study (92) reported evidence for overlap in age-
associated CpGs in two African populations with studies on
European-ancestry populations, but more research is needed to
map the generalizability of longitudinal DNAm changes among
different populations.

Conclusions
In the first comprehensive CpG-by-CpG characterization of
DNAm from birth to late adolescence, we found that DNAm at
more than half of the studied CpG sites changes consistently
between individuals and that considerable inter-individual
variation in change exists. Furthermore, characteristics, such
as child sex, CpG location, genetic variants, and environmental
and disease traits, have distinct associations with patterns of
DNAm change. Further analysis of these patterns is made readily
available at http://epidelta.mrcieu.ac.uk/, which we hope can be
used in future studies to test developmental hypotheses that
promote our understanding of the developmental nature of
DNAm, its role in gene functioning and the associated biological
pathways leading to health and disease.

Materials and Methods
Setting

Data were obtained from two population-based prospective
birth cohorts: the Dutch Generation R Study (Generation R) and

the British Avon Longitudinal Study of Parents and Children
(ALSPAC). Pregnant women residing in the study area of
Rotterdam, The Netherlands, with an expected delivery date
between April 2002 and January 2006 were invited to enrol in
Generation R. A more extensive description of the study can
be found elsewhere (93). The Generation R Study is conducted
in accordance with the World Medical Association Declaration
of Helsinki and has been approved by the Medical Ethics
Committee of the Erasmus Medical Center, Rotterdam. Informed
consent was obtained for all participants.

Pregnant women residing in the study area of former county
Avon, UK, with an expected delivery date between April 1991
and December 1992 were invited to enrol in the ALSPAC study.
Detailed information on the study design can be found else-
where (3,94). The ALSPAC website contains the details of all avail-
able data through a fully searchable data dictionary and variable
search tool (http://www.bristol.ac.uk/alspac/researchers/our-da
ta/). Ethical approval for the study was obtained from the ALSPAC
Ethics and Law Committee and the Local Research Ethics Com-
mittees. Consent for biological samples has been collected in
accordance with the Human Tissue Act (2004). Informed consent
for the use of data collected via questionnaires and clinics was
obtained from participants following the recommendations of
the ALSPAC Ethics and Law Committee at the time.

Study population

In the Generation R Study, 9778 pregnant mothers had 9749 live-
born children. For a subsample of 1414 children, DNAm data were
collected at birth and/or 6 years and/or 10 years of age. This
subsample consisted of participants with parents born in the
Netherlands [European ancestry (95) confirmed for all children
with genetic data available (95.4%)]. Fifteen sibling pairs were
present in the dataset. From each pair, one sibling with the
lowest number of DNAm measurements, or otherwise randomly,
was excluded, resulting in a sample with 1399 children (with
2333 DNAm samples; see below).

In the ALSPAC study, 15 247 pregnant mothers gave birth to
14 973 live-born children. DNAm at birth and/or 7 years and/or
17 years was available for a subsample of 1003 children as part
of the Accessible Resource for Integrated Epigenomic Studies
(ARIES) study (96). From this sample, 48 children with non-
European ancestry as based on genetic principle component
analysis and 6 children with missing data on gestational age
were excluded, resulting in a sample of 949 children with DNAm
data (with 2686 DNAm samples; see below).

DNA methylation

Cord blood was drawn after birth for both cohorts, and peripheral
blood was drawn at a mean age of 6.0 (SD = 0.5) and 9.8 (SD = 0.3)
years for Generation R, and 7.5 (SD = 0.2) and 17.1 (SD = 1.0) years
for ALSPAC. Both cohorts made use of the EZ-96 DNAm kit (shal-
low) (Zymo Research Corporation, Irvine, CA) to perform bisul-
fite conversion on the extracted leukocytic DNA. Samples were
further processed with the Illumina Infinium HumanMethy-
lation450 BeadChip (Illumina Inc., San Diego, CA) to analyze
DNAm.

In Generation R, quality control was performed on all 2467
available DNAm samples with the CPACOR workflow (97). Arrays
with observed technical problems, such as failed bisulfite con-
version, hybridization or extension as well as arrays with a
mismatch between sex of the proband and sex determined
by the chromosome X and Y probe intensities, were removed
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from subsequent analyses. Additionally, only arrays with a call
rate >95% per sample were processed further, resulting in 2355
samples, 22 of which belonged to half of an excluded sibling pair;
hence, 2333 samples were carried forward into normalization.

In ALSPAC, quality control was performed on 6057 samples
(3286 belonging to children, 2771 to their mothers), using the
meffil package (98) in R version 3.4.3 (99). After removing sam-
ples with mismatched genotypes, mismatched sex, incorrect
relatedness, low concordance with samples collected at other
time points, extreme dye bias and poor probe detection, 5337
samples remained, 2845 of which belonging to children, used in
the current study.

Although we removed low-quality samples in part based on
high proportions of probes with undetectable signal or low bead
numbers, we did not afterward remove any probes due to poor
signal. If we apply a typical probe-exclusion procedure, with
detection P-value >0.01 or low bead count for more than 10% of
the samples, we would remove only 1414 or 0.3% of all autosomal
probes. The removal of such a small number of probes would not
change our results in any noteworthy way.

To minimize cohort effects as much as possible, we
normalized both cohorts together as a single dataset. Functional
normalization (10 control probe principal components, slide
included as a random effect) was performed with the meffil
package in R (98). Normalization took place on the combined
Generation R and ALSPAC set comprising a total of 5178 samples
for a total of 485 512 CpGs. One-hundred and fifty-nine ALSPAC
samples belonging to non-European children or children with
missing data on gestational age were excluded, leading to a final
ALSPAC set of 2686 samples (for 949 children). Together with
2333 samples for Generation R (of 1399 children), they formed a
combined set of 5019 samples (of 2348 children.)

Analyses were restricted to 473 864 autosomal CpGs. DNAm
levels were operationalized as beta values (β values), represent-
ing the ratio of methylated signal relative to the sum of methy-
lated and unmethylated signal measured per CpG. In a post hoc
sensitivity analysis, recomputed our main results excluding a
list of cross-reactive probes [n = 28 298; 5.9% of all included CpGs
(46)] and compared them to our main results (Supplementary
Table S16).

Covariates

Sample plate number (N = 29 in Generation R and N = 31 in
ALSPAC) was used to correct for batch effects, which was added
as a random variable in the model (see below). WBC composition
was estimated with the reference-based Bakulski method (100)
for cord blood and Houseman method (101) for peripheral blood
(Supplementary Material, Table S17). Nucleated red blood cells
were not further analyzed due to its specificity to cord blood,
leaving CD4+ T-lymphocytes, CD8+ T-lymphocytes, natural
killer cells, B-lymphocytes, monocytes and granulocytes. Other
covariates included gestational age in weeks, sex of the child,
and cohort.

Statistical analyses

Step 1: Assessing cross-cohort comparability in DNA methylation
stability.

To ascertain comparability among the two cohorts, we com-
pared within-cohort DNAm stability between the time points
that were present in both cohorts—i.e. birth and 6/7 years (Gen-
eration R/ALSPAC, respectively).

Longitudinal stability per CpG within each cohort was
assessed by studying estimates of concordance and change.

For concordance, DNAm data were first residualized within
each cohort for all variables present in the longitudinal models
except the ‘cohort’ variable, in order to remove between-
cohort differences due to other covariates. Concordance was
then measured both with Spearman correlation (data at most
CpGs is not normally distributed) as a measure of relative
concordance and with intra-class correlations as a measure of
absolute concordance (children with data for both time points:
n Generation R = 476, n ALSPAC = 826). Longitudinal change from
birth to 6/7 years was assessed by studying the estimates of
the change in DNAm per year by applying Model 1 (see below)
within each cohort (children with data for at least one of the two
time-points: n Generation R = 1394, n ALSPAC = 944).

In a second step, cross-cohort comparability was assessed
with Spearman (ρ) correlation of concordance estimates of the
CpGs of each cohort (which were not normally distributed) and
Pearson correlations (r) among the change estimates of the CpGs
of each cohort (which were normally distributed).

Step 2: Longitudinal modelling of DNA methylation using combined
Generation R and ALSPAC data.

The combined Generation R and ALSPAC dataset had four
time points of collection (birth, age 6/7, 10 and 17 years). We
fit three linear mixed models to CpG site DNAm across the
genome to identify (i) linear change over time (Model 1); (ii)
non-linear change over time (Model 2) and (iii) sex differences
in change over time (Model 3). Both fixed and random effects
were examined to allow for inter-individual variation in DNAm
patterns over time. The models are described in detail below.

Model 1: Linear change. This model was applied to identify
CpGs that show an overall change in DNAm from birth to 18 years
(i.e. fixed age effect), as well as CpGs with inter-individual differ-
ences in change during that time (i.e. random age effect). The
Model 1 is defined as follows:

M1: Mijk = β0 + u0i + β1Ageij + u1iAgeij + u0k + covariates + εijk

ε ijk ∼ N(0,σε
2)

u0i ∼ N(0,σ 0i
2)

u1i ∼ N(0,σ 1i
2)

u0k ∼ N(0,σ 0k
2)

(i.e.: CpG ∼ (1|Child ID) + Age + (Age|Child ID) + (1|Sample
Plate) + covariates).

Here, participants are denoted by i, time points by j and
sample plates by k. M denotes DNAm level, β0 fixed intercept,
u0i random intercept, β1 fixed age coefficient, u1i random age
coefficient and u0k random intercept for sample plate. Hence, β1

represents the average change in DNAm per one year. Variability
in this change among individuals was captured with u1i. To avoid
problems with model identification, the random slope of age
was uncorrelated to the random intercept (i.e. a diagonal random
effects matrix was used).

Model 2: Non-linear change. To identify non-linear changes in
DNAm, we extended Model 1 to allow slope changes at ages 6
and 9 (30,31)

M2: Mijk = β0 + u0i + β1Ageij + β2(Ageij−6)+ + β3(Ageij−9)+ +u1i

Ageij + u2i (Ageij−6)+ + u3i (Ageij−9)+ + u0k + covariates + εijk

ε ijk ∼ N(0,σε
2)

u0i ∼ N(0,σ 0i
2)

u1i ∼ N(0,σ 1i
2)

u2i ∼ N(0,σ 2i
2)

u3i ∼ N(0,σ 3i
2)

u0k ∼ N(0,σ 0k
2)

(i.e. CpG ∼ (1|Child ID) + Age + Age-6 + Age-9 + (Age|Child
ID) + (Age-6|Child ID) + (Age-9|Child ID) + (1|Sample Plate) +
covariates),
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Where a+ = a if a > 0 and 0 otherwise, so that β2 represents the
average change in DNAm per year from 6 years of age onward,
after accounting for the change per year from birth onward, as
denoted by β1. Likewise, β3 represents the average change in
DNAm per year from 9 years of age onward, after accounting for
the change per year from 6 years of age onward. Hence, with
those variables, we are able to detect slope changes at 6 and
9 years old. These slope changes were used to identify different
types of non-linear patterns. With u2i and u3i, the inter-individual
variation in slope changes at 6 and 9 years were captured,
respectively. General linear hypothesis testing (102) was applied
to our fitted models to determine if there were changes in DNAm
per year from 6 to 9 years and from 9 to 18 years.

Model 3: Sex differences in change: To identify CpGs for which
DNAm changes differently over time for boys and girls, we
applied the following model:

M3: Mijk = β0 + u0i + β1Ageij +u1i Ageij + β2 Sexi Ageij + u0k +
covariates + ε ijk

ε ijk ∼ N(0,σε
2)

u0i ∼ N(0,σ u
2)

u1i ∼ N(0,σ 1i
2)

u0k ∼ N(0,σ 0k
2)

(i.e. CpG ∼ (1|Child ID) + Age + (Age|Child ID) + Age∗Sex +
(1|Sample Plate) + covariates),

Here, Sexi denotes the sex of child i. Both main and interac-
tion effects for sex were studied.

The three mixed models were fitted using maximum likeli-
hood estimation in R with the lme4 package (103). Continuous
covariates (WBCs, gestational age) were z-score standardized.
Random slopes were kept uncorrelated with random intercepts
and the NLopt optimizer was used, enabling us to improve com-
putational speed compared with the default settings. P-values
for the fixed effects were computed with a z-test. P-values for
random slopes of the Age effects were obtained by refitting
the model without the random slope and comparing the fit
estimates of the two models with a likelihood ratio test. Within
each model, P-value thresholds were Bonferroni-corrected for
the number of tested CpGs (i.e. to P < 1 × 10−7).

Step 3: Functional characterization of CpGs with comparable pat-
terns of change.

To interpret the functionality of the age-related DNAm
patterns from the three models, CpG sites adhering to 8
different age-related patterns (M1 linear change and inter-
individual variation in linear change, M2 non-linear trajectories
and inter-individual variation in change from birth in slope
change at 6 and 9 years, and M3 stable sex differences and sex
differences in DNAm change) were tested for enrichment in the
following:

(i) gene-relative genomic regions (TSS1500, TSS200, 5’UTR, 1st
exon, gene body, 3’UTR and intergenic regions) as indi-
cated by the UCSC Genome Browser (104) in the Illumina
HumanMethylation450 v1.2 Manifest (Illumina Inc.),

(ii) CpG island-relative genomic regions (N shelf, N shore, CpG
island, S shore, S shelf and open sea regions) as indicated
by the UCSC Genome Browser (104) in the Illumina Human-
Methylation450 v1.2 Manifest (Illumina Inc.),

(iii) enhancer elements as those expressed in whole blood,
peripheral blood mononuclear cells, natural killer cells,
CD4+ T cells, CD8+ T cells, monocytes, neutrophils,
eosinophils or B cells (105),

(iv) cis and trans meQTLs identified by the BIOS consortium (45)
and polymorphic CpGs (46) and

(v) inclusion in two well-known epigenetic age estimators
(39,40).

Altogether, these encompassed 19 enrichment analyses for
eight variables. Enrichment was tested using χ2-tests of unequal
proportions. The enrichment P-value threshold was Bonferroni-
corrected for multiple tests (i.e. P < 3.29 × 10−4 for 8 × 19 = 152
tests). Second, we tested the enrichment of GO categories for
genes linked to CpG sites surviving adjustment for multiple tests
(P < 1 × 10−7) for each of the main variables of interest. Gene
annotation (closest genes, <1500 base pairs from transcription
start site) was based on the Illumina HumanMethylation450 v1.2
Manifest (Illumina Inc.). The analysis was adjusted for gene
size and pruned for near-identical terms [see elsewhere for a
full description (106)]. For completeness, terms with nominal
P < 0.05 were reported. At last, we tested the enrichment of age-
related DNAm trajectories (11 different age-related patterns: M1
decreasing, increasing and inter-individual variation in linear
change, M2 Positive-Neutral, Negative-Neutral, other non-linear,
inter-individual variation in change from birth, in slope change
at 6 and 9 years and M3 stable sex differences and sex dif-
ferences in DNAm change) in EWASs on age, prenatal smok-
ing, smoking, cardiovascular-associated traits, C-reactive pro-
tein, allergies, educational attainment and cellular heterogene-
ity. EWAS summary statistics were retrieved from the EWAS Cat-
alog (http://www.ewascatalog.org/) and studies were included
when performed with the 450 K array in peripheral or cord blood,
resulting in 33 EWASs. Enrichment was tested with Fisher’s
exact tests; the enrichment P-value threshold was Bonferroni-
corrected for multiple tests (i.e. P < 1.38 × 10−4 for 11 × 33 = 363
tests).

Supplementary Material
Supplementary Material is available at HMG online.
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